conftools Documentation
Release 1.11.1

Polyconseil

Feb 23, 2022

Contents

7

Links
Installation
Introduction
Features
Concepts

Contents:

6.1 Reference .
6.2 Advanced us
6.3 Goals . ..

e e

6.4 Development L e e e e e e e e e e e e e e e

6.5 ChangelLog

Indices and tables

Python Module Index

Index

11

13
13
18
22
23
23

27

29

31

conftools Documentation, Release 1.11.1

build passing

The getconf project provides simple configuration helpers for Python programs.

It provides a simple API to read from various configuration files and environment variables:

import getconf

config = getconf.ConfigGetter ('myproj', ['/etc/myproj.conf'])
db_host = config.getstr('db.host', 'localhost')

db_port = config.getint ('db.port', 5432)

Beyond this API, getconf aims at unifying configuration setup across development and production systems, respecting
the standard procedures in each system:

» Allow userspace configuration on development systems
¢ Allow multiple different configurations for continuous integration systems
* Use standard configuration space in /et c on traditional production servers
* Handle environment-based configuration for cloud-based platforms
getconf is distributed under the two-clause BSD license, a copy of which is in the source.

getconf vl.11 onwards supports Python 3.5, 3.6, 3.7, 3.8, 3.9 and 3.10. vl.11.x are the last versions to support
Python 3.5 & 3.6. v1.9.x are the last versions to support Python 2.7 and 3.4. v1.8.x are the last versions to support
Python 3.3. v1.5.x are the last versions to support Python 2.6.

Contents 1

http://travis-ci.org/Polyconseil/getconf/
https://getconf.readthedocs.io/en/latest/changelog.html
https://pypi.python.org/pypi/getconf/
https://pypi.python.org/pypi/getconf/
https://pypi.python.org/pypi/getconf/

conftools Documentation, Release 1.11.1

2 Contents

CHAPTER 1

Links

» Package on PyPI: http://pypi.python.org/pypi/getcont/
* Doc on ReadTheDocs: http://readthedocs.org/docs/getconf/
* Source on GitHub: http://github.com/Polyconseil/getconf/

http://pypi.python.org/
http://pypi.python.org/pypi/getconf/
http://readthedocs.org/
http://readthedocs.org/docs/getconf/
http://github.com/
http://github.com/Polyconseil/getconf/

conftools Documentation, Release 1.11.1

4 Chapter 1. Links

CHAPTER 2

Installation

Install the package from PyPI, using pip:

’pip install getconf

Or from GitHub:

’qit clone git://github.com/Polyconseil/getconf

getconf has no external dependency beyond Python.

http://pypi.python.org/

conftools Documentation, Release 1.11.1

6 Chapter 2. Installation

CHAPTER 3

Introduction

Note: Please refer to the full doc for reference and advanced usage.

All configuration values are accessed through the getconf.ConfigGetter object:

import getconf
config = getconf.ConfigGetter ('myproj', ['/etc/myproj/settings.ini', './local_
—settings.ini'])

The above line declares:

» Use the myproj namespace (explained later; this is mostly used for environment-based configuration, as a
prefix for environment variables)

e Look, in turn, at /etc/myproj/settings.ini (for production) and ./local_settings.ini (for
development); the latter overriding the former.

Once the getconf.ConfigGetter has been configured, it can be used to retrieve settings:

debug = config.getbool ('debug', False)

db_host = config.getstr('db.host', 'localhost')

db_port = config.getint ('db.port', 5432)

allowed_hosts = config.getlist('django.allowed hosts', ['*x'])

All settings have a type (default is text), and accept a default value. They use namespaces (think ‘sections’) for easier
reading.

With the above setup, get conf will try to provide db . host by inspecting the following options in order (it stops at
the first defined value):

¢ From the environment variable MYPROJ_DB_HOST, if defined
e From the host key in the [db] sectionof . /local_settings.ini
e From the host key in the [db] section of /etc/myproj/settings.ini

* From the default provided value, ' localhost'

conftools Documentation, Release 1.11.1

8 Chapter 3. Introduction

CHAPTER 4

Features

Env-based configuration files An extra configuration file/directory/glob can be provided through
MYPROJ_CONF IG; it takes precedence over other files

Default options An extra dictionary can be provided as ConfigGetter (defaults=some_dict); it is used
after configuration files and environment variables.

It should be a dict mapping a section name to a dict of key => value:

>>> config = ConfigGetter ('myproj', defaults={'db': {'host': 'localhost'}})
>>> config.getstr('db.host")
'localhost’

Typed getters getconf can convert options into a few standard types:

config.getbool ('db.enabled', False)

config.getint ('db.port', 5432)

config.getlist ('db.tables") # Expects a comma-separated list
config.getfloat ('db.auto_vacuum_scale_ factor', 0.2)

config.gettimedelta ('account_activation.validity', '2d")
config.getpath('django.static_root', pathlib.Path(BASE_DIR / 'static'))

getconf can also convert options to user-defined standard-type-based types:

class Environment (str, enum.Enum) :
DEV = 'dev'
PROD = 'prod'
config.getenum('environment', Environment.PROD)

conftools Documentation, Release 1.11.1

10 Chapter 4. Features

CHAPTER B

Concepts

getconf relies on a few key concepts:
namespace Each ConfigGetter works within a specific namespace (its first argument).

Its goal is to avoid mistakes while reading the environment: with
ConfigGetter (namespace="myproj'), only environment variables beginning with MYPROJ_
will be read.

It is, however, possible to disable namespacing by using ConfigGetter (namespace=getconf.
NO_NAMESPACE) .

Sections The configuration options for a project often grow quite a lot; to restrict complexity, get conf splits values
into sections, similar to Python’s configparser module.

Section are handled differently depending on the actual configuration source:
* section.key is mapped to MYPROJ_SECTION_KEY for environment variables
* section.keyismappedto [section] key = in configuration files
* section.keyismappedto defaults['section'] ['key"'] in the defaults dict.
Default section Some settings are actually “globals” for a projet. This is handled by unset section names:
* key is mapped to MYPROJ_KEY for environment variables
* key is mapped to [DEFAULT] key = in configuration files

e key is mapped to defaults ['DEFAULT'] ['key'] in the defaults dict.

11

conftools Documentation, Release 1.11.1

12 Chapter 5. Concepts

CHAPTER O

Contents:

6.1 Reference

6.1.1 The BaseConfigGetter class

class getconf.BaseConfigGetter (*config_finders, key_validator=None)
This class works as the base for all ConfigGetters.

Parameters

* config finders — The list of finders the BaseConfigGetter will use to lookup
keys. Finders are python objects providing the find (key) method that will be called in
the order the config_finders were provided order until one of them finds the key.
The £ind (key) method should either return a string or raise Not Found depending on
whether the key was found or not.

* key_validator - If provided, key_validator must be a callable that raises
InvalidKey on invalid keys.

getstr (key[, default="])
Retrieve a key from available configuration sources.

Parameters
¢ key (str)— The name of the field to use.

e default (str)— The default value (string) for the field; optional

Note: The key param accepts two formats:
e 'foo.bar', mapped to section ' foo', key 'bar'

e 'foo', mapped to section ' ', key 'foo'

This looks, in order, at:

13

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

conftools Documentation, Release 1.11.1

¢ <NAMESPACE>_ <SECTION>_ <KEY>if sectionis set, <NAMESPACE>_ <KEY> otherwise
* The <key> entry of the <section> section of the file given in <NAMESPACE>_CONFIG

* The <key> entry of the <sect ion> section of each file given in config_files

* The default value

getlist (key[, defaultz()])
Retrieve a key from available configuration sources, and parse it as a list.

Warning: The default value has the same syntax as expected values, e.g foo, bar, baz. Itis not a
list.

It splits the value on commas, and return stripped non-empty values:

>>> os.environ['A'] = "foo'

>>> os.environ['B'] = 'foo,bar, baz,,’
>>> getter.getlist('a')

["foo']

>>> getter.getlist ('b'")
['"foo', 'bar', 'baz']

getbool (key[, default=False])
Retrieve a key from available configuration sources, and parse it as a boolean.

The following values are considered as True : 'on', 'yes', "true', "1'. Case variations of those
Y
values also count as True.

getint (key[, default:O])
Retrieve a key from available configuration sources, and parse it as an integer.

getfloat (key|, default=0.0])
Retrieve a key from available configuration sources, and parse it as a floating point number.

gettimedelta (key[, default= ’Od’])
Retrieve a key from available configuration sources, and parse it as a datetime.timedelta object.

getpath (key[, default=Path(’’)])
Retrieve a key from available configuration sources, and parse it as a pathlib.Path object.

getenum (key[, default, enum_class])
Retrieve a key from available configuration sources, and parse it as an enum.Enum based object.

Note: The default param accepts either an enum.Enum based instance, an enum.Enum member value
type or None.

Note: os.environ and INI configuration files shall only use enum member values, not member names,
as a value.

6.1.2 The ConfigGetter class

class getconf.ConfigGetter (namespace, config_files=[config_file_path, A de-

faults={’section’:{’key’: 'value’, ...}, ...}, mandatory_section=False)
A ready-to-use ConfigGetter working working as a proxy around both os.environ and INI configuration

14 Chapter 6. Contents:

conftools Documentation, Release 1.11.1

files.
Parameters

* namespace (st r)—The namespace for all configuration entry lookups. If an environment
variable of <NAMESPACE>_CONFIG is set, the file at that path will be loaded. Pass in the
getconf .NO_NAMESPACE special value to load an empty namespace.

* config_ files (Iist)—Listof ini-style configuration files to use. Each item may either
be the path to a simple file, or to a directory (if the path ends with a °/*) or a glob pattern
(which will select all the files matching the pattern according to the rules used by the shell).
Both strings and pathlib.Path objects are accepted. Each directory path will be replaced by
the list of its directly contained files, in alphabetical order, excluding those whose name
starts with a ‘. Provided configuration files are read in the order their name was provided,
each overriding the next ones’ values. <NAMESPACE>_CONF IG takes precedence over all
config_files contents.

* defaults (dict) — Dictionary of defaults values that are fetch with the lowest priority.
The value for ‘section.key’ will be looked up at defaults['section'] ['key'].

* mandatory_section (bool)— Boolean indicating weither requested keys should con-
tain a section/a dot.

Warning: When running with an empty namespace (namespace=getconf.
NO_NAMESPACE), the environment variables are looked up under <SECTION>_<KEY> instead of
<NAMESPACE>_<SECTION>_<KEY>; use this setup with care, since getconf might load variables that
weren’t intended for this application.

Warning: Using dash in section or key would prevent from overriding values using environment variables.
Dash are converted to underscore internally, but if you have the same variable using underscore, it would
override both of them.

get_section (section_name)
Retrieve a dict-like proxy over a configuration section. This is intended to avoid polluting settings.
py with a bunch of FOO = config.getstr('bar.foo'); BAR = config.getstr ('bar.
bar') commands.

Note: The returned object only supports the __ getitem__ side of dicts (e.g.
section_config['foo'] will work, 'foo' in section_config won’t)

get_ini_template ()
Return INI like commented content equivalent to the default values.

For example:

>>> getter.getlist ('section.bar', default=['a', 'b'])

['a', 'b"]

>>> getter.getbool ('foo', default=True, doc="Set foo to True to enable the,
—Truth")

True

>>> print (g.get_ini_template())

[DEFAULT]

; NAMESPACE_FOO - type=bool - Set foo to True to enable the Truth

(continues on next page)

. Reference 15

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

conftools Documentation, Release 1.11.1

(continued from previous page)

;foo = on

[section]
; NAMESPACE_SECTION_BAR - type=list
;bar = a, b

Note: This template is generated based on the getxxxx calls performed on the ConfigGetter. If some calls
are optional, the corresponding options might not be present in the get_ini_template return value.

6.1.3 The provided finders

class getconf.finders.NamespacedEnvFinder (namespace)
Keys are lookuped in os . environ with the provided namespace. The key can follow two formats:

e '"foo.bar', mapped to section ' foo', key 'bar'
e 'foo', mapped to section ' ', key 'foo'

The finder will look at <NAMESPACE> <SECTION> <KEY> if section is set, <NAMESPACE> <KEY>
otherwise.

Keys are upper-cased and dash are converted to underscore before lookup as using dash in section or key would
prevent from overriding values using environment variables.

If the special NO_NAMESPACE namespace is used, the finder will look at <SECTION>_<KEY> if section
is set, <KEY> otherwise.

class getconf.finders.MultiINIFilesParserFinder (config_files)
Keys are lookuped in the provided config_files using Python’s ConfigParser.

The key can follow two formats:
e 'foo.bar', mapped to section ' foo', key 'bar'
e 'foo', mapped to section 'DEFAULT', key 'foo'

The config_files argument can contain directories and glob that will be expanded while preserving the
provided order:

 adirectory some_dir is interpreted as the glob some_dir/*
* aglob is replaced by the matching files list ordered by name

Finally, the config parser (which interpolation switched off) will search the section.entry value in its files,
with the last provided file having the strongest priority.

class getconf.finders.SectionDictFinder (data)
Keys are lookuped in the provided 1-level nested dictionary data.

The key can follow two formats:
e 'foo.bar', mapped to section 'foo', key 'bar'
e 'foo', mapped to section 'DEFAULT', key 'foo'
The finder will look at data [section] [key].

class getconf.finders.ContentFileFinder (directory, encoding="utf-8)
Keys are lookuped in the provided directory as files.

16 Chapter 6. Contents:

conftools Documentation, Release 1.11.1

If the directory contains a file named key, its content (decoded as encoding) will be returned.

Typically, this can be used to load configuration from Kubernetes’ ConfigMaps and Secrets mounted on a vol-

ume.

6.1.4 ConfigGetter Example

With the following setup:

test_config.py
import getconf

config = getconf.ConfigGetter ('getconf', ['/etc/getconf/example.ini'])

print ("Env: " % config.getstr('env', 'dev'))
print ("DB: " % config.getstr('db.host', '"localhost'))
print ("Debug: " % config.getbool ('dev.debug', False))

/etc/getconf/example.ini

[DEFAULT]

env = example

[db]

host = foo.example.net

/etc/getconf/production.ini
[DEFAULT]
env = prod

[db]
host = prod.example.net

We get the following outputs:

Default setup

$ python test_config.py
Env: example

DB: foo.example.net
Debug: False

Override 'env'

$ GETCONF_ENV=alt python test_config.py
Env: alt

DB: foo.example.net

Debug: False

Override 'dev.debug'

$ GETCONF_DEV_DERUG=on python test_config.py
Env: example

DB: foo.example.net

Debug: True

Read from an alternate configuration file

$ GETCONF_CONFIG=/etc/getconf/production.ini python test_config.py

Env: prod
DB: prod.example.net
Debug: False

(continues on next page)

6.1. Reference

17

conftools Documentation, Release 1.11.1

(continued from previous page)

Mix it up

$ GETCONF_DEV_DEBUG=on GETCONEF_CONFIG=/etc/getconf/production python test_config.py
Env: prod

DB: prod.example.net

Debug: True

6.1.5 BaseConfigGetter example

We can easily create a config getter ignoring env varibles.

With the following setup:

/etc/getconf/example.ini
[DEFAULT]
env = example

[db]
host = foo.example.net

We get:

test_config.py

import getconf

import getconf.finders

config = getconf.BaseConfigGetter (

getconf.finders.MultiINIFilesParserFinder (['/etc/getconf/+x.ini']),
getconf.finders.SectionDictFinder ({'db': {'host': 'default.db.host', 'port': '1234
—"}}),
)
config.getstr('env') == 'example'
config.getstr('db.host") = '"foo.example.net'

config.getstr('db.port') == '1234"

6.2 Advanced use

getconf supports some more complex setups; this document describes advanced options.

6.2.1 Recommended layout

Managing configuration can quickly turn into hell; here are a few guidelines:
* Choose where default values are stored
* Define how complex system-wide setup may get
¢ Decide whether local, development configuration is needed

¢ And whether user-local overrides are relevant

18 Chapter 6. Contents:

conftools Documentation, Release 1.11.1

Use case Example pro- | Defaults storage System- Path- User-based
gram wide based
End-user screen, bash Within the code Optional No Yes
binary
Folder-based git, hg, ... Within the code Optional Yes Yes (global set-
soft tings)
System dae- | uwsgi, ... Default file with pack- | Yes No No
mon age
Webapp sentry, ... Within the code Yes Yes (for | No
dev)

This would lead to:

End-user binary: ConfigGetter ('vim', ['/etc/vimrc', '~/.vimrc'])

Folder-based (git): ConfigGetter ('git', ['/etc/gitconfig', '~/.git/config', './.
git/config'])

System daemon: ConfigGetter ('uwsgi', ['/usr/share/uwsgi/defaults.ini', '/etc/
uwsgi/conf.d'])

Webapp: ConfigGetter ('sentry', ['/etc/sentry/conf.d/', './dev_settings.
ini'], defaults=sentry_defaults)

6.2.2 Defaults

The default value may be provided in three different ways:

Upon access Use the default parameter of getters: config.getstr ('db.host',

default="'localhost"')

This is pretty handy when all configuration values are read once and stored in another object. However, if the
ConfigGetter object is the reference “configuration-holder” object, repeating the default at each call is a
sure way to get mismatches between various code sections.

Using a defaults directory The constructor for ConfigGetter takes an extra keyword argument, defaults,

that is used after all provided configuration files:

import getconf
config = getconf.ConfigGetter ('myproj', ['~/.myproj.ini', '/etc/myproj.ini'],
—defaults={"'logging': {'target': 'stderr'}})

With the above setup, config.getstr ('logging.target') will be setto 'stderr' if no value is
provided through the environment nor the configuration files.

In a package-owned configuration file For complex projects, the list of settings can get huge. In those cases, it may

be useful to provide a default configuration file alongside the package, with each option documented.

This default configuration file can also be used as a default, reference file:

import os
import getconf

If we're in mymod/cli.py, config is at mymod/config/defaults.ini

filepath = os.path.abspath(_ file)

default_config = os.path.join(os.path.dirname (filepath), 'config', 'defaults.ini')
config = getconf.ConfigGetter ('mymod', [default_config, '/etc/mymod.ini', '~/.

mymod—ini' 1)

(continues on next page)

6.2. Advanced use 19

conftools Documentation, Release 1.11.1

(continued from previous page)

[J

With the above setup, the package-provided defaults. ini will be used as defaults.

Note: Don’t forget to include the defaults.ini file in your package, with setup.py’s
include_package_data=True and MANIFEST.ini’s include mymod/config/defaults.
ini.

6.2.3 Configuration files in a folder

For complex production projects, a common pattern is to split configuration among several files — for instance, a
standard file holds logging settings, a platform-dependent one provides standard system paths, an infrastructure-related
one has all server host/port pairs, and a secured one contains the passwords.

In order to support this pattern, getconf’s config_files list accepts folders as well; they are automatically
detected on startup (using os.path.isdir).

With the following layout:

/etc
L myproj

.keepdir
0l_logging.ini
02_passwords.ini

Just setup your getter with config = getconf.ConfigGetter ('myproj', ['/etc/myproj/
', '~/.config/myproj.ini']); this is strictly equivalent to using config = getconf.
ConfigGetter ('myproj', ['0l1_logging.ini', '02_passwords.ini', '~/.config/
myproj.ini']).

Note: Remember: ConfigGetter parses configuration files in order this means that files provided at the beginning
of the list are overridden by the next ones.

This aligns with the natural alphabetical handling of files: when using a folder, we want definitions from
99_overrides to override those in 00_base.

6.2.4 Precedence

When reading configuration from multiple sources, it can be complex to determine which source overrides which.
getconf’s precedence rules should be natural and easy to understand:

» Environment variables ALWAYS override other sources

 Configuration files are parsed in the order they are declared (last declaration wins)

* global defaults (in ConfigGetter (defaults={})) come before calling-defaults (in config.
getstr('x.y', default='blah')), which come last.

Two special cases need to be handled:

* The environment-provided configuration file (<NAMESPACE>_CONFIG) has precedence over configuration
files declared in ConfigGetter (config_files=[])

20 Chapter 6. Contents:

conftools Documentation, Release 1.11.1

e When a configuration file is actually a directory (even if provided through <NAMESPACE>_CONFIG), its
directly contained files are inserted in ALPHABETICAL ORDER, so that 99_foo actually overrides
10_base.

Example

Note: This example is an extremely complex layout, for illustration purposes. Understanding it might hurt your head.
Please prefer simpler layouts!

With the following layout:

/etc
myproj.conf
myproJj

.keepdir
10_logging.ini
20_passwords.ini

myproj.local

.keepdir
15_logging.ini
20_passwords.ini

And the following environment variables:

MYPROJ_CONFIG=/etc/myproj.local
MYPROJ DB _HOST=localhost

And this ConfigGetter setup:

import getconf
config = getconf.ConfigGetter ('myproj', ['/etc/myproj.conf', '/etc/myproj']l, defaults=
—{'db': {'host': 'remote', 'port': '5432'}})

Then:
e config.getstr ('db.host") isread from MYPROJ_DB_HOST=localhost

e config.getstr ('db.name', 'foo') looks, in turn:

At /etc/myproj.local/20_passwords.ini’s [db] name =

At /etc/myproj.local/15_logging.ini’s [db] name =

At /etc/myproj/20_passwords.ini’s [db] name =

At /etc/myproj/10_logging.ini’s [db] name =

At /etc/myproj.conf’s [db] name =

Defaults to foo

e config.getstr('db.port', '1234") looks, in turn:

At /etc/myproj.local/20_passwords.ini’s [db] port =

At /etc/myproj.local/15_logging.ini’s [db] port =

At /etc/myproj/20_passwords.ini’s [db] port =

At /etc/myproj/10_logging.ini’s [db] port =

6.2. Advanced use 21

conftools Documentation, Release 1.11.1

- At /etc/myproj.conf’s [db] port =
— Defaults to defaults['db'] ['port'] = '5432"

6.3 Goals

getconf aims to solve a specific problem: provide a simple way to load settings in a platform-typical manner.

6.3.1 The problem

Daemons and centralized applications need to fetch some platform-specific configuration to run:

* Mode of operation (debug vs. production vs. packaging)

¢ Address of remote services (databases, other servers, ...)

* Credentials
Beyond those required settings, an application needs to configure its behavior (timeouts, retries, languages, .. .).
Various solutions exist:

* Command line flags

¢ Environment variables

e Filesin /etc

6.3.2 The approach

getconf has been designed to provide the following features:
Readability:
» All options can be defined in a single file
e The provided values are typechecked (int, float,...)
» All settings can have a default
Development:
 If I checkout the code and execute my program’s entry point, it should be able to start

* If my local setup is slightly different from the default (non-standard DB port, ...), I just have to put a
simple local_settings.ini file in the current directory

Continuous integration: The continuous integration server just needs to set a few well-defined environment variables
to point the program to the test databases, servers, ...

Production:

* In a could-like setup, I can use facilities provided by my platform to set the appropriate environment
variables

* In a simpler, dedicated server setup, the application can also be configured with files in /etc
Customization:

* While providing sane defaults via the ConfigGetter class, you can easily define and use your
own logic by providing the finders you want to use in the order you want by using/subclassing
BaseConfigGetter.

22 Chapter 6. Contents:

conftools Documentation, Release 1.11.1

6.3.3 Other options

While designing get conf, we looked at other options:

Define everything in files
» This makes it difficult to override a single setting (where should the file be?)
» Not compatible with env-based cloud platforms

* dev and prod often have very different configurations, but flat files don’t provide a simple switch to set
those defaults

Define everything in the environment Requires a prod-like setup for starting local servers, with files listing the en-
vironment variables

Load a single file, which includes others
* Quickly turns into a maze of “local includes dev includes base”

» Hard to see where a setting is defined

6.4 Development

Clone the repository and install the development dependencies in a virtualenv:

’pip install -r requirements_dev.txt

To run tests:

’nosetests

To make a release:

’fullrelease

6.5 Changelog

6.5.1 1.11.1 (2022-01-21)

Bugfix:
* Fix support for simple enum.Enum objects (not inheriting st r) in getenum getter.
* Delay default value validation in getenum getter.
Note:
» Switch test runner to pytest
* Add official support of Python 3.10

 Python 3.5 and 3.6 support will be dropped in the next minor version.

6.4. Development 23

conftools Documentation, Release 1.11.1

6.5.2 1.11.0 (2022-01-17)

New:

¢ Add support for enum.Enum based objects through the new getenum getter.

6.5.3 1.10.0 (2020-11-04)

New:

* Add support of pathlib.Path objects, both in loading the config and through the new getpath getter.

* Addmandatory_section optionto ConfigGetter to enforce the use of a section in requested keys (and
its underlying option key_validator on BaseConfigGetter to validate keys format)

Removed:
* Drop support of Python 2.7 which reached EOL in January 2020
* Drop support of Python 3.4 which reached EOL in 2019

6.5.4 1.9.0 (2019-02-01)

Removed:
* Drop support of Python 3.3 which reached EOL in September 2017
Deprecated:

 Use of list of non-strings as getconf.getlist() default value is deprecated

6.5.5 1.8.0 (2018-01-30)

New:

* Add BaseConfigGetter and the notion of “finders” to ease customization.

Note:

* Python 2.7 and 3.3 support will be dropped in next minor version.

6.5.6 1.7.1 (2017-10-20)

Bugfix:

* Allows to override a configuration containing a dash.

6.5.7 1.7.0 (2017-02-23)

New:

* Allow using an empty namespace (ConfigGetter (namespace=getconf.NO_NAMESPACE) to load un-

prefixed environment variables.

24

Chapter 6. Contents:

conftools Documentation, Release 1.11.1

6.5.8 1.6.0 (2017-02-03)

New:

* Remove support for string interpolation in .ini file If this undocumented getconf feature is still needed by some
users, we might consider restoring it in a future release.

6.5.9 1.5.2 (2017-01-23)

New:

* Add a new gettimedelta function to parse simple durations expressed as strings (10 days as ‘10d’, 3 hours as
‘3h’, etc.)

6.5.10 1.5.1 (2016-12-15)

New:

* Display the key of the value that triggers an error to help resolve.

6.5.11 1.5.0 (2016-05-11)

New:
* Better AssertionError messages when default values have the wrong type.

* Add ConfigGetter.get_ini_template() method

6.5.12 1.4.1 (2015-08-28)

New:

 Improve error reporting when raising on wrongly typed defaults

6.5.13 1.4.0 (2015-08-27)

New:

 Enforce type checking on every getconf.getXXX() call

* Add getconf.getstr() method

» Enable using None as default value for every function

* Better support for Python 3.3, 3.4 and wheel distribution
Deprecated:

» Use of strings as default values for getconf.getlist()

» Use of getconf.get() in favor of getconf.getstr()

6.5. ChangelLog 25

conftools Documentation, Release 1.11.1

6.5.14 1.3.0 (2015-04-14)

New:
* Add getfloat() method
* Allow globs in config_files
¢ <PROJECT>_CONFIG env var will now have the same behaviour than config_files items

6.5.15 1.2.1 (2014-10-24)

Bugfix:

¢ Fix version number

6.5.16 1.2.0 (2014-10-20)

New:
* Add support for directory-based configuration and providing defaults through a dict
Removed:

* Remove support for ConfigGetter (namespace, filel, file2, file3) syntax (deprecated in
1.1.0), use ConfigGetter (namespace, [filel, file2, file3]) instead

6.5.17 1.1.0 (2014-08-18)

New:
* New initialization syntax
Deprecated

» Using argument list for config file paths when initializing ConfigGetter is now deprecated, you need to use a
list (use ConfigGetter(namespace, [‘settings_1.ini’, ‘settings_2.ini’]) instead of ConfigGetter(namespace, ‘set-
tings_l.ini’, ‘settings_2.ini’))

6.5.18 1.0.1 (2014-04-13)
Bugfix:

* Fix packaging (missing requirements files)

6.5.19 1.0.0 (2014-04-12)

New:

¢ First version

26 Chapter 6. Contents:

CHAPTER /

Indices and tables

* genindex
* modindex

e search

27

conftools Documentation, Release 1.11.1

28 Chapter 7. Indices and tables

Python Module Index

g

getconf, 13

29

conftools Documentation, Release 1.11.1

30 Python Module Index

Index

B

BaseConfigGetter (class in getconf), 13

C

ConfigGetter (class in getconf), 14

G

get_ini_template () (getconf.ConfigGetter
method), 15
get_section () (getconf.ConfigGetter method), 15
getbool () (getconf.BaseConfigGetter method), 14
getconf (module), 13
getconf.finders.ContentFileFinder (class
in getconf), 16
getconf.finders.MultiINIFilesParserFinder
(class in getconf), 16
getconf.finders.NamespacedEnvFinder
(class in getconf), 16
getconf.finders.SectionDictFinder (class
in getconf), 16
getenum () (getconf.BaseConfigGetter method), 14
getfloat () (getconf.BaseConfigGetter method), 14
getint () (getconf.BaseConfigGetter method), 14
getlist () (getconf.BaseConfigGetter method), 14
getpath () (getconf.BaseConfigGetter method), 14
getstr () (getconf.BaseConfigGetter method), 13
gettimedelta () (getconf.BaseConfigGetter
method), 14

31

	Links
	Installation
	Introduction
	Features
	Concepts
	Contents:
	Reference
	Advanced use
	Goals
	Development
	ChangeLog

	Indices and tables
	Python Module Index
	Index

