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Welcome to Gerrie’s documentation!


Note

If you got questions about Gerrie, this documentation or if a sentence is not clear or not fully described,
please do not hesitate to open an issue.
This is the only way how we can improve this document.
How you do this can be read in the contributing/issues chapter.
Thanks in advance.
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Introduction

Gerrie [https://andygrunwald.github.io/Gerrie/] is a data and information crawler for Gerrit, a code review system developed by Google.

Gerrie uses the SSH and REST-APIs offered by Gerrit to transform the data from Gerrit into a RDBMS. Currently only MySQL is supported.
After the transformation the data can be used to start simple queries or complex analysis. One usecase is to analyze communites which use Gerrit like TYPO3 [https://review.typo3.org/], Wikimedia [https://gerrit.wikimedia.org/], Android [https://android-review.googlesource.com/], Qt [https://codereview.qt-project.org/], Eclipse [https://git.eclipse.org/r/] and many more [http://en.wikipedia.org/wiki/Gerrit_(software)#Notable_users].


	Website: andygrunwald.github.io/Gerrie [https://andygrunwald.github.io/Gerrie/]

	Source code: Gerrie @ GitHub [https://github.com/andygrunwald/Gerrie]

	Documentation: Gerrie @ Read the Docs [https://gerrie.readthedocs.org/en/latest/]




Features


	Full imports

	Incremental imports

	Full support of SSH API

	Command line interface

	MySQL as storage backend

	Debugging functionality

	Logging functionality

	Full documented






Read further

If you want to get start really quick please have a look at the getting started guide.

When you want to run this in a more proven environment please have a look at the installation and configuration chapter.

The commands section will explain the functionality of all commands implemented in Gerrie.

As a business analyst / data science engineer / math or numbers lover you can retrieve data and get an understanding of the database structure in the database chapter.

You want to contribute? Great! Get more information in the contribution chapter.
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Getting Started

This is a quick getting started guide.
It will helps you to get the first try of Gerrie up and running.


Note

If you encounter errors or bugs during the getting started guide, don`t give up!
Open an issue [https://github.com/andygrunwald/Gerrie/issues] or read about the details in the Installation, Configuration, Commands or Database chapter.



Download application and install dependencies:

$ git clone https://github.com/andygrunwald/Gerrie.git .
$ composer install





Copy config file and adjust configuration (Database, SSH, Gerrit):

$ cp Config.yml.dist Config.yml
$ vim Config.yml





A minimalistic configuration for the TYPO3 Gerrit instance with the user max.mustermann can look like:

Database:
  Host: 127.0.0.1
  Username: root
  Password:
  Port: 3306
  Name: gerrie

SSH:
  KeyFile: /Users/max/.ssh/id_rsa_gerrie

Gerrit:
  TYPO3:
    - ssh://max.mustermann@review.typo3.org:29418/





Create a new database in your database with name gerrie and setup database scheme:

$ mysql -u root -e "CREATE DATABASE gerrie;"
$ ./gerrie gerrie:setup-database --config-file="./Config.yml"





Create an account (e.g. max.mustermann) in the Gerrit instance you want to crawl (e.g. review.typo3.org:29418), add your SSH public key to the Gerrit instance and execute the gerrie:check command to check your environment:

$ ./gerrie gerrie:check --config-file="./Config.yml"






Note

Important:
If your SSH key is protected by a passphrase this check will ask you to enter your passphrase to use the private key for this connection.
Gerrie does not save or transfer this passphrase to any foreign server.
The private key is only necessary to authenticate against the Gerrit instance.



If everything is fine start crawling:

$ ./gerrie gerrie:crawl --config-file="./Config.yml"





Now the crawler starts and is doing its job :beer:

You reading can continue in the documentation in the chapters Installation, Configuration, Commands, Database or Contributing.


Note

Please note that we currently only support SSH and MySQL.
We are open for changes and contributions. Feel free to push this product forward or get in contact with us.
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Installation


Prerequisites


tl;dr


	
	PHP [http://php.net/] >= 5.4.0

	
	PHP Extension PDO [http://php.net/manual/en/book.pdo.php]

	PHP Extension pdo_mysql [http://php.net/manual/en/ref.pdo-mysql.php]

	PHP Extension curl [http://php.net/manual/en/book.curl.php]









	Composer [https://getcomposer.org/]



	MySQL [http://www.mysql.com/] >= v5.1



	SSH








PHP

Gerrie is written in PHP [http://php.net/].
To use Gerrie the PHP interpreter engine is necessary.
Please install PHP.
The installed version must be >= 5.4.0.
See PHP Download [http://php.net/downloads.php] and PHP Installation and Configuration [http://php.net/manual/en/install.php].

If you install PHP from source please ensure that the PHP Extensions PDO [http://php.net/manual/en/book.pdo.php], pdo_mysql [http://php.net/manual/en/ref.pdo-mysql.php] and curl [http://php.net/manual/en/book.curl.php] are also available.
This extensions are part of the standard edition. If you install PHP by a standard package manager like apt you are on a save way :)




Composer

Gerrie include several 3rd party libraries.
To manage this dependencies we use the defacto standard tool Composer [https://getcomposer.org/] for dependency management.
Please install Composer.
In the documentation you can find instructions to install it global or local.
A specific version is not necessary.
See Getting Started at Composer documentation [https://getcomposer.org/doc/00-intro.md].




MySQL

Gerrie uses the MySQL [http://www.mysql.com/] database as storage backend.
Please install MySQL.
The MySQL Community Edition [http://www.mysql.com/products/community/] is completely enough to fit Gerries need.
The installed version must be >= v5.1.
See MySQL Community Downloads [http://dev.mysql.com/downloads/].




SSH

Gerrie make use of the SSH API of Gerrit.
To receive data via SSH the SSH client is necessary.
Please install SSH.
A specific version is not necessary.
Most (or every) Linux / Unix distribution got SSH already installed.






Main instructions


Get the source

You can choose which version of Gerrie you want to install:


	the master branch

	a stable release



The difference between this two versions are:


	The master branch can be unstable, because this is the main development line

	The master branch can be ahead with new features and fixed bugs

	The latest stable release is stable and tested

	The latest stable release can be lack in features



To install the master branch via git just clone the source code:

$ git clone https://github.com/andygrunwald/Gerrie.git Gerrie





An alternative is to download the master branch as zip archive and extract it:

$ wget https://github.com/andygrunwald/Gerrie/archive/master.zip -O Gerrie.zip
$ unzip Gerrie.zip
$ mv Gerrie-master Gerrie








Install dependencies

Gerrie relies on several 3rd party libraries to speedup the development, make use of proven source code and avoid to reinvent the wheel.

$ cd Gerrie
$ composer install








Configure the application

Gerrie can be configured by a configuration file, options and arguments or both.
The easiest solution is to copy the Config.yml.dist file to another location and adjust the settings in the self documented configuration file.
This file will be added by the ``–config-file``option.

If you want to learn more about configuration in Gerrie or how to apply options and arguments see the Configuration chapter.




Execute the gerrie:check command

Gerrie got a build in command to check if your environment and configuration is working correctly.
This command is named gerrie:check.

There are several ways how to execute the check command.
The way depends on your preference.
If you prefer a configuration file which contains all settings (see “Configure the application”) then call:

$ ./gerrie gerrie:check --config-file="/Path/To/Config.yml"





If you prefer all settings passed as arguments to Gerrie this will be no problem.
This command accepts many options and arguments.
Get an overview with

$ ./gerrie gerrie:check --help





Here is an example call with using options and arguments instead of an configuration file plus a connection check for the Gerrit instance of the TYPO3 [https://review.typo3.org/] project.

$ ./gerrie gerrie:check --database-host="127.0.0.1" --database-user="gerrie" \
                        --database-pass="secret" --database-port=3306  \
                        --database-name="gerrie"  \
                        --ssh-key="/Users/max/.ssh/id_rsa_gerrie"  \
                        ssh://max@review.typo3.org:29418/





If everything works fine you will see red errors.
If you got one or more errors please have a look at the commands *gerrie:check* chapter.
There you can find a detailed description of the errors and hints how to fix them.




Run Gerrie, run!

If the gerrie:check went well, let Gerrie run.
You have to know Gerrie loves crawling Gerrits :)

The main command of Gerrie is gerrie:crawl.
Just execute it. It supports the same options and arguments as the gerrie:check command.

Without configuration file:

$ ./gerrie gerrie:crawl --database-host="127.0.0.1" --database-user="gerrie" \
                        --database-pass="secret" --database-port=3306  \
                        --database-name="gerrie"  \
                        --ssh-key="/Users/max/.ssh/id_rsa_gerrie"  \
                        ssh://max@review.typo3.org:29418/





or with configuration file:

$ ./gerrie gerrie:crawl --config-file="/Path/To/Config.yml"





or with both:

$ ./gerrie gerrie:crawl --config-file="/Path/To/Config.yml" --database-host="127.0.0.1" \
                        --database-user="gerrie" --database-name="gerrie" \
                        ssh://max@review.typo3.org:29418/













          

      

      

    


    
         Copyright 2014, Andy Grunwald.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Gerrie 0.2 documentation 
 
      

    


    
      
          
            
  
Configuration

Gerrie supports two ways to pass a configuration in: Options + Arguments and configuration file.
There is no need for a configuration file.
All settings can be passed by options and arguments.

Advantage of using a configuration file:


	Shorter commands

	Simple versioning of configuration file



Advantage of using options + arguments:


	More flexible, because you don`t need to modify a file



Next to the 0 and 1 solution you can combine both worlds.
You can add a configuration file by option --config-file and overwrite attributes from the configuration file by options added to the command.
The options got a higher priority as the attributes from the configuration file.
The arguments will be merged with the Gerrit instances configured in the configuration file.

Example configuration file:

Database:
    Host: 127.0.0.1
    Username: root
    Password:
    Port: 3306
    Name: gerrit

SSH:
    KeyFile: /Users/agrunwald/.ssh/id_rsa_gerrie

Gerrit:
    TYPO3:
        - ssh://max@review.typo3.org:29418/
        - { Instance: ssh://max.mustermann@review.typo3.org:29418/, KeyFile: /Users/max/.ssh/id_rsa_local }





Example command:

$ ./gerrie gerrie:crawl --config-file=/path/to/example-conf.yml \
                        --database-host="192.168.1.10" -u="operator" \
                        https://max.mustermann:password@gerrit.wikimedia.org/ \
                        https://max:secret@android-review.googlesource.com/





In this example Gerrie will use:


	Database hostname: 192.168.1.10



	Database username: operator



	Database password:



	Database port: 3306



	Database name: gerrit



	...



	
	Instances:

	
	ssh://max@review.typo3.org:29418/

	ssh://max.mustermann@review.typo3.org:29418/

	https://max.mustermann:password@gerrit.wikimedia.org/

	https://max:secret@android-review.googlesource.com/












Options

Gerrie supports a several options.
Options are parameters prefixed by -- or -.
Example are in the long variant --help or in the short variant -h.
Options can be accept a value (like --config-file="...") or are standalone (like --version).


Note

Please have a look at the command you want to use first which options are supported.
Not all options are supported by all commands.
You can list options by command by ./gerrie gerrie:YOUR-COMMAND --help.
For available commands execute ./gerrie.



Options will by added to the command like
.. code:

$ ./gerrie gerrie:check --option1 --option2=value ...





Here you can find a list of all supported options.








	Long option
	Short option
	Description




	–config-file
	-c
	Path to configuration file.


	–database-host
	-H
	Name / IP of the host where the database is running.


	–database-user
	-u
	Username to access the database.


	–database-pass
	-p
	Password to access the database.


	–database-port
	-P
	Port where the database is listen.


	–database-name
	-N
	Name of the database which should be used.


	–ssh-key
	-k
	Path to SSH private key for authentication via SSH API.


	–setup-database-tables
	-s
	Checks if necessary tables are already there. If not this tables will be setted up.


	–debug
	-d
	
Enables debug functionality.




Debug functionality in this case means:.

* If the API delivers more / additional data then expected / supported


Gerrie will check if the data is already handled.

If not an exception will be thrown. In this case please open an issue with

detailed information about the Gerrit instance (e.g. URL, version)








	–help
	-h
	Display this help message.








Arguments

Next to options Gerrie supports arguments.
Arguments are added at the end of the command separated by whitespace.


Note

Please have a look at the command you want to use first which arguments are supported.
Not all arguments are supported by all commands.
You can list options by command by ./gerrie gerrie:YOUR-COMMAND --help.
For available commands execute ./gerrie.



Here you can find a list of all supported arguments.







	Argument
	Description




	instances
	
List of instances to crawl separated by whitespace.

You can add like many instances you want separated by whitespace

Like “instance1 instance2 ... instanceN”




Format: scheme://username[:password]@host[:port]/




Examples:

- ssh://max.mustermann@review.typo3.org:29418/

- https://max.mustermann:password@gerrit.wikimedia.org/












Configuration file

The configuration file can be used to avoid long options and arguments.
It can be located on the harddisk where Gerrie runs.
The format of the configuration file is YAML [http://en.wikipedia.org/wiki/YAML].
Ensure that you write the correct YAML syntax.
YAML can be a little bit tricky when it comes to intention.


Note

In the root of Gerrie there is a Config.yml.dist which can be copied and used as a template for your configuration file.
Don`t forget to pass the path of the Gerrie.yml location as -c / –config-file option to the command.



If a attribute contains a ”.” this means that it will be a nested attribute.
E.g. The attributes Database.Host and Database.Username will be in configuration file

Database:
    Host: 127.0.0.1
    Username: root





Here you can find a list of all supported configuration settings.







	Attribute
	Description




	Database.Host
	Name / IP of the host where the database is running.


	Database.Username
	Username to access the database.


	Database.Password
	Password to access the database.


	Database.Port
	Port where the database is listen.


	Database.Name
	Name of the database which should be used.


	SSH.KeyFile
	Path to SSH private key for authentication via SSH API.


	Gerrit.Name1
	
Under the Gerrit namespace you can define several projects.

The first level after Gerrit will be a name of the project.

The name can be chosen by you and will be only used for internal.

Internal use means for logging or store a relation between the name and n instances.

The important info: The name can be chosen by you and you can use your wording.




Example:


Gerrit:


TYPO3:


...



Wikimedia:


...












	Gerrit.NameN
	As you can the in the example above you can define as many projects as you want.


	Gerrit.Name1.0
	
The level below the project name is reserved for a list of instances per project.

Instances can be

- Gerrit server

- Gerrit projects




Instances can be added in several ways

- a single url

- a yaml array with a key Instance and a value as url

- a yaml array with a key Instance and a value as url + a key KeyFile with a path to SSH key as a value




The URLs are always in format scheme://username[:password]@host[:port]/

The KeyFile will be used to connect to the related instance only and will overwrite the general KeyFile setting.

A detailed example with possible formats is displayed below.






	Gerrit.Name1.N
	As you can the in the example above you can define as many instances per project as you want.






Note

Gerrit projects as an instance are not supported yet.
This is planned for future versions.



Example showcase of five instances for the TYPO3 and one for the Wikimedia project to display the possibility of Gerrit.NameN.*:

Gerrit:
  TYPO3:
    - Instance: ssh://max.mustermann@review.typo3.org:29418/
      KeyFile: /Users/max/.ssh/id_rsa

    - { Instance: ssh://max.mustermann@review.typo3.org:29418/, KeyFile: /Users/max/.ssh/id_rsa }

    - Instance: ssh://max.mustermann@review.typo3.org:29418/

    - { Instance: ssh://max.mustermann@review.typo3.org:29418/ }

    - ssh://max.mustermann@review.typo3.org:29418/

  # Second project
  Wikimedia:
    - https://max:password@gerrit.wikimedia.org/











          

      

      

    


    
         Copyright 2014, Andy Grunwald.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Gerrie 0.2 documentation 
 
      

    


    
      
          
            
  
Commands



	gerrie:check

	gerrie:crawl

	gerrie:list-projects

	gerrie:setup-database
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gerrie:check

The gerrie:check command is useful to check your local / server environment if everything works fine with your current configuration.
It accepts the same options and arguments as the gerrie:crawl command.
With this it is easy to switch the command to check if everything if working.

The gerrie:check executes various checks to your environment.
Current checks are:


	if the PHP extension curl is installed

	if the PHP extension PDO is installed

	if the PHP extension pdo_mysql is installed

	if SSH is installed and usable

	if the config file can be found

	if the config file is valid

	if Gerrie can connect to the database

	if Gerrie can connect the configured / passed Gerrit instances



During this checks several errors can occur.
In the next sections we provide possible solution to fix your environment if a check failed.


PHP extension curl

If you see the message

PHP-Extension "curl" is not installed. Please install PHP-Extension "curl".





it seems to be that the curl extension is not installed or loaded in your environment.
To check if curl is installed please list all available PHP modules with

$ php -m





and search for curl.
If this is not in the list please have a detailed look in the Client URL Library @ PHP.net documentation [http://php.net/manual/en/book.curl.php].
Specially the curl Installation [http://php.net/manual/en/curl.installation.php] chapter might be useful in your case.




PHP extensions PDO and pdo_mysql

If you see one of these messages

PHP-Extensions "PDO" and "pdo_mysql" are not installed. Please install both.
PHP-Extension "PDO" (v1.0.4dev) is installed, but "pdo_mysql" not. Please install it.





it seems to be that the PDO or pdo_mysql extension is not installed or loaded in your environment.
With the following commands you can check if the module(s) are loaded and in which version they are available.

$ php -m
$ php -r 'var_dump(phpversion("PDO"));'
$ php -r 'var_dump(phpversion("pdo_mysql"));'





If this leads in a negative check it would make sense to have a look at the PHP Data Objects @ PHP.net documentation [http://php.net/manual/en/book.pdo.php].
Specially the PDO Installation [http://php.net/manual/en/pdo.installation.php] chapter might be useful in your case.
If everything is fine with PDO, but you got problems with pdo_mysql have a look at the pdo_mysql @ PHP.net documentation [http://php.net/manual/en/ref.pdo-mysql.php].




SSH

If you see the message

"ssh" is not installed. Please install "ssh".





it seems that the ssh executable can`t be found or used.
SSH must be executable to make use of the SSH API by Gerrit.
If you need more information about SSH please have a look at OpenSSH [http://www.openssh.com/].

You can test your SSH by

$ ssh -V








Config file location

The config file location got two different error messages.
If you see the message

Config file "X" was not found.  Please provide the correct path or all settings via command options.





the config file can`t be found.
You can just copy the Config.yml.dist in the same folder, adjust it and pass it via -c / –config-file option.
This would fix the problem:

$ cd /path/to/Gerrie
$ cp Config.yml.dist Config.yml
$ ./gerrie [...] --config-file="Config.yml"





With this you can put the config file wherever you want.


Note

The configuration file is not required. You can pass all settings by options and arguments.
If this check fail ensure that you will use the options + arguments.



If you see the message

Config file "X" was found, but is not readable. Please change ownerships or all settings via command options.





then your configuration file was found, but is not readable by the user which executes the Gerrie application.
Please adjust the access rights. Maybe Chmod [http://en.wikipedia.org/wiki/Chmod] and Chown [http://en.wikipedia.org/wiki/Chown] can help you.




Config file validation

If you see a message like

The configuration is not complete. Missing keys are X. Please provide them as command options.





the configuration file is not complete.
There are the mentioned settings missing.
If you don`t know which keys need to be in the config file, please have a look at the self documented Config.yml in the root directory of Gerrie.
The Configuration chapter will list all available settings as well.


Note

The configuration file is not required. You can pass all settings by options and arguments.
If this check fail ensure that you will use the options + arguments.






Database connection

If you see a message like

Database connection to host "120.0.0.1" works not as expected. Please check your credentials or setup.





Gerrie can`t build a database connection.
A database connection is required to use Gerrie.
To check if your database is working you can try to connect with the same credentials via commandline:

$ mysql -h 127.0.0.1 -uUSER -p
$ # enter password here
$ mysql> USE DATABASENAME;
$ mysql> SHOW TABLES;






Note

Only MySQL is supported.






Gerrit instance connection

Depending on your configuration you will use the SSH or HTTP / REST API by Gerrit.
Both connection kinds can fail and will output a error message like

Connection to Gerrit "review.typo3.org" via SSH-DataService was not successful. Please check your credentials or setup.





Please read further to fight against your issue.


Connection via SSH

The SSH API is a little bit tricky.

At first the Gerrit instance must support access by SSH.
Instances like TYPO3 [https://review.typo3.org/] or Wikimedia [https://gerrit.wikimedia.org] does this.
Instances like Android [https://android-review.googlesource.com/] (which are hosted at googlesource) does not.
They only support HTTPS.

One requirement is that you got a user account at this instance and your SSH public key was added in Gerrit at Settings > SSH Public Keys.
After this you can test your command with

$ ssh -i /Path/To/Your/Private/.ssh/key -p 29418 USERNAME@HOST gerrit version
# e.g.
$ ssh -i /Users/max/.ssh/id_rsa_gerrie -p 29418 max.musterman@review.typo3.org gerrit version





A valid response should be

gerrit version 2.9.1





If you see something like “Access denied” please check your private / public key pair.




Connection via HTTP(S)

The HTTP(S) API is a little bit more easier to use than the SSH API.
Mostly every current version of Gerrit supports the REST-API.


Note

The HTTP(S) API is not fully supported by Gerrie.
This is planned for future versions of Gerrie.



There are two ways to test the REST-API: With and without authentification.
At first be sure that this works without authentification.
This is easy and you can just request a special url with curl like

$ curl SCHEME://HOST/config/server/version
# e.g.
$ curl https://review.typo3.org/config/server/version





A valid response should be

)]}'
"2.9.1"





Next step would be to check the access via REST API with your user credentials.
You can do this via curl as well:

$ curl --user USERNAME:PASSWORD SCHEME://HOST/a/accounts/self/username
# e.g.
$ curl --user max.mustermann:mypassword https://review.typo3.org/a/accounts/self/username





A valid response should be

)]}'
"max.mustermann"





If you got a response like

Unauthorized





please check your username and password at the Gerrit instance.


Note

To crawl a Gerrit instance a authentification is not necessary for the REST-API.
This depends on your user account.
For example some instances give logged in users a higher API ratio or more rights to see more projects.
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gerrie:crawl

The gerrie:crawl command is the main command of the Gerrie application.
The main responsibility of this command is to receive the data from the Gerrit instance and transfer the data into a RDBMS.
This happens in several steps:


	Receive all information of configuration / options + arguments

	Query the Gerrit instance for the / a project(s)

	Transfer the project data into a unique format

	Proceed (insert / update) project information

	Query the Gerrit instance for Changesets + detailed information

	Transfer the Changeset data into a unique format

	Proceed (insert / update) changeset information



One requirement to execute gerrie:crawl is the necessary database structure.
You can setup the table scheme with the command gerrie:setup-database.
An alternative way can be the –setup-database-tables option of the gerrie:crawl command.


Note

At the moment Gerrie is only able to communicate with the SSH API of Gerrie.
The support for the REST API is not build in yet in Gerrie.



Next to the described main logic there a several small features build in like


	debugging functionality to detect if every attribute which is received by the API is transformed to the unique format and no information is missing

	debugging functionality to detect if the project / instance is crawled the first time and only insert statements and not update statements will be executed

	logging to see what happens
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gerrie:list-projects

The gerrie:list-projects command is responsible to list all projects of the given Gerrit instances.
The gerrie:list-projects command won`t inserts or updates anything in the storage backend.
It only requests the API of the given Gerrit instances.


Example

If we configure two different Gerrit instances, TYPO3 [https://typo3.org/] via SSH and Wikimedia [https://www.wikimedia.org/] via HTTP (Config.yml) ...

...
Gerrit:
    TYPO3:
        - ssh://max.mustermann@review.typo3.org:29418/

WikiMedia:
    - https://max.mustermann:password@gerrit.wikimedia.org/r/





... and start Gerrie to receive the projects ...

$ ./gerrie gerrie:list-projects -c Config.yml





... we will get all projects of the two Gerrit instances ...

Instance: review.typo3.org (via SSH)
========================================
All-Projects
CalBrowser
Documentation/ApiTypo3Org
Documentation/GetTheDocs
Documentation/Manuals
Documentation/RestTools
Documentation/Sandbox
Documentation/TYPO3/Book/ExtbaseFluid
...

Instance: gerrit.wikimedia.org (via HTTP)
========================================
All-Projects
USERINFO
VisualEditor
VisualEditor/VisualEditor
analytics
analytics/abacist
analytics/aggregator
analytics/aggregator/data
...








Use cases

Use cases for this features are:


	Get a simple overview about the projects which can be crawled by the given user you had configured

	Combine the project listing with commands like grep / awk / sed and Gerrie (again) to crawl all projects with a given pattern

	Execute the gerrie:crawl command in parallel (multi processes / threading) to gain more speed during cralwing




Note

You got another use case?
Please let us know and open an issue in our bugtracker.
How you do this can be read in the contributing/issues chapter.
We will add your usecase here.
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gerrie:setup-database

The gerrie:setup-database command is responsible to setup the database scheme (tables only) for the gerrie:crawl command.
The gerrie:setup-database command won`t create the database it selfs.
The database have to already exist.

If the database contains tables the command won`t overwrite something.
The command checks if a table with the same name already exists (this is done by SHOW TABLES LIKE ...).
If yes, the command does nothing and will execute the same procedure for the next table.
If the requested table does not exist it will be created (this is done by CREATE TABLE ...).

What does this mean?
This means that if you will upgrade from an old version of Gerrie to a newer one and you know that there were database schema changes that this changes won`t be applied to your already existing scheme.
Database scheme changes has to be applied by a different way.

In the normal world you can apply the gerrie:setup-database to every existing database which contains various tables already.
All tables which will be created by Gerrie as prefixed by gerrie_.
If you do not get any tables which got the prefix gerrie_ you can just apply this command to your database.
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Database


Supported databases

Currently Gerrie supports only MySQL [http://www.mysql.com/].


Note

You want to support another database like PostgreSQL or a NoSQL database?
Feel free to contribute. This is _very_ welcome!






Setup the schema

To setup the schema the database itselfs has to be exists.
Please create this database before using Gerrie.
A command can look like

CREATE DATABASE gerrie;





Based upon this you can create the database schema.
The gerrie:setup-database command will help you to setup the database schema.




Schema

To query the database and answer questions based on this data it is important that you will understand how the data is structured.
MySQL is a typical RDBMS.
So we use a typical table / column schema to reflect the complex data structure of Gerrit.
Below you will find a visualisation of the database scheme as entity relationship model.

[image: ../_images/eer-diagram.png]
This entity relationship model was created with MySQLWorkbench [http://www.mysql.com/products/workbench/].
If you want to get a deeper look at this schema to investigate it, you can install MySQLWorkbench and load the source file eer-diagram.mwb [https://github.com/andygrunwald/Gerrie/raw/master/docs/database/EER-Diagram.mwb].
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Writing Code


General


Coding Style Guide

For convenience we follow the PSR-1 [http://www.php-fig.org/psr/psr-1/] and PSR-2 [http://www.php-fig.org/psr/psr-2/] coding style guides of PHP Framework Interop Group [http://www.php-fig.org/].
Please be so nice to take care of this during code contribution (e.g. pull requests).
To check your code against this standards you can use tools like PHP_CodeSniffer [https://github.com/squizlabs/PHP_CodeSniffer/].






Pull requests

With Gerrit we follow the standard code contribution of the GitHub platform.
This means:


	
	Fork the project into a personal username space and clone the repository.

	$ git clone https://github.com/andygrunwald/Gerrie.git











	
	Create a new git branch for your change (bugfix, feature, improvement, etc.).

	$ git checkout -b my-new-feature











	
	Make your changes in the codebase until your changes are working.

	$ vim ./file
$ # Hack hack hack











	
	Commit your changes into your local git repository.

	$ git commit -am 'Add some feature'











	
	Push your new branch to your fork repository.

	$ git push origin my-new-feature











	
	Visit the forked repository via the GitHub website and create the pull request based on your new branch.

	$ # Ploepp (beer open)
$ # gluck gluck gluck (beer drinking)













This are the necessary steps described in a really rough way.
If you need more help the GitHub help pages are a a excellent source:


	Fork A Repo [https://help.github.com/articles/fork-a-repo]

	Creating a pull request [https://help.github.com/articles/creating-a-pull-request/]

	Using pull requests [https://help.github.com/articles/using-pull-requests/]

	Syncing a fork [https://help.github.com/articles/syncing-a-fork/]

	Merging an upstream repository into your fork [https://help.github.com/articles/merging-an-upstream-repository-into-your-fork/]

	Configuring a remote for a fork [https://help.github.com/articles/configuring-a-remote-for-a-fork/]






Testing


PHPUnit

Gerrie uses PHPUnit [https://phpunit.de/] to create unit and integration tests.
The tests are located in the tests folder.
To execute the unit tests ensure that you have installed all development dependencies via --dev and start PHPUnit:

$ composer install --dev
$ # Without code coverage generation
$ ./vendor/bin/phpunit --coverage-clover=coverage.clover
$ # With code coverage generation
$ ./vendor/bin/phpunit






Note

To generate the code coverage you need the PHP Extension xDebug installed.



To create mock objects we use the standard functionality of PHPUnit.






Quality services


Travis CI

Travis CI [https://travis-ci.org/] is a free hosted Continuous Integration Platform for Open Source projects.
We make us of this service to execute our tests continuous.
One of the biggest advantages is that all pull request will be checked with Travis CI as well.
So if you want to contribute please do not fear to break something.
Every pull request you create will be checked and you will be notified if something go wrong.
So just try it :)

See andygrunwald/Gerrie @ Travis CI [https://travis-ci.org/andygrunwald/Gerrie].




Scrutinizer

Scrutinizer [https://scrutinizer-ci.com/] is a free hosted Continuous inspection Platform for Open Source projects.
This service executes several checks for us like
* checking the coding styleguide for us
* observe the code documentation about possible bugs in return values
* determine a quality score for Gerrie
* and adds small tipps of how to improve the code quality of the software

As a small additional feature we push the generated code coverage from our unit tests from Travis CI to Scrutinizer.
With this Scrutinizer can determine the overall code coverage for us.

See andygrunwald/Gerrie @ Scrutinizer [https://scrutinizer-ci.com/g/andygrunwald/Gerrie/].
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Writing Documentation

Documentation is really important.
Especially for an Open Source project where no one is payed to work with (maybe legacy) software.
Documentation helps user
* to understand how to use software
* what are basic concepts of the tool
* to follow the original thoughts of the author
* to start contributing to the tool
* understand how they can be involved
* and many things more.

This are the reasons why documentation is important.
We at Gerrie thinks that to write documentation must be easy.
That is the reason why we store documentation as plain text next to the source code.
You can find our documentation in the docs/ [https://github.com/andygrunwald/Gerrie/tree/master/docs] directory.

Learn more about how we write and where we host and generate our documentation.


reStructuredText

We write our documentation in reStructuredText [http://en.wikipedia.org/wiki/ReStructuredText]:


reStructuredText is a file format for textual data used primarily [..] for technical documentation.


reStructuredText is very similar to MarkDown [http://en.wikipedia.org/wiki/Markdown]. ReStructuredText is easy to write and really powerful.
You can convert this to several formats like HTML, ePub or PDF.

To learn the reStructuredText syntax have a look at reStructuredText @ Wikipedia [http://en.wikipedia.org/wiki/ReStructuredText] or Quick reStructuredText of docutils [http://docutils.sourceforge.net/docs/user/rst/quickref.html].




Read the Docs

We use the service of Read the docs [https://readthedocs.org/] for hosting and generating our documentation.
Read the Docs makes it really easy to write, build and manage documentations of Open Source projects.
The maintenance is less and the author can focus on the relevant topics instead of maintaining infrastructure.

To start and use Read the Docs and to compile and test the documentation you have to install a few Python tools.
For example Read the Docs uses Sphinx [http://sphinx-doc.org/] to render the documentation.
Details about the necessary software can be found in the Getting started @ Read the docs [https://read-the-docs.readthedocs.org/en/latest/getting_started.html].

To render our documentation just checkout the source code from GitHub, compile the documentation and open it:

$ git clone https://github.com/andygrunwald/Gerrie.git Gerrie
$ cd Gerrie/docs
$ make html
$ open _build/html/index.html





After the new docs are pushed to the main Repository of GitHub, Read the Docs will render the new version and publish it to Gerrie @ Read the Docs [https://gerrie.readthedocs.org/].
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Reporting Issues

It is important for an Open Source project to get feedback, bugs, feature requests, enhancement , tips, tricks, hints and more from users and contributers.
We at Gerrie are using the standard issue tracker at andygrunwald/Gerrie from GitHub [https://github.com/andygrunwald/Gerrie/issues] for this.

Please feel free to open an issue at our issue tracker to:
* report a bug
* suggest a feature request
* notify us in case of typos
* ask questions
* give feedback (positive or negative)
* share tips, tricks and hints
* offer sponsoring
* get in contact with the authors
* suggest dates for beer drinking

We are waiting for your issue :)
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Various

Contributing source code, documentation or issues are not everything.
There are several other ways to contribute to an open source project and this ways are important as well!
In this area we will describe some ways in the next sections.


Talk about Gerrie

As every other product / service word-of-mouth advertising is important.
Feel free to talk about Gerrie if you are using it, you are happy because it solves your needs and you want to contribute.
You can talk about it in thousand ways:


	Presentation at conferences

	Presentation at usergroups

	Write a blog post

	Write a post on a mailing list

	Mention it in academic researches / papers

	Chat with a friend or colleague during a beer

	you will find a way



If you talk about Gerrie in a public way we would love to hear about this activity.
Would you be so nice to drop us a mail or a ticket / issue [https://github.com/andygrunwald/Gerrie/issues] ?
Thank you!




Sponsoring

If you think “Hey, Gerrie is a cool and useful project. It helps me, my team or my company a lot” it would be nice if you think about to contribute back with a small sponsorship.
If we are talking about a sponsorship there are several different ways as well:


	Financial: You can sponsor money back to us e.g. to take a bill of a pizza, a beer or for a new feature.

	Developer: If you got a team of developer (e.g. you are an agency / company owner) we would love to see new contributer who will fix a bug or add a new feature.

	Designer: This is quite the same as for Developer, but for designer. Especially now, because we are looking for a logo






Contact

We love to get in contact with our users.
To receive feedback (positive or negative) is important to learn how users will use this tool and how we can improve it further.

Do not hesitate to get in contact with us.
You can ask as everything.
Maybe you don`t know where / how to start with?
Or just want to share your opinion about Gerrie?

Start now to contact us by a ticket / issue [https://github.com/andygrunwald/Gerrie/issues] or by email to the contributers [https://github.com/andygrunwald/Gerrie/graphs/contributors].
Thanks in advance.
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Logo

Every product needs a logo.
Even Gerrie.
Sadly the current authors are not very good in designing a meaningful logo.
This is the reason why we hope that a designer got some time to create a new shiny logo :)

This logo can be used to talk about it at conferences or usergroups or to create a recognition value.
It will be displayed on every site where Gerrie is announced.

We don`t get a special briefing.
But here are some small words.
Maybe they help to develop an idea:


Gerrie is a data mining tool / crawler to retrieve data from Googles code review system “Gerrit”.
Data mining is a more general word about retrieving, cleaning and analyze data to get new information out of it.
The data which is mind is related to developer who spend (mostly) spare time to improve a software system by fixing bugs or adding new features.
The data contains source code, comments, up and down votes.
The data is retrieved by standarized interfaces which are provided by Gerrit.
During this process the data will be transformed in a different format and stored in a database.

The word “mining” can be lead to mining in general like coal mining.
The author was born in Duisburg, Germany.
Duisburg, Germany is a city which lived a long long time by mining.
Many coal mines are around Duisburg.




The designer got free space to design it, but it would be nice to be a little bit related to such kind of story.

gerrit [https://code.google.com/p/gerrit/], the open source project got already a logo: Diffy - The Kung Fu Review Cuckoo

[image: ../_images/gerrit-logo-diffy.png]
Feel free.
We would like to receive a nice suggestion from you.
Sadly we do not get a (big) budget for it, because we do not earn money with Gerrie.
Everything what we can offer is fame.
You will be mentioned everywhere we will publish this logo.
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License

This project is released under the terms of the MIT license [http://en.wikipedia.org/wiki/MIT_License].

The MIT License (MIT)

Copyright (c) 2014 Andreas Grunwald and contributors.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
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