

GetWebFilesInator

GetWebFilesInator (gwfi) is a simple file downloader to keep your javascript
and css libraries up to date. Is not perfect but is easily configurable and
for simplest tasks can be more suitable than a real dependency manager.

All you need is to know were your libraries are and a yaml o json configuration
file.

Requirements

	ArgParseInator (pip install ArgParseInator)

	PyYAML (pip install PyYAML)

	requests (pip install requests)

Contents:

	Configuration
	Main configuration

	Paths

	Downloaders

	Tests

	Source Blocks

	Templates

	Files

	Custom downloaders
	Downloader Object

	Examples

Note

I made this script for a personal need is not intended for professional use.

Todo

Implement middlewares.

Configuration

The configuration file is really simple. It’s divided in 6 sections.

	Main configuration

	Paths

	Downloaders

	Tests

	Source Blocks

	Templates

	Files
	Attributes for default downloaders

	Examples

Main configuration

Here you can define all variable or list etc you need for your custom downloaders.

Anyway there are few properties which are default or used by default downloaders.

	github_username: user name for github authentication (optional).

	github_password: password for github authentication (optional).

	keep: keeps temporary folder for debug propose.

	cache_path: cache folder for configuration else it uses .cache folder in the script path

Paths

In the paths section you can define all the destinations path for the downloaded files.
The values will be expanded so you can use environment vars and references to other paths.

example:

paths:
 source: "~/src/django-site/"
 static: "{source}/static"
 js: "{static}/js"
 css: "{static}/css"

will be expanded to

paths:
 source: "/home/username/src/django"
 static: "/home/username/src/django/static"
 js: "/home/username/src/django/static/js"
 css: "/home/username/src/django/static/css"

Note

	The static path must be present in the paths mapping.

	You can use the {gwfi} in paths to refer to the script path.

Downloaders

In this section you can define custom downloaders.

example:

paths mapping
paths:
 source: "~/src/django-site/"
 static: "{source}/static"
 downloaders: "~/src/python/gwfi_downloaders"

add a custom downloader.
downloaders:
 - [test_downloader, "{downloaders}/test_downloader.py"]

Note

see `Custom Downloaders`_

Tests

Simple tests definition, using regex, to guess the destination path when not specified.

It’s a list of lists where the first element is the regex and the second is the destination path.

define our tests using regex to guess destination for files.
tests:
 # if the filename has locale or locales in his path the destination is {locales}
 - ['(?i)\/locales?\/.*\.js$', "{locales}"]
 # if the filename ends with .js the destination is {js}
 - ['(?i)\.js$', "{js}"]
 # if the filename ends with .css the destination is {css}
 - ['(?i)\.css$', "{css}"]
 # if the filename ends with woff,woff2,otf,eot the destination is {fonts}
 - ['(?i)\.(woff2?|ttf|otf|eot)$', "{fonts}"]

Note

If no destination is specified and all the tests files gwfi try to get
the path from extension.

For example if a I have a testme.lib file and I have mapped the path
lib: “{static}/js/lib” the destination will be {lib}

Source Blocks

The source block are the part of html that will be inserted in the template for each file

The default source blocks are:

<!-- for js files -->
<script type="text/javascript" src="{}"></script>

<!-- for css files -->
<link rel="stylesheet" href="{}">

you can map your source block with the extension name and the block text

blocks:
 img: ''

Templates

You can define a list of templates which will be use to create html files with links
to the relative static path for files.

The gwfi template block syntax is very simple

gwfi_block_{type} {path} [[.property::]{pattern}]

	type - the Source Blocks mapping key

	path - the path, relative to the {static} reference (see Paths)

	pattern - optional regex for granular filtering.

As you can see the pattern can be write in simple and complex way.

	simple: just the regex pattern it will be used to filter the target property (filename complete with destination path)

	complex: the property name and the regex pattern wrote in the form .property_name::pattern

	1
2
3
4
5
6

	<!-- Core Scripts - Include with every page -->
<!-- gwfi_block_js js jquery -->
<!-- gwfi_block_js js .group::django-->
<!-- gwfi_block_js js -->
<!-- gwfi_block_js js/locales -->
<!-- gwfi_block_css css -->

In the example above in line 2 we filter all the filenames that contains jquery
and in the line 3 we filter all the items that have the property group which contains django.

Will generate this html file

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	<!-- Core Scripts - Include with every page -->
<!-- gwfi js jquery -->
<script type="text/javascript" src="/static/js/jquery-3.2.1.min.js"></script>
<!-- /gwfi js jquery -->
<!-- gwfi js -->
<script type="text/javascript" src="/static/js/bootstrap.min.js"></script>
<script type="text/javascript" src="/static/js/pnotify.custom.min.js"></script>
<!-- /gwfi js -->
<!-- gwfi js/locales -->

<!-- /gwfi js/locales -->
<!-- gwfi js .group::django -->
<script type="text/javascript" src="/static/js/fullcalendar.min.js"></script>
<script type="text/javascript" src="/static/js/locales/fullcalendar/it.js"></script>
<script type="text/javascript" src="/static/js/moment-with-locales.min.js"></script>
<!-- /gwfi js .group::django -->
<!-- gwfi css -->
<link rel="stylesheet" href="/static/css/bootstrap.min.css">
<link rel="stylesheet" href="/static/css/bootstrap-theme.min.css">
<link rel="stylesheet" href="/static/css/fullcalendar.min.css">
<link rel="stylesheet" href="/static/css/pnotify.custom.min.css">
<!-- /gwfi css -->

Files

Files section in where we define what to download which files will be copied and so on...

A file element can have many attribute it depends on what you want to do and on what downloader will be used.

Attributes for default downloaders

For the defaults downloaders (download, local and github related) theses are the attributes.

	get_type: which downloader need to get this file

	url: where to download the file/lib/zip the downloaders can use this to guess what kind of get_type if not specified.

	filename: the filename can be used with url to guess the get_type if not specified.

	rename: rename the file.

	name: to filter (in case of github get_type)

	filter: a regex to filter (in case of github get_type)

	dest: destination for the file or files.

	
	files: list of sub files to process

	
	filename: name of the file.

	dest: destination for the file

Examples

For theses examples i assume we have a configuration like this to avoid problems
with paths to guess destination:

paths:
 static: "~/src/django-site/static"
 js: "{static}/js"
 css: "{static}/css"
 fonts: "{static}/fonts"

tests:
 - ['(?i)\.js$', "{js}"]
 - ['(?i)\.css$', "{css}"]
 - ['(?i)\.(woff2?|ttf|otf|eot)$', "{fonts}"]

Local file

Just copy a local file.

files:
 - filename: "~/src/js/palette.js"

Single file download

Directly download a single file from url and copy it as is.
We define only the comlplete url the get_type and the action to take
is guessed by the downloaders.

files:
 - url: https://code.jquery.com/jquery-3.2.1.min.js

Single file download with get query string

Passing the query string to the url and use the filename to tell how to save the result.

files:
 - url: https://sciactive.com/pnotify/buildcustom.php?mode=js&min=true&modules=desktop-buttons-nonblock-animate-confirm-callbacks-history&cff=.js
 filename: pnotify.custom.min.js

GitHub raw download

Download a raw file from github.
We define user/repository as url and the filename of the file to download.

files:
 - url: moment/moment
 filename: min/moment-with-locales.min.js

GitHub latest release

Try to get latest release or the master.zip if can’t valid assets.
We define user/repository as url and use the files list to tell which files
to download.

- url: 'twbs/bootstrap'
 files:
 - filename: js/bootstrap.min.js
 - filename: css/bootstrap.min.css
 - filename: css/bootstrap-theme.min.css
 - filename: fonts/*.woff* # note we can use wildcards

Custom downloaders

GetWebFilesInator comes with some default Downloader to manage local files, direct downloads
and GitHub latest release and GitHub raw download.

Anyway you can write your own downloader, and is quite easy.

	Downloader Object

	Examples
	Moaning downloader

	Greet (action included)

Downloader Object

	
class getwebfilesinator.downloaders.downloaders_defaults.Downloader(client)

	Class for create downloaders for GetWebFilesInator

	
cfg = None

	The configuration object.

	
client = None

	The client object.

	
download(sfile)

	Process a sfile

	Parameters:	sfile (Edo) – a Edo object (which is a dict with attributes)

	Return type:	any.

This method can return:

	False: if we want to stop processing the file.

	True or None: if we want the client guess the action from the filename.

	'zip' or 'plain': to force the action to take.

	a callable which accepts sfile and cfg as parameters if we want to pass the action to take.

	
get_type = ''

	Name of the get_type used to map the downloader.

	
guess_priority = 0

	Gives a priority for the guess_type type method

	
guess_type(sfile)

	Guess the get_type

	Parameters:	sfile (Edo) – the sfile to test.

	Return type:	self or None

Returns None if the test on sfile fails else returns self

Examples

Moaning downloader

A silly example which do nothing, except to moan for his poor situation.

from logging import getLogger
from getwebfilesinator.downloaders.downloaders_defaults import Downloader
log = getLogger(__name__)

class DownloaderTest(Downloader):
 """Test downloader"""

 # Our get type so we can map the Downloader
 get_type = 'test_download'
 # Actually we don't need a guess_priority in this case, we cant omit this

 def download(self, sfile):
 """Download the file"""
 # just log something..
 log.info(":'(I'm a test downloader. No actions for me :'(")
 # and return False so the file will not be processed
 return False

 def guess_type(self, sfile):
 """Guess retrieve type"""
 # just verify is the url is 'imatest'
 if sfile.url == 'imatest':
 return self

Greet (action included)

This silly downloader uses a personal action to bypass the standard client
behavior.

from logging import getLogger
from getwebfilesinator.downloaders.downloaders_defaults import Downloader
log = getLogger(__name__)

class DownloaderGreet(Downloader):
 """
 Downloader with action included

 our url must start with greet://
 """

 get_type = 'greet'

 def guess_type(self, sfile):
 """Guess the type"""
 # the url must starts with ``greet://``
 if sfile.url.startswith('greet://'):
 return self

 def download(self, sfile):
 """Process sfile"""
 # OK retrieve our greet part.
 sfile.greet = sfile.url[8:]
 # and return our action, this will be executed by the client.
 return self.greet

 def greet(self, sfile, cfg):
 """ Greeting action """
 # just greet.
 log.info("Now we are greeting %s", sfile.greet)

Index

 C
 | D
 | G

C

 	
 	cfg (getwebfilesinator.downloaders.downloaders_defaults.Downloader attribute)

 	
 	client (getwebfilesinator.downloaders.downloaders_defaults.Downloader attribute)

D

 	
 	download() (getwebfilesinator.downloaders.downloaders_defaults.Downloader method)

 	
 	Downloader (class in getwebfilesinator.downloaders.downloaders_defaults)

G

 	
 	get_type (getwebfilesinator.downloaders.downloaders_defaults.Downloader attribute)

 	
 	guess_priority (getwebfilesinator.downloaders.downloaders_defaults.Downloader attribute)

 	guess_type() (getwebfilesinator.downloaders.downloaders_defaults.Downloader method)

 _static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/minus.png

_static/file.png

nav.xhtml

 Table of Contents

 		GetWebFilesInator

 		Configuration

 		Main configuration

 		Paths

 		Downloaders

 		Tests

 		Source Blocks

 		Templates

 		Files

 		Attributes for default downloaders

 		Examples

 		Custom downloaders

 		Downloader Object

 		Examples

 		Moaning downloader

 		Greet (action included)

_static/comment-close.png

_static/comment-bright.png

