GeoPySpark Documentation

Release 0.4.0

Jacob Bouffard, James McClean, Eugene Cheipesh

Home

1	wny	Georyspark:	3			
2	A Qu	uick Example				
3	Cont	tact and Support				
	3.1	Changelog	7			
	3.2	Contributing	13			
	3.3	Core Concepts	15			
	3.4	Working With Layers	19			
	3.5	Catalog	36			
	3.6	Map Algebra	44			
	3.7	Visualizing Data in GeoPySpark	49			
	3.8	TMS Servers	53			
	3.9	Ingesting an Image	57			
	3.10	Reading in Sentinel-2 Images	59			
	3.11	Reading and Rasterizing Open Street Map Data	61			
	3.12	geopyspark package				
	3.13	geopyspark.geotrellis package				
	3.14	geopyspark.vector_pipe package				
Py	thon N	Module Index	173			

GeoPySpark is a Python language binding library of the Scala library, GeoTrellis. Like GeoTrellis, this project is released under the Apache 2 License.

GeoPySpark seeks to utilize GeoTrellis to allow for the reading, writing, and operating on raster data. Thus, its able to scale to the data and still be able to perform well.

In addition to raster processing, GeoPySpark allows for rasters to be rendered into PNGs. One of the goals of this project to be able to process rasters at web speeds and to perform batch processing of large data sets.

Home 1

2 Home

CHAPTER 1

Why GeoPySpark?

Raster processing in Python has come a long way; however, issues still arise as the size of the dataset increases. Whether it is performance or ease of use, these sorts of problems will become more common as larger amounts of data are made available to the public.

One could turn to GeoTrellis to resolve the aforementioned problems (and one should try it out!), yet this brings about new challenges. Scala, while a powerful language, has something of a steep learning curve. This can put off those who do not have the time and/or interest in learning a new language.

By having the speed and scalability of Scala and the ease of Python, GeoPySpark is then the remedy to this predicament.

CHAPTER 2

A Quick Example

Here is a quick example of GeoPySpark. In the following code, we take NLCD data of the state of Pennsylvania from 2011, and do a masking operation on it with a Polygon that represents an area of interest. This masked layer is then saved.

If you wish to follow along with this example, you will need to download the NLCD data and unzip it.. Running these two commands will complete these tasks for you:

```
curl -o /tmp/NLCD2011_LC_Pennsylvannia.zip https://s3-us-west-2.amazonaws.com/prd-tnm/

StagedProducts/NLCD/2011/landcover/states/NLCD2011_LC_Pennsylvania.zip?ORIG=513_

SBDDG

unzip -d /tmp/NLCD2011_LC_Pennsylvannia.zip
```

```
import geopyspark as gps
from pyspark import SparkContext
from shapely.geometry import box
# Create the SparkContext
conf = gps.geopyspark_conf(appName="geopyspark-example", master="local[*]")
sc = SparkContext(conf=conf)
# Read in the NLCD tif that has been saved locally.
# This tif represents the state of Pennsylvania.
raster_layer = gps.geotiff.get(layer_type=gps.LayerType.SPATIAL,
                               uri='/tmp/NLCD2011_LC_Pennsylvania.tif',
                               num_partitions=100)
# Tile the rasters within the layer and reproject them to Web Mercator.
tiled_layer = raster_layer.tile_to_layout(layout=gps.GlobalLayout(), target_crs=3857)
# Creates a Polygon that covers roughly the north-west section of Philadelphia.
# This is the region that will be masked.
area_of_interest = box(-75.229225, 40.003686, -75.107345, 40.084375)
```

CHAPTER 3

Contact and Support

If you need help, have questions, or would like to talk to the developers (let us know what you're working on!) you can contact us at:

- Gitter
- · Mailing list

As you may have noticed from the above links, those are links to the GeoTrellis Gitter channel and mailing list. This is because this project is currently an offshoot of GeoTrellis, and we will be using their mailing list and gitter channel as a means of contact. However, we will form our own if there is a need for it.

3.1 Changelog

3.1.1 0.4.0

New Features

Rasterizing an RDD[Geometry]

Users can now rasterize an RDD[shapely.geometry] via the rasterize method.

```
# A Python RDD that contains shapely geomtries
geometry_rdd = ...
gps.rasterize(geoms=geometry_rdd, crs="EPSG:3857", zoom=11, fill_value=1)
```

ZFactor Calculator

 $\verb|zfactor_lat_lng_caculator| and | \verb|zfactor_caclulator| are two new functions| that will caculate the the the | \verb|zfactor| for each Tile in a layer during the | \verb|slope| or | hillshade | operations. This is better than using a | layer during the | layer dur$

single zfactor for all Tiles as Tiles at different lattitudes require different zfactors.

As mentioned above, there are two different forms of the calculator: zfactor_lat_lng_calculator and zfactor_calculator. The former being used for layers that are in the LatLng projection while the latter for layers in all other projections.

```
# Using the zfactor_lat_lng_calculator
# Create a zfactor_lat_lng_calculator which uses METERS for its calcualtions
calculator = gps.zfactor_lat_lng_calculator(gps.METERS)
# A TiledRasterLayer which contains elevation data
tiled_layer = ...
# Calcualte slope of the layer using the calcualtor
tiled_layer.slope(calculator)
# Using the zfactor_calculator
# We must provide a dict that maps lattitude to zfactor for our
# given projection. Linear interpolation will be used on these
# values to produce the correct zfactor for each Tile in the
# layer.
mapped_factors = {
 0.0: 0.1,
 10.0: 1.5,
 15.0: 2.0,
 20.0, 2.5
# Create a zfactor_calculator using the given mapped factors
calculator = gps.zfactor_calculator(mapped_factors)
```

PartitionStragies

With this release of GeoPySpark comes three different parition strategies: HashPartitionStrategy, SpatialPartitionStrategy, and SpaceTimePartitionStrategy. All three of these are used to partition a layer given their specified inputs.

HashPartitionStrategy

HashPartitionStrategy is a partition strategy that uses Spark's HashPartitioner to partition a layer. This can be used on either SPATIAL or SPACETIME layers.

```
# Creates a HashPartitionStrategy with 128 partitions
gps.HashPartitionStrategy(num_partitions=128)
```

SpatialPartitionStrategy

SpatialPartitionStrategy uses GeoPySpark's SpatialPartitioner during partitioning of the layer. This strategy will try and partition the Tiles of a layer so that those which are near each other spatially will be in the same partition. This will only work on SPATIAL layers.

```
# Creates a SpatialPartitionStrategy with 128 partitions
gps.SpatialPartitionStrategy(num_partitions=128)
```

SpaceTimePartitionStrategy

SpaceTimePartitionStrategy uses GeoPySpark's SpaceTimePartitioner during partitioning of the layer. This strategy will try and partition the Tiles of a layer so that those which are near each other spatially and temporally will be in the same partition. This will only work on SPACETIME layers.

```
# Creates a SpaceTimePartitionStrategy with 128 partitions
# and temporal resolution of 5 weeks. This means that
# it will try and group the data in units of 5 weeks.
gps.SpaceTimePartitionStrategy(time_unit=gps.WEEKS, num_partitions=128, time_
->resolution=5)
```

Other New Features

- · tobler method for TiledRasterLayer
- slope method for TiledRasterLayer
- · local_max method for TiledRasterLayer
- mask layers by RDD[Geometry]
- with_no_data method for RasterLayer and TiledRasterLayer
- partitionBy method for RasterLayer and TiledRasterLayer
- get_partition_strategy method for CachableLayer

Bug Fixes

- TiledRasterLayer reproject bug fix
- TMS display fix
- CellType representation and conversion fixes
- get_point_values will now return the correct number of results for temporal layers
- · Reading layers and values from Accumulo fix
- time_intervals will now enumerate correctly in catalog.query
- TileReader will now read the correct attribures file

3.1.2 0.3.0

New Features

Aggregating a Layer By Cell

It is now possible to aggregate the cells of all values that share a key in a layer via the aggregate_by_cell method. This method is useful when you have a layer where you want to reduce all of the values by their key.

3.1. Changelog 9

```
# A tiled layer which contains duplicate keys with different values
# that we'd like to reduce so that there is one value per key.
tiled_layer = ...

# This will compute the aggregate SUM of each cell of values that share
# a key within the layer.
tiled_layer.aggregate_by_cell(gps.Operation.SUM)

# Similar to the above command, only this one is finding the STANDARD_DEVIATION
# for each cell.
tiled_layer.aggregate_by_cell(gps.Operation.STANDARD_DEVIATION)
```

Unioning Layers Together

Through the union method, it is now possible to union together an arbitrary number of either RasterLayers or TiledRasterLayers.

```
# Layers to be unioned together
layers = [raster_layer_1, raster_layer_2, raster_layer_3]
unioned_layers = gps.union(layers)
```

Getting Point Values From a Layer

By using the get_point_values method, one can retrieve data points that falls on or near a given point.

```
from shapely.geometry import Point

# The points we'd like to collect data at
p1 = Point(0, 0)
p2 = Point(1, 1)
p3 = Point(10, 10)

# The tiled layer which will be queried
tiled_layer = ...

tiled_layer.get_point_values([p1, p2, p3])
```

The above code will return a [(Point, [float])] where each point given will be paired with all of the values it covers (one for each band of the Tile).

It is also possible to pass in a dict to get_point_values.

```
labeled_points = {'p1': p1, 'p2': p2, 'p3': p3}
tiled_layer.get_point_values(labeled_points)
```

This will return a {k: (Point, [float])} which is similar to the above code only now the (Point, [float]) is the value of the key that point had in the input dict.

Combining Bands of Multiple Layers

combine_bands will concatenate the bands of values that share a key together to produce a new, single value. This

new Tile will contain all of the bands from all of the values that shared a key from the given layers.

This method is most useful when you have multiple layers that contain a single band from a multiband image; and you'd like to combine them together so that all or some of the bands are available from a single layer.

```
# Three different layers that contain a single band from the
# same scene
band_1_layer = ...
band_2_layer = ...
band_3_layer = ...

# combined_layer will have values that contain three bands: the first
# from band_1_layer, the second from band_2_layer, and the last from
# band_3_layer
combined_layer = gps.combine_bands([band_1_layer, band_2_layer, band_3_layer])
```

Other New Features

- Merge method for RasterLayer and TiledRasterLayer
- Filter a RasterLayer or a TiledRasterLayer by time
- · Polygonal Summary on all bands
- · Better temporal resolution control when writing layers
- TiledRasterLayers can now perform the abs local operation
- TiledRasterLayers can now perform the ** local operation

Bug Fixes

- LayerType creation issue
- tuple serializer creation fix
- The TMS can now read from MultibandTile catalogs
- tileToLayout bug
- additional_jar_dirs fix
- stitch and saveStitch now work with MultibandTiles

3.1.3 0.2.2

0.2.2 fixes the naming issue brought about in 0.2.1 where the backend jar and the docs had the incorrect version number.

geopyspark

• Fixed version numbers for docs and jar.

3.1.4 0.2.1

0.2.1 adds two major bug fixes for the catalog.query and geotiff.get functions as well as a few other minor changes/additions.

3.1. Changelog 11

geopyspark

Updated description in setup.py.

geopyspark.geotrellis

- Fixed a bug in catalog.query where the query would fail if the geometry used for querying was in a different projection than the source layer.
- partition_bytes can now be set in the geotiff.get function when reading from S3.
- Setting max_tile_size and num_partitions in geotiff.get will now work when trying to read geotiffs from S3.

3.1.5 0.2.0

The second release of GeoPySpark has brought about massive changes to the library. Many more features have been added, and some have been taken away. The API has also been overhauld, and code written using the 0.1.0 code will not work with this version.

Because so much has changed over these past few months, only the most major changes will be discussed below.

geopyspark

- Removed GeoPyContext.
- Added geopyspark_conf function which is used to create a SparkConf for GeoPySpark.
- Changed how the environemnt is constructed when using GeoPySpark.

geopyspark.geotrellis

- A SparkContext instance is no longer needs to be passed in for any class or function.
- Renamed RasterRDD and TiledRasterRDD to RasterLayer and TiledRasterLayer.
- Changed how tile_to_layout and reproject work.
- Broked out rasterize, hillshade, cost_distance, and euclidean_distance into their own, respective modules.
- Added the Pyramid class to layer.py.
- Renamed geotiff rdd to geotiff.
- Broke out the options in geotiff.get.
- Constants are now orginized by enum classes.
- Avro is no longer used for serialization/deserialization.
- ProtoBuf is now used for serialization/deserialization.
- Added the render module.
- Added the color mdoule.
- Added the histogram moudle.

Documentation

- Updated all of the docstrings to reflect the new changes.
- All of the documentation has been updated to reflect the new chnagtes.
- Example jupyter notebooks have been added.

3.1.6 0.1.0

The first release of GeoPySpark! After being in development for the past 6 months, it is now ready for its initial release! Since nothing has been changed or updated per se, we'll just go over the features that will be present in 0.1.0.

geopyspark.geotrellis

- Create a RasterRDD from GeoTiffs that are stored locally, on S3, or on HDFS.
- Serialize Python RDDs to Scala and back.
- Perform various tiling operations such as tile_to_layout, cut_tiles, and pyramid.
- Stitch together a TiledRasterRDD to create one Raster.
- rasterize geometries and turn them into RasterRDD.
- reclassify values of Rasters in RDDs.
- Calculate cost_distance on a TiledRasterRDD.
- Perform local and focal operations on TiledRasterRDD.
- Read, write, and query GeoTrellis tile layers.
- · Read tiles from a layer.
- Added PngRDD to make rendering to PNGs more efficient.
- Added RDDWrapper to provide more functionality to the RDD classes.
- Polygonal summary methods are now available to TiledRasterRDD.
- Euclidean distance added to TiledRasterRDD.
- Neighborhoods submodule added to make focal operations easier.

geopyspark.command

GeoPySpark can now use a script to download the jar. Used when installing GeoPySpark from pip.

Documentation

- Added docstrings to all python classes, methods, etc.
- · Core-Concepts, rdd, geopycontext, and catalog.
- Ingesting and creating a tile server with a greyscale raster dataset.
- Ingesting and creating a tile server with data from Sentinel.

3.2 Contributing

We value all kinds of contributions from the community, not just actual code. Perhaps the easiest and yet one of the most valuable ways of helping us improve GeoPySpark is to ask questions, voice concerns or propose improvements on the GeoTrellis Mailing List. As of now, we will be using this to interact with our users. However, this could change depending on the volume/interest of users.

If you do like to contribute actual code in the form of bug fixes, new features or other patches this page gives you more info on how to do it.

3.2. Contributing

3.2.1 Building GeoPySpark

- 1. Install and setup Hadoop (the master branch is currently built with 2.0.1).
- 2. Check out this. repository.
- 3. Pick the branch corresponding to the version you are targeting
- 4. Run make install to build GeoPySpark.

3.2.2 Style Guide

We try to follow the PEP 8 Style Guide for Python Code as closely as possible, although you will see some variations throughout the codebase. When in doubt, follow that guide.

3.2.3 Git Branching Model

The GeoPySpark team follows the standard practice of using the master branch as main integration branch.

3.2.4 Git Commit Messages

We follow the 'imperative present tense' style for commit messages. (e.g. "Add new EnterpriseWidgetLoader instance")

3.2.5 Issue Tracking

If you find a bug and would like to report it please go there and create an issue. As always, if you need some help join us on Gitter to chat with a developer. As with the mailing list, we will be using the GeoTrellis Gitter channel until the need arises to form our own.

3.2.6 Pull Requests

If you'd like to submit a code contribution please fork GeoPySpark and send us pull request against the master branch. Like any other open source project, we might ask you to go through some iterations of discussion and refinement before merging.

As part of the Eclipse IP Due Diligence process, you'll need to do some extra work to contribute. This is part of the requirement for Eclipse Foundation projects (see this page in the Eclipse wiki You'll need to sign up for an Eclipse account with the same email you commit to github with. See the Eclipse Contributor Agreement text below. Also, you'll need to signoff on your commits, using the git commit -s flag. See https://help.github.com/articles/signing-tags-using-gpg/ for more info.

3.2.7 Eclipse Contributor Agreement (ECA)

Contributions to the project, no matter what kind, are always very welcome. Everyone who contributes code to GeoTrellis will be asked to sign the Eclipse Contributor Agreement. You can electronically sign the Eclipse Contributor Agreement here.

3.2.8 Editing these Docs

Contributions to these docs are welcome as well. To build them on your own machine, ensure that sphinx and make are installed.

Installing Dependencies

Ubuntu 16.04

> sudo apt-get install python-sphinx python-sphinx-rtd-theme

Arch Linux

> sudo pacman -S python-sphinx python-sphinx_rtd_theme

MacOS

brew doesn't supply the sphinx binaries, so use pip here.

Pip

> pip install sphinx sphinx_rtd_theme

Building the Docs

Assuming you've cloned the GeoTrellis repo, you can now build the docs yourself. Steps:

- 1. Navigate to the docs/directory
- 2. Run make html
- 3. View the docs in your browser by opening _build/html/index.html

Note: Changes you make will not be automatically applied; you will have to rebuild the docs yourself. Luckily the docs build in about a second.

File Structure

There is currently not a file structure in place for docs. Though, this will change soon.

3.3 Core Concepts

Because GeoPySpark is a binding of an existing project, GeoTrellis, some terminology and data representations have carried over. This section seeks to explain this jargon in addition to describing how GeoTrellis types are represented in GeoPySpark.

3.3. Core Concepts 15

Before begining, all examples in this guide need the following boilerplate code:

```
import datetime
import numpy as np
import geopyspark as gps
```

3.3.1 Rasters

GeoPySpark differs in how it represents rasters from other geo-spatial Python libraries like rasterIO. In GeoPySpark, they are represented by the *Tile* class. This class contains a numpy array (referred to as cells) that represents the cells of the raster in addition to other information regarding the data. Along with cells, Tile can also have the no data value of the raster.

Note: All rasters in GeoPySpark are represented as having multiple bands, even if the original raster just contained one.

```
# The resulting Tile will have no no_data_value
gps.Tile.from_numpy_array(numpy_array=arr)
```

3.3.2 Extent

Describes the area on Earth a raster represents. This area is represented by coordinates that are in some Coordinate Reference System. Thus, depending on the system in use, the values that outline the <code>Extent</code> can vary. <code>Extent</code> can also be referred to as a *bounding box*.

Note: The values within the Extent must be floats and not doubles.

```
extent = gps.Extent(0.0, 0.0, 10.0, 10.0)
extent
```

3.3.3 ProjectedExtent

ProjectedExtent describes both the area on Earth a raster represents in addition to its CRS. Either the EPSG code or a proj4 string can be used to indicate the CRS of the ProjectedExtent.

```
# Using an EPSG code

gps.ProjectedExtent(extent=extent, epsg=3857)
```

3.3.4 TemporalProjectedExtent

Similar to ProjectedExtent, *TemporalProjectedExtent* describes the area on Earth the raster represents, its CRS, and the time the data was represents. This point of time, called instant, is an instance of datetime. datetime.

```
time = datetime.datetime.now()
gps.TemporalProjectedExtent(extent=extent, instant=time, epsg=3857)
```

3.3.5 TileLayout

TileLayout describes the grid which represents how rasters are orginized and assorted in a layer. layoutCols and layoutRows detail how many columns and rows the grid itself has, respectively. While tileCols and tileRows tell how many columns and rows each individual raster has.

```
# Describes a layer where there are four rasters in a 2x2 grid. Each raster has 256_ \( \rightarrow \cols \) and rows.

tile_layout = gps.TileLayout(layoutCols=2, layoutRows=2, tileCols=256, tileRows=256) tile_layout
```

3.3.6 LayoutDefinition

LayoutDefinition describes both how the rasters are orginized in a layer as well as the area covered by the grid.

```
layout_definition = gps.LayoutDefinition(extent=extent, tileLayout=tile_layout)
layout_definition
```

3.3.7 Tiling Strategies

It is often the case that the exact layout of the layer is unknown. Rather than having to go through the effort of trying to figure out the optimal layout, there exists two different tiling strategies that will produce a layout based on the data they are given.

LocalLayout

LocalLayout is the first tiling strategy that produces a layout where the grid is constructed over all of the pixels within a layer of a given tile size. The resulting layout will match the original resolution of the cells within the rasters.

Note: This layout cannot be used for creating display layers. Rather, it is best used for layers where operations and analysis will be performed.

```
# Creates a LocalLayout where each tile within the grid will be 256x256 pixels. gps.LocalLayout()
```

```
# Creates a LocalLayout where each tile within the grid will be 512x512 pixels. gps.LocalLayout(tile_size=512)
```

```
# Creates a LocalLayout where each tile within the grid will be 256x512 pixels.
gps.LocalLayout(tile_cols=256, tile_rows=512)
```

3.3. Core Concepts

GlobalLayout

The other tiling strategy is GlobalLayout which makes a layout where the grid is constructed over the global extent CRS. The cell resolution of the resulting layer be multiplied by a power of 2 for the CRS. Thus, using this strategy will result in either up or down sampling of the original raster.

Note: This layout strategy should be used when the resulting layer is to be dispalyed in a TMS server.

```
# Creates a GobalLayout instance with the default values gps.GlobalLayout()
```

```
# Creates a GlobalLayout instance for a zoom of 12 gps.GlobalLayout(zoom=12)
```

You may have noticed from the above two examples that GlobalLayout does not create layout for a given zoom level by default. Rather, it determines what the zoom should be based on the size of the cells within the rasters. If you do want to create a layout for a specific zoom level, then the zoom parameter must be set.

3.3.8 SpatialKey

SpatialKeys describe the positions of rasters within the grid of the layout. This grid is a 2D plane where the location of a raster is represented by a pair of coordinates, col and row, respectively. As its name and attributes suggest, SpatialKey deals solely with spatial data.

```
gps.SpatialKey(col=0, row=0)
```

3.3.9 SpaceTimeKey

Like SpatialKeys, SpaceTimeKeys describe the position of a raster in a layout. However, the grid is a 3D plane where a location of a raster is represented by a pair of coordinates, col and row, as well as a z value that represents a point in time called, instant. Like the instant in TemporalProjectedExtent, this is also an instance of datetime. Thus, SpaceTimeKeys deal with spatial-temporal data.

```
gps.SpaceTimeKey(col=0, row=0, instant=time)
```

3.3.10 Bounds

Bounds represents the the extent of the layout grid in terms of keys. It has both a minKey and a maxKey attributes. These can either be a SpatialKey or a SpaceTimeKey depending on the type of data within the layer. The minKey is the left, uppermost cell in the grid and the maxKey is the right, bottommost cell.

```
# Creating a Bounds from SpatialKeys
min_spatial_key = gps.SpatialKey(0, 0)
max_spatial_key = gps.SpatialKey(10, 10)

bounds = gps.Bounds(min_spatial_key, max_spatial_key)
bounds
```

```
# Creating a Bounds from SpaceTimeKeys
min_space_time_key = gps.SpaceTimeKey(0, 0, 1.0)
```

```
max_space_time_key = gps.SpaceTimeKey(10, 10, 1.0)
gps.Bounds(min_space_time_key, max_space_time_key)
```

3.3.11 Metadata

Metadata contains information of the values within a layer. This data pertains to the layout, projection, and extent of the data contained within the layer.

The below example shows how to construct Metadata by hand, however, this is almost never required and Metadata can be produced using easier means. For RasterLayer, one can call the method, collect_metadata() and TiledRasterLayer has the attribute, layer_metadata.

3.4 Working With Layers

Before begining, all examples in this guide need the following boilerplate code:

```
curl -o /tmp/cropped.tif https://s3.amazonaws.com/geopyspark-test/example-files/
```

```
import datetime
import numpy as np
import pyproj
import geopyspark as gps

from pyspark import SparkContext
from shapely.geometry import box, Point

conf = gps.geopyspark_conf(master="local[*]", appName="layers")
pysc = SparkContext(conf=conf)
```

3.4.1 How is Data Stored and Represented in GeoPySpark?

All data that is worked with in GeoPySpark is at some point stored within an RDD. Therefore, it is important to understand how GeoPySpark stores, represents, and uses these RDDs throughout the library.

GeoPySpark does not work with PySpark RDDs, but rather, uses Python classes that are wrappers for Scala classes that contain and work with a Scala RDD. Specifically, these wrapper classes are RasterLayer and TiledRasterLayer, which will be discussed in more detail later.

Layers Are More Than RDDs

We refer to the Python wrapper classes as layers and not RDDs for two reasons: first, neither RasterLayer or TiledRasterLayer actually extends PySpark's RDD class; but more importantly, these classes contain more information than just the RDD. When we refer to a "layer", we mean both the RDD and its attributes.

The RDDs contained by GeoPySpark layers contain tuples which have type (K, V), where K represents the key, and V represents the value. V will always be a Tile, but K differs depending on both the wrapper class and the nature of the data itself. More on this below.

RasterLayer

The RasterLayer class deals with *untiled data*—that is, the elements of the layer have not been normalized into a single unified layout. Each raster element may have distinct resolutions or sizes; the extents of the constituent rasters need not follow any orderly pattern. Essentially, a RasterLayer stores "raw" data, and its main purpose is to act as a way station on the path to acquiring *tiled data* that adheres to a specified layout.

The RDDs contained by RasterLayer objects have key type, K, of either *ProjectedExtent* or *TemporalProjectedExtent*, when the layer type is SPATIAL or SPACETIME, respectively.

TiledRasterLayer

TiledRasterLayer is the complement to RasterLayer and is meant to store tiled data. Tiled data has been fitted to a certain layout, meaning that it has been regularly sampled, and it has been cut up into uniformly-sized, non-overlapping pieces that can be indexed sensibly. The benefit of having data in this state is that now it will be easy to work with. It is with this class that the user will be able to, for example, perform map algebra, create pyramids, and save the layer. See below for the definitions and specific examples of these operations.

In the case of TiledRasterLayer, K is either SpatialKey or SpaceTimeKey.

3.4.2 RasterLayer

Creating RasterLayers

There are just two ways to create a RasterLayer: (1) through reading GeoTiffs from the local file system, S3, or HDFS; or (2) from an existing PySpark RDD.

From PySpark RDDs

The first option is to create a RasterLayer from a PySpark RDD via the <code>from_numpy_rdd()</code> class method. This step can be a bit more involved, as it requires the data within the PySpark RDD to be formatted in a specific way (see <code>How is Data Stored and Represented in GeoPySpark</code> for more information).

The following example constructs an RDD from a tuple. The first element is a ProjectedExtent because we have decided to make the data spatial. If we were dealing with spatial-temproal data, then TemporalProjectedExtent would be the first element. A Tile will always be the second element of the tuple.

```
arr = np.ones((1, 16, 16), dtype='int')
tile = gps.Tile.from_numpy_array(numpy_array=np.array(arr), no_data_value=-500)
extent = gps.Extent(0.0, 1.0, 2.0, 3.0)
projected_extent = gps.ProjectedExtent(extent=extent, epsg=3857)
```

```
rdd = pysc.parallelize([(projected_extent, tile), (projected_extent, tile)])
multiband_raster_layer = gps.RasterLayer.from_numpy_rdd(layer_type=gps.LayerType.

SPATIAL, numpy_rdd=rdd)
multiband_raster_layer
```

From GeoTiffs

The get () function in the geopyspark.geotrellis.geotiff module creates an instance of RasterLayer from GeoTiffs. These files can be located on either your local file system, HDFS, or S3. In this example, a GeoTiff with spatial data is read locally.

Using RasterLayer

This next section goes over the methods of RasterLayer. It should be noted that not all methods contained within this class will be covered. More information on the methods that deal with the visualization of the contents of the layer can be found in the *Visualizing Data in GeoPySpark*.

Converting to a Python RDD

By using to_numpy_rdd(), the base RasterLayer will be serialized into a Python RDD. This will convert all of the first values within each tuple to either ProjectedExtent or TemporalProjectedExtent, and the second value to Tile.

```
python_rdd = raster_layer.to_numpy_rdd()
python_rdd
```

```
python_rdd.first()
```

SpaceTime Layer to Spatial Layer

If you're working with a spatial-temporal layer and would like to convert it to a spatial layer, then you can use the to_spatial_layer`() method. This changes the keys of the RDD within the layer by converting TemporalProjectedExtent to ProjectedExtent.

```
# Converting the SpaceTime layer to a Spatial layer
space_time_layer.to_spatial_layer()
```

Collecting Metadata

The Metadata of a layer contains information of the values within it. This data pertains to the layout, projection, and extent of the data found within the layer.

collect_metadata() will return the Metadata of the layer that fits the layout given.

```
# Collecting Metadata with the default LocalLayout()
metadata = raster_layer.collect_metadata()
metadata
```

```
# Collecting Metadata with the default GlobalLayout()
raster_layer.collect_metadata(layout=gps.GlobalLayout())
```

```
# Collecting Metadata with a LayoutDefinition
extent = gps.Extent(0.0, 0.0, 33.0, 33.0)
tile_layout = gps.TileLayout(2, 2, 256, 256)
layout_definition = gps.LayoutDefinition(extent, tile_layout)
raster_layer.collect_metadata(layout=layout_definition)
```

Reproject

reproject () will change the projection of the rasters within the layer to the given target_crs. This method does not sample past the tiles' boundaries.

```
# The CRS of the layer before reprojecting metadata.crs
```

```
# The CRS of the layer after reprojecting
raster_layer.reproject(target_crs=3857).collect_metadata().crs
```

Tiling Data to a Layout

tile_to_layout() will tile and format the rasters within a RasterLayer to a given layout. The result of this tiling is a new instance of TiledRasterLayer. This output contains the same data as its source RasterLayer, however, the information contained within it will now be orginized according to the given layout.

During this step it is also possible to reproject the RasterLayer. This can be done by specifying the target_crs to reproject to. Reprojecting using this method produces a different result than what is returned by the reproject method. Whereas the latter does not sample past the boundaries of rasters within the layer, the former does. This is important as anything with a GlobalLayout needs to sample past the boundaries of the rasters.

From Metadata

Create a TiledRasterLayer that contains the layout from the given Metadata.

Note: If the specified target_crs is different from what's in the metadata, then an error will be thrown.

```
raster_layer.tile_to_layout(layout=metadata)
```

From LayoutDefinition

```
raster_layer.tile_to_layout(layout=layout_definition)
```

From LocalLayout

```
raster_layer.tile_to_layout(gps.LocalLayout())
```

From GlobalLayout

```
tiled_raster_layer = raster_layer.tile_to_layout(gps.GlobalLayout())
tiled_raster_layer
```

From A TiledRasterLayer

One can tile a RasterLayer to the same layout as a TiledRasterLayout.

Note: If the specifying target_crs is different from the other layer's, then an error will be thrown.

```
raster_layer.tile_to_layout(layout=tiled_raster_layer)
```

3.4.3 TiledRasterLayer

Creating TiledRasterLayers

For this guide, we will just go over one initialization method for TiledRasterLayer, from_numpy_rdd. However, there are other ways to create this class. These additional creation strategies can be found in the [map algebra guide].

From PySpark RDD

Like RasterLayers, TiledRasterLayers can be created from RDDs using <code>from_numpy_rdd()</code>. What is different, however, is that <code>Metadata</code> must also be passed in during initialization. This makes creating <code>TiledRasterLayers</code> this way a little bit more arduous.

The following example constructs an RDD from a tuple. The first element is a SpatialKey because we have decided to make the data spatial. See *How is Data Stored and Represented in GeoPySpark* for more information.

```
data = np.zeros((1, 512, 512), dtype='float32')
tile = gps.Tile.from_numpy_array(numpy_array=data, no_data_value=-1.0)
instant = datetime.datetime.now()
layer = [(gps.SpaceTimeKey(row=0, col=0, instant=instant), tile),
         (gps.SpaceTimeKey(row=1, col=0, instant=instant), tile),
         (gps.SpaceTimeKey(row=0, col=1, instant=instant), tile),
         (gps.SpaceTimeKey(row=1, col=1, instant=instant), tile)]
rdd = pysc.parallelize(layer)
extent = qps.Extent(0.0, 0.0, 33.0, 33.0)
layout = gps.TileLayout(2, 2, 512, 512)
bounds = gps.Bounds(gps.SpaceTimeKey(col=0, row=0, instant=instant), gps.
→SpaceTimeKey(col=1, row=1, instant=instant))
layout_definition = gps.LayoutDefinition(extent, layout)
metadata = gps.Metadata(
   bounds=bounds,
   crs='+proj=merc +lon_0=0 +k=1 +x_0=0 +y_0=0 +a=6378137 +b=6378137 +towgs84=0,0,0,
\rightarrow 0, 0, 0, 0 + \text{units=m} + \text{no\_defs}'
   cell_type='float32ud-1.0',
    extent=extent,
    layout_definition=layout_definition)
space_time_tiled_layer = gps.TiledRasterLayer.from_numpy_rdd(layer_type=gps.LayerType.
→SPACETIME,
                                                               numpy_rdd=rdd,
→metadata=metadata)
space_time_tiled_layer
```

Using TiledRasterLayers

This section will go over the methods found within TiledRasterLayer. Like with RasterLayer, not all methods within this class will be covered in this guide. More information on the methods that deal with the visualization of the contents of the layer can be found in *Visualizing Data in GeoPySpark*; and those that deal with map algebra can be found in the [map algebra guide].

Converting to a Python RDD

By using to_numpy_rdd(), the base TiledRasterLayer will be serialized into a Python RDD. This will convert all of the first values within each tuple to either SpatialKey or SpaceTimeKey, and the second value to Tile.

```
python_rdd = tiled_raster_layer.to_numpy_rdd()
```

```
python_rdd.first()
```

SpaceTime Layer to Spatial Layer

If you're working with a spatiotemporal layer and would like to convert it to a spatial layer, then you can use the $to_spatial_layer()$ method. This changes the keys of the RDD within the layer by converting SpaceTimeKey to SpatialKey.

```
# Converting the SpaceTime layer to a Spatial layer
space_time_tiled_layer.to_spatial_layer()
```

Repartitioning

While not an RDD, TiledRasterLayer does contain an underlying RDD, and thus, it can be repartitioned using the repartition() method.

```
# Repartition the internal RDD to have 120 partitions tiled_raster_layer.repartition(num_partitions=120)
```

Lookup

If there is a particular tile within the layer that is of interest, it is possible to retrieve it as a Tile using the lookup() method.

```
min_key = tiled_raster_layer.layer_metadata.bounds.minKey

# Retrieve the Tile that is located at the smallest column and row of the layer
tiled_raster_layer.lookup(col=min_key.col, row=min_key.row)
```

Masking

By using mask () method, the TiledRasterRDD can be masekd using one or more Shapely geometries.

Normalize

normalize() will linearly transform the data within the layer such that all values fall within a given range.

```
# Normalizes the layer so that the new min value is 0 and the new max value is 60000 tiled_raster_layer.normalize(new_min=0, new_max=60000)
```

Pyramiding

When using a layer for a TMS server, it is important that the layer is pyramided. That is, we create a level-of-detail hierarchy that covers the same geographical extent, while each level of the pyramid uses one quarter as many pixels as the next level. This allows us to zoom in and out when the layer is being displayed without using extraneous detail. The <code>pyramid()</code> method will produce an instance of <code>Pyramid</code> that will contain within it multiple <code>TiledRasterLayers</code>. Each layer corresponds to a zoom level, and the number of levels depends on the <code>zoom_level</code> of the source layer. With the max zoom of the <code>Pyramid</code> being the source layer's <code>zoom_level</code>, and the lowest zoom being 0.

For more information on the Pyramid class, see the *Pyramid* section of the visualization guide.

```
# This creates a Pyramid with zoom levels that go from 0 to 11 for a total of 12.
tiled_raster_layer.pyramid()
```

Reproject

This is similar to the reproject method for RasterLayer where the reprojection will not sample past the tiles' boundaries. This means the layout of the tiles will be changed so that they will take on a LocalLayout rather than a GlobalLayout (read more about these layouts here). Because of this, whatever zoom_level the TiledRasterLayer has will be changed to 0 since the area being represented changes to just the tiles.

```
# The zoom_level and crs of the TiledRasterLayer before reprojecting tiled_raster_layer.zoom_level, tiled_raster_layer.layer_metadata.crs
```

```
reprojected_tiled_raster_layer = tiled_raster_layer.reproject(target_crs=3857)

# The zoom_level and crs of the TiledRasterLayer after reprojecting
reprojected_tiled_raster_layer.zoom_level, reprojected_tiled_raster_layer.layer_

-metadata.crs
```

Stitching

Using <code>stitch()</code> will produce a single <code>Tile</code> by stitching together all of the tiles within the <code>TiledRasterLayer</code>. This can only be done with spatial layers, and is not recommended if the data contained within the layer is large, as it can cause a crash due to the size of the resulting <code>Tile</code>.

```
# Creates a Tile with an underlying numpy array with a size of (1, 6144, 1536). tiled_raster_layer.stitch().cells.shape
```

Saving a Stitched Layer

The save_stitched() method both stitches and saves a layer as a GeoTiff.

```
# Saves the stitched layer to /tmp/stitched.tif
tiled_raster_layer.save_stitched(path='/tmp/stitched.tif')
```

It is also possible to specify the regions of layer to be saved when it is stitched.

```
layer_extent = tiled_raster_layer.layer_metadata.layout_definition.extent
```

Tiling Data to a Layout

This is similar to RasterLayer's tile_to_layout method, except for one important detail. If performing a tile_to_layout() on a TiledRasterLayer that contains a zoom_level, that zoom_level could be lost or changed depending on the layout and/or target_crs chosen. Thus, it is important to keep that in mind in retiling a TiledRasterLayer.

```
# Original zoom_level of the source TiledRasterLayer
tiled_raster_layer.zoom_level
```

```
# zoom_level will be lost in the resulting TiledRasterlayer
tiled_raster_layer.tile_to_layout(layout=gps.LocalLayout())
```

```
# zoom_level will be changed in the resulting TiledRasterLayer
tiled_raster_layer.tile_to_layout(layout=gps.GlobalLayout(), target_crs=3857)
```

```
# zoom_level will reamin the same in the resulting TiledRasterLayer
tiled_raster_layer.tile_to_layout(layout=gps.GlobalLayout(zoom=11))
```

Getting Point Values

get_point_values() takes a collection of shapely.geometry.Points and returns the value(s) that are at
the given point in the layer. The number of values returned depends on the number of bands the values have, as there
will be one value per band.

It is also possible to pass in a ResampleMethod to this method, but not all are supported. The following are all of the ResampleMethods that can be used to calculate point values:

- ResampleMethod.NEAREST_NEIGHBOR
- ResampleMethod.BILINEAR
- ResampleMethod.CUBIC_CONVOLUTION
- ResampleMethod.CUBIC_SPLINE

Getting the Point Values From a SPATIAL Layer

When using get_point_values on a layer with a LayerType of SPATIAL, the results will be paired as (shapely.geometry.Point, [float]). Where each given Point will be paired with the values it intersects.

```
# Creating the points
extent = tiled_raster_layer.layer_metadata.extent

p1 = Point(extent.xmin, extent.ymin + 0.5)
p2 = Point(extent.xmax, extent.ymax - 1.0)
```

Giving a [shapely.geometry.Point] to get_point_values

When points is given as a [shapely.geometry.Point], then the ouput will be a [(shapely.geometry.Point, [float])].

```
tiled_raster_layer.get_point_values(points=[p1, p2])
```

Giving a {k: shapely.geometry.Point} to get_point_values

When points is given as a {k: shapely.geometry.Point}, then the ouput will be a {k: (shapely.geometry.Point, [float])}.

```
tiled_raster_layer.get_point_values(points={'point 1': p1, 'point 2': p2})
```

Getting the Point Values From a SPACETIME Layer

When using get_point_values on a layer with a LayerType of SPACETIME, the results will be paired as (shapely.geometry.Point, [(datetime.datetime, [float])]). Where each given Point will be paired with a list of tuples that contain the values it intersects and those values' corresponding timestamps.

```
st_extent = space_time_tiled_layer.layer_metadata.extent

p1 = Point(st_extent.xmin, st_extent.ymin + 0.5)
p2 = Point(st_extent.xmax , st_extent.ymax - 1.0)
```

Giving a [shapely.geometry.Point] to get point values

When points is given as a [shapely.geometry.Point], then the ouput will be a [(shapely.geometry.Point, [(datetime.datetime, [float])])].

```
space_time_tiled_layer.get_point_values(points=[p1, p2])
```

Giving a {k: shapely.geometry.Point} to get_point_values

When points is given as a {k: shapely.geometry.Point}, then the ouput will be a {k: (shapely.geometry.Point, [(datetime.datetime, [float])])}.

```
space_time_tiled_layer.get_point_values(points={'point 1': p1, 'point 2': p2})
```

Aggregating the Values of Each Cell

aggregate_by_cell() will compute an aggregate summary for each cell of all values for each key. Thus, if there are multiple copies of the same key in the layer, then the resulting layer will contain just a single instance of that key with its corresponding value being the aggregate summary of all the values that share that key.

Not all Operations are supported. The following ones can be used in aggregate_by_cell:

- Operation.SUM
- Operation.MIN
- Operation.MAX
- Operation.MEAN
- Operation.VARIANCE
- Operation.STANDARD_DEVIATION

```
unioned_layer = gps.union(layers=[tiled_raster_layer, tiled_raster_layer + 1])
# Sum the values of the unioned_layer
unioned_layer.aggregate_by_cell(operation=gps.Operation.SUM)
# Get the max value for each cell
unioned_layer.aggregate_by_cell(operation=gps.Operation.MAX)
```

3.4.4 General Methods

There exist methods that are found in both RasterLayer and TiledRasterLayer. These methods tend to perform more general analysis/tasks, thus making them suitable for both classes. This next section will go over these methods.

Note: In the following examples, both RasterLayers and TiledRasterLayers will be used. However, they can easily be substituted with the other class.

Unioning Layers Togther

To combine the contents of multiple layers together, one can use the <code>union()</code> method. This will produce either a new <code>RasterLayer</code> or <code>TiledRasterLayer</code> that contains all of the elements from the given layers.

Note: The resulting layer can contain duplicate keys.

```
gps.union(layers=[tiled_raster_layer, tiled_raster_layer])
```

Selecting a SubSection of Bands

To select certain bands to work with, the bands method will take either a single or collection of band indices and will return the subset as a new RasterLayer or TiledRasterLayer.

Note: There could high performance costs if operations are performed between two sub-bands of a large dataset. Thus, if you're working with a large amount of data, then it is recommended to do band selection before reading them in.

```
# Selecting the second band from the layer multiband_raster_layer.bands(1)
```

```
# Selecting the first and second bands from the layer
multiband_raster_layer.bands([0, 1])
```

Combining Bands of Two Or More Layers

The <code>combine_bands()</code> method will concatenate the bands of values that share a key between two or more layers. Thus, the resulting layer will contain a new <code>Tile</code> for each shared key where the <code>Tile</code> will contain all of the bands from the given layers.

The order in which the layers are passed into combine_bands matters. Where the resulting values' bands will be ordered based on their position of their respective layer.

```
# The resulting values of the layer will have 2 bands: the first will be all ones,
# and the last band will be all twos
gps.combine_bands(layers=[multiband_raster_layer, twos_raster_layer])
```

```
# The resulting values of the layer will have 2 bands: the first will be all twos and the the # other band will be all ones
gps.combine_bands(layers=[twos_raster_layer, multiband_raster_layer])
```

Collecting the Keys of a Layer

To collect all of the keys of a layer, use the collect_keys method.

```
# Returns a list of ProjectedExtents
multiband_raster_layer.collect_keys()

# Returns a list of a SpatialKeys
tiled_raster_layer.collect_keys()

# Returns a list of SpaceTimeKeys
space_time_tiled_layer.collect_keys()
```

Filtering a Layer By Times

Using the filter_by_times method will produce a layer whose values fall within the given time interval(s).

Filtering By a Single Instant

A single datetime instance can be used to filter the layer. If that is the case then only exact matches with the given time will be kept.

```
space_time_layer.filter_by_times(time_intervals=[instant])
```

Filtering By Intervals

Various time intervals can also be given as well, and any keys whose instant falls within the time spans will be kept in the layer.

```
end_date_1 = instant + datetime.timedelta(days=3)
end_date_2 = instant + datetime.timedelta(days=5)

# Will filter out any value whose key does not fall in the range of
# instant and end_date_1
space_time_layer.filter_by_times(time_intervals=[instant, end_date_1])

# Will filter out any value whose key does not fall in the range of
# instant and end_date_1 OR whose key does not match end_date_2
space_time_layer.filter_by_times(time_intervals=[instant, end_date_1, end_date_2])
```

Converting the Data Type of the Rasters' Cells

The convert_data_type method will convert the types of the cells within the rasters of the layer to a new data type. The noData value can also be set during this conversion, and if it's not set, then there will be no noData value for the resulting rasters.

```
# The data type of the cells before converting metadata.cell_type
```

```
# Changing the cell type to int8 with a noData value of -100.
raster_layer.convert_data_type(new_type=gps.CellType.INT8, no_data_value=-100).

-collect_metadata().cell_type
```

```
# Changing the cell type to int32 with no noData value.
raster_layer.convert_data_type(new_type=gps.CellType.INT32).collect_metadata().cell_
otype
```

Reclassify Cell Values

reclassify changes the cell values based on the value_map and classification_strategy given. In addition to these two parameters, the data_type of the cells also needs to be given. This is either int or float.

```
# Values of the first tile before being reclassified
multiband_raster_layer.to_numpy_rdd().first()[1]
```

```
classification_strategy=gps.

ClassificationStrategy.GREATER_THAN_OR_EQUAL_TO)

reclassified.to_numpy_rdd().first()[1]
```

Merging the Values of a Layer Together

By using the merge method, all values that share a key within the layer will be merged together to form a new, single value. This is accomplished by replacing the cells of one value with another's. However, not all cells, if any, may be replaced. When merging the cell of values, the following steps are taken to determine if a cell's value should be changed:

- 1. If the cell contains a NoData value, then it will be replaced.
- 2. If no NoData value is set, then a cell with a vlue of 0 will be replaced.
- 3. if neither of the above are true, then the cell retains its value.

```
# Creating the layers
no_{data} = np.full((1, 4, 4), -1)
zeros = np.zeros((1, 4, 4))
def create_layer(no_data_value=None):
    data_tile = gps.Tile.from_numpy_array(numpy_array=no_data, no_data_value=no_data_
→value)
    zeros_tile = gps.Tile.from_numpy_array(numpy_array=zeros, no_data_value=no_data_
→value)
   layer_rdd = pysc.parallelize([(projected_extent, data_tile), (projected_extent,_
→zeros_tile)])
   return gps.RasterLayer.from_numpy_rdd(layer_type=gps.LayerType.SPATIAL, numpy_
→rdd=layer_rdd)
# Resulting layer has a no_data_value of -1
no_data_layer = create_layer(-1)
# Resutling layer has no no_data_value
no_no_data_layer = create_layer()
```

```
# The resulting merged value will be all zeros since -1 is the noData value
no_data_layer.merge()

# The resulting merged value will be all -1's as ``no_data_value`` was set.
no_no_data_layer.merge()
```

Mapping Over the Cells

It is possible to work with the cells within a layer directly via the map_cells method. This method takes a function that expects a numpy array and a noData value as parameters, and returns a new numpy array. Thus, the function given would have the following type signature:

```
def input_function(numpy_array: np.ndarray, no_data_value=None) -> np.ndarray
```

The given function is then applied to each Tile in the layer.

Note: In order for this method to operate, the internal RDD first needs to be descrialized from Scala to Python and then serialized from Python back to Scala. Because of this, it is recommended to chain together all functions to avoid unnecessary serialization overhead.

```
def add_one(cells, _):
    return cells + 1

# Mapping with a single funciton
raster_layer.map_cells(add_one)
```

```
def divide_two(cells, _):
    return (add_one(cells) / 2)

# Chaning together two functions to be mapped
raster_layer.map_cells(divide_two)
```

Mapping Over Tiles

Like map_cells, map_tiles maps a given function over all of the Tiles within the layer. It takes a function that expects a Tile and returns a Tile. Therefore, the input function's type signature would be this:

```
def input_function(tile: Tile) -> Tile
```

Note: In order for this method to operate, the internal RDD first needs to be descrialized from Scala to Python and then serialized from Python back to Scala. Because of this, it is recommended to chain together all functions to avoid unnecessary serialization overhead.

```
def minus_two(tile):
    return gps.Tile.from_numpy_array(tile.cells - 2, no_data_value=tile.no_data_value)
    raster_layer.map_tiles(minus_two)
```

Calculating the Histogram for the Layer

It is possible to calculate the histogram of a layer either by using the <code>get_histogram</code> or the <code>get_class_histogram</code> method. Both of these methods produce a <code>Histogram</code>, however, the way the data is represented within the resulting histogram differs depending on the method used. <code>get_histogram</code> will produce a histogram whose values are <code>floats</code>. Whereas <code>get_class_histogram</code> returns a histogram whose values are <code>ints</code>.

For more information on the Histogram class, please see the Histogram [guide].

```
# Returns a Histogram whose underlying values are floats tiled_raster_layer.get_histogram()
```

```
# Returns a Histogram whose underlying values are ints tiled_raster_layer.get_class_histogram()
```

Finding the Quantile Breaks for the Layer

If you wish to find the quantile breaks for a layer without a Histogram, then you can use the get_quantile_breaks method.

```
tiled_raster_layer.get_quantile_breaks(num_breaks=3)
```

Quantile Breaks for Exact Ints

There is another version of get_quantile_breaks called get_quantile_breaks_exact_int that will count exact integer values. However, if there are too many values within the layer, then memory errors could occur.

```
tiled_raster_layer.get_quantile_breaks_exact_int(num_breaks=3)
```

Finding the Min and Max Values of a Layer

The get_min_max method will find the min and max value for the layer. The result will always be (float, float) regardless of the data type of the cells.

```
tiled_raster_layer.get_min_max()
```

Converting the Values of a Layer to PNGs

Via the to_png_rdd method, one can convert each value within a layer to a PNG in the form of bytes. In order to convert each value to a PNG, one needs to supply a ColorMap. For more information on the ColorMap class, please see the *ColorMap* section of the docs.

In addition to converting each value to a PNG, the resulting collection of (K, V) s will be held in a Python RDD.

```
hist = tiled_raster_layer.get_histogram()
cmap = gps.ColorMap.build(hist, 'viridis')
tiled_raster_layer.to_png_rdd(color_map=cmap)
```

Converting the Values of a Layer to GeoTiffs

Similar to to_png_rdd, only to_geotiff_rdd will return a Python RDD [(K, bytes)] where the bytes represent a GeoTiff.

Selecting a StorageMethod

There are two different ways the segments of a GeoTiff can be formatted: StorageMethod.STRIPED or StorageMethod.TILED. This is represented by the storage_method parameter. By default, StorageMethod.STRIPED is used.

Selecting the Size of the Segments

There are two different parameters that control the size of each segment: rows_per_strip and tile_dimensions. Only one of these values needs to be set, and that is determined by what the storage_method is.

If the storage_method is StorageMethod.STRIPED, then rows_per_strip will be the parameter to change. By default, the rows_per_strip will be calculated so that each strip is 8K or less.

If the storage_method is StorageMethod.TILED, then tile_dimensions can be set. This is given as a (int, int) where the first value is the number of cols and the second is the number of rows`. By default, the tile_dimensions is (256, 256).

Selecting a CompressionMethod

The two types of compressions that can be chosen are: Compression. NO_COMPRESSION or Compression. DEFLATE_COMPRESSION. By default, the compression parameter is set to Compression. NO_COMPRESSION.

Selecting a ColorSpace

The color_space parameter determines how the colors should be organized in each GeoTiff. By default, it's ColorSpace.BLACK_IS_ZERO.

Passing in a ColorMap

A ColorMap instance can be passed in so that the resulting GeoTiffs are in a different gradiant. By default, color_map is None. To learn more about ColorMap, see the *ColorMap* section of the docs.

3.4.5 RDD Methods

As mentioned in the section on TiledRasterLayer's *repartition method*, TiledRasterLayer has methods to work with its internal RDD. This holds true for RasterLayer as well.

The following is a list of RDD with examples that are supported by both classes.

Cache

```
raster_layer.cache()
```

Persist

```
# If no level is given, then MEMORY_ONLY will be used tiled_raster_layer.persist()
```

Unpersist

```
tiled_raster_layer.unpersist()
```

getNumberOfPartitions

```
raster_layer.getNumPartitions()
```

Count

```
raster_layer.count()
```

isEmpty

```
raster_layer.isEmpty()
```

3.5 Catalog

The catalog module allows for users to retrieve information, query, and write to/from GeoTrellis layers.

Before begining, all examples in this guide need the following boilerplate code:

```
import datetime
import geopyspark as gps
import numpy as np
from pyspark import SparkContext
from shapely.geometry import MultiPolygon, box
conf = gps.geopyspark_conf(master="local[*]", appName="layers")
pysc = SparkContext(conf=conf)
# Setting up the Spatial Data to be used in this example
spatial_raster_layer = gps.geotiff.get(layer_type=gps.LayerType.SPATIAL, uri="/tmp/
→cropped.tif")
spatial_tiled_layer = spatial_raster_layer.tile_to_layout(layout=gps.GlobalLayout(),...
→target_crs=3857)
# Setting up the Spatial-Temporal Data to be used in this example
def make_raster(x, y, v, cols=4, rows=4, crs=4326):
   cells = np.zeros((1, rows, cols), dtype='float32')
   cells.fill(v)
    # extent of a single cell is 1
   extent = gps.TemporalProjectedExtent(extent = gps.Extent(x, y, x + cols, y + _
→rows),
                                         epsg=crs,
                                         instant=datetime.datetime.now())
   return (extent, gps.Tile.from_numpy_array(cells))
layer = [
```

36

3.5.1 What is a Catalog?

A catalog is a directory where saved layers and their attributes are organized and stored in a certain manner. Within a catalog, there can exist multiple layers from different data sets. Each of these layers, in turn, are their own directories which contain two folders: one where the data is stored and the other for the metadata. The data for each layer is broken up into zoom levels and each level has its own folder within the data folder of the layer. As for the metadata, it is also broken up by zoom level and is stored as json files within the metadata folder.

Here's an example directory structure of a catalog:

```
layer_catalog/
layer_a/
  metadata_for_layer_a/
  metadata_layer_a_zoom_0.json
    ...
  data_for_layer_a/
    0/
    data
    ...
  1/
    data
    ...
layer_b/
  ...
```

3.5.2 Accessing Data

GeoPySpark supports a number of different backends to save and read information from. These are the currently supported backends:

- LocalFileSystem
- HDFS
- S3
- · Cassandra
- HBase
- Accumulo

Each of these needs to be accessed via the URI for the given system. Here are example URIs for each:

• Local Filesystem: file://my_folder/my_catalog/

3.5. Catalog 37

- HDFS: hdfs://my_folder/my_catalog/
- S3: s3://my_bucket/my_catalog/
- Cassandra: cassandra://[user:password@]zookeeper[:port][/keyspace][?attributes=table1[&layers=table2]]
- **HBase**: hbase://zookeeper[:port][?master=host][?attributes=table1[&layers=table2]]
- Accumulo: accumulo://[user[:password]@]zookeeper/instance-name[?attributes=table1[&layers=table2]]

It is important to note that neither HBase nor Accumulo have native support for URIs. Thus, GeoPySpark uses its own pattern for these two systems.

A Note on Formatting Tiles

A small, but important, note needs to be made about how tiles that are saved and/or read in are formatted in GeoPySpark. All tiles will be treated as a MultibandTile. Regardless if they were one to begin with. This was a design choice that was made to simplify both the backend and the API of GeoPySpark.

3.5.3 Saving Data to a Backend

The write() function will save a given TiledRasterLayer to a specified backend. If the catalog does not exist when calling this function, then it will be created along with the saved layer.

Note: It is not possible to save a layer to a catalog if the layer name and zoom already exist. If you wish to overwrite an existing, saved layer then it must be deleted before writing the new one.

Note: Saving a TiledRasterLayer that does not have a zoom_level will save the layer to a zoom of 0. Thus, when it is read back out from the catalog, the resulting TiledRasterLayer will have a zoom_level of 0.

Saving a Spatial Layer

Saving a spatial layer is a straight forward task. All that needs to be supplied is a URI, the name of the layer, and the layer to be saved.

```
# The zoom level which will be saved
spatial_tiled_layer.zoom_level
```

```
# This will create a catalog called, "spatial-catalog" in the /tmp directory.

# Within it, a layer named, "spatial-layer" will be saved.

gps.write(uri='file:///tmp/spatial-catalog', layer_name='spatial-layer', tiled_raster_

relayer=spatial_tiled_layer)
```

Saving a Spatial Temporal Layer

When saving a spatial-temporal layer, one needs to consider how the records within the catalog will be spaced; which in turn, determines the resolution of index. The TimeUnit enum class contains all available units of time that can be used to space apart data in the catalog.

```
# The zoom level which will be saved
space_time_tiled_layer.zoom_level
```

```
# This will create a catalog called, "spacetime-catalog" in the /tmp directory.
# Within it, a layer named, "spacetime-layer" will be saved and each indice will be_

spaced apart by SECONDS

gps.write(uri='file:///tmp/spacetime-catalog',

layer_name='spacetime-layer',

tiled_raster_layer=space_time_tiled_layer,

time_unit=gps.TimeUnit.SECONDS)
```

Saving a Pyramid

For those that are unfamiliar with the Pyramid class, please see the *Pyramid* section of the visualization guide. Otherwise, please continue on.

As of right now, there is no way to directly save a Pyramid. However, because a Pyramid is just a collection of TiledRasterLayers of different zooms, it is possible to iterate through the layers of the Pyramid and save one individually.

3.5.4 Reading Metadata From a Saved Layer

It is possible to retrieve the <code>Metadata</code> for a layer without reading in the whole layer. This is done using the <code>read_layer_metadata()</code> function. There is no difference between spatial and spatial-temporal layers when using this function.

```
# Metadata from the TiledRasterLayer
spatial_tiled_layer.layer_metadata
```

3.5.5 Reading a Tile From a Saved Layer

One can read a single tile that has been saved to a layer using the read_value() function. This will either return a Tile or None depending on whether or not the specified tile exists.

Reading a Tile From a Saved, Spatial Layer

```
# The Tile being read will be the smallest key of the layer
min_key = spatial_tiled_layer.layer_metadata.bounds.minKey
```

3.5. Catalog 39

Reading a Tile From a Saved, Spatial-Temporal Layer

3.5.6 Reading a Layer

There are two ways one can read a layer in GeoPySpark: reading the entire layer or just portions of it. The former will be the goal discussed in this section. While all of the layer will be read, the function for doing so is called, quexy(). There is no difference between spatial and spatial-temporal layers when using this function.

Note: What distinguishes between a full and partial read is the parameters given to query. If no filters were given, then the whole layer is read.

3.5.7 Querying a Layer

When only a certain section of the layer is of interest, one can retrieve these areas of the layer through the query method. The resulting TiledRasterLayer will contain all of the Tiles that the queried intersects, not just the area itself.

Depending on the type of data being queried, there are a couple of ways to filter what will be returned.

Querying a Spatial Layer

One can query an area of a spatial layer that covers the region of interest by providing a geometry that represents this region. This area can be represented as: shapely.geometry (specifically Polygons and MultiPolygons), the wkb representation of the geometry, or an *Extent*.

Note: It is important that the given geometry is in the same projection as the queried layer. Otherwise, either the wrong area will be returned or an empty layer will be returned.

When the Queried Geometry is in the Same Projection as the Layer

By default, the query function assumes that the geometry and layer given are in the same projection.

```
layer_extent = spatial_tiled_layer.layer_metadata.extent

# Creates a Polygon from the cropped Extent of the Layer
poly = box(layer_extent.xmin+100, layer_extent.ymin+100, layer_extent.xmax-100, layer_extent.ymax-100)
```

When the Queried Geometry is in a Different Projection than the Layer

As stated above, it is important that both the geometry and layer are in the same projection. If the two are in different CRSs, then this can be resolved by setting the proj_query parameter to whatever projection the geometry is in.

```
# The queried Extent is in a different projection than the base layer
metadata = spatial_tiled_layer.tile_to_layout(layout=gps.GlobalLayout(), target_
metadata.layout_definition.extent, spatial_tiled_layer.layer_metadata.layout_
→definition.extent
# Queries the area of the Extent and returns any intersections
querried_spatial_layer = qps.query(uri="file:///tmp/spatial-catalog",
                                  layer_name="spatial-layer",
                                  layer_zoom=11,
                                  query_geom=metadata.layout_definition.extent.to_
→polygon,
                                  query_proj="EPSG:4326")
# Because we queried the whole Extent of the layer, we should have gotten back the.
\rightarrow whole thing.
querried_extent = querried_spatial_layer.layer_metadata.layout_definition.extent
base_extent = spatial_tiled_layer.layer_metadata.layout_definition.extent
querried_extent == base_extent
```

Querying a Spatial-Temporal Layer

In addition to being able to query a geometry, spatial-temporal data can also be filtered by time as well. These times are given as datetime instances.

Querying by Time

```
min_key = space_time_tiled_layer.layer_metadata.bounds.minKey
```

3.5. Catalog 41

Querying by Space and Time

Non-Intersecting Queries

In the event that neither the query_geom nor time_intervals intersects the layer, then an empty TiledRasterLayer will be returned.

3.5.8 AttributeStore

When writing a layer, GeoPySpark uses an AttributeStore to write layer metadata required to read and query the layer later. This class can be used outside of catalog write and query functions to inspect available layers and store additional, user defined, attributes.

Creating AttributeStore

AttributeStore can be created from the same URI that is given to write and query functions.

```
store = gps.AttributeStore(uri='file:///tmp/spatial-catalog')

# Check if layer exists
store.contains('spatial-layer', 11)

# List layers stored in the catalog, giving list of AttributeStore.Attributes
attributes_list = store.layers

# Ask for layer attributes by name
attributes = store.layer('spatial-layer', 11)

# Read layer metadata
attributes.layer_metadata()
```

User Defined Attributes

Internally AttributeStore is a key-value store where key is a tuple of layer name and zoom and values are encoded as JSON. The layer metadata is stored under attribute named metadata. Care should be taken to not overwrite this attribute.

```
# Reading layer metadata as underlying JSON value attributes.read("metadata")
```

```
{ 'header': { 'format': 'file',
 'keyClass': 'geotrellis.spark.SpatialKey',
 'path': 'spatial-layer/11',
 'valueClass': 'geotrellis.raster.MultibandTile'},
'keyIndex': {'properties': {'keyBounds': {'maxKey': {'col': 1485, 'row': 996},
→'minKey': {'col': 1479, 'row': 984}}},
 'type': 'zorder'},
'metadata': {'bounds': {'maxKey': {'col': 1485, 'row': 996},
  'minKey': {'col': 1479, 'row': 984}},
 'cellType': 'int16',
 'crs': '+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0.0
→+k=1.0 +units=m +nadgrids=@null +wktext +no_defs ',
 'extent': {'xmax': 9024345.159093022,
  'xmin': 8905559.263461886,
  'ymax': 781182.2141882492,
  'ymin': 542452.4856863784},
 'layoutDefinition': {'extent': {'xmax': 20037508.342789244,
   'xmin': -20037508.342789244,
   'ymax': 20037508.342789244,
   'ymin': -20037508.342789244},
  'tileLayout': {'layoutCols': 2048, 'layoutRows': 2048, 'tileCols': 256, 'tileRows
\rightarrow': 256}}},
'schema': {...}
```

Otherwise you are free to store any additional attribute that is associated with the layer. Attributes provides write and read functions that accept and provide a dictionary.

3.5. Catalog 43

```
attributes.write("notes", {'a': 3, 'b': 5})
notes_dict = attributes.read("notes")
```

A common use case for this is to store the layer histogram when writing a layer so it may be used for rendering later.

```
# Calculate the histogram
hist = spatial_tiled_layer.get_histogram()

# GeoPySpark classes have to_dict as a convention when appropriate
hist_dict = hist.to_dict()

# Writing a dictionary that gets encoded as JSON
attributes.write("histogram", hist_dict)

# Reverse the process
hist_read_dict = attributes.read("histogram")

# GeoPySpark classes have from_dict static method as a convention
hist_read = gps.Histogram.from_dict(hist_read_dict)

# Use the histogram after round trip
hist.min_max()
```

AttributeStore Caching

An instance of AttributeStore keeps an in memory cache of attributes recently accessed. This is done because a common access pattern to check layer existence, read the layer and decode the layer will produce repeated requests for layer metadata. Depending on the backend used this may add considerable overhead and expense.

When writing a workflow that places heavy demand on AttributeStore reading it is worth while keeping track of a class instance and reusing it

3.6 Map Algebra

Given a set of raster layers, it may be desirable to combine and filter the content of those layers. This is the function of *map algebra*. Two classes of map algebra operations are provided by GeoPySpark: *local* and *focal* operations. Local operations individually consider the pixels or cells of one or more rasters, applying a function to the corresponding cell values. For example, adding two rasters' pixel values to form a new layer is a local operation.

Focal operations consider a region around each pixel of an input raster and apply an operation to each region. The result of that operation is stored in the corresponding pixel of the output raster. For example, one might weight a 5x5 region centered at a pixel according to a 2d Gaussian to effect a blurring of the input raster. One might consider this roughly equivalent to a 2d convolution operation.

Note: Map algebra operations work only on TiledRasterLayers, and if a local operation requires multiple inputs, those inputs must have the same layout and projection.

Before begining, all examples in this guide need the following boilerplate code:

```
import geopyspark as qps
import numpy as np
from pyspark import SparkContext
from shapely.geometry import Point, MultiPolygon, LineString, box
conf = gps.geopyspark_conf(master="local[*]", appName="map-algebra")
pysc = SparkContext(conf=conf)
# Setting up the data
cells = np.array([[[3, 4, 1, 1, 1],
                   [7, 4, 0, 1, 0],
                   [3, 3, 7, 7, 1],
                   [0, 7, 2, 0, 0],
                   [6, 6, 6, 5, 5]]], dtype='int32')
extent = gps.ProjectedExtent(extent = gps.Extent(0, 0, 5, 5), epsg=4326)
layer = [(extent, gps.Tile.from_numpy_array(numpy_array=cells))]
rdd = pysc.parallelize(layer)
raster_layer = gps.RasterLayer.from_numpy_rdd(gps.LayerType.SPATIAL, rdd)
tiled_layer = raster_layer.tile_to_layout(layout=gps.LocalLayout(tile_size=5))
```

3.6.1 Local Operations

Local operations on TiledRasterLayers can use ints, floats, or other TiledRasterLayers. +, -, *, *, and abs are all of the local operations that currently supported.

```
(tiled_layer + 1)
(2 - (tiled_layer * 3))
((tiled_layer + tiled_layer) / (tiled_layer + 1))
abs(tiled_layer)
2 ** tiled_layer
```

A *Pyramid* can also be used in local operations. The types that can be used in local operations with *Pyramids* are: ints, floats, TiledRasterLayers, and other *Pyramids*.

Note: Like with TiledRasterLayer, performing calculations on multiple Pyramids or TiledRasterLayers means they must all have the same layout and projection.

```
# Creating out Pyramid
pyramid = tiled_layer.pyramid()

pyramid + 1
(pyramid - tiled_layer) * 2
```

3.6. Map Algebra 45

3.6.2 Focal Operations

Focal operations are performed in GeoPySpark by executing a given operation on a neighborhood throughout each tile in the layer. One can select a neighborhood to use from the Neighborhood enum class. Likewise, an operation can be choosen from the enum class, Operation.

```
# This creates an instance of Square with an extent of 1. This means that
# each operation will be performed on a 3x3
# neighborhood.

,,,
A square neighborhood with an extent of 1.
o = source cell
x = cells that fall within the neighbhorhood

x x x
x o x
x x x
y in x

square = gps.Square(extent=1)
```

Mean

```
tiled_layer.focal(operation=gps.Operation.MEAN, neighborhood=square)
```

Median

```
tiled_layer.focal(operation=gps.Operation.MEDIAN, neighborhood=square)
```

Mode

```
tiled_layer.focal(operation=gps.Operation.MODE, neighborhood=square)
```

Sum

```
tiled_layer.focal(operation=gps.Operation.SUM, neighborhood=square)
```

Standard Deviation

```
tiled_layer.focal(operation=gps.Operation.STANDARD_DEVIATION, neighborhood=square)
```

Min

```
tiled_layer.focal(operation=gps.Operation.MIN, neighborhood=square)
```

Max

```
tiled_layer.focal(operation=gps.Operation.MAX, neighborhood=square)
```

Slope

```
tiled_layer.focal(operation=gps.Operation.SLOPE, neighborhood=square)
```

Aspect

```
tiled_layer.focal(operation=gps.Operation.ASPECT, neighborhood=square)
```

3.6.3 Miscellaneous Raster Operations

There are other means to extract information from rasters and to create rasters that need to be presented. These are *polygonal summaries*, *cost distance*, and *rasterization*.

Polygonal Summary Methods

In addition to local and focal operations, polygonal summaries can also be performed on TiledRasterLayers. These are operations that are executed in the areas that intersect a given geometry and the layer.

Note: It is important the given geometry is in the same projection as the layer. If they are not, then either incorrect and/or only partial results will be returned.

```
tiled_layer.layer_metadata
```

Polygonal Min

```
poly_min = box(0.0, 0.0, 1.0, 1.0)
tiled_layer.polygonal_min(geometry=poly_min, data_type=int)
```

Polygonal Max

```
poly_max = box(1.0, 0.0, 2.0, 2.5)
tiled_layer.polygonal_min(geometry=poly_max, data_type=int)
```

Polygonal Sum

```
poly_sum = box(0.0, 0.0, 1.0, 1.0)
tiled_layer.polygonal_min(geometry=poly_sum, data_type=int)
```

3.6. Map Algebra 47

Polygonal Mean

```
poly_max = box(1.0, 0.0, 2.0, 2.0)
tiled_layer.polygonal_min(geometry=poly_max, data_type=int)
```

Cost Distance

cost_distance() is an iterative method for approximating the weighted distance from a raster cell to a given geometry. The cost_distance function takes in a geometry and a "friction layer" which essentially describes how difficult it is to traverse each raster cell. Cells that fall within the geometry have a final cost of zero, while friction cells that contain noData values will correspond to noData values in the final result. All other cells have a value that describes the minimum cost of traversing from that cell to the geometry. If the friction layer is uniform, this function approximates the Euclidean distance, modulo some scalar value.

```
cost_distance_cells = np.array([[[1.0, 1.0, 1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0, 1.0, 1.0]
                                  [1.0, 1.0, 1.0, 1.0, 1.0]
                                  [1.0, 1.0, 1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0, 1.0, 0.0]]
tile = gps.Tile.from_numpy_array(numpy_array=cost_distance_cells, no_data_value=-1.0)
cost_distance_extent = gps.ProjectedExtent(extent=gps.Extent(xmin=0.0, ymin=0.0, _
\rightarrowxmax=5.0, ymax=5.0), epsg=4326)
cost_distance_layer = [(cost_distance_extent, tile)]
cost_distance_rdd = pysc.parallelize(cost_distance_layer)
cost_distance_raster_layer = gps.RasterLayer.from_numpy_rdd(gps.LayerType.SPATIAL,_
→cost_distance_rdd)
cost_distance_tiled_layer = cost_distance_raster_layer.tile_to_layout(layout=gps.
→LocalLayout(tile_size=5))
gps.cost_distance(friction_layer=cost_distance_tiled_layer, geometries=[Point(0.0, 5.
\rightarrow0)], max_distance=144000.0)
```

Rasterization

It may be desirable to convert vector data into a raster layer. For this, we provide the <code>rasterize()</code> function, which determines the set of pixel values covered by each vector element, and assigns a supplied value to that set of pixels in a target raster. If, for example, one had a set of polygons representing counties in the US, and a value for, say, the median income within each county, a raster could be made representing these data.

GeoPySpark's rasterize function can take a [shapely.geometry], (shapely.geometry), or a PythonRDD[shapely.geometry]. These geometries will be converted to rasters, then tiled to a given layout, and then be returned as a TiledRasterLayer which contains these tiled values.

Rasterize MultiPolygons

```
raster_poly_1 = box(0.0, 0.0, 5.0, 10.0)
raster_poly_2 = box(3.0, 6.0, 15.0, 20.0)
raster_poly_3 = box(13.5, 17.0, 30.0, 20.0)
raster_multi_poly = MultiPolygon([raster_poly_1, raster_poly_2, raster_poly_3])
```

```
# Creates a TiledRasterLayer with a CRS of EPSG:4326 at zoom level 5.
gps.rasterize(geoms=[raster_multi_poly], crs=4326, zoom=5, fill_value=1)
```

Rasterize a PythonRDD of Polygons

```
poly_rdd = pysc.parallelize([raster_poly_1, raster_poly_2, raster_poly_3])
# Creates a TiledRasterLayer with a CRS of EPSG:3857 at zoom level 5.
gps.rasterize(geoms=poly_rdd, crs=3857, zoom=3, fill_value=10)
```

Rasterize LineStrings

```
line_1 = LineString(((0.0, 0.0), (0.0, 5.0)))
line_2 = LineString(((7.0, 5.0), (9.0, 12.0), (12.5, 15.0)))
line_3 = LineString(((12.0, 13.0), (14.5, 20.0)))
```

```
# Creates a TiledRasterLayer whose cells have a data type of int16.

gps.rasterize(geoms=[line_1, line_2, line_3], crs=4326, zoom=3, fill_value=2, cell_

type=gps.CellType.INT16)
```

Rasterize Polygons and LineStrings

```
# Creates a TiledRasterLayer from both LineStrings and MultiPolygons

gps.rasterize(geoms=[line_1, line_2, line_3, raster_multi_poly], crs=4326, zoom=5,__

ofill_value=2)
```

3.7 Visualizing Data in GeoPySpark

Data is visualized in GeoPySpark by running a server which allows it to be viewed in an interactive way. Before putting the data on the server, however, it must first be formatted and colored. This guide seeks to go over the steps needed to create a visualization server in GeoPySpark.

Before begining, all examples in this guide need the following boilerplate code:

```
import geopyspark as gps
import matplotlib.pyplot as plt

from colortools import Color
from pyspark import SparkContext

%matplotlib inline

conf = gps.geopyspark_conf(master="local[*]", appName="visualization")
pysc = SparkContext(conf=conf)
```

```
raster_layer = gps.geotiff.get(layer_type=gps.LayerType.SPATIAL, uri="/tmp/cropped.tif

→")

tiled_layer = raster_layer.tile_to_layout(layout=gps.GlobalLayout(), target_crs=3857)
```

3.7.1 Pyramid

The Pyramid class represents a list of TiledRasterLayers that represent the same area where each layer is a level within the pyramid at a specific zoom level. Thus, as one moves up the pyramid (starting a level 0), the image will have its pixel resolution increased by a power of 2 for each level. It is this varying level of detail that allows an interactive tile server to be created from a Pyramid. This class is needed in order to create visualizations of the contents within its layers.

Creating a Pyramid

There are currently two different ways to create a Pyramid instance: Through the TiledRasterLayer. pyramid method or by constructing it by passing in a [TiledRasterLayer] or {zoom_level: TiledRasterLayer} to Pyramid.

Any TiledRasterLayer with a max_zoom can be pyramided. However, the resulting Pyramid may have limited functionality depending on the layout of the source TiledRasterLayer. In order to be used for visualization, the Pyramid must have been created from TiledRasterLayer that was tiled using a GlobalLayout and whose tiles have a spatial resolution of a power of 2.

Via the pyramid Method

When using the Pyramid method, a Pyramid instance will be created with levels from 0 to TiledRasterlayer.zoom_level. Thus, if a TiledRasterLayer has a zoom_level of 12 then the resulting Pyramid will have 13 levels that each correspond to a zoom from 0 to 12.

```
pyramided = tiled_layer.pyramid()
```

Contrusting a Pyramid Manually

```
gps.Pyramid([tiled_layer.tile_to_layout(gps.GlobalLayout(zoom=x)) for x in range(0, _ →13)])
```

```
gps.Pyramid((x: tiled_layer.tile_to_layout(gps.GlobalLayout(zoom=x)) for x in range(0, \rightarrow 13)})
```

Computing the Histogram of a Pyramid

One can produce a Histogram instance representing the bottom most layer within a Pyramid via the get_histogram() method.

```
hist = pyramided.get_histogram()
hist
```

RDD Methods

Pyramid contains methods for working with the RDDs contained within its TiledRasterLayers. A list of these can be found here *RDD Methods*. When used, all internal RDDs will be operated on.

Map Algebra

While not as versatile as TiledRasterLayer in terms of map algebra operations, Pyramids are still able to perform local operations between themselves, ints, and floats.

Note: Operations between two or more Pyramids will occur on a per Tile basis which depends on the tiles having the same key. It is therefore possible to do an operation between two Pyramids and getting a result where nothing has changed if neither of the Pyramids have matching keys.

```
pyramided + 1
(2 * (pyramided + 2)) / 3
```

When performing operations on two or more Pyramids, if the Pyamids involved have different number of levels, then the resulting Pyramid will only have as many levels as the source Pyramid with the smallest level count.

3.7.2 ColorMap

The ColorMap class in GeoPySpark acts as a wrapper for the GeoTrellis ColorMap class. It is used to colorize the data within a layer when it's being visualized.

Constructing a Color Ramp

Before we can initialize ColorMap we must first create a list of colors (or a color ramp) to pass in. This can be created either through a function in the color module or manually.

Using Matplotlib

The get_colors_from_matplotlib function creates a color ramp using the name of on an existing in color ramp in Matplotlib and the number of colors.

Note: This function will not work if Matplotlib is not installed.

```
gps.get_colors_from_matplotlib(ramp_name="viridis")
```

```
gps.get_colors_from_matplotlib(ramp_name="hot", num_colors=150)
```

From ColorTools

The second helper function for constructing a color ramp is get_colors_from_colors. This uses the colortools package to build the ramp from [Color] instances.

Note: This function will not work if colortools is not installed.

```
colors = [Color('green'), Color('red'), Color('blue')]
colors
```

```
colors_color_ramp = gps.get_colors_from_colors(colors=colors)
colors_color_ramp
```

Creating a ColorMap

ColorMap has many different ways of being constructed depending on the inputs it's given.

From a Histogram

```
gps.ColorMap.from_histogram(histogram=hist, color_list=colors_color_ramp)
```

From a List of Colors

For NLCD Data

If the layers you are working with contain data from NLCD, then it is possible to construct a ColorMap without first making a color ramp and passing in a list of breaks.

```
gps.ColorMap.nlcd_colormap()
```

From a Break Map

If there aren't many colors to work with in the layer, than it may be easier to construct a ColorMap using a break_map, a dict that maps tile values to colors.

```
# The three tile values are 1, 2, and 3 and they correspond to the colors 0x00000000, \( \to \) \( \to \)
```

More General Build Method

As mentioned above, ColorMap has a more general classmethod called build() which takes a wide range of types to construct a ColorMap. In the following example, build will be passed the same inputs used in the previous examples.

Additional Coloring Options

In addition to supplying breaks and color values to ColorMap, there are other ways of changing the coloring strategy of a layer.

The following additional parameters that can be changed:

- no_data_color: The color of the no_data_value of the Tiles. The default is 0x00000000
- fallback: The color to use when a Tile value has no color mapping. The default is 0x00000000
- classification_strategy: How the colors should be assigned to the values based on the breaks. The default is ClassificationStrategy.LESS_THAN_OR_EQUAL_TO.

3.8 TMS Servers

GeoPySpark is meant to work with geospatial data. The most natural way to interact with these data is to display them on a map. In order to allow for this interactive visualization, we provide a means to create Tile Map Service (TMS) servers directly from both GeoPySpark RDDs and tile catalogs. A TMS server may be viewed using a web-based tool such as geojson.io or interacted with using the GeoNotebook Jupyter kernel.¹

Note that the following examples rely on this common boilerplate code:

```
import geopyspark as gps
from pyspark import SparkContext

conf = gps.geopyspark_conf(appName="demo")
sc = SparkContext(conf=conf)
```

3.8. TMS Servers 53

¹ Note that changes allowing for display of TMS-served tiles in GeoNotebook have not yet been accepted into the master branch of that repository. In the meantime, find a TMS-enabled fork at http://github.com/geotrellis/geonotebook.

3.8.1 Basic Example

The most straightforward use case of the TMS server is to display a singleband layer with some custom color map. This is accomplished easily:

Of course, other color maps can be used. See the documentation for ColorMap for more details.

TMS.build can display data from catalogs—which are represented as a string-string pair containing the URI of the catalog root and the name of the layer—or from a <code>Pyramid</code> object. One may also specify a list of any combination of these sources; more on multiple sources below.

Once a TMS server is constructed, we need to make the contents visible by binding the server. The bind() method can take a host and/or a port, where the former is a string, and the latter is an integer. Providing neither will result in a TMS server accessible from localhost on a random port. If the server should be accessible from the outside world, a host value of "0.0.0.0" may be used.

A call to bind() is then followed by a call to url_pattern(), which provides a string that gives the template for the tiles furnished by the TMS server. This template string may be copied directly into geojson.io, for example. When the TMS server is no longer needed, its resources can be freed by a call to unbind().

```
# set up the TMS server to serve from 'localhost' on a random port
tms.bind()

tms.url_pattern

# (browse the the TMS-served layer in some interface)

tms.unbind()
```

In the event that one is using GeoPySpark from within the GeoNotebook environment, bind should not be used, and the following code should be used instead:

```
from geonotebook.wrappers import TMSRasterData
M.add_layer(TMSRasterData(tms), name="NLCD")
```

3.8.2 Custom Rendering Functions

For the cases when more than a simple color map needs to be applied, one may also specify a custom rendering function.² There are two methods for custom rendering depending on whether one is rendering a single layer or compositing multiple layers. We address each in turn.

² If one is only applying a colormap to a singleband tile layer, a custom rendering function should not be used as it will be noticeably slower to display.

Rendering Single Layers

If one has special demands for display—including possible ad-hoc manipulation of layer data during the display process—then one may write a Python function to convert some tile data into an image that may be served via the TMS server.

The general approach is to develop a function taking a *Tile* that returns a byte array containing the resulting image, encoded as PNG or JPG. The following example uses this rendering function approach to apply the same simple color map as above.

```
from PIL import Image
import numpy as np
def hex_to_rgb(value):
   """Return (red, green, blue) for the color given as #rrggbb."""
   value = value.lstrip('#')
   lv = len(value)
   return tuple (int (value [i:i + lv // 3], 16) for i in range (0, lv, lv // 3))
nlcd color map = { 0 : "#00000000", }
                          11 : "#526095FF",
                                                    # Open Water
                         12: "#FFFFFFF", # Perennial Ice/Snow
21: "#D28170FF", # Low Intensity Residential
22: "#EE0006FF", # High Intensity Residential
23: "#990009FF", # Commercial/Industrial/Transportal
31: "#BFB8B1FF", # Bare Rock/Sand/Clay
32: "#969798FF", # Quarries/Strip Mines/Gravel Pits
33: "#382959FF", # Transitional
                         12 : "#FFFFFFF",
                                                    # Perennial Ice/Snow
                                                     # Commercial/Industrial/Transportation
                          41 : "#579D57FF",
                                                    # Deciduous Forest
                          42 : "#2A6B3DFF",
                                                    # Evergreen Forest
                          43 : "#A6BF7BFF",
                                                    # Mixed Forest
                          51 : "#BAA65CFF",
                                                    # Shrubland
                          61 : "#45511FFF",
                                                    # Orchards/Vineyards/Other
                          71 : "#DOCFAAFF",
                                                    # Grasslands/Herbaceous
                          81 : "#CCC82FFF",
                                                    # Pasture/Hay
                          82 : "#9D5D1DFF",
                                                    # Row Crops
                          83 : "#CD9747FF",
                                                     # Small Grains
                          84 : "#A7AB9FFF",
                                                      # Fallow
                         85 : "#E68A2AFF", # Urban/Recreational Grasses
91 : "#B6D8F5FF", # Woody Wetlands
92 : "#B6D8F5FF" } # Emergent Herbaceous Wetlands
def rgba_functions(color_map):
   m = \{ \}
   for key in color_map:
       m[key] = hex_to_rgb(color_map[key])
    def r(v):
       if v in m:
           return m[v][0]
        else:
           return 0
    def g(v):
       if v in m:
           return m[v][1]
        else:
```

3.8. TMS Servers 55

```
return 0
   def b(v):
      if v in m:
         return m[v][2]
      else:
         return 0
   def a(v):
      if v in m:
         return m[v][3]
      else:
         return 0x00
   return (np.vectorize(r), np.vectorize(g), np.vectorize(b), np.vectorize(a))
def render_nlcd(tile):
   Assumes that the tile is a multiband tile with a single band.
   (meaning shape = (1, cols, rows))
   arr = tile.cells[0]
   (r, g, b, a) = rgba_functions(nlcd_color_map)
   rgba = np.dstack([r(arr), g(arr), b(arr), a(arr)]).astype('uint8')
   img = Image.fromarray(rgba, mode='RGBA')
   return img
tms = gps.TMS.build(nlcd_pyramid, display=render_nlcd)
```

You will likely observe noticeably slower performance compared to the earlier example. This is because the contents of each tile must be transferred from the JVM to the Python environment prior to rendering. If performance is important to you, and a color mapping solution is available, please use that approach.

Compositing Multiple Layers

It is also possible to combine data from various sources at the time of display. Of course, one could use map algebra to produce a composite layer, but if the input layers are large, this could potentially be a time-consuming operation. The TMS server allows for a list of sources to be supplied; these may be any combination of <code>Pyramid</code> objects and catalogs. We then may supply a function that takes a list of <code>Tile</code> instances and produces the bytes of an image as in the single-layer case.

The following example masks the NLCD layer to areas above 1371 meters, using some of the helper functions from the previous example.

```
def comp(tiles):
    elev256 = tiles[0].cells[0]
    grid256 = range(256)
    f = interp2d(grid256, grid256, elev256)
    grid512 = np.arange(0, 256, 0.5)
    elev = f(grid512, grid512)

land_use = tiles[1].cells[0]

arr = land_use
    arr[elev < 1371] = 0

    (r, g, b, a) = rgba_functions(nlcd_color_map)

rgba = np.dstack([r(arr), g(arr), b(arr), a(arr)]).astype('uint8')

img = Image.fromarray(rgba, mode='RGBA')

return img

tms = gps.TMS.build([ned_pyramid, nlcd_pyramid], display=comp)</pre>
```

This example shows the major pitfall likely to be encountered in this approach: tiles of different size must be somehow combined. NLCD tiles are 512x512, while the National Elevation Data (NED) tiles are 256x256. In this example, the NED data is (bilinearly) resampled using scipy's interp2d function to the proper size.

Debugging Considerations

Be aware that if there are problems in the rendering or compositing functions, the TMS server will tend to produce empty images, which can result in a silent failure of a layer to display, or odd exceptions in programs expecting meaningful images, such as GeoNotebook. It is advisable to thoroughly test these rendering functions ahead of deployment, as errors encountered in their use will be largely invisible.

3.9 Ingesting an Image

This example shows how to ingest a grayscale image and save the results locally. It is assumed that you have already read through the documentation on GeoPySpark before beginning this tutorial.

3.9.1 Getting the Data

Before we can begin with the ingest, we must first download the data from S3. This curl command will download a file from S3 and save it to your /tmp directry. The file being downloaded comes from the Shuttle Radar Topography Mission (SRTM) dataset, and contains elevation data on the east coast of Sri Lanka.

A side note: Files can be retrieved directly from S3 using the methods shown in this tutorial. However, this could not be done in this instance due to permission requirements needed to access the file.

3.9.2 What is an Ingest?

Before continuing on, it would be best to briefly discuss what an ingest actually is. When data is acquired, it may cover an arbitrary spatial extent in an arbitrary projection. This data needs to be regularized to some expected layout and cut into tiles. After this step, we will possess a TiledRasterLayer that can be analyzed and saved for later use. For more information on layers and the data they hold, see the layers guide.

3.9.3 The Code

With our file downloaded we can begin the ingest.

```
import geopyspark as gps
from pyspark import SparkContext
```

Setting Up the SparkContext

The first thing one needs to do when using GeoPySpark is to setup SparkContext. Because GeoPySpark is backed by Spark, the pysc is needed to initialize our starting classes.

For those that are already familiar with Spark, you may already know there are multiple ways to create a SparkContext. When working with GeoPySpark, it is advised to create this instance via SparkConf. There are numerous settings for SparkConf, and some have to be set a certain way in order for GeoPySpark to work. Thus, geopyspark_conf was created as way for a user to set the basic parameters without having to worry about setting the other, required fields.

```
conf = gps.geopyspark_conf(master="local[*]", appName="ingest-example")
pysc = SparkContext(conf=conf)
```

Reading in the Data

After the creation of pysc, we can now read in the data. For this example, we will be reading in a single GeoTiff that contains spatial data. Hence, why we set the layer type to LayerType. SPATIAL.

```
raster_layer = gps.geotiff.get(layer_type=gps.LayerType.SPATIAL, uri="file:///tmp/

→cropped.tif")
```

Tiling the Data

It is now time to format the data within the layer to our desired layout. The aptly named, tile_to_layout, method will cut and arrange the rasters in the layer to the layout of our choosing. This results in us getting a new class instance of TiledRasterLayer. For this example, we will be tiling to a GlobalLayout.

With our tiled data, we might like to make a tile server from it and show it in on a map at some point. Therefore, we have to make sure that the tiles within the layer are in the right projection. We can do this by setting the target_crs parameter.

```
tiled_raster_layer = raster_layer.tile_to_layout(gps.GlobalLayout(), target_crs=3857)
tiled_raster_layer
```

Pyramiding the Data

Now it's time to pyramid! With our reprojected data, we will create an instance of Pyramid that contains 12 TiledRasterLayers. Each one having it's own zoom_level from 11 to 0.

```
pyramided_layer = tiled_raster_layer.pyramid()
pyramided_layer.max_zoom
```

```
pyramided_layer.levels
```

Saving the Pyramid Locally

To save all of the TiledRasterLayers within pyramid_layer, we just have to loop through values of pyramid_layer.level and write each layer locally.

```
for tiled_layer in pyramided_layer.levels.values():
    gps.write(uri="file:///tmp/ingested-image", layer_name="ingested-image", tiled_
    raster_layer=tiled_layer)
```

3.10 Reading in Sentinel-2 Images

Sentinel-2 is an observation mission developed by the European Space Agency to monitor the surface of the Earth official website. Sets of images are taken of the surface where each image corresponds to a specific wavelength. These images can provide useful data for a wide variety of industries, however, the format they are stored in can prove difficult to work with. This being JPEG 2000 (file extension .jp2), an image compression format for JPEGs that allows for improved quality and compression ratio.

3.10.1 Why Use GeoPySpark

There are few libraries and/or applications that can work with <code>jp2s</code> and big data, which can make processing large amounts of sentinel data difficult. However, by using GeoPySpark in conjunction with the tools available in Python, we are able to read in and work with large sets of sentinel imagery.

3.10.2 Getting the Data

Before we can start this tutorial, we will need to get the sentinel images. All sentinel data can be found on Amazon's S3 service, and we will be downloading it straight from there.

We will download three different jp2s that represent the same area and time in different wavelengths: Aerosol detection (443 nm), Water vapor (945 nm), and Cirrus (1375 nm). These bands are chosen because they are all in the same 60m resolution. The tiles we will be working with cover the eastern coast of Corsica taken on January 4th, 2017.

For more information on the way the data is stored on S3, please see this link.

```
curl -o /tmp/B01.jp2 http://sentinel-s2-l1c.s3.amazonaws.com/tiles/32/T/NM/2017/1/4/0/

→B01.jp2

curl -o /tmp/B09.jp2 http://sentinel-s2-l1c.s3.amazonaws.com/tiles/32/T/NM/2017/1/4/0/

→B09.jp2

curl -o /tmp/B10.jp2 http://sentinel-s2-l1c.s3.amazonaws.com/tiles/32/T/NM/2017/1/4/0/

→B10.jp2
```

3.10.3 The Code

Now that we have the files, we can begin to read them into GeoPySpark.

```
import rasterio
import geopyspark as gps
import numpy as np
from pyspark import SparkContext
```

```
conf = gps.geopyspark_conf(master="local[*]", appName="sentinel-ingest-example")
pysc = SparkContext(conf=conf)
```

3.10.4 Reading in the JPEG 2000's

rasterio, being backed by GDAL, allows us to read in the jp2s. Once they are read in, we will then combine the three seperate numpy arrays into one. This combined array represents a single, multiband raster.

```
jp2s = ["/tmp/B01.jp2", "/tmp/B09.jp2", "/tmp/B10.jp2"]
arrs = []

for jp2 in jp2s:
    with rasterio.open(jp2) as f:
        arrs.append(f.read(1))

data = np.array(arrs, dtype=arrs[0].dtype)
data
```

3.10.5 Creating the RDD

With our raster data in hand, we can how begin the creation of a Python RDD. Please see the core concepts guide for more information on what the following instances represent.

You may have noticed in the above code that we did something weird to get the CRS from the rasterio file. This had to be done because the way rasterio formats the projection of the read in rasters is not compatible with how GeoPySpark expects the CRS to be in. Thus, we had to do a bit of extra work to get it into the correct state

```
# Projection information from the rasterio file
f.crs.to_dict()
```

```
# The projection information formatted to work with GeoPySpark
int(f.crs.to_dict()['init'][5:])
```

```
# We can create a Tile instance from our multiband, raster array and the nodata value of rom rasterio
tile = gps.Tile.from_numpy_array(numpy_array=data, no_data_value=f.nodata)
tile
```

```
# Now that we have our ProjectedExtent and Tile, we can create our RDD from them
rdd = pysc.parallelize([(projected_extent, tile)])
rdd
```

3.10.6 Creating the Layer

From the RDD, we can now create a RasterLayer using the from_numpy_rdd method.

```
# While there is a time component to the data, this was ignored for this tutorial and instead the focus is just
# on the spatial information. Thus, we have a LayerType of SPATIAL.

raster_layer = gps.RasterLayer.from_numpy_rdd(layer_type=gps.LayerType.SPATIAL, numpy_
indd=rdd)

raster_layer
```

3.10.7 Where to Go From Here

By creating a RasterLayer, we can now work with and analyze the data within it. If you wish to know more about these operations, please see the following guides: Layers Guide, Map Algebra Guide Visulation Guide, and the Catalog Guide.

3.11 Reading and Rasterizing Open Street Map Data

This tutorial shows how to read in Open Street Map (OSM) data, and then rasterize it using GeoPySpark.

Note: This guide is aimed at users who are already familiar with GeoPySpark.

3.11.1 Getting the Data

To start, let's first grab an orc file, which a special file type that is optimized for Hadoop operations. The following command will use curl to download the file from S3 and move it to the /tmp directory.

```
curl -o /tmp/boyertown.orc https://s3.amazonaws.com/geopyspark-test/example-files/

boyertown.orc
```

A side note: Files can be retrieved directly from S3. However, this could not be done in this instance due to permission requirements needed to access the file.

3.11.2 Reading in the Data

Now that we have our data, we can now read it in and begin to work with.

```
import geopyspark as gps
from pyspark import SparkContext

conf = gps.geopyspark_conf(appName="osm-rasterize-example", master="local[*]")
pysc = SparkContext(conf=conf)

features = gps.osm_reader.from_orc("/tmp/boyertown.orc")
```

The above code sets up a SparkContext and then reads in the boyertown.orc file as features, which is an instance of FeaturesCollection.

When OSM data is read into GeoPySpark, each OSM Element is turned into single or multiple different geometries. With each of these geometries retaining the metadata from the derived OSM Element. These geometry metadata pairs are referred to as a Feature. These features are grouped together by the type of geometry they contain. When accessing features from a FeaturesCollection, it is done by geometry.

There are four different types of geometries in the FeaturesCollection:

- · Point
- Line
- Polygon
- MultiPolygon

Selecting the Features We Want

For this example, we're interested in rasterizing the Lines and Polygons from the OSM data, so we will select those Features from the FeaturesCollection that contain them. The following code will create a Python RDD of Features that contains all Line geometries (lines), and a Python RDD that contains all Polygon geometries (polygons).

```
lines = features.get_line_features_rdd()
polygons = features.get_polygon_features_rdd()
```

Looking at the Tags of the Features

When we rasterize the Polygon Features, we'd like for schools to have a different value than all of the other Polygons. However, we are unsure if any schools were contained within the original data, and we'd like to see if any are. One method we could use to determine if there are schools is to look at the tags of the Polygon Features. The following code will show all of the unique tags for all of the Polygons in the collection.

```
features.get_polygon_tags()
```

Which has the following output:

```
{'NHD:ComID': '25964412',
  'NHD:Elevation': '0.0000000000',
  'NHD:FCode': '39004',
  'NHD:FDate': '2001/08/16',
  'NHD:FTYPE': 'LakePond',
  'NHD:Permanent_': '25964412',
  'NHD:ReachCode': '02040203004486',
  'NHD:Resolution': 'High',
  'addr:city': 'Gilbertsville',
```

```
'addr:housenumber': '1100',
'addr:postcode': '19525',
'addr:state': 'PA',
'addr:street': 'E Philadelphia Avenue',
'amenity': 'school',
'area': 'yes',
'building': 'yes',
'leisure': 'pitch',
'name': 'Boyertown Area Junior High School-West Center',
'natural': 'water',
'railway': 'platform',
'smoking': 'outside',
'source': 'Yahoo',
'sport': 'baseball',
'tourism': 'museum',
'wikidata': 'Q8069423',
'wikipedia': "en:Zern's Farmer's Market"}
```

So it appears that there are schools in this dataset, and that we can continue on.

3.11.3 Assigning Values to Geometries

Now that we have our Features, it's time to assign them values. The reason we need to do so is because when a vector becomes a raster, its cells need to have some kind of value. When rasterizing Features, each geometry contained within it will be given a single value, and all cells that intersect that shape will have that value. In addition to value of the actual cells, there's another property that we will want to set for each Feature, Z-Index.

The Z-Index of a Feature determines what value a cell will be if more than one geometry intersects it. With a higher Z-Index taking priority over a lower one. This is important as there may be cases where multiple geometries are present at a single cell, but that cell can only contain one value.

For this example, we are going to want all Polygons to have a higher Z-Index than the Lines. In addition, since we're interested in schools, Polygons that are labeled as schools will have a greater Z-Index than other Polygons.

We create the mapped_lines variable that contains an RDD of Features, where each Feature has a CellValue with a value and zindex of 1. The assign_polygon_feature function is then created which will test to see if a Polygon is a school or not. If it is, then the resulting Feature will have a CellValue with a value and zindex of 3. Otherwise, those two values will be 2.

3.11.4 Rasterizing the Features

Now that the Features have been given CellValues, it is now time to rasterize them.

The rasterize_features function requires a single RDD of Features. Therefore, we union together mapped_lines and mapped_polygons which gives us unioned_features. Along with passing in our RDD, we must also set the crs and zoom of the resulting Layer. In this case, the crs is in LatLng, so we set it to be 4326. zoom varies between use cases, so it was just chosen arbitrarily for this example. The resulting rasterized_layer is a TiledRasterLayer that we can now analyze and/or ingest.

3.12 geopyspark package

geopyspark.geopyspark_conf (master=None, appName=None, additional_jar_dirs=[])

Construct the base SparkConf for use with GeoPySpark. This configuration object may be used as is , or may be adjusted according to the user's needs.

Note: The GEOPYSPARK_JARS_PATH environment variable may contain a colon-separated list of directories to search for JAR files to make available via the SparkConf.

Parameters

- master (string) The master URL to connect to, such as "local" to run locally with one thread, "local[4]" to run locally with 4 cores, or "spark://master:7077" to run on a Spark standalone cluster.
- appName (string) The name of the application, as seen in the Spark console
- additional_jar_dirs (list, optional) A list of directory locations that might contain JAR files needed by the current script. Already includes \$(pwd)/jars.

Returns SparkConf

class geopyspark.Tile

Represents a raster in GeoPySpark.

Note: All rasters in GeoPySpark are represented as having multiple bands, even if the original raster just contained one.

Parameters

- **cells** (nd.array) The raster data itself. It is contained within a NumPy array.
- data_type (str) The data type of the values within data if they were in Scala.
- no_data_value The value that represents no data value in the raster. This can be represented by a variety of types depending on the value type of the raster.

cells

nd.array - The raster data itself. It is contained within a NumPy array.

data type

str – The data type of the values within data if they were in Scala.

no_data_value

The value that represents no data value in the raster. This can be represented by a variety of types depending on the value type of the raster.

cell_type

Alias for field number 1

cells

Alias for field number 0

count (*value*) → integer – return number of occurrences of value

static dtype_to_cell_type(dtype)

Converts a np. dtype to the corresponding GeoPySpark cell_type.

Note: bool, complex64, complex128, and complex256, are currently not supported np. dtypes.

Parameters dtype (np.dtype) – The dtype of the numpy array.

Returns str. The GeoPySpark cell_type equivalent of the dtype.

Raises TypeError – If the given dtype is not a supported data type.

classmethod from_numpy_array (numpy_array, no_data_value=None)

Creates an instance of Tile from a numpy array.

Parameters

• numpy_array (np.array) - The numpy array to be used to represent the cell values of the Tile.

Note: GeoPySpark does not support arrays with the following data types: bool, complex64, complex128, and complex256.

• no_data_value (optional) - The value that represents no data value in the raster. This can be represented by a variety of types depending on the value type of the raster. If not given, then the value will be None.

Returns Tile

index (*value*[, *start*[, *stop*]]) \rightarrow integer – return first index of value.

Raises ValueError if the value is not present.

no_data_value

Alias for field number 2

class geopyspark.Extent

The "bounding box" or geographic region of an area on Earth a raster represents.

Parameters

- **xmin** (*float*) The minimum x coordinate.
- **ymin** (*float*) The minimum y coordinate.
- **xmax** (float) The maximum x coordinate.
- ymax (float) The maximum y coordinate.

```
xmin
          float – The minimum x coordinate.
     ymin
          float – The minimum y coordinate.
     xmax
          float – The maximum x coordinate.
     ymax
          float – The maximum y coordinate.
     count (value) \rightarrow integer – return number of occurrences of value
     classmethod from_polygon(polygon)
           Creates a new instance of Extent from a Shapely Polygon.
           The new Extent will contain the min and max coordinates of the Polygon; regardless of the Polygon's
           shape.
               Parameters polygon (shapely.geometry.Polygon) - A Shapely Polygon.
               Returns Extent
     index (value [, start [, stop ] ]) \rightarrow integer – return first index of value.
           Raises ValueError if the value is not present.
     to_polygon
          Converts this instance to a Shapely Polygon.
           The resulting Polygon will be in the shape of a box.
               Returns shapely.geometry.Polygon
     xmax
           Alias for field number 2
     xmin
           Alias for field number 0
     ymax
           Alias for field number 3
     ymin
           Alias for field number 1
class geopyspark.ProjectedExtent
     Describes both the area on Earth a raster represents in addition to its CRS.
           Parameters
                 • extent (Extent) – The area the raster represents.
                 • epsg(int, optional) - The EPSG code of the CRS.
                 • proj4 (str, optional) - The Proj.4 string representation of the CRS.
     extent
           Extent – The area the raster represents.
           int, optional - The EPSG code of the CRS.
```

str; optional - The Proj.4 string representation of the CRS.

```
Note: Either epsg or proj4 must be defined.
     count (value) \rightarrow integer – return number of occurrences of value
     epsq
           Alias for field number 1
     extent
           Alias for field number 0
     index (value [start, stop]) \rightarrow integer – return first index of value.
           Raises ValueError if the value is not present.
     proj4
           Alias for field number 2
class geopyspark.TemporalProjectedExtent
     Describes the area on Earth the raster represents, its CRS, and the time the data was collected.
           Parameters
                 • extent (Extent) – The area the raster represents.
                 • instant (datetime.datetime) - The time stamp of the raster.
                 • epsg(int, optional) - The EPSG code of the CRS.
                 • proj4 (str, optional) – The Proj.4 string representation of the CRS.
     extent
           Extent – The area the raster represents.
     instant
           datetime.datetime - The time stamp of the raster.
           int, optional – The EPSG code of the CRS.
     proj4
           str; optional – The Proj.4 string representation of the CRS.
     Note: Either epsg or proj4 must be defined.
     count (value) \rightarrow integer – return number of occurrences of value
     epsq
           Alias for field number 2
     extent
           Alias for field number 0
     index (value, start, stop) \rightarrow integer – return first index of value.
           Raises ValueError if the value is not present.
     instant
           Alias for field number 1
```

Alias for field number 3

proj4

class geopyspark. Spatial Key

Represents the position of a raster within a grid. This grid is a 2D plane where raster positions are represented by a pair of coordinates.

Parameters

- **col** (*int*) The column of the grid, the numbers run east to west.
- **row** (*int*) The row of the grid, the numbers run north to south.

col

int – The column of the grid, the numbers run east to west.

row

int – The row of the grid, the numbers run north to south.

col

Alias for field number 0

count (*value*) \rightarrow integer – return number of occurrences of value

index (*value*[, *start*[, *stop*]]) \rightarrow integer – return first index of value.

Raises ValueError if the value is not present.

row

Alias for field number 1

class geopyspark.SpaceTimeKey

Represents the position of a raster within a grid. This grid is a 3D plane where raster positions are represented by a pair of coordinates as well as a z value that represents time.

Parameters

- col (int) The column of the grid, the numbers run east to west.
- row (int) The row of the grid, the numbers run north to south.
- instant (datetime.datetime) The time stamp of the raster.

col

int – The column of the grid, the numbers run east to west.

row

int – The row of the grid, the numbers run north to south.

instant

 $\hbox{\tt datetime.datetime} - \hbox{\tt The time stamp of the raster.}$

col

Alias for field number 0

count (*value*) \rightarrow integer – return number of occurrences of value

index (*value*[, *start*[, *stop*]]) \rightarrow integer – return first index of value.

Raises ValueError if the value is not present.

instant

Alias for field number 2

row

Alias for field number 1

class geopyspark.Metadata(bounds, crs, cell_type, extent, layout_definition)

Information of the values within a RasterLayer or TiledRasterLayer. This data pertains to the layout and other attributes of the data within the classes.

Parameters

- bounds (Bounds) The Bounds of the values in the class.
- **crs** (str or int) The CRS of the data. Can either be the EPSG code, well-known name, or a PROJ.4 projection string.
- **cell_type** (str or *CellType*) The data type of the cells of the rasters.
- **extent** (Extent) The Extent that covers the all of the rasters.
- layout_definition (LayoutDefinition) The LayoutDefinition of all rasters.

bounds

Bounds - The Bounds of the values in the class.

crs

str or int – The CRS of the data. Can either be the EPSG code, well-known name, or a PROJ.4 projection string.

cell_type

str – The data type of the cells of the rasters.

no data value

int or float or None – The noData value of the rasters within the layer. This can either be None, an int, or a float depending on the cell_type.

extent

Extent - The Extent that covers the all of the rasters.

tile_layout

TileLayout - The TileLayout that describes how the rasters are orginized.

layout_definition

LayoutDefinition - The LayoutDefinition of all rasters.

classmethod from_dict(metadata_dict)

Creates Metadata from a dictionary.

Parameters metadata_dict (*dict*) - The Metadata of a RasterLayer or TiledRasterLayer instance that is in dict form.

Returns Metadata

to dict()

Converts this instance to a dict.

Returns dict

class geopyspark.TileLayout

Describes the grid in which the rasters within a Layer should be laid out.

Parameters

- layoutCols (int) The number of columns of rasters that runs east to west.
- **layoutRows** (*int*) The number of rows of rasters that runs north to south.
- tileCols (int) The number of columns of pixels in each raster that runs east to west.
- tileRows (int) The number of rows of pixels in each raster that runs north to south.

layoutCols

int – The number of columns of rasters that runs east to west.

layoutRows

int – The number of rows of rasters that runs north to south.

tileCols

int – The number of columns of pixels in each raster that runs east to west.

tileRows

int – The number of rows of pixels in each raster that runs north to south.

count (*value*) \rightarrow integer – return number of occurrences of value

index ($value[, start[, stop]]) \rightarrow integer - return first index of value.$

Raises ValueError if the value is not present.

layoutCols

Alias for field number 0

layoutRows

Alias for field number 1

tileCols

Alias for field number 2

tileRows

Alias for field number 3

class geopyspark. Global Layout

TileLayout type that spans global CRS extent.

When passed in place of LayoutDefinition it signifies that a LayoutDefinition instance should be constructed such that it fits the global CRS extent. The cell resolution of resulting layout will be one of resolutions implied by power of 2 pyramid for that CRS. Tiling to this layout will likely result in either up-sampling or downsampling the source raster.

Parameters

- tile_size (int) The number of columns and row pixels in each tile.
- **zoom** (*int*, *optional*) Override the zoom level in power of 2 pyramid.
- **threshold** (*float*, *optional*) The percentage difference between a cell size and a zoom level and the resolution difference between that zoom level and the next that is tolerated to snap to the lower-resolution zoom level. For example, if this paramter is 0.1, that means we're willing to downsample rasters with a higher resolution in order to fit them to some zoom level Z, if the difference is resolution is less than or equal to 10% the difference between the resolutions of zoom level Z and zoom level Z+1.

tile size

int – The number of columns and row pixels in each tile.

zoom

int – The desired zoom level of the layout.

threshold

float, optional – The percentage difference between a cell size and a zoom level and the resolution difference between that zoom level and the next that is tolerated to snap to the lower-resolution zoom level.

count (*value*) \rightarrow integer – return number of occurrences of value

index (*value*[, *start*[, *stop*]]) \rightarrow integer – return first index of value.

Raises ValueError if the value is not present.

threshold

Alias for field number 2

tile size

Alias for field number 0

zoom

Alias for field number 1

class geopyspark.LocalLayout

TileLayout type that snaps the layer extent.

When passed in place of LayoutDefinition it signifies that a LayoutDefinition instances should be constructed over the envelope of the layer pixels with given tile size. Resulting TileLayout will match the cell resolution of the source rasters.

Parameters

- **tile_size** (*int*, *optional*) The number of columns and row pixels in each tile. If this is None, then the sizes of each tile will be set using tile_cols and tile_rows.
- **tile_cols** (*int*, *optional*) The number of column pixels in each tile. This supersedes tile_size. Meaning if this and tile_size are set, then this will be used for the number of column pixels. If None, then the number of column pixels will default to 256.
- tile_rows (int, optional) The number of rows pixels in each tile. This supersedes tile_size. Meaning if this and tile_size are set, then this will be used for the number of row pixels. If None, then the number of row pixels will default to 256.

tile_cols

int – The number of column pixels in each tile

tile rows

int – The number of rows pixels in each tile. This supersedes

count (value) \rightarrow integer – return number of occurrences of value

index (value, start, stop) \rightarrow integer – return first index of value.

Raises ValueError if the value is not present.

tile cols

Alias for field number 0

tile_rows

Alias for field number 1

class geopyspark.LayoutDefinition

Describes the layout of the rasters within a Layer and how they are projected.

Parameters

- extent (Extent) The Extent of the layout.
- tileLayout (TileLayout) The TileLayout of how the rasters within the Layer.

extent

Extent - The Extent of the layout.

tileLayout

TileLayout – The TileLayout of how the rasters within the Layer.

count (*value*) \rightarrow integer – return number of occurrences of value

extent

Alias for field number 0

index ($value[, start[, stop]]) \rightarrow integer - return first index of value.$

Raises ValueError if the value is not present.

tileLayout

Alias for field number 1

class geopyspark.Bounds

Represents the grid that covers the area of the rasters in a Layer on a grid.

Parameters

- minKey (SpatialKey or SpaceTimeKey) The smallest SpatialKey or SpaceTimeKey.
- minKey The largest SpatialKey or SpaceTimeKey.

minKey

SpatialKey or SpaceTimeKey - The smallest SpatialKey or SpaceTimeKey.

minKey

SpatialKey or SpaceTimeKey - The largest SpatialKey or SpaceTimeKey.

count (*value*) → integer – return number of occurrences of value

index (*value*[, *start*[, *stop*]]) \rightarrow integer – return first index of value.

Raises ValueError if the value is not present.

maxKey

Alias for field number 1

minKey

Alias for field number 0

class geopyspark.RasterizerOptions

Represents options available to geometry rasterizer

Parameters

- includePartial (bool, optional) Include partial pixel intersection (default: True)
- sampleType (str, optional) 'PixelIsArea' or 'PixelIsPoint' (default: 'PixelIs-Point')

includePartial

bool - Include partial pixel intersection.

sampleType

str – How the sampling should be performed during rasterization.

count (*value*) \rightarrow integer – return number of occurrences of value

includePartial

Alias for field number 0

index (*value*[, *start*[, *stop*]]) \rightarrow integer – return first index of value.

Raises ValueError if the value is not present.

sampleType

Alias for field number 1

geopyspark.zfactor_lat_lng_calculator(unit)

Produces the Scala class, ZFactorCalculator as a JavaObject.

The resulting <code>ZFactorCalculator</code> produced using this method assumes that the <code>Tiles</code> it will be deriving <code>zfactors</code> from are in <code>LatLng</code> (aka <code>epsg:4326</code>). This caculator can still be used on <code>Tiles</code> with different projections, however, the resulting <code>Slope</code> calculations may be off.

Parameters units (str or Unit) – The unit of elevation in the target layer.

Returns py4j.JavaObject

geopyspark.zfactor_calculator(mapped_zfactors)

Produces the Scala class, ZFactorCalculator as a JavaObject.

Unlike the <code>ZFactorCalculator</code> produced in <code>zfactor_lat_lng_calculator()</code>, this resulting <code>ZFactorCalculator</code> can used on <code>Tiles</code> in a different projection. However, it cannot be used between different types of projections. For example, a <code>ZFactorCalculator</code> produced for a Layer that is in <code>WebMercator</code> will not create an accurate <code>ZFactor</code> for a Layer that is in <code>Latlng</code>.

Parameters mapped_zfactors (dict) - A dict that maps lattitudes to ZFactors. It is not required to supply a mapping for ever lattitude intersected in the layer. Rather, based on the lattitudes given, a linear interpolation will be performed and any lattitude not mapped will have its ZFactor derived from that interpolation.

Returns py4j.JavaObject

class geopyspark.HashPartitionStrategy

Represents a partitioning strategy for a layer that uses Spark's HashPartitioner with a set number of partitions.

Parameters num_partitions (int, optional) — The number of partitions that should be used during partitioning. Default is, None. If None the resulting layer will have a HashPartitioner with the number of partitions being either the same as the input layer's, or a number computed by the method.

count (value) \rightarrow integer – return number of occurrences of value

index (value[, start[, stop[]]) \rightarrow integer – return first index of value.

Raises ValueError if the value is not present.

num_partitions

Alias for field number 0

${\bf class} \ {\tt geopyspark.SpatialPartitionStrategy}$

Represents a partitioning strategy for a layer that uses GeoPySpark's SpatialPartitioner with a set number of partitions.

This partitioner will try and group Tiles together that are spatially near each other in the same partition. In order to do this, each Tile has their Key Index calculated using the space filling curve index, Z-Curve.

Parameters

- num_partitions (int, optional) The number of partitions that should be used during partitioning. Default is, None. If None the resulting layer will have a HashPartitioner with the number of partitions being either the same as the input layer's, or a number computed by the method.
- bits (int, optional) Helps determine how much data should be placed in each partition. Default is, 8.

GeoPySpark uses a Z-order curve to determine how values within the layer should be grouped. This is done by first finding the Key Index of a value and then performing a bitwise right shift on the resulting index. From the remaining bits, a partition is selected such that those indexes with the same remaining bits will be in the same partition. Therefore, as the number of bits shifted to the right increases, so then too does the group sizes.

num_partitions

int – The number of partitions that should be used during partitioning.

bits

int – Determine how much data should be placed in each partition.

bits

Alias for field number 1

count (value) \rightarrow integer – return number of occurrences of value

index (*value*[, *start*[, *stop*]]) \rightarrow integer – return first index of value.

Raises ValueError if the value is not present.

num_partitions

Alias for field number 0

class geopyspark.SpaceTimePartitionStrategy

Represents a partitioning strategy for a layer that uses GeoPySpark's SpaceTimePartitioner with a set number of partitions, units of time, and temporal resolution.

This partitioner will try and group Tiles together that are spatially and temproally near each other in the same partition. In order to do this, each Tile has their Key Index calculated using the space filling curve index, Z-Curve.

Note: This partitiong strategy will only work on SPACETIME layers, and will fail if given a SPATIAL one. For SPATIAL layers, please see SpatialPartitionStrategy.

Parameters

- time_unit (str or TimeUnit) Which time unit should be used when saving spatial-temporal data. This controls the resolution of each index. Meaning, what time intervals are used to seperate each record.
- num_partitions (int, optional) The number of partitions that should be used during partitioning. Default is, None. If None the resulting layer will have a HashPartitioner with the number of partitions being either the same as the input layer's, or a number computed by the method.
- **bits** (*int*, *optional*) Helps determine how much data should be placed in each partition. Default is, 8.

GeoPySpark uses a Z-order curve to determine how values within the layer should be grouped. This is done by first finding the Key Index of a value and then performing a bitwise right shift on the resulting index. From the remaining bits, a partition is selected such that those indexes with the same remaining bits will be in the same partition. Therefore, as the number of bits shifted to the right increases, so then too does the group sizes.

• time_resolution (str or int, optional) - Determines how data for each time_unit should be grouped together. By default, no grouping will occur.

As an example, having a time_unit of WEEKS and a time_resolution of 5 will cause the data to be grouped and stored together in units of 5 weeks. If however time_resolution is not specified, then the data will be grouped and stored in units of single weeks.

This value can either be an int or a string representation of an int.

time_unit

str or TimeUnit – Which time unit should be used when saving spatial-temporal data.

74

num partitions

int – The number of partitions that should be used during partitioning.

bits

int – Helps determine how much data should be placed in each partition.

time resolution

str or int – Determines how data for each time_unit should be grouped together.

bits

Alias for field number 2

count (*value*) \rightarrow integer – return number of occurrences of value

 $index(value[, start[, stop]]) \rightarrow integer - return first index of value.$

Raises ValueError if the value is not present.

num_partitions

Alias for field number 1

time_resolution

Alias for field number 3

time unit

Alias for field number 0

geopyspark.read_layer_metadata(uri, layer_name, layer_zoom)

Reads the metadata from a saved layer without reading in the whole layer.

Parameters

- **uri** (str) The Uniform Resource Identifier used to point towards the desired GeoTrellis catalog to be read from. The shape of this string varies depending on backend.
- layer_name (str) The name of the GeoTrellis catalog to be read from.
- layer_zoom (int) The zoom level of the layer that is to be read.

Returns Metadata

geopyspark.read_value(uri, layer_name, layer_zoom, col, row, zdt=None)

Reads a single Tile from a GeoTrellis catalog. Unlike other functions in this module, this will not return a TiledRasterLayer, but rather a GeoPySpark formatted raster.

Note: When requesting a tile that does not exist, None will be returned.

Parameters

- **uri** (str) The Uniform Resource Identifier used to point towards the desired GeoTrellis catalog to be read from. The shape of this string varies depending on backend.
- layer_name (str) The name of the GeoTrellis catalog to be read from.
- layer_zoom (int) The zoom level of the layer that is to be read.
- col (int) The col number of the tile within the layout. Cols run east to west.
- **row** (*int*) The row number of the tile within the layout. Row run north to south.
- **zdt** (datetime.datetime) The time stamp of the tile if the data is spatial-temporal. This is represented as a datetime.datetime. instance. The default value is, None. If None, then only the spatial area will be queried.

Returns Tile

geopyspark.query(uri, layer_name, layer_zoom=None, query_geom=None, time_intervals=None, query_proj=None, num_partitions=None)

Queries a single, zoom layer from a GeoTrellis catalog given spatial and/or time parameters.

Note: The whole layer could still be read in if intersects and/or time_intervals have not been set, or if the querried region contains the entire layer.

Parameters

- layer_type (str or LayerType) What the layer type of the geotiffs are. This is represented by either constants within LayerType or by a string.
- **uri** (str) The Uniform Resource Identifier used to point towards the desired GeoTrellis catalog to be read from. The shape of this string varies depending on backend.
- layer_name (str) The name of the GeoTrellis catalog to be querried.
- layer_zoom (int, optional) The zoom level of the layer that is to be querried. If None, then the layer_zoom will be set to 0.
- query_geom (bytes or shapely.geometry or *Extent*, Optional) The desired spatial area to be returned. Can either be a string, a shapely geometry, or instance of Extent, or a WKB verson of the geometry.

Note: Not all shapely geometires are supported. The following is are the types that are supported: * Point * Polygon * MultiPolygon

Note: Only layers that were made from spatial, singleband GeoTiffs can query a Point. All other types are restricted to Polygon and MulitPolygon.

Note: If the queried region does not intersect the layer, then an empty layer will be returned.

If not specified, then the entire layer will be read.

- time_intervals ([datetime.datetime], optional) A list of the time intervals to query. This parameter is only used when querying spatial-temporal data. The default value is, None. If None, then only the spatial area will be querried.
- query_proj (int or str, optional) The crs of the querried geometry if it is different than the layer it is being filtered against. If they are different and this is not set, then the returned TiledRasterLayer could contain incorrect values. If None, then the geometry and layer are assumed to be in the same projection.
- num_partitions (int, optional) Sets RDD partition count when reading from catalog.

Returns *TiledRasterLaver*

Parameters

- **uri** (str) The Uniform Resource Identifier used to point towards the desired location for the tile layer to written to. The shape of this string varies depending on backend.
- layer_name (str) The name of the new, tile layer.
- layer_zoom (int) The zoom level the layer should be saved at.
- tiled_raster_layer (TiledRasterLayer) The TiledRasterLayer to be saved.
- index_strategy (str or IndexingMethod) The method used to orginize the saved data. Depending on the type of data within the layer, only certain methods are available. Can either be a string or a IndexingMethod attribute. The default method used is, IndexingMethod.ZORDER.
- time_unit (str or TimeUnit, optional) Which time unit should be used when saving spatial-temporal data. This controls the resolution of each index. Meaning, what time intervals are used to seperate each record. While this is set to None as default, it must be set if saving spatial-temporal data. Depending on the indexing method chosen, different time units are used.
- time_resolution (str or int, optional) Determines how data for each time_unit should be grouped together. By default, no grouping will occur.

As an example, having a time_unit of WEEKS and a time_resolution of 5 will cause the data to be grouped and stored together in units of 5 weeks. If however time_resolution is not specified, then the data will be grouped and stored in units of single weeks.

This value can either be an int or a string representation of an int.

• **store** (str or *AttributeStore*, optional) – AttributeStore instance or URI for layer metadata lookup.

class geopyspark.AttributeStore(uri)

AttributeStore provides a way to read and write GeoTrellis layer attributes.

Internally all attribute values are stored as JSON, here they are exposed as dictionaries. Classes often stored have a .from_dict and .to_dict methods to bridge the gap:

```
import geopyspark as gps
store = gps.AttributeStore("s3://azavea-datahub/catalog")
hist = store.layer("us-nlcd2011-30m-epsg3857", zoom=7).read("histogram")
hist = gps.Histogram.from_dict(hist)
```

class Attributes (store, layer_name, layer_zoom)

Accessor class for all attributes for a given layer

```
delete (name)
```

Delete attribute by name

Parameters name (str) – Attribute name

```
layer_metadata()
```

read(name)

Read layer attribute by name as a dict

Parameters name (str) -

Returns Attribute value

Return type dict

```
write(name, value)
```

Write layer attribute value as a dict

Parameters

- name (str) Attribute name
- **value** (dict) Attribute value

classmethod build(store)

Builds AttributeStore from URI or passes an instance through.

Parameters uri (str or AttributeStore) - URI for AttributeStore object or instance.

Returns AttributeStore

classmethod cached(uri)

Returns cached version of AttributeStore for URI or creates one

contains (name, zoom=None)

Checks if this store contains a layer metadata.

Parameters

- name (str) Layer name
- zoom(int, optional) Layer zoom

Returns bool

delete (name, zoom=None)

Delete layer and all its attributes

Parameters

- name (str) Layer name
- zoom (int, optional) Layer zoom

layer (name, zoom=None)

Layer Attributes object for given layer :param name: Layer name :type name: str :param zoom: Layer zoom :type zoom: int, optional

Returns Attributes

layers()

List all layers Attributes objects

```
Returns [:class:`~geopyspark.geotrellis.catalog.AttributeStore.
Attributes`]
```

```
geopyspark.get_colors_from_colors (colors)
```

Returns a list of integer colors from a list of Color objects from the colortools package.

Parameters colors ([colortools.Color]) - A list of color stops using colortools.Color

Returns [int]

geopyspark.get_colors_from_matplotlib(ramp_name, num_colors=256)

Returns a list of color breaks from the color ramps defined by Matplotlib.

Parameters

- ramp_name (str) The name of a matplotlib color ramp. See the matplotlib documentation for a list of names and details on each color ramp.
- num_colors (int, optional) The number of color breaks to derive from the named map.

Returns [int]

class geopyspark.ColorMap(cmap)

A class that wraps a GeoTrellis ColorMap class.

Parameters cmap (py4j.java_gateway.JavaObject) - The JavaObject that represents the GeoTrellis ColorMap.

cmap

py4i.java gateway.JavaObject - The JavaObject that represents the GeoTrellis ColorMap.

Given breaks and colors, build a ColorMap object.

Parameters

- breaks (dict or list or np.ndarray or Histogram) If a dict then a mapping from tile values to colors, the latter represented as integers e.g., 0xff000080 is red at half opacity. If a list then tile values that specify breaks in the color mapping. If a Histogram then a histogram from which breaks can be derived.
- **colors** (str or list, optional) If a str then the name of a matplotlib color ramp. If a list then either a list of colortools Color objects or a list of integers containing packed RGBA values. If None, then the ColorMap will be created from the breaks given.
- no_data_color (int, optional) A color to replace NODATA values with
- **fallback** (int, optional) A color to replace cells that have no value in the mapping
- classification_strategy (str or ClassificationStrategy, optional) A string giving the strategy for converting tile values to colors. e.g., if ClassificationStrategy.LESS_THAN_OR_EQUAL_TO is specified, and the break map is {3: 0xff0000ff, 4: 0x00ff00ff}, then values up to 3 map to red, values from above 3 and up to and including 4 become green, and values over 4 become the fallback color.

Returns ColorMap

classmethod from_break_map (break_map, no_data_color=0, fallback=0, classification_strategy=<ClassificationStrategy.LESS_THAN_OR_EQUAL_TO: 'LessThanOrEqualTo'>)

Converts a dictionary mapping from tile values to colors to a ColorMap.

Parameters

- **break_map** (dict) A mapping from tile values to colors, the latter represented as integers e.g., 0xff000080 is red at half opacity.
- no data color (int, optional) A color to replace NODATA values with
- fallback (int, optional) A color to replace cells that have no value in the mapping
- classification_strategy (str or ClassificationStrategy, optional) A string giving the strategy for converting tile values to colors. e.g., if ClassificationStrategy.LESS_THAN_OR_EQUAL_TO is specified, and the break map is {3: 0xff0000ff, 4: 0x00ff00ff}, then values up to 3 map to red, values from above 3 and up to and including 4 become green, and values over 4 become the fallback color.

Returns ColorMap

Converts lists of values and colors to a ColorMap.

Parameters

- breaks (list) The tile values that specify breaks in the color mapping.
- **color_list** ([int]) The colors corresponding to the values in the breaks list, represented as integers—e.g., 0xff000080 is red at half opacity.
- no_data_color (int, optional) A color to replace NODATA values with
- fallback (int, optional) A color to replace cells that have no value in the mapping
- classification_strategy (str or ClassificationStrategy, optional) A string giving the strategy for converting tile values to colors. e.g., if ClassificationStrategy.LESS_THAN_OR_EQUAL_TO is specified, and the break map is {3: 0xff0000ff, 4: 0x00ff00ff}, then values up to 3 map to red, values from above 3 and up to and including 4 become green, and values over 4 become the fallback color.

Returns ColorMap

Converts a wrapped GeoTrellis histogram into a ColorMap.

Parameters

- histogram (Histogram) A Histogram instance; specifies breaks
- **color_list** ([int]) The colors corresponding to the values in the breaks list, represented as integers e.g., 0xff000080 is red at half opacity.
- no_data_color(int, optional) A color to replace NODATA values with
- fallback (int, optional) A color to replace cells that have no value in the mapping
- classification_strategy (str or ClassificationStrategy, optional) A string giving the strategy for converting tile values to colors. e.g., if ClassificationStrategy.LESS_THAN_OR_EQUAL_TO is specified, and the break map is {3: 0xff0000ff, 4: 0x00ff00ff}, then values up to 3 map to red, values from above 3 and up to and including 4 become green, and values over 4 become the fallback color.

Returns ColorMap

static nlcd_colormap()

Returns a color map for NLCD tiles.

Returns ColorMap

class geopyspark.LayerType

The type of the key within the tuple of the wrapped RDD.

```
SPACETIME = 'spacetime'
SPATIAL = 'spatial'
```

```
class geopyspark.IndexingMethod
    How the wrapped should be indexed when saved.
    HILBERT = 'hilbert'
    ROWMAJOR = 'rowmajor'
    ZORDER = 'zorder'
class geopyspark.ResampleMethod
    Resampling Methods.
    AVERAGE = 'Average'
    BILINEAR = 'Bilinear'
    CUBIC_CONVOLUTION = 'CubicConvolution'
    CUBIC_SPLINE = 'CubicSpline'
    LANCZOS = 'Lanczos'
    MAX = 'Max'
    MEDIAN = 'Median'
    MIN = 'Min'
    MODE = 'Mode'
    NEAREST_NEIGHBOR = 'NearestNeighbor'
class geopyspark.TimeUnit
    ZORDER time units.
    DAYS = 'days'
    HOURS = 'hours'
    MILLIS = 'millis'
    MINUTES = 'minutes'
    MONTHS = 'months'
    SECONDS = 'seconds'
    WEEKS = 'weeks'
    YEARS = 'years'
class geopyspark.Operation
    Focal opertions.
    ASPECT = 'Aspect'
    MAX = 'Max'
    MEAN = 'Mean'
    MEDIAN = 'Median'
    MIN = 'Min'
    MODE = 'Mode'
    STANDARD_DEVIATION = 'StandardDeviation'
    SUM = 'Sum'
```

```
VARIANCE = 'Variance'
class geopyspark.Neighborhood
    Neighborhood types.
    ANNULUS = 'Annulus'
    CIRCLE = 'Circle'
    NESW = 'Nesw'
    SQUARE = 'Square'
    WEDGE = 'Wedge'
class geopyspark.ClassificationStrategy
    Classification strategies for color mapping.
    EXACT = 'Exact'
    GREATER_THAN = 'GreaterThan'
    GREATER_THAN_OR_EQUAL_TO = 'GreaterThanOrEqualTo'
    LESS_THAN = 'LessThan'
    LESS_THAN_OR_EQUAL_TO = 'LessThanOrEqualTo'
class geopyspark.CellType
    Cell types.
    BOOL = 'bool'
    BOOLRAW = 'boolraw'
    FLOAT32 = 'float32'
    FLOAT32RAW = 'float32raw'
    FLOAT64 = 'float64'
    FLOAT64RAW = 'float64raw'
    INT16 = 'int16'
    INT16RAW = 'int16raw'
    INT32 = 'int32'
    INT32RAW = 'int32raw'
    INT8 = 'int8'
    INT8RAW = 'int8raw'
    UINT16 = 'uint16'
    UINT16RAW = 'uint16raw'
    UINT8 = 'uint8'
    UINT8RAW = 'uint8raw'
class geopyspark.ColorRamp
    ColorRamp names.
    BLUE_TO_ORANGE = 'BlueToOrange'
    BLUE_TO_RED = 'BlueToRed'
```

```
CLASSIFICATION_BOLD_LAND_USE = 'ClassificationBoldLandUse'
    CLASSIFICATION MUTED TERRAIN = 'ClassificationMutedTerrain'
    COOLWARM = 'CoolWarm'
    GREEN_TO_RED_ORANGE = 'GreenToRedOrange'
    HEATMAP_BLUE_TO_YELLOW_TO_RED_SPECTRUM = 'HeatmapBlueToYellowToRedSpectrum'
    HEATMAP_DARK_RED_TO_YELLOW_WHITE = 'HeatmapDarkRedToYellowWhite'
    HEATMAP_LIGHT_PURPLE_TO_DARK_PURPLE_TO_WHITE = 'HeatmapLightPurpleToDarkPurpleToWhite'
    HEATMAP_YELLOW_TO_RED = 'HeatmapYellowToRed'
    Hot = 'Hot'
    INFERNO = 'Inferno'
    LIGHT_TO_DARK_GREEN = 'LightToDarkGreen'
    LIGHT_TO_DARK_SUNSET = 'LightToDarkSunset'
    LIGHT_YELLOW_TO_ORANGE = 'LightYellowToOrange'
    MAGMA = 'Magma'
    PLASMA = 'Plasma'
    VIRIDIS = 'Viridis'
class geopyspark.StorageMethod
    Internal storage methods for GeoTiffs.
    STRIPED = 'Striped'
    TILED = 'Tiled'
class geopyspark.ColorSpace
    Color space types for GeoTiffs.
    BLACK_IS_ZERO = 1
    CFA = 32803
    CIE LAB = 8
    CMYK = 5
    ICC LAB = 9
    ITU LAB = 10
    LINEAR RAW = 34892
    LOG_L = 32844
    LOG_LUV = 32845
    PALETTE = 3
    RGB = 2
    TRANSPARENCY_MASK = 4
    WHITE_IS_ZERO = 0
    Y CB CR = 6
```

```
class geopyspark.Compression
```

Compression methods for GeoTiffs.

DEFLATE_COMPRESSION = 'DeflateCompression'

NO_COMPRESSION = 'NoCompression'

class geopyspark. Unit

Represents the units of elevation.

FEET = 'Feet'

METERS = 'Meters'

geopyspark.cost_distance (friction_layer, geometries, max_distance)

Performs cost distance of a TileLayer.

Parameters

- friction_layer (TiledRasterLayer) TiledRasterLayer of a friction surface to traverse.
- **geometries** (1ist) A list of shapely geometries to be used as a starting point.

Note: All geometries must be in the same CRS as the TileLayer.

• max_distance (int or float) - The maximum cost that a path may reach before the operation. stops. This value can be an int or float.

Returns TiledRasterLayer

Calculates the Euclidean distance of a Shapely geometry.

Parameters

- geometry (shapely.geometry) The input geometry to compute the Euclidean distance for.
- **source_crs** (str or int) The CRS of the input geometry.
- **zoom** (int) The zoom level of the output raster.
- **cell_type** (str or *CellType*, optional) The data type of the cells for the new layer. If not specified, then *CellType*.FLOAT64 is used.

Note: This function may run very slowly for polygonal inputs if they cover many cells of the output raster.

Returns TiledRasterLayer

geopyspark.hillshade (tiled_raster_layer, zfactor_calculator, band=0, azimuth=315.0, altitude=45.0) Computes Hillshade (shaded relief) from a raster.

The resulting raster will be a shaded relief map (a hill shading) based on the sun altitude, azimuth, and the zfactor. The zfactor is a conversion factor from map units to elevation units.

The hillshade` operation will be carried out in a SQUARE neighborhood with with an extent of 1. The zfactor will be derived from the zfactor_calculator for each Tile in the Layer. The resulting Layer will have a cell_type of INT16 regardless of the input Layer's cell_type; as well as have a single band, that represents the calculated hillshade.

Returns a raster of ShortConstantNoDataCellType.

For descriptions of parameters, please see Esri Desktop's description of Hillshade.

Parameters

- **tiled_raster_layer** (*TiledRasterLayer*) The base layer that contains the rasters used to compute the hillshade.
- **zfactor_calculator** (*py4j.JavaObject*) A JavaObject that represents the Scala ZFactorCalculator class. This can be created using either the zfactor_lat_lng_calculator() or the zfactor_calculator() methods.
- band (int, optional) The band of the raster to base the hillshade calculation on. Default is 0.
- azimuth (float, optional) The azimuth angle of the source of light. Default value is 315.0.
- **altitude** (*float*, *optional*) The angle of the altitude of the light above the horizon. Default is 45.0.

Returns *TiledRasterLayer*

class geopyspark.Histogram(scala_histogram)

A wrapper class for a GeoTrellis Histogram.

The underlying histogram is produced from the values within a *TiledRasterLayer*. These values represented by the histogram can either be Int or Float depending on the data type of the cells in the layer.

Parameters scala_histogram (py4j.JavaObject) - An instance of the GeoTrellis histogram.

scala_histogram

py4j.JavaObject – An instance of the GeoTrellis histogram.

bin_counts()

Returns a list of tuples where the key is the bin label value and the value is the label's respective count.

```
Returns [(int, int)] or [(float, int)]
```

bucket_count()

Returns the number of buckets within the histogram.

Returns int

cdf()

Returns the cdf of the distribution of the histogram.

```
Returns [(float, float)]
```

classmethod from_dict(value)

Encodes histogram as a dictionary

item_count(item)

Returns the total number of times a given item appears in the histogram.

Parameters item (int or float) - The value whose occurences should be counted.

Returns The total count of the occurences of item in the histogram.

Return type int

max()

The largest value of the histogram.

This will return either an int or float depending on the type of values within the histogram.

Returns int or float

mean()

Determines the mean of the histogram.

Returns float

median()

Determines the median of the histogram.

Returns float

merge (other_histogram)

Merges this instance of Histogram with another. The resulting Histogram will contain values from both "Histogram"s

Parameters other_histogram (*Histogram*) - The Histogram that should be merged with this instance.

Returns Histogram

min()

The smallest value of the histogram.

This will return either an int or float depedning on the type of values within the histogram.

Returns int or float

min max()

The largest and smallest values of the histogram.

This will return either an int or float depending on the type of values within the histogram.

Returns (int, int) or (float, float)

mode()

Determines the mode of the histogram.

This will return either an int or float depedning on the type of values within the histogram.

Returns int or float

quantile_breaks (num_breaks)

Returns quantile breaks for this Layer.

Parameters num_breaks (int) - The number of breaks to return.

Returns [int]

to dict()

Encodes histogram as a dictionary

Returns dict

values()

Lists each indiviual value within the histogram.

This will return a list of either "int" sor "float" s depedning on the type of values within the histogram.

Returns [int] or [float]

class geopyspark.RasterLayer(layer_type, srdd)

A wrapper of a RDD that contains GeoTrellis rasters.

Represents a layer that wraps a RDD that contains (K, V). Where K is either ProjectedExtent or TemporalProjectedExtent depending on the layer_type of the RDD, and V being a Tile.

The data held within this layer has not been tiled. Meaning the data has yet to be modified to fit a certain layout. See raster_rdd for more information.

Parameters

- **layer_type** (str or *LayerType*) What the layer type of the geotiffs are. This is represented by either constants within LayerType or by a string.
- **srdd** (*py4j.java_gateway.JavaObject*) The coresponding Scala class. This is what allows RasterLayer to access the various Scala methods.

pysc

pyspark.SparkContext – The SparkContext being used this session.

layer_type

LayerType – What the layer type of the geotiffs are.

srdd

py4j.java_gateway.JavaObject — The coresponding Scala class. This is what allows RasterLayer to access the various Scala methods.

bands (band)

Select a subsection of bands from the Tiles within the layer.

Note: There could be potential high performance cost if operations are performed between two sub-bands of a large data set.

Note: Due to the natue of GeoPySpark's backend, if selecting a band that is out of bounds then the error returned will be a py4j.protocol.Py4JJavaError and not a normal Python error.

Parameters band (int or tuple or list or range) — The band(s) to be selected from the Tiles. Can either be a single int, or a collection of ints.

Returns *RasterLayer* with the selected bands.

cache()

Persist this RDD with the default storage level (C{MEMORY_ONLY}).

collect_keys()

Returns a list of all of the keys in the layer.

Note: This method should only be called on layers with a smaller number of keys, as a large number could cause memory issues.

```
Returns [:class:`~geopyspark.geotrellis.SpatialKey`] or
[:ob:`~geopyspark.geotrellis.SpaceTimeKey`]
```

collect_metadata(layout=LocalLayout(tile_cols=256, tile_rows=256))

Iterate over the RDD records and generates layer metadata desribing the contained rasters.

:param layout (LayoutDefinition or: GlobalLayout or

LocalLayout, optional): Target raster layout for the tiling operation.

Returns Metadata

convert_data_type (new_type, no_data_value=None)

Converts the underlying, raster values to a new CellType.

Parameters

- new_type (str or CellType) The data type the cells should be to converted to.
- no_data_value(int or float, optional)—The value that should be marked as NoData.

Returns RasterLayer

Raises

- ValueError If no_data_value is set and the new_type contains raw values.
- ValueError If no_data_value is set and new_type is a boolean.

count()

Returns how many elements are within the wrapped RDD.

Returns The number of elements in the RDD.

Return type Int

filter_by_times (time_intervals)

Filters a SPACETIME layer by keeping only the values whose keys fall within a the given time interval(s).

Parameters time_intervals ([datetime.datetime]) - A list of the time intervals to query. This list can have one or multiple elements. If just a single element, then only exact matches with that given time will be kept. If there are multiple times given, then they are each paired together so that they form ranges of time. In the case where there are an odd number of elements, then the remaining time will be treated as a single query and not a range.

Note: If nothing intersects the given time_intervals, then the returned RasterLayer will be empty.

Returns RasterLayer

$\verb|classmethod from_numpy_rdd| (layer_type, numpy_rdd)|$

Create a RasterLayer from a numpy RDD.

Parameters

- **layer_type** (str or *LayerType*) What the layer type of the geotiffs are. This is represented by either constants within LayerType or by a string.
- numpy_rdd (pyspark.RDD) A PySpark RDD that contains tuples of either ProjectedExtents or TemporalProjectedExtents and rasters that are represented by a numpy array.

Returns RasterLayer

getNumPartitions()

Returns the number of partitions set for the wrapped RDD.

Returns The number of partitions.

Return type Int

get_class_histogram()

Creates a Histogram of integer values. Suitable for classification rasters with limited number values. If only single band is present histogram is returned directly.

Returns Histogram or [Histogram]

get_histogram()

Creates a Histogram for each band in the layer. If only single band is present histogram is returned directly.

Returns Histogram or [Histogram]

get_min_max()

Returns the maximum and minimum values of all of the rasters in the layer.

Returns (float, float)

get_partition_strategy()

Returns the partitioning strategy if the layer has one.

Returns HashPartitioner or SpatialPartitioner or SpaceTimePartitionStrategy or None

get_quantile_breaks (num_breaks)

Returns quantile breaks for this Layer.

Parameters num_breaks (int) – The number of breaks to return.

Returns [float]

get_quantile_breaks_exact_int (num_breaks)

Returns quantile breaks for this Layer. This version uses the FastMapHistogram, which counts exact integer values. If your layer has too many values, this can cause memory errors.

Parameters num_breaks (int) - The number of breaks to return.

Returns [int]

isEmpty()

Returns a bool that is True if the layer is empty and False if it is not.

Returns Are there elements within the layer

Return type bool

layer_type

map cells(func)

Maps over the cells of each Tile within the layer with a given function.

Note: This operation first needs to describing the wrapped RDD into Python and then serialize the RDD back into a TiledRasterRDD once the mapping is done. Thus, it is advised to chain together operations to reduce performance cost.

Parameters func (cells, nd => cells) - A function that takes two arguments: cells and nd. Where cells is the numpy array and nd is the no_data_value of the Tile. It returns cells which are the new cells values of the Tile represented as a numpy array.

Returns RasterLayer

map tiles(func)

Maps over each Tile within the layer with a given function.

Note: This operation first needs to describing the wrapped RDD into Python and then serialize the RDD back into a RasterRDD once the mapping is done. Thus, it is advised to chain together operations to reduce performance cost.

Parameters func (Tile => Tile) - A function that takes a Tile and returns a Tile.

Returns RasterLayer

merge (partition_strategy=None)

Merges the Tile of each K together to produce a single Tile.

This method will reduce each value by its key within the layer to produce a single (K, V) for every K. In order to achieve this, each Tile that shares a K is merged together to form a single Tile. This is done by replacing one Tile's cells with another's. Not all cells, if any, may be replaced, however. The following steps are taken to determine if a cell's value should be replaced:

- 1. If the cell contains a NoData value, then it will be replaced.
- 2. If no NoData value is set, then a cell with a value of 0 will be replaced.
- 3. If neither of the above are true, then the cell retain its value.

Parameters

- num_partitions (int, optional) The number of partitions that the resulting layer should be partitioned with. If None, then the num_partitions will the number of partitions the layer curretly has.
- partition_strategy (HashPartitionStrategy or SpatialPartitionStrategy or SpaceTimePartitionStrategy, optional) Sets the Partitioner for the resulting layer and how many partitions it has. Default is, None.

If None, then the output layer will be the same Partitioner and number of partitions as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting layer will have the Partioner specified in the strategy with the with same number of partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer will have the Partioner and number of partitions specified in the strategy.

Returns RasterLayer

partitionBy (partition_strategy=None)

Repartitions the layer using the given partitioning strategy.

Parameters partition_strategy (HashPartitionStrategy or SpatialPartitioinStrategy or SpaceTimePartitionStrategy, optional) - Sets the Partitioner for the resulting layer and how many partitions it has.

Default is, None.

If None, then the output layer will be the same as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting layer will have the Partioner specified in the strategy with the with same number of partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer will have the Partioner and number of partitions specified in the strategy.

Returns RasterLayer

persist (storageLevel=StorageLevel(False, True, False, False, 1))

Set this RDD's storage level to persist its values across operations after the first time it is computed. This can only be used to assign a new storage level if the RDD does not have a storage level set yet. If no storage level is specified defaults to (C{MEMORY_ONLY}).

pysc

Changes the cell values of a raster based on how the data is broken up in the given value_map.

Parameters

- **value_map** (dict) A dict whose keys represent values where a break should occur and its values are the new value the cells within the break should become.
- data_type (type) The type of the values within the rasters. Can either be int or float.
- classification_strategy (str or ClassificationStrategy, optional) How the cells should be classified along the breaks. If unspecified, then ClassificationStrategy.LESS_THAN_OR_EQUAL_TO will be used.
- replace_nodata_with (int or float, optional) When remapping values, NoData values must be treated separately. If NoData values are intended to be replaced during the reclassify, this variable should be set to the intended value. If unspecified, NoData values will be preserved.

Note: Specifying replace_nodata_with will change the value of given cells, but the NoData value of the layer will remain unchanged.

- fallback_value (int or float, optional) Represents the value that should be used when a cell's value does not fall within the classification_strategy. Default is to use the layer's NoData value.
- **strict** (bool, optional) Determines whether or not an error should be thrown if a cell's value does not fall within the classification_strategy. Default is, False.

Returns RasterLayer

repartition (num_partitions=None)

Repartitions the layer to have a different number of partitions.

Parameters num_partitions (int, optional) – Desired number of partitions. Default is, None. If None, then the exisiting number of partitions will be used.

Returns RasterLayer

reproject (target_crs, resample_method=<ResampleMethod.NEAREST_NEIGHBOR: 'NearestNeighbor'>)

Reproject rasters to target_crs. The reproject does not sample past tile boundary.

Parameters

- target_crs (str or int) Target CRS of reprojection. Either EPSG code, well-known name, or a PROJ.4 string.
- resample_method (str or ResampleMethod, optional) The resample method to use for the reprojection. If none is specified, then ResampleMethods. NEAREST_NEIGHBOR is used.

Returns RasterLayer

srdd

tile_to_layout (layout=LocalLayout(tile_cols=256, tile_rows=256), target_crs=None, resample_method=<ResampleMethod.NEAREST_NEIGHBOR: 'NearestNeighbor'>, partition_strategy=None)

Cut tiles to layout and merge overlapping tiles. This will produce unique keys.

Parameters

- layout (Metadata or TiledRasterLayer or LayoutDefinition or GlobalLayout or LocalLayout) Target raster layout for the tiling operation.
- target_crs (str or int, optional) Target CRS of reprojection. Either EPSG code, well-known name, or a PROJ.4 string. If None, no reproject will be perfomed.
- resample_method (str or ResampleMethod, optional) The cell resample method to used during the tiling operation. Default is "ResampleMethods.NEAREST_NEIGHBOR".
- partition_strategy (HashPartitionStrategy or SpatialPartitioinStrategy or SpaceTimePartitionStrategy, optional) Sets the Partitioner for the resulting layer and how many partitions it has. Default is, None.

If None, then the output layer will be the same Partitioner and number of partitions as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting layer will have the Partioner specified in the strategy with the with same number of partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer will have the Partioner and number of partitions specified in the strategy.

$\textbf{Returns} \ \textit{TiledRasterLayer}$

to_geotiff_rdd (storage_method=<StorageMethod.STRIPED: 'Striped'>, rows_per_strip=None, tile_dimensions=(256, 256), compression=<Compression.NO_COMPRESSION: 'NoCompression'>, color_space=<ColorSpace.BLACK_IS_ZERO: 1>, color_map=None, head_tags=None, band_tags=None)

Converts the rasters within this layer to GeoTiffs which are then converted to bytes. This is returned as a RDD[(K, bytes)]. Where K is either ProjectedExtent or TemporalProjectedExtent.

Parameters

- **storage_method** (str or *StorageMethod*, optional) How the segments within the GeoTiffs should be arranged. Default is StorageMethod.STRIPED.
- rows_per_strip (int, optional) How many rows should be in each strip segment of the GeoTiffs if storage_method is StorageMethod.STRIPED. If None, then the strip size will default to a value that is 8K or less.

- tile_dimensions ((int, int), optional) The length and width for each tile segment of the GeoTiff if storage_method is StorageMethod.TILED. If None then the default size is (256, 256).
- compression (str or Compression, optional) How the data should be compressed. Defaults to Compression. NO COMPRESSION.
- color_space (str or ColorSpace, optional) How the colors should be organized in the GeoTiffs. Defaults to ColorSpace.BLACK IS ZERO.
- **color_map** (*ColorMap*, optional) A ColorMap instance used to color the GeoTiffs to a different gradient.
- head_tags (dict, optional) A dict where each key and value is a str.
- band_tags (list, optional) A list of dicts where each key and value is a str.
- Note For more information on the contents of the tags, see www.gdal.org/gdal_datamodel.html

Returns RDD[(K, bytes)]

to_numpy_rdd()

Converts a RasterLayer to a numpy RDD.

Note: Depending on the size of the data stored within the RDD, this can be an exspensive operation and should be used with caution.

Returns RDD

to_png_rdd(color_map)

Converts the rasters within this layer to PNGs which are then converted to bytes. This is returned as a RDD[(K, bytes)].

Parameters color_map (ColorMap) - A ColorMap instance used to color the PNGs.

Returns RDD[(K, bytes)]

to_spatial_layer(target_time=None)

Converts a RasterLayer with a layout_type of LayoutType.SPACETIME to a RasterLayer with a layout_type of LayoutType.SPATIAL.

Parameters target_time (datetime.datetime, optional) — The instance of interest. If set, the resulting RasterLayer will only contain keys that contained the given instance. If None, then all values within the layer will be kept.

Returns RasterLayer

Raises ValueError - If the layer already has a layout_type of LayoutType. SPATIAL.

unpersist()

Mark the RDD as non-persistent, and remove all blocks for it from memory and disk.

with_no_data (no_data_value)

Changes the NoData value of the layer with the new given value.

It is possible to specify a NoData value for layers with raw values. The resulting layer will be of the same CellType but with a user defined NoData value. For example, if a layer has a CellType of

float32raw and a no_data_value of -10 is given, then the produced layer will have a CellType of float32ud-10.0.

If the target layer has a bool CellType, then the no_data_value will be ignored and the result layer will be the same as the origin. In order to assign a NoData value to a bool layer, the <code>convert_data_type()</code> method must be used.

Parameters no_data_value (int or float) - The new NoData value of the layer.

Returns RasterLayer

wrapped_rdds()

Returns the list of RDD-containing objects wrapped by this object. The default implementation assumes that subclass contains a single RDD container, srdd, which implements the persist() and unpersist() methods.

class geopyspark.TiledRasterLayer(layer_type, srdd)

Wraps a RDD of tiled, GeoTrellis rasters.

Represents a RDD that contains (K, V). Where K is either SpatialKey or SpaceTimeKey depending on the layer_type of the RDD, and V being a Tile.

The data held within the layer is tiled. This means that the rasters have been modified to fit a larger layout. For more information, see tiled-raster-rdd.

Parameters

- **layer_type** (str or *LayerType*) What the layer type of the geotiffs are. This is represented by either constants within LayerType or by a string.
- **srdd** (*py4j.java_gateway.JavaObject*) The coresponding Scala class. This is what allows TiledRasterLayer to access the various Scala methods.

pysc

pyspark.SparkContext - The SparkContext being used this session.

laver type

LayerType – What the layer type of the geotiffs are.

srdd

py4j.java_gateway.JavaObject — The coresponding Scala class. This is what allows RasterLayer to access the various Scala methods.

is_floating_point_layer

bool – Whether the data within the TiledRasterLayer is floating point or not.

layer_metadata

Metadata – The layer metadata associated with this layer.

zoom_level

int – The zoom level of the layer. Can be None.

aggregate_by_cell(operation)

Computes an aggregate summary for each cell of all of the values for each key.

The operation given is a local map algebra function that will be applied to all values that share the same key. If there are multiple copies of the same key in the layer, then this method will reduce all instances of the (K, Tile) pairs into a single element. This resulting (K, Tile)'s Tile will contain the aggregate summaries of each cell of the reduced Tiles that had the same K.

Note: Not all Operations are supported. Only SUM, MIN, MAX, MEAN, VARIANCE, AND STANDARD_DEVIATION can be used.

Note: If calculating VARIANCE or STANDARD_DEVIATION, then any K that is a single copy will have a resulting Tile that is filled with NoData values. This is because the variance of a single element is undefined.

Parameters operation (str or Operation) – The aggregate operation to be performed.

Returns TiledRasterLayer

bands (band)

Select a subsection of bands from the Tiles within the layer.

Note: There could be potential high performance cost if operations are performed between two sub-bands of a large data set.

Note: Due to the natue of GeoPySpark's backend, if selecting a band that is out of bounds then the error returned will be a py4j.protocol.Py4JJavaError and not a normal Python error.

Parameters band (int or tuple or list or range) — The band(s) to be selected from the Tiles. Can either be a single int, or a collection of ints.

Returns *TiledRasterLayer* with the selected bands.

cache()

Persist this RDD with the default storage level (C{MEMORY_ONLY}).

collect_keys()

Returns a list of all of the keys in the layer.

Note: This method should only be called on layers with a smaller number of keys, as a large number could cause memory issues.

```
Returns [:class:`~geopyspark.geotrellis.ProjectedExtent`] or
  [:class:`~geopyspark.geotrellis.TemporalProjectedExtent`]
```

convert_data_type (new_type, no_data_value=None)

Converts the underlying, raster values to a new CellType.

Parameters

- new_type (str or CellType) The data type the cells should be to converted to.
- no_data_value (int or float, optional) The value that should be marked as NoData.

Returns *TiledRasterLayer*

Raises

- ValueError If no_data_value is set and the new_type contains raw values.
- ValueError If no_data_value is set and new_type is a boolean.

count()

Returns how many elements are within the wrapped RDD.

Returns The number of elements in the RDD.

Return type Int

filter_by_times (time_intervals)

Filters a SPACETIME layer by keeping only the values whose keys fall within a the given time interval(s).

Parameters time_intervals ([datetime.datetime]) - A list of the time intervals to query. This list can have one or multiple elements. If just a single element, then only exact matches with that given time will be kept. If there are multiple times given, then they are each paired together so that they form ranges of time. In the case where there are an odd number of elements, then the remaining time will be treated as a single query and not a range.

Note: If nothing intersects the given time_intervals, then the returned TiledRasterLayer will be empty.

Returns TiledRasterLayer

focal (operation, neighborhood=None, param_1=None, param_2=None, param_3=None, partition strategy=None)

Performs the given focal operation on the layers contained in the Layer.

Parameters

- operation (str or Operation) The focal operation to be performed.
- neighborhood (str or Neighborhood, optional) The type of neighborhood to use in the focal operation. This can be represented by either an instance of Neighborhood, or by a constant.
- param_1 (int or float, optional) The first argument of neighborhood.
- param_2 (int or float, optional) The second argument of the neighborhood.
- param_3 (int or float, optional) The third argument of the neighborhood.
- partition_strategy (HashPartitionStrategy or SpatialPartitioinStrategy or SpaceTimePartitionStrategy, optional) Sets the Partitioner for the resulting layer and how many partitions it has. Default is, None.

If None, then the output layer will be the same Partitioner and number of partitions as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting layer will have the Partioner specified in the strategy with the with same number of partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer will have the Partioner and number of partitions specified in the strategy.

Note: param only need to be set if neighborhood is not an instance of Neighborhood or if neighborhood is None.

Any param that is not set will default to 0.0.

If neighborhood is None then operation must be Operation. ASPECT.

Returns *TiledRasterLayer*

Raises

- ValueError If operation is not a known operation.
- ValueError If neighborhood is not a known neighborhood.
- ValueError If neighborhood was not set, and operation is not Operation.
 ASPECT.

classmethod from_numpy_rdd(layer_type, numpy_rdd, metadata, zoom_level=None)

Create a TiledRasterLayer from a numpy RDD.

Parameters

- **layer_type** (str or *LayerType*) What the layer type of the geotiffs are. This is represented by either constants within *LayerType* or by a string.
- numpy_rdd (pyspark.RDD) A PySpark RDD that contains tuples of either SpatialKey or SpaceTimeKey and rasters that are represented by a numpy array.
- metadata (Metadata) The Metadata of the TiledRasterLayer instance.
- zoom_level (int, optional) The zoom_level the resulting TiledRasterLayer should have. If None, then the returned layer's zoom_level will be None.

Returns *TiledRasterLayer*

getNumPartitions()

Returns the number of partitions set for the wrapped RDD.

Returns The number of partitions.

Return type Int

get_class_histogram()

Creates a Histogram of integer values. Suitable for classification rasters with limited number values. If only single band is present histogram is returned directly.

Returns Histogram or [Histogram]

get_histogram()

Creates a Histogram for each band in the layer. If only single band is present histogram is returned directly.

Returns Histogram or [Histogram]

get_min_max()

Returns the maximum and minimum values of all of the rasters in the layer.

Returns (float, float)

get_partition_strategy()

Returns the partitioning strategy if the layer has one.

Returns HashPartitioner or SpatialPartitioner or SpaceTimePartitionStrategy or None

get_point_values (points, resample_method=None)

Returns the values of the layer at given points.

Note: Only points that are contained within a layer will be sampled. This means that if a point lies on the southern or eastern boundary of a cell, it will not be sampled.

Parameters

- or {k (points ([shapely.geometry.Point]) shapely.geometry.Point}): Either a list of, or a dictionary whose values are shapely.geometry.Points. If a dictionary, then the type of its keys does not matter. These points must be in the same projection as the tiles within the layer.
- resample_method (str or ResampleMethod, optional) The resampling method to use before obtaining the point values. If not specified, then None is used.

Note: Not all ResampleMethods can be used to resample point values. ResampleMethod.NEAREST_NEIGHBOR, ResampleMethod.BILINEAR`, ResampleMethod.CUBIC_CONVOLUTION, and ResampleMethod.CUBIC_SPLINE are the only ones that can be used.

Returns

The return type will vary depending on the type of points and the layer_type of the sampled layer.

If points is a list and the layer_type is SPATIAL: [(shapely.geometry.Point, [float])]

If points is a list and the layer_type is SPACETIME: [(shapely.geometry.Point, [(datetime.datetime, [float])])]

If points is a dict and the layer_type is SPATIAL: {k: (shapely.geometry.Point,
 [float])}

If points is a dict and the layer_type is SPACETIME: {k: (shapely.geometry.Point, [(datetime.datetime, [float])])}

The shapely.geometry.Point in all of these returns is the original sampled point given. The [float] are the sampled values, one for each band. If the layer_type was SPACETIME, then the timestamp will also be included in the results represented by a datetime.datetime instance. These times and their associated values will be given as a list of tuples for each point.

Note: The sampled values will always be returned as floats. Regardless of the cellType of the layer.

If points was given as a dict then the keys of that dictionary will be the keys in the returned dict.

get_quantile_breaks (num_breaks)

Returns quantile breaks for this Layer.

Parameters num_breaks (int) – The number of breaks to return.

Returns [float]

get_quantile_breaks_exact_int(num_breaks)

Returns quantile breaks for this Layer. This version uses the FastMapHistogram, which counts exact integer values. If your layer has too many values, this can cause memory errors.

Parameters num_breaks (int) – The number of breaks to return.

Returns [int]

histogram_series (geometries)

isEmpty()

Returns a bool that is True if the layer is empty and False if it is not.

Returns Are there elements within the layer

Return type bool

layer_type

local_max(value)

Determines the maximum value for each cell of each Tile in the layer.

This method takes a max_constant that is compared to each cell in the layer. If max_constant is larger, then the resulting cell value will be that value. Otherwise, that cell will retain its original value.

Note: NoData values are handled such that taking the max between a normal value and NoData value will always result in NoData.

Parameters value (int or float or *TiledRasterLayer*) – The constant value that will be compared to each cell. If this is a *TiledRasterLayer*, then *Tiles* who share a key will have each of their cell values compared.

Returns *TiledRasterLayer*

lookup (col, row)

Return the value(s) in the image of a particular SpatialKey (given by col and row).

Parameters

- $\operatorname{col}(int)$ The SpatialKey column.
- row (int) The SpatialKey row.

Returns [Tile]

Raises

- ValueError If using lookup on a non LayerType.SPATIAL TiledRasterLayer.
- IndexError If col and row are not within the TiledRasterLayer's bounds.

map cells(func)

Maps over the cells of each Tile within the layer with a given function.

Note: This operation first needs to describing the wrapped RDD into Python and then serialize the RDD back into a TiledRasterRDD once the mapping is done. Thus, it is advised to chain together operations

to reduce performance cost.

Parameters func (cells, nd => cells) - A function that takes two arguments: cells and nd. Where cells is the numpy array and nd is the no_data_value of the tile. It returns cells which are the new cells values of the tile represented as a numpy array.

Returns *TiledRasterLayer*

map_tiles(func)

Maps over each Tile within the layer with a given function.

Note: This operation first needs to describing the wrapped RDD into Python and then serialize the RDD back into a TiledRasterRDD once the mapping is done. Thus, it is advised to chain together operations to reduce performance cost.

Parameters func (Tile => Tile) - A function that takes a Tile and returns a Tile.

Returns TiledRasterLayer

mask (geometries, partition_strategy=None, options=RasterizerOptions(includePartial=True, sample-Type='PixelIsPoint'))

Masks the TiledRasterLayer so that only values that intersect the geometries will be available.

Parameters

• **geometries** (shapely.geometry or [shapely.geometry] or pyspark.RDD[shapely.geometry]) - Either a single, list, or Python RDD of shapely geometry/ies to mask the layer.

Note: All geometries must be in the same CRS as the TileLayer.

• partition_strategy (HashPartitionStrategy or SpatialPartitioinStrategy or SpaceTimePartitionStrategy, optional) - Sets the Partitioner for the resulting layer and how many partitions it has. Default is, None.

If None, then the output layer will be the same as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting layer will have the Partioner specified in the strategy with the with same number of partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer will have the Partioner and number of partitions specified in the strategy.

Note: This parameter will only be used if geometries is a pyspark.RDD.

• **options** (*RasterizerOptions*, optional) – During the mask operation, rasterization occurs. These options will change the pixel rasterization behavior. Default behavior is to include partial pixel intersection and to treat pixels as points.

Note: This parameter will only be used if geometries is a pyspark.RDD.

Returns TiledRasterLayer

max_series (geometries)

mean_series (geometries)

merge (partition_strategy=None)

Merges the Tile of each K together to produce a single Tile.

This method will reduce each value by its key within the layer to produce a single (K, V) for every K. In order to achieve this, each Tile that shares a K is merged together to form a single Tile. This is done by replacing one Tile's cells with another's. Not all cells, if any, may be replaced, however. The following steps are taken to determine if a cell's value should be replaced:

- 1. If the cell contains a NoData value, then it will be replaced.
- 2. If no NoData value is set, then a cell with a value of 0 will be replaced.
- 3. If neither of the above are true, then the cell retain its value.

Parameters

- num_partitions (int, optional) The number of partitions that the resulting layer should be partitioned with. If None, then the num_partitions will the number of partitions the layer curretly has.
- partition_strategy (HashPartitionStrategy or SpatialPartitioinStrategy or SpaceTimePartitionStrategy, optional) Sets the Partitioner for the resulting layer and how many partitions it has. Default is, None.

If None, then the output layer will be the same Partitioner and number of partitions as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting layer will have the Partioner specified in the strategy with the with same number of partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer will have the Partioner and number of partitions specified in the strategy.

Returns *TiledRasterLayer*

min series(geometries)

normalize (new_min, new_max, old_min=None, old_max=None)

Finds the min value that is contained within the given geometry.

Note: If old_max - old_min <= 0 or new_max - new_min <= 0, then the normalization will fail.

Parameters

• old_min (int or float, optional) - Old minimum. If not given, then the minimum value of this layer will be used.

- old_max(int or float, optional) Old maximum. If not given, then the minimum value of this layer will be used.
- new min (int or float) New minimum to normalize to.
- new max (int or float) New maximum to normalize to.

Returns *TiledRasterLayer*

partitionBy (partition strategy=None)

Repartitions the layer using the given partitioning strategy.

Parameters partition_strategy (HashPartitionStrategy SpatialPartitioinStrategy or SpaceTimePartitionStrategy, tional) - Sets the Partitioner for the resulting layer and how many partitions it has.

Default is, None. If None, then the output layer will be the same as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting layer will have the Partioner specified in the strategy with the with same number of partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer will have the Partioner and number of partitions specified in the strategy.

Returns *TiledRasterLayer*

persist (storageLevel=StorageLevel(False, True, False, False, 1))

Set this RDD's storage level to persist its values across operations after the first time it is computed. This can only be used to assign a new storage level if the RDD does not have a storage level set yet. If no storage level is specified defaults to (C{MEMORY_ONLY}).

polygonal_max (geometry, data_type)

Finds the max value for each band that is contained within the given geometry.

Parameters

- (shapely.geometry.Polygon or shapely.geometry. MultiPolygon or bytes) - A Shapely Polygon or MultiPolygon that represents the area where the summary should be computed; or a WKB representation of the geometry.
- data_type (type) The type of the values within the rasters. Can either be int or float.

Returns [int] or [float] depending on data_type.

Raises TypeError – If data type is not an int or float.

polygonal_mean (geometry)

Finds the mean of all of the values for each band that are contained within the given geometry.

Parameters geometry (shapely.geometry.Polygon or shapely.geometry. MultiPolygon or bytes) - A Shapely Polygon or MultiPolygon that represents the area where the summary should be computed; or a WKB representation of the geometry.

Returns [float]

polygonal_min (geometry, data_type)

Finds the min value for each band that is contained within the given geometry.

Parameters

or

- **geometry** (shapely.geometry.Polygon or shapely.geometry. MultiPolygon or bytes) A Shapely Polygon or MultiPolygon that represents the area where the summary should be computed; or a WKB representation of the geometry.
- data_type (type) The type of the values within the rasters. Can either be int or float.

Returns [int] or [float] depending on data_type.

Raises TypeError – If data type is not an int or float.

polygonal_sum(geometry, data_type)

Finds the sum of all of the values in each band that are contained within the given geometry.

Parameters

- **geometry** (shapely.geometry.Polygon or shapely.geometry. MultiPolygon or bytes) A Shapely Polygon or MultiPolygon that represents the area where the summary should be computed; or a WKB representation of the geometry.
- data_type (type) The type of the values within the rasters. Can either be int or float.

Returns [int] or [float] depending on data_type.

Raises TypeError - If data_type is not an int or float.

pyramid(resample_method=<ResampleMethod.NEAREST_NEIGHBOR: 'NearestNeighbor'>, partition_strategy=None)

Creates a layer Pyramid where the resolution is halved per level.

Parameters

- resample_method (str or ResampleMethod, optional) The resample method to use when building the pyramid. Default is ResampleMethods. NEAREST_NEIGHBOR.
- partition_strategy (HashPartitionStrategy or SpatialPartitioinStrategy or SpaceTimePartitionStrategy, optional) Sets the Partitioner for the resulting layer and how many partitions it has. Default is, None.

If None, then the output layer will be the same Partitioner and number of partitions as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting layer will have the Partioner specified in the strategy with the with same number of partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer will have the Partioner and number of partitions specified in the strategy.

Returns Pyramid.

Raises ValueError – If this layer layout is not of GlobalLayout type.

pysc

Changes the cell values of a raster based on how the data is broken up in the given value_map.

Parameters

- **value_map** (dict) A dict whose keys represent values where a break should occur and its values are the new value the cells within the break should become.
- data_type (type) The type of the values within the rasters. Can either be int or float.
- classification_strategy (str or ClassificationStrategy, optional) How the cells should be classified along the breaks. If unspecified, then ClassificationStrategy.LESS_THAN_OR_EQUAL_TO will be used.
- replace_nodata_with (int or float, optional) When remapping values, NoData values must be treated separately. If NoData values are intended to be replaced during the reclassify, this variable should be set to the intended value. If unspecified, NoData values will be preserved.

Note: Specifying replace_nodata_with will change the value of given cells, but the NoData value of the layer will remain unchanged.

- fallback_value (int or float, optional) Represents the value that should be used when a cell's value does not fall within the classification_strategy. Default is to use the layer's NoData value.
- **strict** (bool, optional) Determines whether or not an error should be thrown if a cell's value does not fall within the classification_strategy. Default is, False.

Returns *TiledRasterLayer*

repartition (num_partitions=None)

Repartitions the layer to have a different number of partitions.

Parameters num_partitions (int, optional) – Desired number of partitions. Default is, None. If None, then the exisiting number of partitions will be used.

Returns *TiledRasterLayer*

reproject (target_crs, resample_method=<ResampleMethod.NEAREST_NEIGHBOR: 'Nearest-Neighbor'>)

Reproject rasters to target_crs. The reproject does not sample past tile boundary.

Parameters

- target_crs (str or int) Target CRS of reprojection. Either EPSG code, well-known name, or a PROJ.4 string.
- resample_method (str or ResampleMethod, optional) The resample method to use for the reprojection. If none is specified, then ResampleMethods. NEAREST_NEIGHBOR is used.

Returns *TiledRasterLayer*

save_stitched (path, crop_bounds=None, crop_dimensions=None)

Stitch all of the rasters within the Layer into one raster and then saves it to a given path.

Parameters

- path (str) The path of the geotiff to save. The path must be on the local file system.
- **crop_bounds** (*Extent*, optional) The sub Extent with which to crop the raster before saving. If None, then the whole raster will be saved.

• **crop_dimensions** (tuple(int) or list(int), optional) - cols and rows of the image to save represented as either a tuple or list. If None then all cols and rows of the raster will be save.

Note: This can only be used on LayerType.SPATIAL TiledRasterLayers.

Note: If crop_dimensions is set then crop_bounds must also be set.

slope (zfactor_calculator)

Performs the Slope, focal operation on the first band of each Tile in the Layer.

The Slope operation will be carried out in a SQUARE neighborhood with with an extent of 1. A zfactor will be derived from the zfactor_calculator for each Tile in the Layer. The resulting Layer will have a cell_type of FLOAT64 regardless of the input Layer's cell_type; as well as have a single band, that represents the calculated slope.

Parameters zfactor_calculator (py4j.JavaObject) - A JavaObject that represents the Scala ZFactorCalculator class. This can be created using either the zfactor_lat_lng_calculator() or the zfactor_calculator() methods.

Returns TiledRasterLayer

srdd

star_series (geometries, fn)

stitch()

Stitch all of the rasters within the Layer into one raster.

Note: This can only be used on LayerType.SPATIAL TiledRasterLayers.

Returns Tile

sum_series (geometries)

tile_to_layout (layout, target_crs=None, resample_method=<ResampleMethod.NEAREST_NEIGHBOR: 'NearestNeighbor'>, partition_strategy=None)

Cut tiles to a given layout and merge overlapping tiles. This will produce unique keys.

Parameters

- layout (LayoutDefinition or Metadata or TiledRasterLayer or GlobalLayout or LocalLayout) Target raster layout for the tiling operation.
- target_crs (str or int, optional) Target CRS of reprojection. Either EPSG code, well-known name, or a PROJ.4 string. If None, no reproject will be perfomed.
- resample_method (str or ResampleMethod, optional) The resample method to use for the reprojection. If none is specified, then ResampleMethods. NEAREST_NEIGHBOR is used.
- partition_strategy (HashPartitionStrategy or SpatialPartitioinStrategy or SpaceTimePartitionStrategy, optional) Sets the Partitioner for the resulting layer and how many partitions it has. Default is, None.

If None, then the output layer will be the same Partitioner and number of partitions as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting layer will have the Partioner specified in the strategy with the with same number of partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer will have the Partioner and number of partitions specified in the strategy.

Returns *TiledRasterLayer*

to_geotiff_rdd (storage_method=<StorageMethod.STRIPED: 'Striped'>, rows_per_strip=None, tile_dimensions=(256, 256), compression=<Compression.NO_COMPRESSION: 'NoCompression'>, color_space=<ColorSpace.BLACK_IS_ZERO: 1>, color_map=None, head_tags=None, band_tags=None)

Converts the rasters within this layer to GeoTiffs which are then converted to bytes. This is returned as a RDD [(K, bytes)]. Where K is either SpatialKey or SpaceTimeKey.

Parameters

- **storage_method** (str or *StorageMethod*, optional) How the segments within the GeoTiffs should be arranged. Default is StorageMethod.STRIPED.
- rows_per_strip (int, optional) How many rows should be in each strip segment of the GeoTiffs if storage_method is StorageMethod.STRIPED. If None, then the strip size will default to a value that is 8K or less.
- tile_dimensions ((int, int), optional) The length and width for each tile segment of the GeoTiff if storage_method is StorageMethod.TILED. If None then the default size is (256, 256).
- **compression** (str or *Compression*, optional) How the data should be compressed. Defaults to Compression.NO_COMPRESSION.
- **color_space** (str or *ColorSpace*, optional) How the colors should be organized in the GeoTiffs. Defaults to ColorSpace.BLACK_IS_ZERO.
- **color_map** (*ColorMap*, optional) A ColorMap instance used to color the GeoTiffs to a different gradient.
- head_tags (dict, optional) A dict where each key and value is a str.
- band_tags (list, optional) A list of dicts where each key and value is a str.
- **Note** For more information on the contents of the tags, see www.gdal.org/gdal_datamodel.html

Returns RDD[(K, bytes)]

to_numpy_rdd()

Converts a TiledRasterLayer to a numpy RDD.

Note: Depending on the size of the data stored within the RDD, this can be an exspensive operation and should be used with caution.

Returns RDD

to png rdd(color map)

Converts the rasters within this layer to PNGs which are then converted to bytes. This is returned as a RDD[(K, bytes)].

Parameters color_map (ColorMap) – A ColorMap instance used to color the PNGs.

Returns RDD[(K, bytes)]

to_spatial_layer(target_time=None)

Converts a TiledRasterLayer with a layout_type of LayoutType.SPACETIME to a TiledRasterLayer with a layout_type of LayoutType.SPATIAL.

Parameters target_time (datetime.datetime, optional) — The instance of interest. If set, the resulting TiledRasterLayer will only contain keys that contained the given instance. If None, then all values within the layer will be kept.

Returns TiledRasterLayer

Raises ValueError - If the layer already has a layout_type of LayoutType. SPATIAL.

tobler()

Generates a Tobler walking speed layer from an elevation layer.

Note: This method has a known issue where the Tobler calculation is direction agnostic. Thus, all slopes are assumed to be uphill. This can result it incorrect results. A fix is currently being worked on.

Returns TiledRasterLayer

unpersist()

Mark the RDD as non-persistent, and remove all blocks for it from memory and disk.

with_no_data (no_data_value)

Changes the NoData value of the layer with the new given value.

It is possible to specify a NoData value for layers with raw values. The resulting layer will be of the same CellType but with a user defined NoData value. For example, if a layer has a CellType of float32raw and a no_data_value of -10 is given, then the produced layer will have a CellType of float32ud-10.0.

If the target layer has a bool CellType, then the no_data_value will be ignored and the result layer will be the same as the origin. In order to assign a NoData value to a bool layer, the <code>convert_data_type()</code> method must be used.

Parameters no data value (int or float) - The new NoData value of the layer.

Returns *TiledRasterLayer*

wrapped_rdds()

Returns the list of RDD-containing objects wrapped by this object. The default implementation assumes that subclass contains a single RDD container, srdd, which implements the persist() and unpersist() methods.

class geopyspark.Pyramid(levels)

Contains a list of TiledRasterLayers that make up a tile pyramid. Each layer represents a level within the pyramid. This class is used when creating a tile server.

Map algebra can performed on instances of this class.

Parameters levels (*list or dict*) - A list of TiledRasterLayers or a dict of TiledRasterLayers where the value is the layer itself and the key is its given zoom level.

pysc

pyspark.SparkContext – The SparkContext being used this session.

layer_type (class

~geopyspark.geotrellis.constants.LayerType): What the layer type of the geotiffs are.

levels

dict - A dict of TiledRasterLayers where the value is the layer itself and the key is its given zoom level.

max zoom

int – The highest zoom level of the pyramid.

is cached

bool – Signals whether or not the internal RDDs are cached. Default is False.

histogram

Histogram - The Histogram that represents the layer with the max zoomw. Will not be calculated unless the get_histogram() method is used. Otherwise, its value is None.

Raises TypeError – If levels is neither a list or dict.

cache()

Persist this RDD with the default storage level (C{MEMORY_ONLY}).

count ()

Returns how many elements are within the wrapped RDD.

Returns The number of elements in the RDD.

Return type Int

getNumPartitions()

Returns the number of partitions set for the wrapped RDD.

Returns The number of partitions.

Return type Int

get_histogram()

Calculates the Histogram for the layer with the max zoom.

Returns Histogram

get partition strategy()

Returns the partitioning strategy if the layer has one.

Returns HashPartitioner or SpatialPartitioner or SpaceTimePartitionStrategy or None

histogram

isEmpty()

Returns a bool that is True if the layer is empty and False if it is not.

Returns Are there elements within the layer

Return type bool

is cached

layer_type

levels

max zoom

persist (storageLevel=StorageLevel(False, True, False, False, 1))

Set this RDD's storage level to persist its values across operations after the first time it is computed. This can only be used to assign a new storage level if the RDD does not have a storage level set yet. If no storage level is specified defaults to (C{MEMORY_ONLY}).

pysc

unpersist()

Mark the RDD as non-persistent, and remove all blocks for it from memory and disk.

wrapped_rdds()

Returns a list of the wrapped, Scala RDDs within each layer of the pyramid.

Returns [org.apache.spark.rdd.RDD]

```
class geopyspark.Square(extent)
```

class geopyspark.Circle(radius)

A circle neighborhood.

Parameters radius (int or float) – The radius of the circle that determines which cells fall within the bounding box.

radius

int or float – The radius of the circle that determines which cells fall within the bounding box.

param 1

float - Same as radius.

param_2

float – Unused param for Circle. Is 0.0.

param_3

float – Unused param for Circle. Is 0.0.

name

str – The name of the neighborhood which is, "circle".

Note: Cells that lie exactly on the radius of the circle are apart of the neighborhood.

class geopyspark.Wedge(radius, start_angle, end_angle)

A wedge neighborhood.

Parameters

- radius (int or float) The radius of the wedge.
- **start_angle** (int or float) The starting angle of the wedge in degrees.
- end_angle (int or float) The ending angle of the wedge in degrees.

radius

int or float – The radius of the wedge.

start_angle

int or float – The starting angle of the wedge in degrees.

end angle

int or float – The ending angle of the wedge in degrees.

```
param 1
          float - Same as radius.
     param_2
          float – Same as start_angle.
     param 3
          float - Same as end angle.
          str - The name of the neighborhood which is, "wedge".
class geopyspark.Nesw(extent)
     A neighborhood that includes a column and row intersection for the focus.
          Parameters extent (int or float) - The extent of this neighborhood. This represents the
              how many cells past the focus the bounding box goes.
     extent
          int or float - The extent of this neighborhood. This represents the how many cells past the focus the
          bounding box goes.
     param_1
          float - Same as extent.
          float - Unused param for Nesw. Is 0.0.
     param 3
          float – Unused param for Nesw. Is 0.0.
     name
          str - The name of the neighborhood which is, "nesw".
class geopyspark.Annulus (inner_radius, outer_radius)
     An Annulus neighborhood.
          Parameters
                • inner_radius (int or float) - The radius of the inner circle.
                • outer_radius (int or float) - The radius of the outer circle.
     inner radius
          int or float – The radius of the inner circle.
     outer radius
          int or float – The radius of the outer circle.
          float - Same as inner_radius.
     param_2
          float - Same as outer_radius.
     param_3
          float – Unused param for Annulus. Is 0.0.
     name
          str – The name of the neighborhood which is, "annulus".
qeopyspark.rasterize(geoms, crs, zoom, fill_value, cell_type=<CellType.FLOAT64: 'float64'>, op-
                            tions=None, partition strategy=None)
     Rasterizes a Shapely geometries.
```

Parameters

- **geoms** ([shapely.geometry] or (shapely.geometry) or pyspark. RDD[shapely.geometry]) Either a list, tuple, or a Python RDD of shapely geometries to rasterize.
- **crs** (str or int) The CRS of the input geometry.
- **zoom** (*int*) The zoom level of the output raster.
- fill_value (int or float) Value to burn into pixels intersectiong geometry
- **cell_type** (str or *CellType*) Which data type the cells should be when created. Defaults to CellType.FLOAT64.
- options (RasterizerOptions, optional) Pixel intersection options.
- partition_strategy (HashPartitionStrategy or SpatialPartitioinStrategy, optional) Sets the Partitioner for the resulting layer and how many partitions it has. Default is, None.

If None, then the output layer will have the default Partitioner and a number of paritions that was determined by the method.

If partition_strategy is set but has no num_partitions, then the resulting layer will have the Partioner specified in the strategy with the with same number of partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer will have the Partioner and number of partitions specified in the strategy.

Returns *TiledRasterLayer*

Rasterizes a collection of Features.

Parameters

• features (pyspark.RDD [Feature]) - A Python RDD that contains Features.

Note: The properties of each Feature must be an instance of *CellValue*.

- crs (str or int) The CRS of the input geometry.
- **zoom** (*int*) The zoom level of the output raster.

Note: Not all rasterized Features may be present in the resulting layer if the zoom is not high enough.

- **cell_type** (str or *CellType*) Which data type the cells should be when created. Defaults to CellType.FLOAT64.
- options (RasterizerOptions, optional) Pixel intersection options.
- zindex_cell_type (str or CellType) Which data type the Z-Index cells are. Defaults to CellType.INT8.

• partition_strategy (HashPartitionStrategy or SpatialPartitioinStrategy, optional) - Sets the Partitioner for the resulting layer and how many partitions it has. Default is, None.

If None, then the output layer will have the default Partitioner and a number of paritions that was determined by the method.

If partition_strategy is set but has no num_partitions, then the resulting layer will have the Partioner specified in the strategy with the with same number of partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer will have the Partioner and number of partitions specified in the strategy.

Returns *TiledRasterLayer*

class geopyspark.TileRender(render_function)

A Python implementation of the Scala geopyspark.geotrellis.tms.TileRender interface. Permits a callback from Scala to Python to allow for custom rendering functions.

Parameters render_function (*Tile => PIL.Image.Image*) – A function to convert geopyspark.geotrellis.Tile to a PIL Image.

render function

Tile => PIL.Image.Image - A function to convert geopyspark.geotrellis.Tile to a PIL Image.

class Java

```
implements = ['geopyspark.geotrellis.tms.TileRender']
```

renderEncoded (scala_array)

A function to convert an array to an image.

Parameters scala_array - A linear array of bytes representing the protobuf-encoded contents of a tile

Returns bytes representing an image

requiresEncoding()

class geopyspark.TMS (server)

Provides a TMS server for raster data.

In order to display raster data on a variety of different map interfaces (e.g., leaflet maps, geojson.io, GeoNotebook, and others), we provide the TMS class.

Parameters server (JavaObject) – The Java TMSServer instance

pysc

pyspark.SparkContext – The SparkContext being used this session.

server

JavaObject - The Java TMSServer instance

host

str – The IP address of the host, if bound, else None

port

int – The port number of the TMS server, if bound, else None

url_pattern

string – The URI pattern for the current TMS service, with $\{z\}$, $\{x\}$, $\{y\}$ tokens. Can be copied directly to services such as *geojson.io*.

bind(host=None, requested_port=None)

Starts up a TMS server.

Parameters

- host (str, optional) The target host. Typically "localhost", "127.0.0.1", or "0.0.0.0". The latter will make the TMS service accessible from the world. If omitted, defaults to localhost.
- requested_port (optional, int) A port number to bind the service to. If omitted, use a random available port.

classmethod build(source, display, allow_overzooming=True)

Builds a TMS server from one or more layers.

This function takes a SparkContext, a source or list of sources, and a display method and creates a TMS server to display the desired content. The display method is supplied as a ColorMap (only available when there is a single source), or a callable object which takes either a single tile input (when there is a single source) or a list of tiles (for multiple sources) and returns the bytes representing an image file for that tile.

Parameters

- **source** (tuple or orlist or *Pyramid*) The tile sources to render. Tuple inputs are (str, str) pairs where the first component is the URI of a catalog and the second is the layer name. A list input may be any combination of tuples and *Pyramids*.
- **display** (ColorMap, callable) Method for mapping tiles to images. ColorMap may only be applied to single input source. Callable will take a single numpy array for a single source, or a list of numpy arrays for multiple sources. In the case of multiple inputs, resampling may be required if the tile sources have different tile sizes. Returns bytes representing the resulting image.
- **allow_overzooming** (bool) If set, viewing at zoom levels above the highest available zoom level will produce tiles that are resampled from the highest zoom level present in the data set.

host

Returns the IP string of the server's host if bound, else None.

Returns (str)

port

Returns the port number for the current TMS server if bound, else None.

```
Returns (int)
```

set_handshake(handshake)

unbind()

Shuts down the TMS service, freeing the assigned port.

url_pattern

Returns the URI for the tiles served by the present server. Contains $\{z\}$, $\{x\}$, and $\{y\}$ tokens to be substituted for the desired zoom and x/y tile position.

Returns (str)

geopyspark.union(layers)

Unions togther two or more RasterLayers or TiledRasterLayers.

All layers must have the same layer_type. If the layers are TiledRasterLayers, then all of the layers must also have the same TileLayout and CRS.

Note: If the layers to be unioned share one or more keys, then the resulting layer will contain duplicates of that key. One copy for each instance of the key.

Parameters layers ([RasterLayer] or [TiledRasterLayer] or (RasterLayer) or (TiledRasterLayer)) - A colection of two or more RasterLayers or TiledRasterLayers layers to be unioned together.

Returns RasterLayer or TiledRasterLayer

geopyspark.combine_bands (layers)

Combines the bands of values that share the same key in two or more TiledRasterLayers.

This method will concat the bands of two or more values with the same key. For example, layer a has values that have 2 bands and layer b has values with 1 band. When combine_bands is used on both of these layers, then the resulting layer will have values with 3 bands, 2 from layer a and 1 from layer b.

Note: All layers must have the same layer_type. If the layers are TiledRasterLayers, then all of the layers must also have the same *TileLayout* and CRS.

Parameters layers ([RasterLayer] or [TiledRasterLayer] or (RasterLayer) or (TiledRasterLayer)) - A colection of two or more RasterLayers or TiledRasterLayers. The order of the layers determines the order in which the bands are concatenated. With the bands being ordered based on the position of their respective layer.

For example, the first layer in layers is layer a which contains 2 bands and the second layer is layer b whose values have 1 band. The resulting layer will have values with 3 bands: the first 2 are from layer a and the third from layer b. If the positions of layer a and layer b are reversed, then the resulting values' first band will be from layer b and the last 2 will be from layer a.

Returns RasterLayer or TiledRasterLayer

class geopyspark.Feature

Represents a geometry that is derived from an OSM Element with that Element's associated metadata.

Parameters

- **geometry** (*shapely.geometry*) The geometry of the feature that is represented as a shapely.geometry. This geometry is derived from an OSM Element.
- **properties** (*Properties* or *CellValue*) The metadata associated with the OSM Element. Can be represented as either an instance of Properties or a CellValue.

geometry

shapely.geometry — The geometry of the feature that is represented as a shapely.geometry. This geometry is derived from an OSM Element.

properties

Properties or CellValue – The metadata associated with the OSM Element. Can be represented as either an instance of Properties or a CellValue.

count (*value*) \rightarrow integer – return number of occurrences of value

geometry

Alias for field number 0

index ($value[, start[, stop]]) \rightarrow integer - return first index of value. Raises ValueError if the value is not present.$

properties

Alias for field number 1

class geopyspark.Properties

Represents the metadata of an OSM Element.

This object is one of two types that can be used to represent the properties of a Feature.

Parameters

- **element_id** (*int*) The id of the OSM Element.
- user(str) The display name of the last user who modified/created the OSM Element.
- **uid** (*int*) The numeric id of the last user who modified the OSM Element.
- changeset (int) The OSM changeset number in which the OSM Element was created/modified.
- **version** (*int*) The edit version of the OSM Element.
- minor_version (int) Represents minor changes between versions of an OSM Element.
- timestamp (datetime.datetime) The time of the last modification to the OSM Element.
- visible (bool) Represents whether or not the OSM Element is deleted or not in the database.
- tags (dict) A dict of strs that represents the given features of the OSM Element.

element_id

int - The id of the OSM Element.

user

str – The display name of the last user who modified/created the OSM Element.

uid

int – The numeric id of the last user who modified the OSM Element.

changeset

int – The OSM changeset number in which the OSM Element was created/modified.

version

int – The edit version of the OSM Element.

minor version

int – Represents minor changes between versions of an OSM Element.

timestamp

datetime.datetime - The time of the last modification to the OSM Element.

visible

bool – Represents whether or not the OSM Element is deleted or not in the database.

tags

dict – A dict of strs that represents the given features of the OSM Element.

changeset

Alias for field number 3

count (value) \rightarrow integer – return number of occurrences of value

element id

Alias for field number 0

index (*value*[, *start*[, *stop*]]) \rightarrow integer – return first index of value.

Raises ValueError if the value is not present.

minor version

Alias for field number 5

tags

Alias for field number 8

timestamp

Alias for field number 6

uid

Alias for field number 2

11567

Alias for field number 1

version

Alias for field number 4

visible

Alias for field number 7

class geopyspark.CellValue

Represents the value and zindex of a geometry.

This object is one of two types that can be used to represent the properties of a Feature.

Parameters

- value (int or float) The value of all cells that intersects the associated geometry.
- **zindex** (*int*) The Z-Index of each cell that intersects the associated geometry. Z-Index determines which value a cell should be if multiple geometries intersect it. A high Z-Index will always be in front of a Z-Index of a lower value.

value

int or float – The value of all cells that intersects the associated geometry.

zindex

int – The Z-Index of each cell that intersects the associated geometry. Z-Index determines which value a cell should be if multiple geometries intersect it. A high Z-Index will always be in front of a Z-Index of a lower value.

count (*value*) \rightarrow integer – return number of occurrences of value

 $index(value[, start[, stop]]) \rightarrow integer - return first index of value.$

Raises ValueError if the value is not present.

value

Alias for field number 0

zindex

Alias for field number 1

3.13 geopyspark.geotrellis package

class geopyspark.geotrellis.Tile

Represents a raster in GeoPySpark.

Note: All rasters in GeoPySpark are represented as having multiple bands, even if the original raster just contained one.

Parameters

- **cells** (*nd.array*) The raster data itself. It is contained within a NumPy array.
- data_type (str) The data type of the values within data if they were in Scala.
- no_data_value The value that represents no data value in the raster. This can be represented by a variety of types depending on the value type of the raster.

cells

nd.array - The raster data itself. It is contained within a NumPy array.

data_type

str – The data type of the values within data if they were in Scala.

no data value

The value that represents no data value in the raster. This can be represented by a variety of types depending on the value type of the raster.

cell_type

Alias for field number 1

cells

Alias for field number 0

count (*value*) \rightarrow integer – return number of occurrences of value

static dtype_to_cell_type(dtype)

Converts a np.dtype to the corresponding GeoPySpark cell_type.

Note: bool, complex64, complex128, and complex256, are currently not supported np. dtypes.

Parameters dtype (np. dtype) – The dtype of the numpy array.

Returns str. The GeoPySpark cell_type equivalent of the dtype.

Raises TypeError – If the given dtype is not a supported data type.

classmethod from_numpy_array (numpy_array, no_data_value=None)

Creates an instance of Tile from a numpy array.

Parameters

• numpy_array (np.array) - The numpy array to be used to represent the cell values of the Tile.

Note: GeoPySpark does not support arrays with the following data types: bool, complex64, complex128, and complex256.

• no_data_value (optional) - The value that represents no data value in the raster. This can be represented by a variety of types depending on the value type of the raster. If not given, then the value will be None.

Returns Tile

index ($value[, start[, stop]]) \rightarrow integer - return first index of value.$

Raises ValueError if the value is not present.

no_data_value

Alias for field number 2

class geopyspark.geotrellis.Extent

The "bounding box" or geographic region of an area on Earth a raster represents.

Parameters

- **xmin** (*float*) The minimum x coordinate.
- **ymin** (float) The minimum y coordinate.
- **xmax** (*float*) The maximum x coordinate.
- ymax (float) The maximum y coordinate.

xmin

float – The minimum x coordinate.

ymin

float – The minimum y coordinate.

xmax

float – The maximum x coordinate.

vmax

float – The maximum y coordinate.

count (*value*) \rightarrow integer – return number of occurrences of value

classmethod from_polygon(polygon)

Creates a new instance of Extent from a Shapely Polygon.

The new Extent will contain the min and max coordinates of the Polygon; regardless of the Polygon's shape.

Parameters polygon (shapely.geometry.Polygon) - A Shapely Polygon.

```
Returns Extent
```

index (*value*[, *start*[, *stop*]]) \rightarrow integer – return first index of value.

Raises ValueError if the value is not present.

to_polygon

Converts this instance to a Shapely Polygon.

The resulting Polygon will be in the shape of a box.

Returns shapely.geometry.Polygon

xmax

Alias for field number 2

xmin

Alias for field number 0

ymax

Alias for field number 3

ymin

Alias for field number 1

class geopyspark.geotrellis.ProjectedExtent

Describes both the area on Earth a raster represents in addition to its CRS.

Parameters

- **extent** (*Extent*) The area the raster represents.
- epsg(int, optional) The EPSG code of the CRS.
- proj4 (str, optional) The Proj.4 string representation of the CRS.

extent

Extent – The area the raster represents.

epsg

int, optional – The EPSG code of the CRS.

proj4

str, optional – The Proj.4 string representation of the CRS.

Note: Either epsg or proj4 must be defined.

 $count(value) \rightarrow integer - return number of occurrences of value$

epsg

Alias for field number 1

extent

Alias for field number 0

index (*value*[, *start*[, *stop*]]) \rightarrow integer – return first index of value.

Raises ValueError if the value is not present.

proj4

Alias for field number 2

class geopyspark.geotrellis.TemporalProjectedExtent

Describes the area on Earth the raster represents, its CRS, and the time the data was collected.

Parameters

- **extent** (*Extent*) The area the raster represents.
- instant (datetime.datetime) The time stamp of the raster.
- epsg(int, optional) The EPSG code of the CRS.
- proj4 (str, optional) The Proj.4 string representation of the CRS.

extent

Extent – The area the raster represents.

instant

datetime.datetime - The time stamp of the raster.

epsg

int, optional – The EPSG code of the CRS.

proj4

str; optional - The Proj.4 string representation of the CRS.

Note: Either epsq or proj4 must be defined.

count (*value*) \rightarrow integer – return number of occurrences of value

epsg

Alias for field number 2

extent

Alias for field number 0

index ($value[, start[, stop]]) \rightarrow integer - return first index of value.$

Raises ValueError if the value is not present.

instant

Alias for field number 1

proj4

Alias for field number 3

class geopyspark.geotrellis.GlobalLayout

TileLayout type that spans global CRS extent.

When passed in place of LayoutDefinition it signifies that a LayoutDefinition instance should be constructed such that it fits the global CRS extent. The cell resolution of resulting layout will be one of resolutions implied by power of 2 pyramid for that CRS. Tiling to this layout will likely result in either up-sampling or downsampling the source raster.

Parameters

- tile_size (int) The number of columns and row pixels in each tile.
- **zoom** (*int*, *optional*) Override the zoom level in power of 2 pyramid.
- **threshold** (*float*, *optional*) The percentage difference between a cell size and a zoom level and the resolution difference between that zoom level and the next that is tolerated to snap to the lower-resolution zoom level. For example, if this paramter is 0.1, that means we're willing to downsample rasters with a higher resolution in order to fit them to some zoom level Z, if the difference is resolution is less than or equal to 10% the difference between the resolutions of zoom level Z and zoom level Z+1.

tile size

int – The number of columns and row pixels in each tile.

zoom

int – The desired zoom level of the layout.

threshold

float, optional – The percentage difference between a cell size and a zoom level and the resolution difference between that zoom level and the next that is tolerated to snap to the lower-resolution zoom level.

count (value) \rightarrow integer – return number of occurrences of value

index (value[, start[, stop[]]) \rightarrow integer – return first index of value. Raises ValueError if the value is not present.

threshold

Alias for field number 2

tile size

Alias for field number 0

zoom

Alias for field number 1

class geopyspark.geotrellis.LocalLayout

TileLayout type that snaps the layer extent.

When passed in place of LayoutDefinition it signifies that a LayoutDefinition instances should be constructed over the envelope of the layer pixels with given tile size. Resulting TileLayout will match the cell resolution of the source rasters.

Parameters

- **tile_size** (*int*, *optional*) The number of columns and row pixels in each tile. If this is None, then the sizes of each tile will be set using tile_cols and tile_rows.
- **tile_cols** (*int*, *optional*) The number of column pixels in each tile. This super-sedes tile_size. Meaning if this and tile_size are set, then this will be used for the number of column pixels. If None, then the number of column pixels will default to 256.
- tile_rows (int, optional) The number of rows pixels in each tile. This supersedes tile_size. Meaning if this and tile_size are set, then this will be used for the number of row pixels. If None, then the number of row pixels will default to 256.

tile cols

int - The number of column pixels in each tile

tile_rows

int – The number of rows pixels in each tile. This supersedes

 $count(value) \rightarrow integer-return number of occurrences of value$

index ($value[, start[, stop]]) \rightarrow integer - return first index of value.$

Raises ValueError if the value is not present.

tile_cols

Alias for field number 0

tile rows

Alias for field number 1

class geopyspark.geotrellis.LocalLayout

TileLayout type that snaps the layer extent.

When passed in place of LayoutDefinition it signifies that a LayoutDefinition instances should be constructed over the envelope of the layer pixels with given tile size. Resulting TileLayout will match the cell resolution of the source rasters.

Parameters

- **tile_size** (*int*, *optional*) The number of columns and row pixels in each tile. If this is None, then the sizes of each tile will be set using tile_cols and tile_rows.
- tile_cols (int, optional) The number of column pixels in each tile. This supersedes tile_size. Meaning if this and tile_size are set, then this will be used for the number of column pixels. If None, then the number of column pixels will default to 256.

• tile_rows (int, optional) - The number of rows pixels in each tile. This supersedes tile_size. Meaning if this and tile_size are set, then this will be used for the number of row pixels. If None, then the number of row pixels will default to 256.

tile cols

int - The number of column pixels in each tile

tile rows

int – The number of rows pixels in each tile. This supersedes

count (*value*) → integer – return number of occurrences of value

index (*value*[, *start*[, *stop*]]) \rightarrow integer – return first index of value.

Raises ValueError if the value is not present.

tile cols

Alias for field number 0

tile_rows

Alias for field number 1

class geopyspark.geotrellis.TileLayout

Describes the grid in which the rasters within a Layer should be laid out.

Parameters

- layoutCols (int) The number of columns of rasters that runs east to west.
- layoutRows (int) The number of rows of rasters that runs north to south.
- tileCols (int) The number of columns of pixels in each raster that runs east to west.
- tileRows (int) The number of rows of pixels in each raster that runs north to south.

layoutCols

int – The number of columns of rasters that runs east to west.

layoutRows

int – The number of rows of rasters that runs north to south.

tileCols

int – The number of columns of pixels in each raster that runs east to west.

tileRows

int – The number of rows of pixels in each raster that runs north to south.

 $\textbf{count} \; (\textit{value}) \; \rightarrow \text{integer-return number of occurrences of value}$

index (*value* [, *start* [, *stop*]]) \rightarrow integer – return first index of value.

Raises ValueError if the value is not present.

layoutCols

Alias for field number 0

layoutRows

Alias for field number 1

tileCols

Alias for field number 2

tileRows

Alias for field number 3

class geopyspark.geotrellis.LayoutDefinition

Describes the layout of the rasters within a Layer and how they are projected.

Parameters

- extent (Extent) The Extent of the layout.
- tileLayout (TileLayout) The TileLayout of how the rasters within the Layer.

extent

Extent - The Extent of the layout.

tileLayout

TileLayout - The TileLayout of how the rasters within the Layer.

count (*value*) \rightarrow integer – return number of occurrences of value

extent

Alias for field number 0

index (*value*[, *start*[, *stop*]]) \rightarrow integer – return first index of value.

Raises ValueError if the value is not present.

tileLayout

Alias for field number 1

class geopyspark.geotrellis.SpatialKey

Represents the position of a raster within a grid. This grid is a 2D plane where raster positions are represented by a pair of coordinates.

Parameters

- col (int) The column of the grid, the numbers run east to west.
- row (int) The row of the grid, the numbers run north to south.

col

int – The column of the grid, the numbers run east to west.

row

int – The row of the grid, the numbers run north to south.

col

Alias for field number 0

count (*value*) \rightarrow integer – return number of occurrences of value

index (*value* [, *start* [, *stop*]]) \rightarrow integer – return first index of value.

Raises ValueError if the value is not present.

row

Alias for field number 1

class geopyspark.geotrellis.SpaceTimeKey

Represents the position of a raster within a grid. This grid is a 3D plane where raster positions are represented by a pair of coordinates as well as a z value that represents time.

Parameters

- col (int) The column of the grid, the numbers run east to west.
- **row** (*int*) The row of the grid, the numbers run north to south.
- instant (datetime.datetime) The time stamp of the raster.

col

int – The column of the grid, the numbers run east to west.

```
row
           int – The row of the grid, the numbers run north to south.
     instant
           datetime.datetime - The time stamp of the raster.
     col
           Alias for field number 0
     count (value) \rightarrow integer – return number of occurrences of value
     index (value \mid , start \mid , stop \mid \mid ) \rightarrow integer – return first index of value.
           Raises ValueError if the value is not present.
     instant
           Alias for field number 2
     row
           Alias for field number 1
class geopyspark.geotrellis.RasterizerOptions
     Represents options available to geometry rasterizer
           Parameters
                 • includePartial (bool, optional) - Include partial pixel intersection (default:
                 • sampleType (str, optional) - 'PixelIsArea' or 'PixelIsPoint' (default: 'PixelIs-
                   Point')
     includePartial
           bool - Include partial pixel intersection.
     sampleType
           str – How the sampling should be performed during rasterization.
     count (value) \rightarrow integer – return number of occurrences of value
     includePartial
           Alias for field number 0
     index (value [, start [, stop ]]) \rightarrow integer – return first index of value.
           Raises ValueError if the value is not present.
     sampleType
           Alias for field number 1
class geopyspark.geotrellis.Bounds
     Represents the grid that covers the area of the rasters in a Layer on a grid.
           Parameters
                 • minKey (SpatialKey or SpaceTimeKey) - The smallest SpatialKey or
                   SpaceTimeKey.
                 • minKey - The largest SpatialKey or SpaceTimeKey.
     minKey
           SpatialKey or SpaceTimeKey - The smallest SpatialKey or SpaceTimeKey.
     minKey
           SpatialKey or SpaceTimeKey - The largest SpatialKey or SpaceTimeKey.
     count (value) \rightarrow integer – return number of occurrences of value
```

index ($value[, start[, stop]]) \rightarrow integer - return first index of value. Raises ValueError if the value is not present.$

maxKey

Alias for field number 1

minKey

Alias for field number 0

class geopyspark.geotrellis.Metadata(bounds, crs, cell_type, extent, layout_definition)

Information of the values within a RasterLayer or TiledRasterLayer. This data pertains to the layout and other attributes of the data within the classes.

Parameters

- **bounds** (*Bounds*) The Bounds of the values in the class.
- **crs** (str or int) The CRS of the data. Can either be the EPSG code, well-known name, or a PROJ.4 projection string.
- **cell_type** (str or *CellType*) The data type of the cells of the rasters.
- **extent** (*Extent*) The Extent that covers the all of the rasters.
- layout_definition (LayoutDefinition) The LayoutDefinition of all rasters.

bounds

Bounds - The Bounds of the values in the class.

crs

str or int – The CRS of the data. Can either be the EPSG code, well-known name, or a PROJ.4 projection string.

cell_type

str – The data type of the cells of the rasters.

no data value

int or float or None - The noData value of the rasters within the layer. This can either be None, an int, or a float depending on the cell_type.

extent

Extent – The Extent that covers the all of the rasters.

tile_layout

 ${\it TileLayout}$ – The ${\it TileLayout}$ that describes how the rasters are orginized.

layout_definition

LayoutDefinition - The LayoutDefinition of all rasters.

classmethod from_dict (metadata_dict)

Creates Metadata from a dictionary.

Parameters metadata_dict (dict) - The Metadata of a RasterLayer or TiledRasterLayer instance that is in dict form.

Returns Metadata

to_dict()

Converts this instance to a dict.

Returns dict

3.13.1 geopyspark.geotrellis.catalog module

Methods for reading, querying, and saving tile layers to and from GeoTrellis Catalogs.

geopyspark.geotrellis.catalog.read_layer_metadata(uri, layer_name, layer_zoom)

Reads the metadata from a saved layer without reading in the whole layer.

Parameters

- **uri** (str) The Uniform Resource Identifier used to point towards the desired GeoTrellis catalog to be read from. The shape of this string varies depending on backend.
- layer_name (str) The name of the GeoTrellis catalog to be read from.
- layer_zoom (int) The zoom level of the layer that is to be read.

Returns Metadata

Reads a single Tile from a GeoTrellis catalog. Unlike other functions in this module, this will not return a TiledRasterLayer, but rather a GeoPySpark formatted raster.

Note: When requesting a tile that does not exist, None will be returned.

Parameters

- **uri** (str) The Uniform Resource Identifier used to point towards the desired GeoTrellis catalog to be read from. The shape of this string varies depending on backend.
- layer_name (str) The name of the GeoTrellis catalog to be read from.
- layer_zoom (int) The zoom level of the layer that is to be read.
- **col** (*int*) The col number of the tile within the layout. Cols run east to west.
- row (int) The row number of the tile within the layout. Row run north to south.
- **zdt** (datetime.datetime) The time stamp of the tile if the data is spatial-temporal. This is represented as a datetime.datetime. instance. The default value is, None. If None, then only the spatial area will be queried.

Returns Tile

Queries a single, zoom layer from a GeoTrellis catalog given spatial and/or time parameters.

Note: The whole layer could still be read in if intersects and/or time_intervals have not been set, or if the querried region contains the entire layer.

Parameters

- **layer_type** (str or *LayerType*) What the layer type of the geotiffs are. This is represented by either constants within LayerType or by a string.
- **uri** (str) The Uniform Resource Identifier used to point towards the desired GeoTrellis catalog to be read from. The shape of this string varies depending on backend.

- layer_name (str) The name of the GeoTrellis catalog to be querried.
- layer_zoom (int, optional) The zoom level of the layer that is to be querried. If None, then the layer_zoom will be set to 0.
- query_geom (bytes or shapely geometry or Extent, Optional) The desired spatial area to be returned. Can either be a string, a shapely geometry, or instance of Extent, or a WKB verson of the geometry.

Note: Not all shapely geometires are supported. The following is are the types that are supported: * Point * Polygon * MultiPolygon

Note: Only layers that were made from spatial, singleband GeoTiffs can query a Point. All other types are restricted to Polygon and MulitPolygon.

Note: If the queried region does not intersect the layer, then an empty layer will be returned.

If not specified, then the entire layer will be read.

- time_intervals ([datetime.datetime], optional) A list of the time intervals to query. This parameter is only used when querying spatial-temporal data. The default value is, None. If None, then only the spatial area will be querried.
- query_proj (int or str, optional) The crs of the querried geometry if it is different than the layer it is being filtered against. If they are different and this is not set, then the returned TiledRasterLayer could contain incorrect values. If None, then the geometry and layer are assumed to be in the same projection.
- num_partitions (int, optional) Sets RDD partition count when reading from catalog.

Returns *TiledRasterLayer*

Parameters

- **uri** (str) The Uniform Resource Identifier used to point towards the desired location for the tile layer to written to. The shape of this string varies depending on backend.
- layer_name (str) The name of the new, tile layer.
- layer zoom (int) The zoom level the layer should be saved at.
- tiled_raster_layer (TiledRasterLayer) The TiledRasterLayer to be saved.
- index_strategy (str or IndexingMethod) The method used to orginize the saved data. Depending on the type of data within the layer, only certain methods are available. Can either be a string or a IndexingMethod attribute. The default method used is, IndexingMethod.ZORDER.

- time_unit (str or TimeUnit, optional) Which time unit should be used when saving spatial-temporal data. This controls the resolution of each index. Meaning, what time intervals are used to seperate each record. While this is set to None as default, it must be set if saving spatial-temporal data. Depending on the indexing method chosen, different time units are used.
- **time_resolution** (*str or int, optional*) Determines how data for each time unit should be grouped together. By default, no grouping will occur.

As an example, having a time_unit of WEEKS and a time_resolution of 5 will cause the data to be grouped and stored together in units of 5 weeks. If however time_resolution is not specified, then the data will be grouped and stored in units of single weeks.

This value can either be an int or a string representation of an int.

• **store** (str or *AttributeStore*, optional) – AttributeStore instance or URI for layer metadata lookup.

class geopyspark.geotrellis.catalog.AttributeStore(uri)

AttributeStore provides a way to read and write GeoTrellis layer attributes.

Internally all attribute values are stored as JSON, here they are exposed as dictionaries. Classes often stored have a .from_dict and .to_dict methods to bridge the gap:

```
import geopyspark as gps
store = gps.AttributeStore("s3://azavea-datahub/catalog")
hist = store.layer("us-nlcd2011-30m-epsg3857", zoom=7).read("histogram")
hist = gps.Histogram.from_dict(hist)
```

class Attributes (store, layer_name, layer_zoom)

Accessor class for all attributes for a given layer

delete(name)

Delete attribute by name

Parameters name (str) – Attribute name

read(name)

Read layer attribute by name as a dict

Parameters name (str) -

Returns Attribute value

Return type dict

write(name, value)

Write layer attribute value as a dict

Parameters

- name (str) Attribute name
- **value** (dict) Attribute value

classmethod build(store)

Builds AttributeStore from URI or passes an instance through.

Parameters uri (str or AttributeStore) - URI for AttributeStore object or instance.

Returns AttributeStore

${\tt classmethod}$ ${\tt cached}$ (uri)

Returns cached version of AttributeStore for URI or creates one

```
contains (name, zoom=None)
```

Checks if this store contains a layer metadata.

Parameters

- name (str) Layer name
- zoom (int, optional) Layer zoom

Returns bool

delete(name, zoom=None)

Delete layer and all its attributes

Parameters

- name (str) Layer name
- zoom (int, optional) Layer zoom

layer (name, zoom=None)

Layer Attributes object for given layer :param name: Layer name :type name: str :param zoom: Layer zoom :type zoom: int, optional

Returns Attributes

layers()

List all layers Attributes objects

Returns [:class:`~geopyspark.geotrellis.catalog.AttributeStore.
Attributes`]

3.13.2 geopyspark.geotrellis.color module

This module contains functions needed to create color maps used in coloring tiles, PNGs, and GeoTiffs.

```
geopyspark.geotrellis.color.get_colors_from_colors(colors)
```

Returns a list of integer colors from a list of Color objects from the colortools package.

Parameters colors ([colortools.Color]) – A list of color stops using colortools.Color

Returns [int]

 $\verb|geopyspark.geotrellis.color.get_colors_from_matplotlib| (|\textit{ramp_name}|, |\textit{ramp_name}|, |$

num_colors=256)

Returns a list of color breaks from the color ramps defined by Matplotlib.

Parameters

- $ramp_name(str)$ The name of a matplotlib color ramp. See the matplotlib documentation for a list of names and details on each color ramp.
- num_colors (int, optional) The number of color breaks to derive from the named map.

Returns [int]

class geopyspark.geotrellis.color.ColorMap(cmap)

A class that wraps a GeoTrellis ColorMap class.

Parameters cmap (py4j.java_gateway.JavaObject) - The JavaObject that represents the GeoTrellis ColorMap.

cmap

py4j.java_gateway.JavaObject - The JavaObject that represents the GeoTrellis ColorMap.

 $\begin{tabular}{ll} \textbf{classmethod build} (breaks, & colors=None, & no_data_color=0, & fallback=0, & classification_strategy=<ClassificationStrategy.LESS_THAN_OR_EQUAL_TO: \\ `LessThanOrEqualTo'>) \end{tabular}$

Given breaks and colors, build a ColorMap object.

Parameters

- breaks (dict or list or np.ndarray or Histogram) If a dict then a mapping from tile values to colors, the latter represented as integers e.g., 0xff000080 is red at half opacity. If a list then tile values that specify breaks in the color mapping. If a Histogram then a histogram from which breaks can be derived.
- **colors** (str or list, optional) If a str then the name of a matplotlib color ramp. If a list then either a list of colortools Color objects or a list of integers containing packed RGBA values. If None, then the ColorMap will be created from the breaks given.
- no_data_color (int, optional) A color to replace NODATA values with
- **fallback** (*int*, *optional*) A color to replace cells that have no value in the mapping
- classification_strategy (str or ClassificationStrategy, optional) A string giving the strategy for converting tile values to colors. e.g., if ClassificationStrategy.LESS_THAN_OR_EQUAL_TO is specified, and the break map is {3: 0xff0000ff, 4: 0x00ff00ff}, then values up to 3 map to red, values from above 3 and up to and including 4 become green, and values over 4 become the fallback color.

Returns ColorMap

 $\begin{tabular}{ll} \textbf{classmethod from_break_map} & \textit{loreak_map}, & \textit{no_data_color=0}, & \textit{fallback=0}, & \textit{classification_strategy=} < \textit{ClassificationStrategy.LESS_THAN_OR_EQUAL_TO:} \\ & \textit{`LessThanOrEqualTo'>}) \end{tabular}$

Converts a dictionary mapping from tile values to colors to a ColorMap.

Parameters

- **break_map** (dict) A mapping from tile values to colors, the latter represented as integers e.g., 0xff000080 is red at half opacity.
- no_data_color (int, optional) A color to replace NODATA values with
- fallback (int, optional) A color to replace cells that have no value in the mapping
- classification_strategy (str or ClassificationStrategy, optional) A string giving the strategy for converting tile values to colors. e.g., if ClassificationStrategy.LESS_THAN_OR_EQUAL_TO is specified, and the break map is {3: 0xff0000ff, 4: 0x00ff00ff}, then values up to 3 map to red, values from above 3 and up to and including 4 become green, and values over 4 become the fallback color.

Returns ColorMap

Converts lists of values and colors to a ColorMap.

Parameters

• **breaks** (list) – The tile values that specify breaks in the color mapping.

- **color_list** ([int]) The colors corresponding to the values in the breaks list, represented as integers—e.g., 0xff000080 is red at half opacity.
- no_data_color (int, optional) A color to replace NODATA values with
- **fallback** (int, optional) A color to replace cells that have no value in the mapping
- classification_strategy (str or ClassificationStrategy, optional) A string giving the strategy for converting tile values to colors. e.g., if ClassificationStrategy.LESS_THAN_OR_EQUAL_TO is specified, and the break map is {3: 0xff0000ff, 4: 0x00ff00ff}, then values up to 3 map to red, values from above 3 and up to and including 4 become green, and values over 4 become the fallback color.

Returns ColorMap

Converts a wrapped GeoTrellis histogram into a ColorMap.

Parameters

- histogram (Histogram) A Histogram instance; specifies breaks
- color_list ([int]) The colors corresponding to the values in the breaks list, represented as integers e.g., 0xff000080 is red at half opacity.
- no_data_color (int, optional) A color to replace NODATA values with
- **fallback** (*int*, *optional*) A color to replace cells that have no value in the mapping
- classification_strategy (str or ClassificationStrategy, optional) A string giving the strategy for converting tile values to colors. e.g., if ClassificationStrategy.LESS_THAN_OR_EQUAL_TO is specified, and the break map is {3: 0xff0000ff, 4: 0x00ff00ff}, then values up to 3 map to red, values from above 3 and up to and including 4 become green, and values over 4 become the fallback color.

Returns ColorMap

static nlcd_colormap()

Returns a color map for NLCD tiles.

Returns ColorMap

3.13.3 geopyspark.geotrellis.combine_bands module

geopyspark.geotrellis.combine_bands.combine_bands(layers)

Combines the bands of values that share the same key in two or more TiledRasterLayers.

This method will concat the bands of two or more values with the same key. For example, layer a has values that have 2 bands and layer b has values with 1 band. When combine_bands is used on both of these layers, then the resulting layer will have values with 3 bands, 2 from layer a and 1 from layer b.

Note: All layers must have the same layer_type. If the layers are TiledRasterLayers, then all of the layers must also have the same *TileLayout* and CRS.

Parameters layers ([RasterLayer] or [TiledRasterLayer] or (RasterLayer) or (TiledRasterLayer)) - A colection of two or more RasterLayers or TiledRasterLayers. The order of the layers determines the order in which the bands are concatenated. With the bands being ordered based on the position of their respective layer.

For example, the first layer in layers is layer a which contains 2 bands and the second layer is layer b whose values have 1 band. The resulting layer will have values with 3 bands: the first 2 are from layer a and the third from layer b. If the positions of layer a and layer b are reversed, then the resulting values' first band will be from layer b and the last 2 will be from layer a.

Returns RasterLayer or TiledRasterLayer

3.13.4 geopyspark.geotrellis.constants module

Constants that are used by geopyspark.geotrellis classes, methods, and functions.

```
geopyspark.geotrellis.constants.NO_DATA_INT = -2147483648

The default size of each tile in the resulting layer.
```

```
class geopyspark.geotrellis.constants.LayerType
```

The type of the key within the tuple of the wrapped RDD.

```
SPACETIME = 'spacetime'
SPATIAL = 'spatial'
```

Indicates that the RDD contains (K, V) pairs, where the K has a spatial and time attribute. Both TemporalProjectedExtent and SpaceTimeKey are examples of this type of K.

```
{\bf class} \ {\bf geopy spark. geotrellis. constants. } {\bf Indexing Method}
```

How the wrapped should be indexed when saved.

```
HILBERT = 'hilbert'
```

A key indexing method. Works only for RDDs that contain <code>SpatialKey</code>. This method provides the fastest lookup of all the key indexing method, however, it does not give good locality guarantees. It is recommended then that this method should only be used when locality is not important for your analysis.

```
ROWMAJOR = 'rowmajor'
ZORDER = 'zorder'
```

A key indexing method. Works for RDDs that contain both <code>SpatialKey</code> and <code>SpaceTimeKey</code>. Note, indexes are determined by the x, y, and if <code>SPACETIME</code>, the temporal resolutions of a point. This is expressed in bits, and has a max value of 62. Thus if the sum of those resolutions are greater than 62, then the indexing will fail.

class geopyspark.geotrellis.constants.ResampleMethod
 Resampling Methods.

```
AVERAGE = 'Average'

BILINEAR = 'Bilinear'

CUBIC_CONVOLUTION = 'CubicConvolution'

CUBIC_SPLINE = 'CubicSpline'

LANCZOS = 'Lanczos'

MAX = 'Max'

MEDIAN = 'Median'

MIN = 'Min'
```

```
MODE = 'Mode'
    NEAREST_NEIGHBOR = 'NearestNeighbor'
class geopyspark.geotrellis.constants.TimeUnit
    ZORDER time units.
    DAYS = 'days'
    HOURS = 'hours'
    MILLIS = 'millis'
    MINUTES = 'minutes'
    MONTHS = 'months'
    SECONDS = 'seconds'
    WEEKS = 'weeks'
    YEARS = 'years'
class geopyspark.geotrellis.constants.Operation
    Focal opertions.
    ASPECT = 'Aspect'
    MAX = 'Max'
    MEAN = 'Mean'
    MEDIAN = 'Median'
    MIN = 'Min'
    MODE = 'Mode'
    STANDARD_DEVIATION = 'StandardDeviation'
    SUM = 'Sum'
    VARIANCE = 'Variance'
class geopyspark.geotrellis.constants.Neighborhood
    Neighborhood types.
    ANNULUS = 'Annulus'
    CIRCLE = 'Circle'
    NESW = 'Nesw'
    SQUARE = 'Square'
    WEDGE = 'Wedge'
class geopyspark.geotrellis.constants.ClassificationStrategy
    Classification strategies for color mapping.
    EXACT = 'Exact'
    GREATER_THAN = 'GreaterThan'
    GREATER_THAN_OR_EQUAL_TO = 'GreaterThanOrEqualTo'
    LESS_THAN = 'LessThan'
    LESS_THAN_OR_EQUAL_TO = 'LessThanOrEqualTo'
```

```
class geopyspark.geotrellis.constants.CellType
    Cell types.
    BOOL = 'bool'
    BOOLRAW = 'boolraw'
    FLOAT32 = 'float32'
    FLOAT32RAW = 'float32raw'
    FLOAT64 = 'float64'
    FLOAT64RAW = 'float64raw'
    INT16 = 'int16'
    INT16RAW = 'int16raw'
    INT32 = 'int32'
    INT32RAW = 'int32raw'
    INT8 = 'int8'
    INT8RAW = 'int8raw'
    UINT16 = 'uint16'
    UINT16RAW = 'uint16raw'
    UINT8 = 'uint8'
    UINT8RAW = 'uint8raw'
class geopyspark.geotrellis.constants.ColorRamp
    ColorRamp names.
    BLUE_TO_ORANGE = 'BlueToOrange'
    BLUE_TO_RED = 'BlueToRed'
    CLASSIFICATION_BOLD_LAND_USE = 'ClassificationBoldLandUse'
    CLASSIFICATION_MUTED_TERRAIN = 'ClassificationMutedTerrain'
    COOLWARM = 'CoolWarm'
    GREEN TO RED ORANGE = 'GreenToRedOrange'
    HEATMAP_BLUE_TO_YELLOW_TO_RED_SPECTRUM = 'HeatmapBlueToYellowToRedSpectrum'
    HEATMAP DARK RED TO YELLOW WHITE = 'HeatmapDarkRedToYellowWhite'
    HEATMAP_LIGHT_PURPLE_TO_DARK_PURPLE_TO_WHITE = 'HeatmapLightPurpleToDarkPurpleToWhite'
    HEATMAP_YELLOW_TO_RED = 'HeatmapYellowToRed'
    Hot = 'Hot'
    INFERNO = 'Inferno'
    LIGHT_TO_DARK_GREEN = 'LightToDarkGreen'
    LIGHT_TO_DARK_SUNSET = 'LightToDarkSunset'
    LIGHT_YELLOW_TO_ORANGE = 'LightYellowToOrange'
    MAGMA = 'Magma'
    PLASMA = 'Plasma'
```

```
VIRIDIS = 'Viridis'
geopyspark.geotrellis.constants.DEFAULT_MAX_TILE_SIZE = 256
    The default byte size of each partition.
geopyspark.geotrellis.constants.DEFAULT_PARTITION_BYTES = 1343225856
    The default number of bytes that should be read in at a time.
geopyspark.geotrellis.constants.DEFAULT_CHUNK_SIZE = 65536
    The default name of the GeoTiff tag that contains the timestamp for the tile.
geopyspark.geotrellis.constants.DEFAULT_GEOTIFF_TIME_TAG = 'TIFFTAG_DATETIME'
    The default pattern that will be parsed from the time Tag.
geopyspark.geotrellis.constants.DEFAULT_GEOTIFF_TIME_FORMAT = 'yyyy:MM:dd HH:mm:ss'
    The default S3 Client to use when reading layers in.
class geopyspark.geotrellis.constants.StorageMethod
    Internal storage methods for GeoTiffs.
    STRIPED = 'Striped'
    TILED = 'Tiled'
class geopyspark.geotrellis.constants.ColorSpace
    Color space types for GeoTiffs.
    BLACK_IS_ZERO = 1
    CFA = 32803
    CIE LAB = 8
    CMYK = 5
    ICC_LAB = 9
    ITU LAB = 10
    LINEAR RAW = 34892
    LOG_L = 32844
    LOG LUV = 32845
    PALETTE = 3
    RGB = 2
    TRANSPARENCY MASK = 4
    WHITE IS ZERO = 0
    Y CB CR = 6
class geopyspark.geotrellis.constants.Compression
    Compression methods for GeoTiffs.
    DEFLATE_COMPRESSION = 'DeflateCompression'
    NO_COMPRESSION = 'NoCompression'
class geopyspark.geotrellis.constants.Unit
    Represents the units of elevation.
    FEET = 'Feet'
    METERS = 'Meters'
```

3.13.5 geopyspark.geotrellis.cost distance module

```
geopyspark.geotrellis.cost_distance.cost_distance(friction_layer, max_distance)
Performs cost distance of a TileLayer.
geometries, max_distance
```

Parameters

- **friction_layer** (*TiledRasterLayer*) TiledRasterLayer of a friction surface to traverse.
- **geometries** (list) A list of shapely geometries to be used as a starting point.

Note: All geometries must be in the same CRS as the TileLayer.

• max_distance (int or float) - The maximum cost that a path may reach before the operation. stops. This value can be an int or float.

Returns *TiledRasterLayer*

3.13.6 geopyspark.geotrellis.euclidean_distance module

Calculates the Euclidean distance of a Shapely geometry.

Parameters

- **geometry** (*shapely.geometry*) The input geometry to compute the Euclidean distance for.
- **source_crs** (str or int) The CRS of the input geometry.
- **zoom** (*int*) The zoom level of the output raster.
- **cell_type** (str or *CellType*, optional) The data type of the cells for the new layer. If not specified, then CellType.FLOAT64 is used.

Note: This function may run very slowly for polygonal inputs if they cover many cells of the output raster.

Returns TiledRasterLayer

3.13.7 geopyspark.geotrellis.geotiff module

This module contains functions that create RasterLayer from files.

```
geopyspark.geotrellis.geotiff.get (layer_type, uri, crs=None, max_tile_size=256, num_partitions=None, chunk_size=65536, partition_bytes=1343225856, time_tag='TIFFTAG_DATETIME', time_format='yyyy:MM:dd HH:mm:ss', delimiter=None, s3_client='default')

Creates a RasterLayer from GeoTiffs that are located on the local file system, HDFS, or S3.
```

Parameters

• **layer_type** (str or *LayerType*) – What the layer type of the geotiffs are. This is represented by either constants within LayerType or by a string.

Note: All of the GeoTiffs must have the same saptial type.

- uri (str or [str]) The path or list of paths to the desired tile(s)/directory(ies).
- **crs** (str or int, optional) The CRS that the output tiles should be in. If None, then the CRS that the tiles were originally in will be used.
- max_tile_size (int or None, optional) The max size of each tile in the resulting Layer. If the size is smaller than the read in tile, then that tile will be broken into smaller sections of the given size. Defaults to DEFAULT_MAX_TILE_SIZE. If None, then the whole tile will be read in.
- num_partitions (int, optional) The number of partitions Spark will make when the data is repartitioned. If None, then the data will not be repartitioned.

Note: If max_tile_size is also specified then this parameter will be ignored.

- partition_bytes (int, optional) The desired number of bytes per partition. This is will ensure that at least one item is assigned for each partition. Defaults to DEFAULT_PARTITION_BYTES.
- **chunk_size** (*int*, *optional*) How many bytes of the file should be read in at a time. Defaults to DEFAULT_CHUNK_SIZE.
- time_tag(str, optional) The name of the tiff tag that contains the time stamp for the tile. Defaults to DEFAULT_GEOTIFF_TIME_TAG.
- **time_format** (*str*, *optional*) The pattern of the time stamp to be parsed. Defaults to <code>DEFAULT_GEOTIFF_TIME_FORMAT</code>.
- **delimiter** (str, optional) The delimiter to use for S3 object listings.

Note: This parameter will only be used when reading from S3.

• **s3_client** (*str*, *optional*) — Which S3Cleint to use when reading Geo-Tiffs from S3. There are currently two options: default and mock. Defaults to DEFAULT S3 CLIENT.

Note: mock should only be used in unit tests and debugging.

Returns RasterLayer

3.13.8 geopyspark.geotrellis.hillshade module

Computes Hillshade (shaded relief) from a raster.

The resulting raster will be a shaded relief map (a hill shading) based on the sun altitude, azimuth, and the zfactor. The zfactor is a conversion factor from map units to elevation units.

The hillshade` operation will be carried out in a SQUARE neighborhood with with an extent of 1. The zfactor will be derived from the zfactor_calculator for each Tile in the Layer. The resulting Layer will have a cell_type of INT16 regardless of the input Layer's cell_type; as well as have a single band, that represents the calculated hillshade.

Returns a raster of ShortConstantNoDataCellType.

For descriptions of parameters, please see Esri Desktop's description of Hillshade.

Parameters

- **tiled_raster_layer** (*TiledRasterLayer*) The base layer that contains the rasters used to compute the hillshade.
- **zfactor_calculator** (*py4j.JavaObject*) A JavaObject that represents the Scala ZFactorCalculator class. This can be created using either the zfactor_lat_lng_calculator() or the zfactor_calculator() methods.
- band (int, optional) The band of the raster to base the hillshade calculation on. Default is 0.
- azimuth (float, optional) The azimuth angle of the source of light. Default value is 315.0.
- altitude (float, optional) The angle of the altitude of the light above the horizon. Default is 45.0.

Returns TiledRasterLayer

3.13.9 geopyspark.geotrellis.histogram module

This module contains the Histogram class which is a wrapper of the GeoTrellis Histogram class.

```
class geopyspark.geotrellis.histogram.Histogram(scala_histogram)
    A wrapper class for a GeoTrellis Histogram.
```

The underlying histogram is produced from the values within a *TiledRasterLayer*. These values represented by the histogram can either be Int or Float depending on the data type of the cells in the layer.

Parameters scala_histogram (py4j.JavaObject) - An instance of the GeoTrellis histogram.

scala_histogram

py4j.JavaObject – An instance of the GeoTrellis histogram.

bin_counts()

Returns a list of tuples where the key is the bin label value and the value is the label's respective count.

```
Returns [(int, int)] or [(float, int)]
```

bucket_count()

Returns the number of buckets within the histogram.

Returns int

cdf()

Returns the cdf of the distribution of the histogram.

```
Returns [(float, float)]
```

classmethod from_dict(value)

Encodes histogram as a dictionary

item count (item)

Returns the total number of times a given item appears in the histogram.

Parameters item (int or float) - The value whose occurences should be counted.

Returns The total count of the occurences of item in the histogram.

Return type int

max()

The largest value of the histogram.

This will return either an int or float depending on the type of values within the histogram.

Returns int or float

mean()

Determines the mean of the histogram.

Returns float

median()

Determines the median of the histogram.

Returns float

merge (other_histogram)

Merges this instance of Histogram with another. The resulting Histogram will contain values from both "Histogram"s

Parameters other_histogram (*Histogram*) - The Histogram that should be merged with this instance.

Returns Histogram

min()

The smallest value of the histogram.

This will return either an int or float depending on the type of values within the histogram.

Returns int or float

min max()

The largest and smallest values of the histogram.

This will return either an int or float depending on the type of values within the histogram.

Returns (int, int) or (float, float)

mode()

Determines the mode of the histogram.

This will return either an int or float depedning on the type of values within the histogram.

Returns int or float

quantile_breaks (num_breaks)

Returns quantile breaks for this Layer.

Parameters num_breaks (int) – The number of breaks to return.

Returns [int]

to dict()

Encodes histogram as a dictionary

Returns dict

values()

Lists each indiviual value within the histogram.

This will return a list of either "int"s or "float"s depedning on the type of values within the histogram.

Returns [int] or [float]

3.13.10 geopyspark.geotrellis.layer module

This module contains the RasterLayer and the TiledRasterLayer classes. Both of these classes are wrappers of their Scala counterparts. These will be used in leau of actual PySpark RDDs when performing operations.

class geopyspark.geotrellis.layer.RasterLayer(layer_type, srdd)

A wrapper of a RDD that contains GeoTrellis rasters.

Represents a layer that wraps a RDD that contains (K, V). Where K is either <code>ProjectedExtent</code> or <code>TemporalProjectedExtent</code> depending on the <code>layer_type</code> of the RDD, and V being a <code>Tile</code>.

The data held within this layer has not been tiled. Meaning the data has yet to be modified to fit a certain layout. See raster rdd for more information.

Parameters

- layer_type (str or LayerType) What the layer type of the geotiffs are. This is represented by either constants within LayerType or by a string.
- **srdd** (*py4j.java_gateway.JavaObject*) The coresponding Scala class. This is what allows RasterLayer to access the various Scala methods.

pysc

pyspark.SparkContext – The SparkContext being used this session.

layer_type

LayerType – What the layer type of the geotiffs are.

srdd

py4j.java_gateway.JavaObject — The coresponding Scala class. This is what allows RasterLayer to access the various Scala methods.

bands (band)

Select a subsection of bands from the Tiles within the layer.

Note: There could be potential high performance cost if operations are performed between two sub-bands of a large data set.

Note: Due to the natue of GeoPySpark's backend, if selecting a band that is out of bounds then the error returned will be a py4j.protocol.Py4JJavaError and not a normal Python error.

Parameters band (int or tuple or list or range) - The band(s) to be selected from the Tiles. Can either be a single int, or a collection of ints.

Returns *RasterLayer* with the selected bands.

cache()

Persist this RDD with the default storage level (C{MEMORY ONLY}).

collect_keys()

Returns a list of all of the keys in the layer.

Note: This method should only be called on layers with a smaller number of keys, as a large number could cause memory issues.

```
Returns [:class:`~geopyspark.geotrellis.SpatialKey`] or
[:ob:`~geopyspark.geotrellis.SpaceTimeKey`]
```

collect_metadata(layout=LocalLayout(tile_cols=256, tile_rows=256))

Iterate over the RDD records and generates layer metadata desribing the contained rasters.

```
:param layout (LayoutDefinition or: GlobalLayout or
```

LocalLayout, **optional**): Target raster layout for the tiling operation.

Returns Metadata

convert_data_type (new_type, no_data_value=None)

Converts the underlying, raster values to a new CellType.

Parameters

- new_type (str or CellType) The data type the cells should be to converted to.
- no_data_value(int or float, optional) The value that should be marked as NoData.

Returns RasterLayer

Raises

- ValueError If no_data_value is set and the new_type contains raw values.
- ValueError If no_data_value is set and new_type is a boolean.

count()

Returns how many elements are within the wrapped RDD.

Returns The number of elements in the RDD.

Return type Int

filter_by_times (time_intervals)

Filters a SPACETIME layer by keeping only the values whose keys fall within a the given time interval(s).

Parameters time_intervals ([datetime.datetime]) - A list of the time intervals to query. This list can have one or multiple elements. If just a single element, then only exact matches with that given time will be kept. If there are multiple times given, then they are each paired together so that they form ranges of time. In the case where there are an odd number of elements, then the remaining time will be treated as a single query and not a range.

Note: If nothing intersects the given time_intervals, then the returned RasterLayer will be empty.

Returns RasterLayer

classmethod from_numpy_rdd(layer_type, numpy_rdd)

Create a RasterLayer from a numpy RDD.

Parameters

- **layer_type** (str or *LayerType*) What the layer type of the geotiffs are. This is represented by either constants within *LayerType* or by a string.
- numpy_rdd (pyspark.RDD) A PySpark RDD that contains tuples of either ProjectedExtents or TemporalProjectedExtents and rasters that are represented by a numpy array.

Returns RasterLayer

getNumPartitions()

Returns the number of partitions set for the wrapped RDD.

Returns The number of partitions.

Return type Int

get_class_histogram()

Creates a Histogram of integer values. Suitable for classification rasters with limited number values. If only single band is present histogram is returned directly.

Returns Histogram or [Histogram]

get_histogram()

Creates a Histogram for each band in the layer. If only single band is present histogram is returned directly.

Returns Histogram or [Histogram]

get_min_max()

Returns the maximum and minimum values of all of the rasters in the layer.

Returns (float, float)

get_partition_strategy()

Returns the partitioning strategy if the layer has one.

Returns HashPartitioner or SpatialPartitioner or SpaceTimePartitionStrategy or None

get_quantile_breaks (num_breaks)

Returns quantile breaks for this Layer.

Parameters num_breaks (int) – The number of breaks to return.

Returns [float]

get_quantile_breaks_exact_int (num_breaks)

Returns quantile breaks for this Layer. This version uses the FastMapHistogram, which counts exact integer values. If your layer has too many values, this can cause memory errors.

Parameters num_breaks (int) – The number of breaks to return.

Returns [int]

isEmpty()

Returns a bool that is True if the layer is empty and False if it is not.

Returns Are there elements within the layer

Return type bool

map_cells (func)

Maps over the cells of each Tile within the layer with a given function.

Note: This operation first needs to describing the wrapped RDD into Python and then serialize the RDD back into a TiledRasterRDD once the mapping is done. Thus, it is advised to chain together operations to reduce performance cost.

Parameters func (cells, nd => cells) - A function that takes two arguments: cells and nd. Where cells is the numpy array and nd is the no_data_value of the Tile. It returns cells which are the new cells values of the Tile represented as a numpy array.

Returns RasterLayer

map_tiles(func)

Maps over each Tile within the layer with a given function.

Note: This operation first needs to describing the wrapped RDD into Python and then serialize the RDD back into a RasterRDD once the mapping is done. Thus, it is advised to chain together operations to reduce performance cost.

Parameters func (Tile => Tile) - A function that takes a Tile and returns a Tile.

Returns RasterLayer

merge (partition_strategy=None)

Merges the Tile of each K together to produce a single Tile.

This method will reduce each value by its key within the layer to produce a single (K, V) for every K. In order to achieve this, each Tile that shares a K is merged together to form a single Tile. This is done by replacing one Tile's cells with another's. Not all cells, if any, may be replaced, however. The following steps are taken to determine if a cell's value should be replaced:

- 1. If the cell contains a NoData value, then it will be replaced.
- 2. If no NoData value is set, then a cell with a value of 0 will be replaced.
- 3. If neither of the above are true, then the cell retain its value.

Parameters

- num_partitions (int, optional) The number of partitions that the resulting layer should be partitioned with. If None, then the num_partitions will the number of partitions the layer curretly has.
- partition_strategy (HashPartitionStrategy or SpatialPartitioinStrategy or SpaceTimePartitionStrategy, optional) Sets the Partitioner for the resulting layer and how many partitions it has. Default is, None.

If None, then the output layer will be the same Partitioner and number of partitions as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting layer will have the Partioner specified in the strategy with the with same number of partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer will have the Partioner and number of partitions specified in the strategy.

Returns RasterLayer

partitionBy (partition_strategy=None)

Repartitions the layer using the given partitioning strategy.

Parameters partition_strategy (HashPartitionStrategy or SpatialPartitioinStrategy or SpaceTimePartitionStrategy, optional) - Sets the Partitioner for the resulting layer and how many partitions it has. Default is, None.

If None, then the output layer will be the same as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting layer will have the Partioner specified in the strategy with the with same number of partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer will have the Partioner and number of partitions specified in the strategy.

Returns RasterLayer

```
persist (storageLevel=StorageLevel(False, True, False, False, 1))
```

Set this RDD's storage level to persist its values across operations after the first time it is computed. This can only be used to assign a new storage level if the RDD does not have a storage level set yet. If no storage level is specified defaults to (C{MEMORY_ONLY}).

Changes the cell values of a raster based on how the data is broken up in the given value_map.

Parameters

- **value_map** (*dict*) A dict whose keys represent values where a break should occur and its values are the new value the cells within the break should become.
- data type (type) The type of the values within the rasters. Can either be int or float.
- classification_strategy (str or ClassificationStrategy, optional) How the cells should be classified along the breaks. If unspecified, then ClassificationStrategy.LESS_THAN_OR_EQUAL_TO will be used.
- replace_nodata_with (int or float, optional) When remapping values, NoData values must be treated separately. If NoData values are intended to be replaced during the reclassify, this variable should be set to the intended value. If unspecified, NoData values will be preserved.

Note: Specifying replace_nodata_with will change the value of given cells, but the NoData value of the layer will remain unchanged.

• **fallback_value** (int or float, optional) - Represents the value that should be used when a cell's value does not fall within the classification_strategy. Default is to use the layer's NoData value.

• **strict** (bool, optional) - Determines whether or not an error should be thrown if a cell's value does not fall within the classification_strategy. Default is, False.

Returns RasterLayer

repartition (num partitions=None)

Repartitions the layer to have a different number of partitions.

Parameters num_partitions (int, optional) – Desired number of partitions. Default is, None. If None, then the exisiting number of partitions will be used.

Returns RasterLayer

reproject (target_crs, resample_method=<ResampleMethod.NEAREST_NEIGHBOR: 'Nearest-Neighbor'>)

Reproject rasters to target_crs. The reproject does not sample past tile boundary.

Parameters

- target_crs (str or int) Target CRS of reprojection. Either EPSG code, well-known name, or a PROJ.4 string.
- resample_method (str or ResampleMethod, optional) The resample method to use for the reprojection. If none is specified, then ResampleMethods. NEAREST NEIGHBOR is used.

Returns RasterLayer

Cut tiles to layout and merge overlapping tiles. This will produce unique keys.

Parameters

- layout (Metadata or TiledRasterLayer or LayoutDefinition or GlobalLayout or LocalLayout) Target raster layout for the tiling operation.
- target_crs (str or int, optional) Target CRS of reprojection. Either EPSG code, well-known name, or a PROJ.4 string. If None, no reproject will be performed.
- resample_method (str or ResampleMethod, optional) The cell resample method to used during the tiling operation. Default is "ResampleMethods.NEAREST_NEIGHBOR".
- partition_strategy (HashPartitionStrategy or SpatialPartitionStrategy or SpaceTimePartitionStrategy, optional) Sets the Partitioner for the resulting layer and how many partitions it has. Default is, None.

If None, then the output layer will be the same Partitioner and number of partitions as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting layer will have the Partioner specified in the strategy with the with same number of partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer will have the Partioner and number of partitions specified in the strategy.

Returns TiledRasterLayer

to_geotiff_rdd (storage_method=<StorageMethod.STRIPED: 'Striped'>, rows_per_strip=None, tile_dimensions=(256, 256), compression=<Compression.NO_COMPRESSION: 'NoCompression'>, color_space=<ColorSpace.BLACK_IS_ZERO: 1>, color_map=None, head_tags=None, band_tags=None)

Converts the rasters within this layer to GeoTiffs which are then converted to bytes. This is returned as a RDD [(K, bytes)]. Where K is either ProjectedExtent or TemporalProjectedExtent.

Parameters

- **storage_method** (str or *StorageMethod*, optional) How the segments within the GeoTiffs should be arranged. Default is StorageMethod.STRIPED.
- rows_per_strip (int, optional) How many rows should be in each strip segment of the GeoTiffs if storage_method is StorageMethod.STRIPED. If None, then the strip size will default to a value that is 8K or less.
- tile_dimensions ((int, int), optional) The length and width for each tile segment of the GeoTiff if storage_method is StorageMethod.TILED. If None then the default size is (256, 256).
- **compression** (str or *Compression*, optional) How the data should be compressed. Defaults to Compression.NO_COMPRESSION.
- **color_space** (str or *ColorSpace*, optional) How the colors should be organized in the GeoTiffs. Defaults to ColorSpace.BLACK_IS_ZERO.
- **color_map** (*ColorMap*, optional) A ColorMap instance used to color the GeoTiffs to a different gradient.
- head_tags (dict, optional) A dict where each key and value is a str.
- band_tags (list, optional) A list of dicts where each key and value is a str.
- **Note** For more information on the contents of the tags, see www.gdal.org/gdal_datamodel.html

Returns RDD[(K, bytes)]

to_numpy_rdd()

Converts a RasterLayer to a numpy RDD.

Note: Depending on the size of the data stored within the RDD, this can be an exspensive operation and should be used with caution.

Returns RDD

to png rdd(color map)

Converts the rasters within this layer to PNGs which are then converted to bytes. This is returned as a RDD[(K, bytes)].

Parameters color_map (ColorMap) - A ColorMap instance used to color the PNGs.

Returns RDD[(K, bytes)]

to spatial laver(target time=None)

Converts a RasterLayer with a layout_type of LayoutType. SPACETIME to a RasterLayer with a layout_type of LayoutType. SPATIAL.

Parameters target_time (datetime.datetime, optional) — The instance of interest. If set, the resulting RasterLayer will only contain keys that contained the given instance. If None, then all values within the layer will be kept.

Returns RasterLayer

Raises ValueError - If the layer already has a layout_type of LayoutType. SPATIAL.

unpersist()

Mark the RDD as non-persistent, and remove all blocks for it from memory and disk.

with_no_data (no_data_value)

Changes the NoData value of the layer with the new given value.

It is possible to specify a NoData value for layers with raw values. The resulting layer will be of the same CellType but with a user defined NoData value. For example, if a layer has a CellType of float32raw and a no_data_value of -10 is given, then the produced layer will have a CellType of float32ud-10.0.

If the target layer has a bool CellType, then the no_data_value will be ignored and the result layer will be the same as the origin. In order to assign a NoData value to a bool layer, the <code>convert_data_type()</code> method must be used.

Parameters no_data_value (int or float) - The new NoData value of the layer.

Returns RasterLayer

wrapped_rdds()

Returns the list of RDD-containing objects wrapped by this object. The default implementation assumes that subclass contains a single RDD container, srdd, which implements the persist() and unpersist() methods

class geopyspark.geotrellis.layer.TiledRasterLayer(layer_type, srdd)
 Wraps a RDD of tiled, GeoTrellis rasters.

Represents a RDD that contains (K, V). Where K is either SpatialKey or SpaceTimeKey depending on the layer_type of the RDD, and V being a Tile.

The data held within the layer is tiled. This means that the rasters have been modified to fit a larger layout. For more information, see tiled-raster-rdd.

Parameters

- layer_type (str or LayerType) What the layer type of the geotiffs are. This is represented by either constants within LayerType or by a string.
- **srdd** (*py4j.java_gateway.JavaObject*) The coresponding Scala class. This is what allows TiledRasterLayer to access the various Scala methods.

pysc

pyspark.SparkContext – The SparkContext being used this session.

layer_type

LayerType – What the layer type of the geotiffs are.

srdd

py4j.java_gateway.JavaObject – The coresponding Scala class. This is what allows RasterLayer to access the various Scala methods.

is_floating_point_layer

bool – Whether the data within the TiledRasterLayer is floating point or not.

layer metadata

Metadata - The layer metadata associated with this layer.

zoom_level

int – The zoom level of the layer. Can be None.

aggregate_by_cell(operation)

Computes an aggregate summary for each cell of all of the values for each key.

The operation given is a local map algebra function that will be applied to all values that share the same key. If there are multiple copies of the same key in the layer, then this method will reduce all instances of the (K, Tile) pairs into a single element. This resulting (K, Tile)'s Tile will contain the aggregate summaries of each cell of the reduced Tiles that had the same K.

Note: Not all Operations are supported. Only SUM, MIN, MAX, MEAN, VARIANCE, AND STANDARD_DEVIATION can be used.

Note: If calculating VARIANCE or STANDARD_DEVIATION, then any K that is a single copy will have a resulting Tile that is filled with NoData values. This is because the variance of a single element is undefined.

Parameters operation (str or Operation) – The aggregate operation to be performed.

Returns TiledRasterLayer

bands (band)

Select a subsection of bands from the Tiles within the layer.

Note: There could be potential high performance cost if operations are performed between two sub-bands of a large data set.

Note: Due to the natue of GeoPySpark's backend, if selecting a band that is out of bounds then the error returned will be a py4j.protocol.Py4JJavaError and not a normal Python error.

Parameters band (int or tuple or list or range) — The band(s) to be selected from the Tiles. Can either be a single int, or a collection of ints.

Returns *TiledRasterLayer* with the selected bands.

cache()

Persist this RDD with the default storage level (C{MEMORY_ONLY}).

collect_keys()

Returns a list of all of the keys in the layer.

Note: This method should only be called on layers with a smaller number of keys, as a large number could cause memory issues.

```
Returns [:class:`~geopyspark.geotrellis.ProjectedExtent`] or
   [:class:`~geopyspark.geotrellis.TemporalProjectedExtent`]
```

convert_data_type (new_type, no_data_value=None)

Converts the underlying, raster values to a new CellType.

Parameters

- new_type (str or CellType) The data type the cells should be to converted to.
- no_data_value(int or float, optional)—The value that should be marked as NoData.

Returns *TiledRasterLayer*

Raises

- ValueError If no_data_value is set and the new_type contains raw values.
- ValueError If no_data_value is set and new_type is a boolean.

count()

Returns how many elements are within the wrapped RDD.

Returns The number of elements in the RDD.

Return type Int

filter_by_times (time_intervals)

Filters a SPACETIME layer by keeping only the values whose keys fall within a the given time interval(s).

Parameters time_intervals ([datetime.datetime]) - A list of the time intervals to query. This list can have one or multiple elements. If just a single element, then only exact matches with that given time will be kept. If there are multiple times given, then they are each paired together so that they form ranges of time. In the case where there are an odd number of elements, then the remaining time will be treated as a single query and not a range.

Note: If nothing intersects the given time_intervals, then the returned TiledRasterLayer will be empty.

Returns *TiledRasterLayer*

focal (operation, neighborhood=None, param_1=None, param_2=None, param_3=None, partition strategy=None)

Performs the given focal operation on the layers contained in the Layer.

Parameters

- **operation** (str or *Operation*) The focal operation to be performed.
- neighborhood (str or Neighborhood, optional) The type of neighborhood to use in the focal operation. This can be represented by either an instance of Neighborhood, or by a constant.
- param_1 (int or float, optional) The first argument of neighborhood.
- param_2 (int or float, optional) The second argument of the neighborhood.
- param_3 (int or float, optional) The third argument of the neighborhood.

• partition_strategy (HashPartitionStrategy or SpatialPartitioinStrategy or SpaceTimePartitionStrategy, optional) - Sets the Partitioner for the resulting layer and how many partitions it has. Default is. None.

If None, then the output layer will be the same Partitioner and number of partitions as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting layer will have the Partioner specified in the strategy with the with same number of partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer will have the Partioner and number of partitions specified in the strategy.

Note: param only need to be set if neighborhood is not an instance of Neighborhood or if neighborhood is None.

Any param that is not set will default to 0.0.

If neighborhood is None then operation must be Operation. ASPECT.

Returns *TiledRasterLayer*

Raises

- ValueError If operation is not a known operation.
- ValueError If neighborhood is not a known neighborhood.
- ValueError If neighborhood was not set, and operation is not Operation. ASPECT.

classmethod from_numpy_rdd (layer_type, numpy_rdd, metadata, zoom_level=None)
 Create a TiledRasterLayer from a numpy RDD.

Parameters

- **layer_type** (str or *LayerType*) What the layer type of the geotiffs are. This is represented by either constants within *LayerType* or by a string.
- numpy_rdd (pyspark.RDD) A PySpark RDD that contains tuples of either SpatialKey or SpaceTimeKey and rasters that are represented by a numpy array.
- metadata (Metadata) The Metadata of the TiledRasterLayer instance.
- **zoom_level** (*int*, *optional*) The zoom_level the resulting *TiledRasterLayer* should have. If None, then the returned layer's zoom_level will be None.

Returns *TiledRasterLayer*

getNumPartitions()

Returns the number of partitions set for the wrapped RDD.

Returns The number of partitions.

Return type Int

get_class_histogram()

Creates a Histogram of integer values. Suitable for classification rasters with limited number values. If only single band is present histogram is returned directly.

Returns Histogram or [Histogram]

get_histogram()

Creates a Histogram for each band in the layer. If only single band is present histogram is returned directly.

Returns Histogram or [Histogram]

get_min_max()

Returns the maximum and minimum values of all of the rasters in the layer.

Returns (float, float)

get_partition_strategy()

Returns the partitioning strategy if the layer has one.

Returns HashPartitioner or SpatialPartitioner or SpaceTimePartitionStrategy or None

get_point_values (points, resample_method=None)

Returns the values of the layer at given points.

Note: Only points that are contained within a layer will be sampled. This means that if a point lies on the southern or eastern boundary of a cell, it will not be sampled.

Parameters

- or {k (points ([shapely.geometry.Point]) shapely.geometry.Point}): Either a list of, or a dictionary whose values are shapely.geometry.Points. If a dictionary, then the type of its keys does not matter. These points must be in the same projection as the tiles within the layer.
- resample_method (str or ResampleMethod, optional) The resampling method to use before obtaining the point values. If not specified, then None is used.

Note: Not all ResampleMethods can be used to resample point values. ResampleMethod.NEAREST_NEIGHBOR, ResampleMethod.CUBIC_CONVOLUTION, and ResampleMethod.CUBIC_SPLINE are the only ones that can be used.

Returns

The return type will vary depending on the type of points and the layer_type of the sampled layer.

If points is a list and the layer_type is SPATIAL: [(shapely.geometry.Point, [float])]

If points is a list and the layer_type is SPACETIME: [(shapely.geometry.Point, [(datetime.datetime, [float])])]

If points is a dict and the layer_type is SPATIAL: {k: (shapely.geometry.Point,
 [float])}

If points is a dict and the layer_type is SPACETIME: {k: (shapely.geometry.Point, [(datetime.datetime, [float])])}

The shapely geometry Point in all of these returns is the original sampled point given. The [float] are the sampled values, one for each band. If the layer type

was SPACETIME, then the timestamp will also be included in the results represented by a datetime.datetime instance. These times and their associated values will be given as a list of tuples for each point.

Note: The sampled values will always be returned as floats. Regardless of the cellType of the layer.

If points was given as a dict then the keys of that dictionary will be the keys in the returned dict.

get_quantile_breaks (num_breaks)

Returns quantile breaks for this Layer.

Parameters num_breaks (int) – The number of breaks to return.

Returns [float]

get_quantile_breaks_exact_int (num_breaks)

Returns quantile breaks for this Layer. This version uses the FastMapHistogram, which counts exact integer values. If your layer has too many values, this can cause memory errors.

Parameters num_breaks (int) - The number of breaks to return.

Returns [int]

isEmpty()

Returns a bool that is True if the layer is empty and False if it is not.

Returns Are there elements within the layer

Return type bool

local max(value)

Determines the maximum value for each cell of each Tile in the layer.

This method takes a max_constant that is compared to each cell in the layer. If max_constant is larger, then the resulting cell value will be that value. Otherwise, that cell will retain its original value.

Note: NoData values are handled such that taking the max between a normal value and NoData value will always result in NoData.

Parameters value (int or float or *TiledRasterLayer*) – The constant value that will be compared to each cell. If this is a *TiledRasterLayer*, then *Tiles* who share a key will have each of their cell values compared.

Returns TiledRasterLayer

lookup (col, row)

Return the value(s) in the image of a particular SpatialKey (given by col and row).

Parameters

- col (int) The SpatialKey column.
- row (int) The SpatialKey row.

Returns [Tile]

Raises

- ValueError If using lookup on a non LayerType.SPATIAL TiledRasterLayer.
- IndexError If col and row are not within the TiledRasterLayer's bounds.

map_cells(func)

Maps over the cells of each Tile within the layer with a given function.

Note: This operation first needs to describe the wrapped RDD into Python and then serialize the RDD back into a TiledRasterRDD once the mapping is done. Thus, it is advised to chain together operations to reduce performance cost.

Parameters func (cells, nd => cells) - A function that takes two arguments: cells and nd. Where cells is the numpy array and nd is the no_data_value of the tile. It returns cells which are the new cells values of the tile represented as a numpy array.

Returns *TiledRasterLayer*

map_tiles(func)

Maps over each Tile within the layer with a given function.

Note: This operation first needs to describing the wrapped RDD into Python and then serialize the RDD back into a TiledRasterRDD once the mapping is done. Thus, it is advised to chain together operations to reduce performance cost.

Parameters func (*Tile* => *Tile*) – A function that takes a Tile and returns a Tile.

Returns TiledRasterLaver

mask (geometries, partition_strategy=None, options=RasterizerOptions(includePartial=True, sample-Type='PixelIsPoint'))

Masks the TiledRasterLayer so that only values that intersect the geometries will be available.

Parameters

• **geometries** (shapely.geometry or [shapely.geometry] or pyspark.RDD[shapely.geometry]) - Either a single, list, or Python RDD of shapely geometry/ies to mask the layer.

Note: All geometries must be in the same CRS as the TileLayer.

• partition_strategy (HashPartitionStrategy or SpatialPartitioinStrategy or SpaceTimePartitionStrategy, optional) - Sets the Partitioner for the resulting layer and how many partitions it has. Default is, None.

If None, then the output layer will be the same as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting layer will have the Partioner specified in the strategy with the with same number of partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer will have the Partioner and number of partitions specified in the strategy.

Note: This parameter will only be used if geometries is a pyspark.RDD.

• **options** (*RasterizerOptions*, optional) – During the mask operation, rasterization occurs. These options will change the pixel rasterization behavior. Default behavior is to include partial pixel intersection and to treat pixels as points.

Note: This parameter will only be used if geometries is a pyspark.RDD.

Returns *TiledRasterLayer*

merge (partition_strategy=None)

Merges the Tile of each K together to produce a single Tile.

This method will reduce each value by its key within the layer to produce a single (K, V) for every K. In order to achieve this, each Tile that shares a K is merged together to form a single Tile. This is done by replacing one Tile's cells with another's. Not all cells, if any, may be replaced, however. The following steps are taken to determine if a cell's value should be replaced:

- 1. If the cell contains a NoData value, then it will be replaced.
- 2. If no NoData value is set, then a cell with a value of 0 will be replaced.
- 3. If neither of the above are true, then the cell retain its value.

Parameters

- num_partitions (int, optional) The number of partitions that the resulting layer should be partitioned with. If None, then the num_partitions will the number of partitions the layer curretly has.
- partition_strategy (HashPartitionStrategy or SpatialPartitionStrategy or SpaceTimePartitionStrategy, optional) Sets the Partitioner for the resulting layer and how many partitions it has. Default is, None.

If None, then the output layer will be the same Partitioner and number of partitions as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting layer will have the Partioner specified in the strategy with the with same number of partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer will have the Partioner and number of partitions specified in the strategy.

Returns *TiledRasterLayer*

normalize (new_min, new_max, old_min=None, old_max=None)

Finds the min value that is contained within the given geometry.

Note: If old_max - old_min <= 0 or new_max - new_min <= 0, then the normalization will fail.

Parameters

- old_min (int or float, optional) Old minimum. If not given, then the minimum value of this layer will be used.
- old_max(int or float, optional) Old maximum. If not given, then the minimum value of this layer will be used.
- new_min (int or float) New minimum to normalize to.
- new_max (int or float) New maximum to normalize to.

Returns TiledRasterLayer

partitionBy (partition_strategy=None)

Repartitions the layer using the given partitioning strategy.

Parameters partition_strategy

(HashPartitionStrategy

or

SpatialPartitioinStrategy or *SpaceTimePartitionStrategy*, optional) — Sets the Partitioner for the resulting layer and how many partitions it has. Default is, None.

If None, then the output layer will be the same as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting layer will have the Partioner specified in the strategy with the with same number of partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer will have the Partioner and number of partitions specified in the strategy.

Returns *TiledRasterLayer*

```
persist (storageLevel=StorageLevel(False, True, False, False, 1))
```

Set this RDD's storage level to persist its values across operations after the first time it is computed. This can only be used to assign a new storage level if the RDD does not have a storage level set yet. If no storage level is specified defaults to (C{MEMORY_ONLY}).

polygonal_max (geometry, data_type)

Finds the max value for each band that is contained within the given geometry.

Parameters

- **geometry** (shapely.geometry.Polygon or shapely.geometry. MultiPolygon or bytes) A Shapely Polygon or MultiPolygon that represents the area where the summary should be computed; or a WKB representation of the geometry.
- data_type (type) The type of the values within the rasters. Can either be int or float.

Returns [int] or [float] depending on data type.

Raises TypeError – If data_type is not an int or float.

polygonal_mean (geometry)

Finds the mean of all of the values for each band that are contained within the given geometry.

Parameters geometry (shapely.geometry.Polygon or shapely.geometry. MultiPolygon or bytes) – A Shapely Polygon or MultiPolygon that represents the area where the summary should be computed; or a WKB representation of the geometry.

Returns [float]

polygonal_min (geometry, data_type)

Finds the min value for each band that is contained within the given geometry.

Parameters

- **geometry** (shapely.geometry.Polygon or shapely.geometry. MultiPolygon or bytes) — A Shapely Polygon or MultiPolygon that represents the area where the summary should be computed; or a WKB representation of the geometry.
- data type (type) The type of the values within the rasters. Can either be int or float.

Returns [int] or [float] depending on data type.

Raises TypeError – If data_type is not an int or float.

polygonal_sum(geometry, data_type)

Finds the sum of all of the values in each band that are contained within the given geometry.

Parameters

- **geometry** (shapely.geometry.Polygon or shapely.geometry. MultiPolygon or bytes) A Shapely Polygon or MultiPolygon that represents the area where the summary should be computed; or a WKB representation of the geometry.
- data_type (type) The type of the values within the rasters. Can either be int or float.

Returns [int] or [float] depending on data_type.

Raises TypeError – If data_type is not an int or float.

pyramid(resample_method=<ResampleMethod.NEAREST_NEIGHBOR: 'NearestNeighbor'>, partition_strategy=None)

Creates a layer Pyramid where the resolution is halved per level.

Parameters

- resample_method (str or ResampleMethod, optional) The resample method to use when building the pyramid. Default is ResampleMethods. NEAREST_NEIGHBOR.
- partition_strategy (HashPartitionStrategy or SpatialPartitioinStrategy or SpaceTimePartitionStrategy, optional) Sets the Partitioner for the resulting layer and how many partitions it has. Default is, None.

If None, then the output layer will be the same Partitioner and number of partitions as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting layer will have the Partioner specified in the strategy with the with same number of partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer will have the Partioner and number of partitions specified in the strategy.

Returns Pyramid.

Raises ValueError – If this layer layout is not of GlobalLayout type.

Changes the cell values of a raster based on how the data is broken up in the given value_map.

Parameters

- **value_map** (*dict*) A dict whose keys represent values where a break should occur and its values are the new value the cells within the break should become.
- data_type (type) The type of the values within the rasters. Can either be int or float.
- classification_strategy (str or ClassificationStrategy, optional) How the cells should be classified along the breaks. If unspecified, then ClassificationStrategy.LESS THAN OR EQUAL TO will be used.
- replace_nodata_with (int or float, optional) When remapping values, NoData values must be treated separately. If NoData values are intended to be replaced during the reclassify, this variable should be set to the intended value. If unspecified, NoData values will be preserved.

Note: Specifying replace_nodata_with will change the value of given cells, but the NoData value of the layer will remain unchanged.

- fallback_value (int or float, optional) Represents the value that should be used when a cell's value does not fall within the classification_strategy. Default is to use the layer's NoData value.
- **strict** (bool, optional) Determines whether or not an error should be thrown if a cell's value does not fall within the classification_strategy. Default is, False.

Returns *TiledRasterLayer*

repartition (num_partitions=None)

Repartitions the layer to have a different number of partitions.

Parameters num_partitions (int, optional) - Desired number of partitions. Default is, None. If None, then the exisiting number of partitions will be used.

Returns *TiledRasterLayer*

reproject (target_crs, resample_method=<ResampleMethod.NEAREST_NEIGHBOR: 'Nearest-Neighbor'>)

Reproject rasters to target_crs. The reproject does not sample past tile boundary.

Parameters

- target_crs (str or int) Target CRS of reprojection. Either EPSG code, well-known name, or a PROJ.4 string.
- resample_method (str or ResampleMethod, optional) The resample method to use for the reprojection. If none is specified, then ResampleMethods. NEAREST_NEIGHBOR is used.

Returns *TiledRasterLayer*

save_stitched (path, crop_bounds=None, crop_dimensions=None)

Stitch all of the rasters within the Layer into one raster and then saves it to a given path.

Parameters

- path (str) The path of the geotiff to save. The path must be on the local file system.
- **crop_bounds** (*Extent*, optional) The sub Extent with which to crop the raster before saving. If None, then the whole raster will be saved.

• **crop_dimensions** (tuple(int) or list(int), optional) - cols and rows of the image to save represented as either a tuple or list. If None then all cols and rows of the raster will be save.

Note: This can only be used on LayerType.SPATIAL TiledRasterLayers.

Note: If crop_dimensions is set then crop_bounds must also be set.

slope (zfactor_calculator)

Performs the Slope, focal operation on the first band of each Tile in the Layer.

The Slope operation will be carried out in a SQUARE neighborhood with with an extent of 1. A zfactor will be derived from the zfactor_calculator for each Tile in the Layer. The resulting Layer will have a cell_type of FLOAT64 regardless of the input Layer's cell_type; as well as have a single band, that represents the calculated slope.

Parameters zfactor_calculator (py4j. JavaObject) — A JavaObject that represents the Scala ZFactorCalculator class. This can be created using either the zfactor_lat_lng_calculator() or the zfactor_calculator() methods.

Returns TiledRasterLayer

stitch()

Stitch all of the rasters within the Layer into one raster.

Note: This can only be used on LayerType.SPATIAL TiledRasterLayers.

Returns Tile

tile_to_layout (layout, target_crs=None, resample_method=<ResampleMethod.NEAREST_NEIGHBOR: 'NearestNeighbor'>, partition_strategy=None)
Cut tiles to a given layout and merge overlapping tiles. This will produce unique keys.

Parameters

- layout (LayoutDefinition or Metadata or TiledRasterLayer or GlobalLayout or LocalLayout) Target raster layout for the tiling operation.
- target_crs (str or int, optional) Target CRS of reprojection. Either EPSG code, well-known name, or a PROJ.4 string. If None, no reproject will be performed
- resample_method (str or ResampleMethod, optional) The resample method to use for the reprojection. If none is specified, then ResampleMethods. NEAREST_NEIGHBOR is used.
- partition_strategy (HashPartitionStrategy or SpatialPartitionStrategy or SpaceTimePartitionStrategy, optional) Sets the Partitioner for the resulting layer and how many partitions it has. Default is, None.

If None, then the output layer will be the same Partitioner and number of partitions as the source layer.

If partition_strategy is set but has no num_partitions, then the resulting layer will have the Partioner specified in the strategy with the with same number of partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer will have the Partioner and number of partitions specified in the strategy.

Returns *TiledRasterLayer*

to_geotiff_rdd (storage_method=<StorageMethod.STRIPED: 'Striped'>, rows_per_strip=None, tile_dimensions=(256, 256), compression=<Compression.NO_COMPRESSION: 'NoCompression'>, color_space=<ColorSpace.BLACK_IS_ZERO: 1>, color_map=None, head_tags=None, band_tags=None)

Converts the rasters within this layer to GeoTiffs which are then converted to bytes. This is returned as a RDD[(K, bytes)]. Where K is either SpatialKey or SpaceTimeKey.

Parameters

- **storage_method** (str or *StorageMethod*, optional) How the segments within the GeoTiffs should be arranged. Default is StorageMethod.STRIPED.
- rows_per_strip (int, optional) How many rows should be in each strip segment of the GeoTiffs if storage_method is StorageMethod.STRIPED. If None, then the strip size will default to a value that is 8K or less.
- tile_dimensions ((int, int), optional) The length and width for each tile segment of the GeoTiff if storage_method is StorageMethod.TILED. If None then the default size is (256, 256).
- **compression** (str or *Compression*, optional) How the data should be compressed. Defaults to Compression.NO_COMPRESSION.
- **color_space** (str or *ColorSpace*, optional) How the colors should be organized in the GeoTiffs. Defaults to ColorSpace.BLACK_IS_ZERO.
- **color_map** (*ColorMap*, optional) A ColorMap instance used to color the GeoTiffs to a different gradient.
- head_tags (dict, optional) A dict where each key and value is a str.
- band_tags (list, optional) A list of dicts where each key and value is a str.
- **Note** For more information on the contents of the tags, see www.gdal.org/gdal_datamodel.html

Returns RDD[(K, bytes)]

to_numpy_rdd()

Converts a TiledRasterLayer to a numpy RDD.

Note: Depending on the size of the data stored within the RDD, this can be an exspensive operation and should be used with caution.

Returns RDD

to_png_rdd(color_map)

Converts the rasters within this layer to PNGs which are then converted to bytes. This is returned as a RDD[(K, bytes)].

Parameters color_map (ColorMap) – A ColorMap instance used to color the PNGs.

Returns RDD[(K, bytes)]

to_spatial_layer(target_time=None)

Converts a TiledRasterLayer with a layout_type of LayoutType.SPACETIME to a TiledRasterLayer with a layout_type of LayoutType.SPATIAL.

Parameters target_time (datetime.datetime, optional) — The instance of interest. If set, the resulting TiledRasterLayer will only contain keys that contained the given instance. If None, then all values within the layer will be kept.

Returns TiledRasterLayer

Raises ValueError - If the layer already has a layout_type of LayoutType. SPATIAL.

tobler()

Generates a Tobler walking speed layer from an elevation layer.

Note: This method has a known issue where the Tobler calculation is direction agnostic. Thus, all slopes are assumed to be uphill. This can result it incorrect results. A fix is currently being worked on.

Returns *TiledRasterLayer*

unpersist()

Mark the RDD as non-persistent, and remove all blocks for it from memory and disk.

with no data (no data value)

Changes the NoData value of the layer with the new given value.

It is possible to specify a NoData value for layers with raw values. The resulting layer will be of the same CellType but with a user defined NoData value. For example, if a layer has a CellType of float32raw and a no_data_value of -10 is given, then the produced layer will have a CellType of float32ud-10.0.

If the target layer has a bool CellType, then the no_data_value will be ignored and the result layer will be the same as the origin. In order to assign a NoData value to a bool layer, the convert_data_type() method must be used.

Parameters no_data_value (int or float) - The new NoData value of the layer.

Returns TiledRasterLayer

wrapped_rdds()

Returns the list of RDD-containing objects wrapped by this object. The default implementation assumes that subclass contains a single RDD container, srdd, which implements the persist() and unpersist() methods.

class geopyspark.geotrellis.layer.Pyramid(levels)

Contains a list of TiledRasterLayers that make up a tile pyramid. Each layer represents a level within the pyramid. This class is used when creating a tile server.

Map algebra can performed on instances of this class.

Parameters levels (*list or dict*) - A list of TiledRasterLayers or a dict of TiledRasterLayers where the value is the layer itself and the key is its given zoom level.

pysc

pyspark.SparkContext - The SparkContext being used this session.

layer_type (class

~geopyspark.geotrellis.constants.LayerType): What the layer type of the geotiffs are.

levels

dict - A dict of TiledRasterLayers where the value is the layer itself and the key is its given zoom level.

max zoom

int – The highest zoom level of the pyramid.

is_cached

bool – Signals whether or not the internal RDDs are cached. Default is False.

histogram

Histogram - The Histogram that represents the layer with the max zoomw. Will not be calculated unless the get_histogram() method is used. Otherwise, its value is None.

Raises TypeError - If levels is neither a list or dict.

cache()

Persist this RDD with the default storage level (C{MEMORY_ONLY}).

count()

Returns how many elements are within the wrapped RDD.

Returns The number of elements in the RDD.

Return type Int

getNumPartitions()

Returns the number of partitions set for the wrapped RDD.

Returns The number of partitions.

Return type Int

get_histogram()

Calculates the Histogram for the layer with the max zoom.

Returns Histogram

get_partition_strategy()

Returns the partitioning strategy if the layer has one.

Returns HashPartitioner or SpatialPartitioner or SpaceTimePartitionStrategy or None

isEmpty()

Returns a bool that is True if the layer is empty and False if it is not.

Returns Are there elements within the layer

Return type bool

persist (storageLevel=StorageLevel(False, True, False, False, 1))

Set this RDD's storage level to persist its values across operations after the first time it is computed. This can only be used to assign a new storage level if the RDD does not have a storage level set yet. If no storage level is specified defaults to (C{MEMORY_ONLY}).

unpersist()

Mark the RDD as non-persistent, and remove all blocks for it from memory and disk.

wrapped_rdds()

Returns a list of the wrapped, Scala RDDs within each layer of the pyramid.

Returns [org.apache.spark.rdd.RDD]

3.13.11 geopyspark.geotrellis.neighborhood module

Classes that represent the various neighborhoods used in focal functions.

Note: Once a parameter has been entered for any one of these classes it gets converted to a float if it was originally an int.

Parameters radius (int or float) – The radius of the circle that determines which cells fall within the bounding box.

radius

int or float – The radius of the circle that determines which cells fall within the bounding box.

param 1

float - Same as radius.

param 2

float – Unused param for Circle. Is 0.0.

param_3

float – Unused param for Circle. Is 0.0.

name

str – The name of the neighborhood which is, "circle".

Note: Cells that lie exactly on the radius of the circle are apart of the neighborhood.

class geopyspark.geotrellis.neighborhood.Wedge(radius, start_angle, end_angle)
 A wedge neighborhood.

Parameters

- radius (int or float) The radius of the wedge.
- start_angle (int or float) The starting angle of the wedge in degrees.
- end_angle (int or float) The ending angle of the wedge in degrees.

radius

int or float – The radius of the wedge.

start angle

int or float – The starting angle of the wedge in degrees.

end_angle

int or float – The ending angle of the wedge in degrees.

param 1

float - Same as radius.

param 2

float - Same as start_angle.

```
param_3
         float - Same as end_angle.
     name
          str – The name of the neighborhood which is, "wedge".
class geopyspark.geotrellis.neighborhood.Nesw(extent)
     A neighborhood that includes a column and row intersection for the focus.
          Parameters extent (int or float) - The extent of this neighborhood. This represents the
              how many cells past the focus the bounding box goes.
     extent
          int or float - The extent of this neighborhood. This represents the how many cells past the focus the
          bounding box goes.
     param_1
         float - Same as extent.
     param_2
         float – Unused param for Nesw. Is 0.0.
     param 3
         float - Unused param for Nesw. Is 0.0.
     name
          str – The name of the neighborhood which is, "nesw".
class geopyspark.geotrellis.neighborhood.Annulus(inner_radius, outer_radius)
     An Annulus neighborhood.
          Parameters
                • inner_radius (int or float) - The radius of the inner circle.
                • outer_radius (int or float) - The radius of the outer circle.
     inner radius
          int or float – The radius of the inner circle.
     outer_radius
          int or float – The radius of the outer circle.
     param 1
         float - Same as inner_radius.
     param 2
         float - Same as outer_radius.
          float – Unused param for Annulus. Is 0.0.
     name
          str – The name of the neighborhood which is, "annulus".
3.13.12 geopyspark.geotrellis.ProtoBufCodecs module
```

3.13.12 geopyspark.geotrems.Frotoburoodecs modul

```
geopyspark.geotrellis.protobuf
   alias of geopyspark.geotrellis.protobuf
```

3.13.13 geopyspark.geotrellis.ProtoBufSerializer module

The serializer used by a RDD to encode/decode values to/from Python.

Parameters

- **decoding_method** (func) The decoding function for the values within the RDD.
- **encoding_method** (func) The encoding function for the values within the RDD.

decoding_method

func – The decording function for the values within the RDD.

encoding_method

func – The encocding function for the values within the RDD.

$\mathtt{dumps}\,(\mathit{obj})$

Serialize an object into a byte array.

Note: When batching is used, this will be called with a list of objects.

Parameters obj – The object to serialized into a byte array.

Returns The byte array representation of the obj.

loads (obj)

Deserializes a byte array into a collection of Python objects.

Parameters obj – The byte array representation of an object to be describlized into the object.

Returns A list of deserialized objects.

3.13.14 geopyspark.geotrellis.rasterize module

Rasterizes a Shapely geometries.

Parameters

- **geoms** ([shapely.geometry] or (shapely.geometry) or pyspark.

 RDD[shapely.geometry]) Either a list, tuple, or a Python RDD of shapely geometries to rasterize.
- crs (str or int) The CRS of the input geometry.
- **zoom** (int) The zoom level of the output raster.
- fill_value (int or float) Value to burn into pixels intersectiong geometry
- **cell_type** (str or *CellType*) Which data type the cells should be when created. Defaults to CellType.FLOAT64.
- options (RasterizerOptions, optional) Pixel intersection options.

• partition_strategy (HashPartitionStrategy or SpatialPartitioinStrategy, optional) — Sets the Partitioner for the resulting layer and how many partitions it has. Default is, None.

If None, then the output layer will have the default Partitioner and a number of paritions that was determined by the method.

If partition_strategy is set but has no num_partitions, then the resulting layer will have the Partioner specified in the strategy with the with same number of partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer will have the Partioner and number of partitions specified in the strategy.

Returns *TiledRasterLayer*

Rasterizes a collection of Features.

Parameters

• features (pyspark.RDD [Feature]) - A Python RDD that contains Features.

Note: The properties of each Feature must be an instance of *CellValue*.

- **crs** (str or int) The CRS of the input geometry.
- **zoom** (int) The zoom level of the output raster.

Note: Not all rasterized Features may be present in the resulting layer if the zoom is not high enough.

- **cell_type** (str or *CellType*) Which data type the cells should be when created. Defaults to CellType.FLOAT64.
- **options** (*RasterizerOptions*, optional) Pixel intersection options.
- zindex_cell_type (str or CellType) Which data type the Z-Index cells are. Defaults to CellType.INT8.
- partition_strategy (HashPartitionStrategy or SpatialPartitioinStrategy, optional) Sets the Partitioner for the resulting layer and how many partitions it has. Default is, None.

If None, then the output layer will have the default Partitioner and a number of paritions that was determined by the method.

If partition_strategy is set but has no num_partitions, then the resulting layer will have the Partioner specified in the strategy with the with same number of partitions the source layer had.

If partition_strategy is set and has a num_partitions, then the resulting layer will have the Partioner and number of partitions specified in the strategy.

Returns *TiledRasterLayer*

3.13.15 geopyspark.geotrellis.tms module

class geopyspark.geotrellis.tms.TileRender(render_function)

A Python implementation of the Scala geopyspark.geotrellis.tms.TileRender interface. Permits a callback from Scala to Python to allow for custom rendering functions.

Parameters render_function (*Tile => PIL.Image.Image*) – A function to convert geopyspark.geotrellis.Tile to a PIL Image.

render_function

Tile => PIL.Image.Image - A function to convert geopyspark.geotrellis.Tile to a PIL Image.

renderEncoded (scala array)

A function to convert an array to an image.

Parameters scala_array – A linear array of bytes representing the protobuf-encoded contents of a tile

Returns bytes representing an image

```
class geopyspark.geotrellis.tms.TMS (server)
```

Provides a TMS server for raster data.

In order to display raster data on a variety of different map interfaces (e.g., leaflet maps, geojson.io, GeoNotebook, and others), we provide the TMS class.

Parameters server (JavaObject) – The Java TMSServer instance

pysc

pyspark.SparkContext - The SparkContext being used this session.

server

JavaObject - The Java TMSServer instance

host

str – The IP address of the host, if bound, else None

port

int - The port number of the TMS server, if bound, else None

url pattern

string – The URI pattern for the current TMS service, with $\{z\}$, $\{x\}$, $\{y\}$ tokens. Can be copied directly to services such as *geojson.io*.

bind(host=None, requested_port=None)

Starts up a TMS server.

Parameters

- host (str, optional) The target host. Typically "localhost", "127.0.0.1", or "0.0.0.0". The latter will make the TMS service accessible from the world. If omitted, defaults to localhost.
- requested_port (optional, int) A port number to bind the service to. If omitted, use a random available port.

classmethod build(source, display, allow overzooming=True)

Builds a TMS server from one or more layers.

This function takes a SparkContext, a source or list of sources, and a display method and creates a TMS server to display the desired content. The display method is supplied as a ColorMap (only available when there is a single source), or a callable object which takes either a single tile input (when there is a single source) or a list of tiles (for multiple sources) and returns the bytes representing an image file for that tile.

Parameters

- **source** (tuple or orlist or *Pyramid*) The tile sources to render. Tuple inputs are (str, str) pairs where the first component is the URI of a catalog and the second is the layer name. A list input may be any combination of tuples and *Pyramids*.
- **display** (ColorMap, callable) Method for mapping tiles to images. ColorMap may only be applied to single input source. Callable will take a single numpy array for a single source, or a list of numpy arrays for multiple sources. In the case of multiple inputs, resampling may be required if the tile sources have different tile sizes. Returns bytes representing the resulting image.
- **allow_overzooming** (bool) If set, viewing at zoom levels above the highest available zoom level will produce tiles that are resampled from the highest zoom level present in the data set.

host

Returns the IP string of the server's host if bound, else None.

Returns (str)

port

Returns the port number for the current TMS server if bound, else None.

Returns (int)

unbind()

Shuts down the TMS service, freeing the assigned port.

url pattern

Returns the URI for the tiles served by the present server. Contains $\{z\}$, $\{x\}$, and $\{y\}$ tokens to be substituted for the desired zoom and x/y tile position.

Returns (str)

3.13.16 geopyspark.geotrellis.union module

```
geopyspark.geotrellis.union.union(layers)
```

 $Unions \ together \ two \ or \ more \ {\tt RasterLayers} \ or \ {\tt TiledRasterLayers}.$

All layers must have the same layer_type. If the layers are TiledRasterLayers, then all of the layers must also have the same <code>TileLayout</code> and CRS.

Note: If the layers to be unioned share one or more keys, then the resulting layer will contain duplicates of that key. One copy for each instance of the key.

Parameters layers ([RasterLayer] or [TiledRasterLayer] or (RasterLayer) or (TiledRasterLayer)) - A colection of two or more RasterLayers or TiledRasterLayers layers to be unioned together.

Returns RasterLayer or TiledRasterLayer

3.14 geopyspark.vector_pipe package

```
class geopyspark.vector_pipe.Feature
```

Represents a geometry that is derived from an OSM Element with that Element's associated metadata.

Parameters

- **geometry** (*shapely.geometry*) The geometry of the feature that is represented as a shapely.geometry. This geometry is derived from an OSM Element.
- **properties** (*Properties* or *CellValue*) The metadata associated with the OSM Element. Can be represented as either an instance of Properties or a CellValue.

geometry

shapely.geometry — The geometry of the feature that is represented as a shapely.geometry. This geometry is derived from an OSM Element.

properties

Properties or *CellValue* – The metadata associated with the OSM Element. Can be represented as either an instance of Properties or a CellValue.

count (*value*) \rightarrow integer – return number of occurrences of value

geometry

Alias for field number 0

index (*value*[, *start*[, *stop*]]) \rightarrow integer – return first index of value. Raises ValueError if the value is not present.

properties

Alias for field number 1

class geopyspark.vector_pipe.Properties

Represents the metadata of an OSM Element.

This object is one of two types that can be used to represent the properties of a Feature.

Parameters

- element_id (int) The id of the OSM Element.
- user(str) The display name of the last user who modified/created the OSM Element.
- uid (int) The numeric id of the last user who modified the OSM Element.
- changeset (int) The OSM changeset number in which the OSM Element was created/modified.
- **version** (*int*) The edit version of the OSM Element.
- minor_version (int) Represents minor changes between versions of an OSM Element.
- timestamp (datetime.datetime) The time of the last modification to the OSM Element.
- visible (bool) Represents whether or not the OSM Element is deleted or not in the database.
- tags (dict) A dict of strs that represents the given features of the OSM Element.

element id

int - The id of the OSM Element.

user

str – The display name of the last user who modified/created the OSM Element.

uid

int – The numeric id of the last user who modified the OSM Element.

changeset

int - The OSM changeset number in which the OSM Element was created/modified.

version

int – The edit version of the OSM Element.

minor_version

int – Represents minor changes between versions of an OSM Element.

timestamp

datetime.datetime - The time of the last modification to the OSM Element.

visible

bool – Represents whether or not the OSM Element is deleted or not in the database.

tags

dict – A dict of strs that represents the given features of the OSM Element.

changeset

Alias for field number 3

count (*value*) \rightarrow integer – return number of occurrences of value

element_id

Alias for field number 0

index ($value[, start[, stop]]) \rightarrow integer - return first index of value.$

Raises ValueError if the value is not present.

minor version

Alias for field number 5

tags

Alias for field number 8

timestamp

Alias for field number 6

uid

Alias for field number 2

user

Alias for field number 1

version

Alias for field number 4

visible

Alias for field number 7

class geopyspark.vector_pipe.CellValue

Represents the value and zindex of a geometry.

This object is one of two types that can be used to represent the properties of a Feature.

Parameters

- **value** (int or float) The value of all cells that intersects the associated geometry.
- **zindex** (*int*) The Z-Index of each cell that intersects the associated geometry. Z-Index determines which value a cell should be if multiple geometries intersect it. A high Z-Index will always be in front of a Z-Index of a lower value.

value

int or float – The value of all cells that intersects the associated geometry.

zindex

int – The Z-Index of each cell that intersects the associated geometry. Z-Index determines which value a cell should be if multiple geometries intersect it. A high Z-Index will always be in front of a Z-Index of a lower value.

count (*value*) \rightarrow integer – return number of occurrences of value

index (*value*[, *start*[, *stop*]]) \rightarrow integer – return first index of value.

Raises ValueError if the value is not present.

value

Alias for field number 0

zindex

Alias for field number 1

3.14.1 geopyspark.vector_pipe.features_collection module

class geopyspark.vector_pipe.features_collection.FeaturesCollection(scala_features)
 Represents a collection of features from OSM data. A feature is a geometry that is derived from an OSM
 Element with that Element's associated metadata. These features are grouped together by their geometry
 type.

There are 4 different types of geometries that a feature can contain:

- Points
- Lines
- Polygons
- MultiPolygons

Parameters scala_features (py4j.JavaObject) - The Scala representation of FeaturesCollection.

scala features

py4j.JavaObject - The Scala representation of FeaturesCollection.

get_line_features_rdd()

Returns each Line feature in the FeaturesCollection as a Feature in a Python RDD.

Returns RDD [Feature]

get_line_tags()

Returns all of the unique tags for all of the Lines in the FeaturesCollection as a dict. Both the keys and values of the dict will be strs.

Returns dict

get_multipolygon_features_rdd()

Returns each MultiPolygon feature in the FeaturesCollection as a Feature in a Python RDD.

Returns RDD[Feature]

get_multipolygon_tags()

Returns all of the unique tags for all of the MultiPolygons in the FeaturesCollection as a dict. Both the keys and values of the dict will be strs.

Returns dict

get_point_features_rdd()

Returns each Point feature in the FeaturesCollection as a Feature in a Python RDD.

Returns RDD[Feature]

get_point_tags()

Returns all of the unique tags for all of the Points in the FeaturesCollection as a dict. Both the keys and values of the dict will be strs.

Returns dict

get_polygon_features_rdd()

Returns each Polygon feature in the FeaturesCollection as a Feature in a Python RDD.

Returns RDD [Feature]

get_polygon_tags()

Returns all of the unique tags for all of the Polygons in the FeaturesCollection as a dict. Both the keys and values of the dict will be strs.

Returns dict

3.14.2 geopyspark.vector_pipe.osm_reader module

```
geopyspark.vector_pipe.osm_reader.from_orc(source)
```

Reads in OSM data from an orc file that is located either locally or on S3. The resulting data will be read in as an instance of FeaturesCollection.

Parameters source (str) – The path or URI to the orc file to be read. Can either be a local file, or a file on S3.

Note: Reading a file from S3 requires additional setup depending on the environment and how the file is being read.

The following describes the parameters that need to be set depending on how the files are to be read in. However, if reading a file on EMR, then the access key and secret key do not need to be set.

If using s3a://, then the following SparkConf parameters need to be set:

- spark.hadoop.fs.s3a.impl
- spark.hadoop.fs.s3a.access.key
- spark.hadoop.fs.s3a.secret.key

If using s3n://, then the following SparkConf parameters need to be set:

- spark.hadoop.fs.s3n.access.key
- spark.hadoop.fs.s3n.secret.key

An alternative to passing in your S3 credentials to SparkConf would be to export them as environment variables:

- AWS_ACCESS_KEY_ID=YOUR_KEY
- AWS_SECRET_ACCESS_KEY_ID=YOUR_SECRET_KEY

Returns FeaturesCollection

geopyspark.vector_pipe.osm_reader.from_dataframe(dataframe)

Reads OSM data from a Spark DataFrame. The resulting data will be read in as an instance of FeaturesCollection.

Parameters dataframe (DataFrame) - A Spark DataFrame that contains the OSM data.

Returns FeaturesCollection

Python Module Index

g

```
geopyspark, 64
geopyspark.geotrellis.catalog, 126
geopyspark.geotrellis.color, 129
geopyspark.geotrellis.combine_bands, 131
geopyspark.geotrellis.constants, 132
geopyspark.geotrellis.cost_distance, 136
geopyspark.geotrellis.euclidean_distance,
       136
geopyspark.geotrellis.geotiff, 136
geopyspark.geotrellis.hillshade, 137
geopyspark.geotrellis.histogram, 138
geopyspark.geotrellis.layer, 140
geopyspark.geotrellis.neighborhood, 162
geopyspark.geotrellis.rasterize, 164
geopyspark.geotrellis.tms, 166
geopyspark.geotrellis.union, 167
geopyspark.vector_pipe.features_collection,
geopyspark.vector_pipe.osm_reader, 171
```

174 Python Module Index

Index

A	bind() (geopyspark.TMS method), 112
aggregate_by_cell() (geopys-	bits (geopyspark.SpaceTimePartitionStrategy attribute),
park.geotrellis.layer.TiledRasterLayer method), 148	bits (geopyspark.SpatialPartitionStrategy attribute), 73,
aggregate_by_cell() (geopyspark.TiledRasterLayer method), 94	74 BLACK_IS_ZERO (geopyspark.ColorSpace attribute),
Annulus (class in geopyspark), 110	83 BLACK_IS_ZERO (geopys-
Annulus (class in geopyspark.geotrellis.neighborhood),	BLACK_IS_ZERO (geopys- park.geotrellis.constants.ColorSpace attribute),
ANNULUS (geopyspark.geotrellis.constants.Neighborhood	127
attribute), 133	BLUE_TO_ORANGE (geopyspark.ColorRamp at-
ANNULUS (geopyspark.Neighborhood attribute), 82	tribute), 82
ASPECT (geopyspark.geotrellis.constants.Operation at-	BLUE_TO_ORANGE (geopys-
tribute), 133	park.geotrellis.constants.ColorRamp attribute),
ASPECT (geopyspark.Operation attribute), 81	BLUE_TO_RED (geopyspark.ColorRamp attribute), 82
AttributeStore (class in geopyspark), 77 AttributeStore (class in geopyspark.geotrellis.catalog),	BLUE_TO_RED (geopys-
Attributestore (class in geopyspark.geotrems.catalog),	park.geotrellis.constants.ColorRamp attribute),
AttributeStore.Attributes (class in geopyspark), 77	134
AttributeStore.Attributes (class in geopys-	BOOL (geopyspark.CellType attribute), 82
park.geotrellis.catalog), 128	BOOL (geopyspark.geotrellis.constants.CellType at-
AVERAGE(geopy spark.geotrell is. constants. Resample Method and the property of the propert	nod tribute), 134
attribute), 132	BOOLRAW (geopyspark.CellType attribute), 82 BOOLRAW (geopyspark.geotrellis.constants.CellType
AVERAGE (geopyspark.ResampleMethod attribute), 81	attribute), 134
В	Bounds (class in geopyspark), 72
bands() (geopyspark.geotrellis.layer.RasterLayer	Bounds (class in geopyspark.geotrellis), 124 bounds (geopyspark.geotrellis.Metadata attribute), 125
method), 140	bounds (geopyspark.geotiems.metadata attribute), 123
bands() (geopyspark.geotrellis.layer.TiledRasterLayer	bucket_count() (geopys-
method), 148	park.geotrellis.histogram.Histogram method),
bands() (geopyspark.RasterLayer method), 87 bands() (geopyspark.TiledRasterLayer method), 95	138
BILINEAR (geopyspark.geotrellis.constants.ResampleMetl	bucket_count() (geopyspark.Histogram method), 85
attribute), 132	build() (geopyspark.AttributeStore class method), /8
BILINEAR (geopyspark.ResampleMethod attribute), 81	build() (geopyspark.ColorMap class method), 79
$bin_counts() \ (geopyspark.geotrellis.histogram.Histogram$	build() (geopyspark.geotrellis.catalog.AttributeStore class method), 128
method), 138	build() (geopyspark.geotrellis.color.ColorMap class
bin_counts() (geopyspark.Histogram method), 85	method), 129
bind() (geopyspark.geotrellis.tms.TMS method), 166	build() (geopyspark.geotrellis.tms.TMS class method),

166 build() (geopyspark.TMS class method), 113	ClassificationStrategy (class in geopyspark.geotrellis.constants), 133
С	cmap (geopyspark.ColorMap attribute), 79 cmap (geopyspark.geotrellis.color.ColorMap attribute),
cache() (geopyspark.geotrellis.layer.Pyramid method),	129
161	CMYK (geopyspark.ColorSpace attribute), 83
cache() (geopyspark.geotrellis.layer.RasterLayer	CMYK (geopyspark.geotrellis.constants.ColorSpace attribute), 135
method), 140	col (geopyspark.geotrellis.SpaceTimeKey attribute), 123,
cache() (geopyspark.geotrellis.layer.TiledRasterLayer method), 148	124
cache() (geopyspark.Pyramid method), 108	col (geopyspark.geotrellis.SpatialKey attribute), 123
cache() (geopyspark.RasterLayer method), 87	col (geopyspark.SpaceTimeKey attribute), 68
cache() (geopyspark.TiledRasterLayer method), 95	col (geopyspark.SpatialKey attribute), 68
cached() (geopyspark.AttributeStore class method), 78	collect_keys() (geopyspark.geotrellis.layer.RasterLayer
cached() (geopyspark.geotrellis.catalog.AttributeStore	method), 141
class method), 128	collect_keys() (geopys-
cdf() (geopyspark.geotrellis.histogram.Histogram method), 138	park.geotrellis.layer.TiledRasterLayer method), 148
cdf() (geopyspark.Histogram method), 85	collect_keys() (geopyspark.RasterLayer method), 87
cell_type (geopyspark.geotrellis.Metadata attribute), 125	collect_keys() (geopyspark.TiledRasterLayer method), 95
cell_type (geopyspark.geotrellis.Tile attribute), 117	collect_metadata() (geopys-
cell_type (geopyspark.Metadata attribute), 69	park.geotrellis.layer.RasterLayer method),
cell_type (geopyspark.Tile attribute), 65	141
cells (geopyspark.geotrellis.Tile attribute), 117	collect_metadata() (geopyspark.RasterLayer method), 87
cells (geopyspark. Tile attribute), 64, 65	ColorMap (class in geopyspark), 79
CellType (class in geopyspark), 82	ColorMap (class in geopyspark.geotrellis.color), 129 ColorRamp (class in geopyspark), 82
CellType (class in geopyspark.geotrellis.constants), 133	ColorRamp (class in geopyspark), 82 ColorRamp (class in geopyspark.geotrellis.constants),
CellValue (class in geopyspark), 116	134
CellValue (class in geopyspark.vector_pipe), 169	ColorSpace (class in geopyspark), 83
CFA (geopyspark.ColorSpace attribute), 83	ColorSpace (class in geopyspark, geotrellis.constants),
CFA (geopyspark.geotrellis.constants.ColorSpace attribute), 135	135 combine_bands() (in module geopyspark), 114
changeset (geopyspark.Properties attribute), 115	combine_bands() (in module geopyspark), 114 combine_bands() (in module geopys-
changeset (geopyspark.vector_pipe.Properties attribute),	park.geotrellis.combine_bands), 131
168, 169 CIE_LAB (geopyspark.ColorSpace attribute), 83	Compression (class in geopyspark), 83
CIE_LAB (geopyspark.colorSpace attribute), 83 CIE_LAB (geopyspark.geotrellis.constants.ColorSpace	Compression (class in geopyspark, geotrellis.constants),
attribute), 135	135
Circle (class in geopyspark), 109	contains() (geopyspark.AttributeStore method), 78 contains() (geopyspark.geotrellis.catalog.AttributeStore
Circle (class in geopyspark.geotrellis.neighborhood), 162	method), 128
CIRCLE (geopyspark.geotrellis.constants.Neighborhood	convert_data_type() (geopys-
attribute), 133	park.geotrellis.layer.RasterLayer method),
CIRCLE (geopyspark.Neighborhood attribute), 82 CLASSIFICATION_BOLD_LAND_USE (geopys-	141
CLASSIFICATION_BOLD_LAND_USE (geopys-park.ColorRamp attribute), 82	convert_data_type() (geopys-
CLASSIFICATION_BOLD_LAND_USE (geopys-	park.geotrellis.layer.TiledRasterLayer method),
park.geotrellis.constants.ColorRamp attribute),	149
134	<pre>convert_data_type() (geopyspark.RasterLayer method),</pre>
CLASSIFICATION_MUTED_TERRAIN (geopys-	88
park.ColorRamp attribute), 83	convert_data_type() (geopyspark.TiledRasterLayer
CLASSIFICATION_MUTED_TERRAIN (geopys-	method), 95
park.geotrellis.constants.ColorRamp attribute),	COOLWARM (geopyspark.ColorRamp attribute), 83
134	COOLWARM (geopys-
ClassificationStrategy (class in geonyspark) 82	park.geotrellis.constants.ColorRamp attribute),

176 Index

134	count() (geopyspark.vector_pipe.Properties method), 169
cost_distance() (in module geopyspark), 84	crs (geopyspark.geotrellis.Metadata attribute), 125
cost_distance() (in module geopys-	crs (geopyspark.Metadata attribute), 69
park.geotrellis.cost_distance), 136	CUBIC_CONVOLUTION (geopys-
count() (geopyspark.Bounds method), 72	park.geotrellis.constants.ResampleMethod
count() (geopyspark.CellValue method), 116	attribute), 132
count() (geopyspark.Extent method), 66	CUBIC_CONVOLUTION (geopys-
count() (geopyspark.Feature method), 114	park.ResampleMethod attribute), 81
count() (geopyspark.geotrellis.Bounds method), 124	CUBIC_SPLINE (geopys-
count() (geopyspark.geotrellis.Extent method), 118	park.geotrellis.constants.ResampleMethod
count() (geopyspark.geotrellis.GlobalLayout method),	attribute), 132
120	CUBIC_SPLINE (geopyspark.ResampleMethod at-
count() (geopyspark.geotrellis.layer.Pyramid method),	tribute), 81
161	D
count() (geopyspark.geotrellis.layer.RasterLayer	D
method), 141	data_type (geopyspark.geotrellis.Tile attribute), 117
count() (geopyspark.geotrellis.layer.TiledRasterLayer	data_type (geopyspark.Tile attribute), 64
method), 149	DAYS (geopyspark.geotrellis.constants.TimeUnit at-
<pre>count() (geopyspark.geotrellis.LayoutDefinition method),</pre>	tribute), 133
123	DAYS (geopyspark.TimeUnit attribute), 81
count() (geopyspark.geotrellis.LocalLayout method),	decoding_method (geopys-
121, 122	park.geotrellis.protobufserializer.ProtoBufSerializer
count() (geopyspark.geotrellis.ProjectedExtent method),	attribute), 164
119	DEFAULT_CHUNK_SIZE (in module geopys-
count() (geopyspark.geotrellis.RasterizerOptions	park.geotrellis.constants), 135
method), 124	DEFAULT_GEOTIFF_TIME_FORMAT (in module
<pre>count() (geopyspark.geotrellis.SpaceTimeKey method),</pre>	geopyspark.geotrellis.constants), 135
124	DEFAULT_GEOTIFF_TIME_TAG (in module geopys-
count() (geopyspark.geotrellis.SpatialKey method), 123	park.geotrellis.constants), 135
count() (geopyspark.geotrellis.TemporalProjectedExtent	DEFAULT_MAX_TILE_SIZE (in module geopys-
method), 120	park.geotrellis.constants), 135
count() (geopyspark.geotrellis.Tile method), 117	DEFAULT_PARTITION_BYTES (in module geopys-
count() (geopyspark.geotrellis.TileLayout method), 122	park.geotrellis.constants), 135
count() (geopyspark.GlobalLayout method), 70	DEFLATE_COMPRESSION (geopyspark.Compression
count() (geopyspark.HashPartitionStrategy method), 73	attribute), 84
count() (geopyspark.LayoutDefinition method), 71	DEFLATE_COMPRESSION (geopys-
count() (geopyspark.LocalLayout method), 71	park.geotrellis.constants.Compression at-
count() (geopyspark.ProjectedExtent method), 67	tribute), 135
count() (geopyspark.Properties method), 115	delete() (geopyspark.AttributeStore method), 78
count() (geopyspark.Pyramid method), 108	delete() (geopyspark.AttributeStore.Attributes method),
count() (geopyspark.RasterizerOptions method), 72	77
count() (geopyspark.RasterLayer method), 88	delete() (geopyspark.geotrellis.catalog.AttributeStore
count() (geopyspark.SpaceTimeKey method), 68	method), 129
count() (geopyspark.SpaceTimePartitionStrategy	delete() (geopy spark.geotrellis.catalog. Attribute Store. Attributes
method), 75	method), 128
count() (geopyspark.SpatialKey method), 68	dtype_to_cell_type() (geopyspark.geotrellis.Tile static
count() (geopyspark.SpatialPartitionStrategy method), 74	method), 117
count() (geopyspark.TemporalProjectedExtent method),	dtype_to_cell_type() (geopyspark.Tile static method), 65
67	$dumps() \ (geopy spark. geotrellis. protobuf serializer. ProtoBuf Serializer) \\$
count() (geopyspark.Tile method), 65	method), 164
count() (geopyspark.TiledRasterLayer method), 96	Е
count() (geopyspark.TileLayout method), 70	E
count() (geopyspark.vector_pipe.CellValue method), 170	element_id (geopyspark.Properties attribute), 115
count() (geopyspark.vector_pipe.Feature method), 168	

park geotrellis, protobufserializer.ProtoBufSerializerLOAT32 (geopyspark geotrellis constants. CellType attribute), 162 end_angle (geopyspark_geotrellis.neighborhood.Wedge attribute), 162 end_angle (geopyspark_geotrellis.ProjectedExtent attribute), 169 epsg (geopyspark_geotrellis.ProjectedExtent attribute), 169 epsg (geopyspark_geotrellis.ProjectedExtent attribute), 169, 120 epsg (geopyspark_ProjectedExtent attribute), 66, 67 epsg (geopyspark_ProjectedExtent attribute), 66, 67 epsg (geopyspark_ProjectedExtent attribute), 67 exemal (geopyspark_Geotrellis.constants.ClassificationStrategy attribute), 82 exemal (geopyspark_geotrellis.constants.ClassificationStrategy attribute), 133 extent (class in geopyspark_geotrellis.Metadata attribute), 123 extent (geopyspark_geotrellis.ProjectedExtent attribute), 123 extent (geopyspark_geotrellis.ProjectedExtent attribute), 119 extent (geopyspark_geotrellis.ProjectedExtent attribute), 110 extent (geopyspark_geotrellis.ProjectedExtent attribute	element_id (geopyspark.vector_pipe.Properties attribute), 168, 169	filter_by_times() (geopyspark.TiledRasterLayer method), 96
attribute), 164 end_angle (geopyspark_geotrellis.neighborhood.Wedge attribute), 162 end_angle (geopyspark_geotrellis.ProjectedExtent attribute), 119 epsg (geopyspark_geotrellis.ProjectedExtent attribute), 119 epsg (geopyspark_geotrellis.ProjectedExtent attribute), 119 epsg (geopyspark_geotrellis.ProjectedExtent attribute), 66 enclidean_distance() (in module geopyspark), 84 euclidean_distance() (in module geopyspark, 82 EXACT (geopyspark_geotrellis.euclidean_distance), 136 EXACT (geopyspark_geotrellis.cuclidean_distance), 136 EXACT (geopyspark_geotrellis.actionStrategy attribute), 82 EXACT (geopyspark_geotrellis.actionStrategy attribute), 123 Extent (class in geopyspark), 65 EXtent (class in geopyspark_geotrellis.blayoutDefinition attribute), 123 extent (geopyspark_geotrellis.ProjectedExtent attribute), 123 extent (geopyspark_geotrellis.ProjectedExtent attribute), 129 extent (geopyspark_geotrellis.ProjectedExtent attribute), 119 extent (geopyspark_geotrellis.ProjectedExtent attribute), 120 extent (geopyspark_geotrellis.Projec	encoding_method (geopys-	FLOAT32 (geopyspark.CellType attribute), 82
end_angle (geopyspark.geotrellis.neighborhood.Wedge attribute), 162 email. (geopyspark.geotrellis.ProjectedExtent attribute), 119 epsg (geopyspark.geotrellis.ProjectedExtent attribute), 119 epsg (geopyspark.geotrellis.ProjectedExtent attribute), 119 epsg (geopyspark.geotrellis.ProjectedExtent attribute), 119 epsg (geopyspark.geo	park.geotrellis.protobufserializer.ProtoBufSeriali	zELOAT32 (geopyspark.geotrellis.constants.CellType at-
attribute), 162 eng (geopyspark geotrellis.ProjectedExtent attribute), 119 epsg (geopyspark geotrellis.ProjectedExtent attribute), 119, 120 epsg (geopyspark geotrellis.TemporalProjectedExtent attribute), 119, 120 epsg (geopyspark geotrellis.TemporalProjectedExtent attribute), 119, 120 epsg (geopyspark geotrellis.TemporalProjectedExtent attribute), 66, 67 epsg (geopyspark geotrellis.constants.ClassificationStrategy attribute), 82 ENACT (geopyspark geotrellis.constants.ClassificationStrategy attribute), 82 EXACT (geopyspark geotrellis.constants.ClassificationStrategy attribute), 82 Extent (class in geopyspark geotrellis.donation attribute), 82 Extent (geopyspark geotrellis.Metadata attribute), 82 Extent (geopyspark geotrellis.ProjectedExtent attribute), 82 Extent (geopyspark geotrellis.Constants.ClassificationStrategy attribute), 82 Extent (geopyspark geotrellis.Constants.Classifi	attribute), 164	tribute), 134
attribute), 162 eng (geopyspark geotrellis.ProjectedExtent attribute), 119 epsg (geopyspark geotrellis.ProjectedExtent attribute), 119, 120 epsg (geopyspark geotrellis.TemporalProjectedExtent attribute), 119, 120 epsg (geopyspark geotrellis.TemporalProjectedExtent attribute), 119, 120 epsg (geopyspark geotrellis.TemporalProjectedExtent attribute), 66, 67 epsg (geopyspark geotrellis.constants.ClassificationStrategy attribute), 82 ENACT (geopyspark geotrellis.constants.ClassificationStrategy attribute), 82 EXACT (geopyspark geotrellis.constants.ClassificationStrategy attribute), 82 Extent (class in geopyspark geotrellis.donation attribute), 82 Extent (geopyspark geotrellis.Metadata attribute), 82 Extent (geopyspark geotrellis.ProjectedExtent attribute), 82 Extent (geopyspark geotrellis.Constants.ClassificationStrategy attribute), 82 Extent (geopyspark geotrellis.Constants.Classifi	end_angle (geopyspark.geotrellis.neighborhood.Wedge	FLOAT32RAW (geopyspark.CellType attribute), 82
end_angle (geopyspark.Wedge attribute), 109 epsg (geopyspark.geotrellis.ProjectedExtent attribute), 119 epsg (geopyspark.geotrellis.TemporalProjectedExtent attribute), 119, 120 epsg (geopyspark.ProjectedExtent attribute), 66, 67 euclidean_distance() (in module geopyspark), 84 euclidean_distance() (in module geopyspark. 2 geopyspark. 2 geotrellis.constants. ClassificationStrate EXACT (geopyspark.ClassificationStrategy attribute), 82 EXACT (geopyspark.ClassificationStrategy attribute), 82 EXACT (geopyspark.geotrellis.constants.ClassificationStrate EXACT (geopyspark.geotrellis.LayoutDefinition attribute), 123 extent (geopyspark.geotrellis.LayoutDefinition attribute), 123 extent (geopyspark.geotrellis.ProjectedExtent attribute), 163 extent (geopyspark.geotrellis.ProjectedExtent attribute), 119 extent (geopyspark.geotrellis.ProjectedExtent attribute), 119 extent (geopyspark.geotrellis.ProjectedExtent attribute), 119 extent (geopyspark.geotrellis.ProjectedExtent attribute), 119, 120 extent (geopyspark.geotrellis.ProjectedExtent attribute), 166 F F Feature (class in geopyspark), 114 Feature (class in geopyspark, 114 Feat		
epsg (geopyspark.geotrellis.TemporalProjectedExtent attribute), 119, 120 epsg (geopyspark.geotrellis.TemporalProjectedExtent attribute), 119, 120 epsg (geopyspark.ProjectedExtent attribute), 66, 67 epsg (geopyspark.ProjectedExtent attribute), 66, 67 epsg (geopyspark.CellType attribute), 126 enclidean_distance() (in module geopyspark.park.geotrellis.constants.ClassificationStrategy attribute), 82 EXACT (geopyspark.CassificationStrategy attribute), 82 EXACT (geopyspark.CassificationStrategy attribute), 82 EXACT (geopyspark.geotrellis.constants.ClassificationStrategy attribute), 82 EXACT (geopyspark.geotrellis.LayoutDefinition attribute), 133 Extent (class in geopyspark), 65 Extent (class in geopyspark.geotrellis.LayoutDefinition attribute), 122 extent (geopyspark.geotrellis.Metadata attribute), 119 extent (geopyspark.geotrellis.TemporalProjectedExtent attribute), 119, 120 extent (geopyspark.Regotrellis.TemporalProjectedExtent attribute), 119, 120 extent (geopyspark.Regotrellis.TemporalProjectedExtent attribute), 119, 120 extent (geopyspark.ProjectedExtent attribute), 67 Feature (class in geopyspark), 114 Feature (class in geopyspark), 114 Feature (class in geopyspark, 114 Featur	end angle (geopyspark. Wedge attribute), 109	
tribute), 119, 120 epg (geopyspark. JemporalProjectedExtent attribute), 119, 120 epg (geopyspark. TemporalProjectedExtent attribute), 66, 67 epgs (geopyspark. TemporalProjectedExtent attribute), 68 euclidean_distance() (in module geopyspark. Georgeopyspark. Georgeopyspa		
epsg (geopyspark, geotrellis. TemporalProjectedExtent at tribute), 119, 120 epsg (geopyspark. ProjectedExtent attribute), 66, 67 epsg (geopyspark. ProjectedExtent attribute), 66, 67 euclidean_distance() (in module geopyspark), 84 euclidean_distance() (in module geopyspark, geotrellis. constants. ClassificationStrategy attribute), 82 EXACT (geopyspark. CassificationStrategy attribute), 82 EXACT (geopyspark. CassificationStrategy attribute), 82 EXACT (geopyspark. CassificationStrategy attribute), 82 EXACT (geopyspark. Geotrellis. Constants. ClassificationStrategy attribute), 133 Extent (class in geopyspark), 65 Extent (class in geopyspark), 65 Extent (geopyspark. Geotrellis. LayoutDefinition attribute), 123 extent (geopyspark. geotrellis. LayoutDefinition attribute), 123 extent (geopyspark. geotrellis. TemporalProjectedExtent attribute), 119 extent (geopyspark. Geotrellis. TemporalProjectedExtent attribute), 119 extent (geopyspark. Geotrellis. TemporalProjectedExtent attribute), 163 extent (geopyspark. Geotrellis. TemporalProjectedExtent attribute), 163 extent (geopyspark. Geotrellis. LayoutDefinition attribute), 119 extent (geopyspark. Geotrellis. TemporalProjectedExtent attribute), 163 extent (geopyspark. Geotrellis. TemporalProjectedExtent attribute), 163 extent (geopyspark. Geotrellis. LayoutDefinition attribute), 119 extent (geopyspark. Geotrellis. TemporalProjectedExtent attribute), 163 extent (geopyspark. Geotrellis. TemporalProjectedExtent attribute), 163 extent (geopyspark. Geotrellis. TemporalProjectedExtent attribute), 163 extent (geopyspark. Geotrellis. Geopyspark. Geotrellis.		FLOAT64 (geopyspark.CellType attribute), 82
tribute), 119, 120 epsg (geopyspark.ProjectedExtent attribute), 66, 67 epsg (geopyspark.geotrellis.cuclidean_distance() (in module geopyspark), 84 euclidean_distance() (in module geopyspark, geotrellis.cuclidean_distance), 136 EXACT (geopyspark_ClassificationStrategy attribute), 82 EXACT (geopyspark_Geotrellis.ClassificationStrategy attribute), 82 EXACT (geopyspark_geotrellis.LayoutDefinition attribute), 123 extent (geopyspark_geotrellis.LayoutDefinition attribute), 123 extent (geopyspark_geotrellis.ProjectedExtent attribute), 119 extent (geopyspark_geotrellis.ProjectedExtent attribute), 119 extent (geopyspark_geotrellis.ProjectedExtent attribute), 119 extent (geopyspark_geotrellis.TemporalProjectedExtent attribute), 69 extent (geopyspark_Popyspark_geotrellis.TemporalProjectedExtent attribute), 67 Feature (class in geopyspark, 114 Feature (class in geopyspark_geotrellis.constants.Unit attribute), 67 FET (geopyspark_geotrellis.constants.Unit attribute), 67 FET (geopyspark_geotrellis.constants.Unit attribute), 67 FET (geopyspark_geotrellis.constants.Unit attribute), 69 park_geotrellis.aper_TiledRaster_ayer method), 130 from_dict() (geopyspark_geotrellis.histogram lass method), 130 from_dict() (geopyspark_geotrellis.histogram lass method), 85 from_dict() (geopyspark_geotrellis.netatatatac class method), 130 from_dict() (geopyspark_geotrellis.netatac class method), 67 from_orm_orm_dict() (geopyspark_geotrellis.color.ColorMap class method), 130 from_dict() (geopyspark_geotrellis.netatac class method), 130 from_park_geotrellis.aper_TiledRaster_ayer class meth	ensg (geopyspark geotrellis TemporalProjectedExtent at-	
epsg (geopyspark.ProjectedExtent attribute), 65, 67 epsg (geopyspark.TemporalProjectedExtent attribute), 67 epsg (geopyspark.TemporalProjectedExtent attribute), 67 extent (geopyspark.geotrellis.constants.ClassificationStrategy attribute), 82 extent (class in geopyspark, 65 extent (class in geopyspark.geotrellis.LayoutDefinition attribute), 130 extent (geopyspark.geotrellis.ProjectedExtent attribute), 125 extent (geopyspark.geotrellis.TemporalProjectedExtent attribute), 119 extent (geopyspark.geotrellis.TemporalProjectedExtent attribute), 193 extent (geopyspark.ResterLayer method), 130 from_dataframe() (in module geopyspark.geotrellis.neighborhood.Nesw attribute), 163 extent (geopyspark.geotrellis.ProjectedExtent attribute), 163 extent (geopyspark.ResterLayer method), 130 from_dataframe() (in module geopyspark.geotrellis.TemporalProjectedExtent attribute), 163 extent (geopyspark.ResterLayer method), 130 from_dataframe() (in module geopyspark.geotrellis.Seolor.ColorMap class method), 130 from_dataframe() (in module geopyspark.geotrellis.Metadata class method), 130 from_dataframe() (in module geopyspark.geotrellis.Metadata class method), 130 from_dataframe() (in geopyspark.geotrellis.Metadata class method), 130 from_dataframe() (in geopyspark.geotrellis.Metadata c		
epsg (geopyspark. TemporalProjectedExtent attribute), 67 euclidean_distance() (in module geopyspark), 84 euclidean_distance() (in module geopyspark), 84 extent (geopyspark. ClassificationStrategy attribute), 82 EXACT (geopyspark. ClassificationStrategy attribute), 133 Extent (class in geopyspark, 65 Extent (class in geopyspark. Gotrellis, 118 extent (geopyspark. geotrellis. LayoutDefinition attribute), 123 extent (geopyspark. geotrellis. ProjectedExtent attribute), 163 extent (geopyspark. geotrellis. ProjectedExtent attribute), 119 extent (geopyspark. geotrellis. TemporalProjectedExtent attribute), 119, 120 extent (geopyspark. LayoutDefinition attribute), 71 extent (geopyspark. Metadata attribute), 67 Extent (geopyspark. ProjectedExtent attribute), 67 Feature (class in geopyspark), 114 Feature (class in geopyspark. Restert attribute), 67 Feature (class in geopyspark. Netcorp pipe, 167 Features (class in geopyspark. Gotrellis. Constants. Unit attribute), 135 Feature (geopyspark. Gotrellis. Constants. Unit attribute), 135 FEET (geopyspark. Gotrellis. Constants. Unit attribute), 136 FEET (geopyspark. Gotrellis. Gotrellis. Gotrellis. Gotrellis. Gotrellis. Gotrellis. Gotrellis. Gotrellis.		
euclidean_distance() (in module geopyspark), 84 euclidean_distance() (in module geopyspark_geotrellis.constants.CellType attribute), park_geotrellis.constants.ClassificationStrategy attribute), 82 EXACT (geopyspark_geotrellis.constants.ClassificationStrategy attribute), 83 Extent (class in geopyspark, geotrellis.constants.ClassificationStrategy attribute), 133 Extent (class in geopyspark_geotrellis), 118 Extent (class in geopyspark_geotrellis.LayoutDefinition attribute), 123 extent (geopyspark_geotrellis.Metadata attribute), 125 extent (geopyspark_geotrellis.ProjectedExtent attribute), 163 extent (geopyspark_geotrellis.TemporalProjectedExtent attribute), 119, 120 extent (geopyspark_geotrellis.TemporalProjectedExtent attribute), 119, 120 extent (geopyspark_geotrellis.TemporalProjectedExtent attribute), 69 extent (geopyspark_geotrellis.TemporalProjectedExtent attribute), 67 F Feature (class in geopyspark, 114 Feature (class in geopyspark, 114 Feature (class in geopyspark, 114 Feature (class in geopyspark_geotrellis.constants.Unit attribute), 135 FEET (geopyspark_geotrellis.constants.Unit attribute), 135 FEET (geopyspark_geotrellis.constants.Unit attribute), 136 FEET (geopyspark_geotrellis.onstants.Unit attribute), 136 FIET (geopyspark_geotrellis.onstants.Unit attribute), 136 Fiending for discussion fored for discussion for discussion for discussion for discussion fo		
euclidean_distance() (in module geopyspark.geotrellis.euclidean_distance), 136 EXACT (geopyspark.ClassificationStrategy attribute), 82 EXACT (geopyspark.geotrellis.constants.ClassificationStrategy attribute), 133 Extent (class in geopyspark), 65 Extent (class in geopyspark, geotrellis.LayoutDefinition attribute), 123 extent (geopyspark.geotrellis.Metadata attribute), 125 extent (geopyspark.geotrellis.Netadata attribute), 125 extent (geopyspark.geotrellis.ProjectedExtent attribute), 119 extent (geopyspark.geotrellis.ProjectedExtent attribute), 119 extent (geopyspark.LayoutDefinition attribute), 119 extent (geopyspark.geotrellis.ProjectedExtent attribute), 119 extent (geopyspark.Metadata attribute), 69 extent (geopyspark.ProjectedExtent attribute), 69 extent (geopyspark.ProjectedExtent attribute), 67 F F F F F F F F F F F F F		© 17
park.geotrellis.euclidean_distance), 136 EXACT (geopyspark.ClassificationStrategy attribute), 82 EXACT (geopyspark.ClassificationStrategy attribute), 133 Extent (class in geopyspark), 65 Extent (class in geopyspark.geotrellis.LayoutDefinition attribute), 123 extent (geopyspark.geotrellis.Metadata attribute), 125 extent (geopyspark.geotrellis.ProjectedExtent attribute), 163 extent (geopyspark.geotrellis.ProjectedExtent attribute), 119 extent (geopyspark.geotrellis.TemporalProjectedExtent attribute), 119 extent (geopyspark.Nesw attribute), 119 extent (geopyspark.Nesw attribute), 119 extent (geopyspark.Nesw attribute), 110 extent (geopyspark.Nesw attribute), 110 extent (geopyspark.ProjectedExtent attribute), 69 extent (geopyspark.ProjectedExtent attribute), 67 F F F F Feature (class in geopyspark), 114 Feature (class in geopyspark.Vnit attribute), 84 filter_by_times()		
EXACT (geopyspark.geotrellis.constants.ClassificationStrategy attribute), 133 Extent (class in geopyspark.geotrellis), 118 extent (geopyspark.geotrellis.LayoutDefinition attribute), 125 extent (geopyspark.geotrellis.Metadata attribute), 125 extent (geopyspark.geotrellis.ProjectedExtent attribute), 163 extent (geopyspark.geotrellis.ProjectedExtent attribute), 169 extent (geopyspark.geotrellis.TemporalProjectedExtent attribute), 119, 120 extent (geopyspark.geotrellis.TemporalProjectedExtent attribute), 119, 120 extent (geopyspark.AayoutDefinition attribute), 66, 67 extent (geopyspark.ProjectedExtent attribute), 67 F F F F F F F F F F F F F		
EXACT (geopyspark.geotrellis.constants.ClassificationStrateggal() (geopyspark.TiledRasterLayer method), 96 attribute), 133 Extent (class in geopyspark), 65 Extent (geass in geopyspark.geotrellis), 118 extent (geopyspark.geotrellis.LayoutDefinition attribute), 125 extent (geopyspark.geotrellis.Metadata attribute), 125 extent (geopyspark.geotrellis.ProjectedExtent attribute), 163 extent (geopyspark.geotrellis.ProjectedExtent attribute), 119 extent (geopyspark.geotrellis.TemporalProjectedExtent attribute), 119, 120 extent (geopyspark.LayoutDefinition attribute), 119, 120 extent (geopyspark.LayoutDefinition attribute), 110 extent (geopyspark.Nesw attribute), 110 extent (geopyspark.Nesw attribute), 110 extent (geopyspark.Nesw attribute), 66 extent (geopyspark.TemporalProjectedExtent attribute), 67 F Feature (class in geopyspark.yeotrellis.constants.Unit attribute), 67 Features (class in geopyspark.geotrellis.constants.Unit attribute), 135 Feature (class in geopyspark.geotrellis.constants.Unit attribute), 135 Feature (class in geopyspark.geotrellis.constants.Unit attribute), 135 Feature (class in geopyspark.geotrellis.constants.Unit attribute), 135 Feeture (class in geopyspark.geotrellis.nayer.RasterLayer method), 141 filter_by_times() (geopyspark.geotrellis.layer.TiledRasterLayer class method), 88 from_dict() (geopyspark.Histogram class method), 65 from_lostogram() (geopyspark.geotrellis.nayer.RasterLayer class method), 131 from_numpy_array() (geopyspark.Geotrellis.Tile class method), 131 from_numpy_array() (geopyspark.TiledRasterLayer class method), 131 from_numpy_array() (geopyspark.TiledRasterLayer class method), 131 from_numpy_array() (geopyspark.RasterLayer class method), 80 from_lostogram() (geopyspark.Geotrellis.Tile class method), 131 from_numpy_array() (geopyspark.TiledRasterLayer class method), 80 from_lostogram() (geopyspark.TiledRasterLayer class method), 80 from_lostogram() (geopyspark.TiledRasterLayer class method), 80 from_lostogram() (geopyspark.TiledRasterLayer class method), 80		
attribute), 133 Extent (class in geopyspark), 65 Extent (class in geopyspark geotrellis), 118 extent (geopyspark geotrellis. LayoutDefinition attribute), 123 extent (geopyspark geotrellis. Metadata attribute), 125 extent (geopyspark geotrellis. ProjectedExtent attribute), 163 extent (geopyspark geotrellis. ProjectedExtent attribute), 119, 120 extent (geopyspark geotrellis. TemporalProjectedExtent attribute), 119, 120 extent (geopyspark LayoutDefinition attribute), 110 extent (geopyspark Metadata attribute), 66, 67 extent (geopyspark Metadata attribute), 67 Feature (class in geopyspark), 114 Feature (class in geopyspark), 114 Feature (class in geopyspark vector_pipe, features_collection (class in geopyspark wector_pipe, features_collection, 170 FEET (geopyspark Lolor Map class method), 138 from_dict() (geopyspark Metadata class method), 85 from_dict() (geopyspark Metadata class method), 69 from_bistogram() (geopyspark Metadata class method), 180 from_dataframe() (in module geopyspark method), 125 from_dict() (geopyspark Metadata class method), 138 from_dict() (geopyspark Metadata class method), 180 from_dict() (geopyspark Metadata c		· · · · · · · · · · · · · · · · · · ·
Extent (class in geopyspark), 65 Extent (class in geopyspark.geotrellis), 118 extent (geopyspark.geotrellis.LayoutDefinition attribute), 125 extent (geopyspark.geotrellis.Metadata attribute), 125 extent (geopyspark.geotrellis.neighborhood.Nesw attribute), 163 extent (geopyspark.geotrellis.ProjectedExtent attribute), 119 extent (geopyspark.geotrellis.TemporalProjectedExtent attribute), 119, 120 extent (geopyspark.deadata attribute), 71 extent (geopyspark.Metadata attribute), 69 extent (geopyspark.Metadata attribute), 69 extent (geopyspark.Metadata attribute), 69 extent (geopyspark.Metadata attribute), 66, 67 extent (geopyspark.TemporalProjectedExtent attribute), 67 F Feature (class in geopyspark.vector_pipe, 167 Feature (class in geopyspark.vector_pipe, features_collection (class in geopyspark.geotrellis.constants.Unit attribute), 135 FEET (geopyspark.geotrellis.layer.RasterLayer method), 126 from_numpy_array() (geopyspark.geotrellis.color.ColorMap class method), 136 from_dict() (geopyspark.deadata class method), 85 from_dict() (geopyspark.deadata class method), 125 from_dict() (geopyspark.deadata class metho		
Extent (class in geopyspark.geotrellis.LayoutDefinition attribute), 125 extent (geopyspark.geotrellis.Metadata attribute), 125 extent (geopyspark.geotrellis.Neighborhood.Nesw attribute), 163 extent (geopyspark.geotrellis.ProjectedExtent attribute), 119 extent (geopyspark.geotrellis.TemporalProjectedExtent attribute), 119 (geopyspark.deadata attribute), 119 (geopyspark.deadata attribute), 119 (geopyspark.deadata attribute), 110 extent (geopyspark.Nesw attribute), 110 extent (geopyspark.Nesw attribute), 110 extent (geopyspark.Nesw attribute), 110 extent (geopyspark.ProjectedExtent attribute), 66 extent (geopyspark.ProjectedExtent attribute), 67 from_dict() (geopyspark.deadata class method), 125 from_dict() (geopyspark.deadata class method), 126 from_dict() (geopyspark.deadata class method), 127 from_dict() (geopyspark.deadata class method), 128 from_dict() (geopyspark.deadata class method), 129 from_dict() (geopyspark.deadata class method), 120 from_dict() (geopy		
extent (geopyspark.geotrellis.LayoutDefinition attribute), 123 extent (geopyspark.geotrellis.Metadata attribute), 125 extent (geopyspark.geotrellis.neighborhood.Nesw attribute), 163 extent (geopyspark.geotrellis.ProjectedExtent attribute), 119, 120 extent (geopyspark.geotrellis.TemporalProjectedExtent attribute), 119, 120 extent (geopyspark.LayoutDefinition attribute), 71 extent (geopyspark.Metadata attribute), 69 extent (geopyspark.Metadata attribute), 66, 67 extent (geopyspark.Nesw attribute), 110 extent (geopyspark.Nesw attribute), 110 extent (geopyspark.TemporalProjectedExtent attribute), 67 Feature (class in geopyspark), 114 Feature (class in geopyspark.geotrellis.color.ColorMap class method), 125 from_dict() (geopyspark.geotrellis.Metadata class method), 136 from_dict() (geopyspark.geotrellis.Metadata class method), 125 from_dict() (geopyspark.Geotrellis.Netadata class method), 136 from_dict() (geopyspark.Geotrellis.Netadata class method), 137 from_mistogram() (geopyspark.Geotrellis.Color.ColorMap class method), 137 from_numpy_array() (geopyspark.Geotrellis.Netadata class method), 131 from_numpy_array() (geopyspark.geotrellis.Color.ColorMap class method), 137 from_numpy_array() (geopyspark.Geotrellis.Netadata class method), 137 from_numpy_array() (geopyspark.Geotrellis.Color.ColorMap class method), 137 from_numpy_array() (geopyspark.Geotrellis.Color.ColorMap class method), 130 from_dict() (geopyspark.Geotrellis.Geopyspark.Geotrellis.Geopyspark.Geot		
extent (geopyspark.geotrellis.neighborhood.Nesw attribute), 163 extent (geopyspark.geotrellis.ProjectedExtent attribute), 119 extent (geopyspark.geotrellis.TemporalProjectedExtent attribute), 119 extent (geopyspark.geotrellis.TemporalProjectedExtent attribute), 119, 120 extent (geopyspark.LayoutDefinition attribute), 71 extent (geopyspark.Nesw attribute), 110 extent (geopyspark.Nesw attribute), 110 extent (geopyspark.Nesw attribute), 110 extent (geopyspark.ProjectedExtent attribute), 66, 67 extent (geopyspark.ProjectedExtent attribute), 67 Feature (class in geopyspark), 114 Feature (class in geopyspark.geotrellis.constants.Unit attribute), 135 Feature (class in geopyspark.geotrellis.constants.Unit attribute), 135 FEET (geopyspark.geotrellis.constants.Unit attribute), 135 FEET (geopyspark.geotrellis.layer.RasterLayer method), 141 filter_by_times() (geopyspark.geotrellis.layer.RasterLayer method), 140 filter_by_times() (geopyspark.geotrellis.layer.TiledRasterLayer method), 149 filter_by_times() (geopyspark.RasterLayer method), 18 from_colors() (geopyspark.geotrellis.histogram class method), 130 from_colors() (geopyspark.geotrellis.histogram.Histogram class method), 125 from_dict() (geopyspark.Metadata class method), 125 from_dict() (geopyspark.Metadata class method), 131 from_mintpy_array() (geopyspark.RasterLayer class method), 131 from_mintpy_array() (geopyspark.RasterLayer class method), 150 from_numpy_array() (geop		
extent (geopyspark.geotrellis.Metadata attribute), 125 extent (geopyspark.geotrellis.neighborhood.Nesw attribute), 163 extent (geopyspark.geotrellis.ProjectedExtent attribute), 119 extent (geopyspark.geotrellis.TemporalProjectedExtent attribute), 119, 120 extent (geopyspark.LayoutDefinition attribute), 71 extent (geopyspark.Metadata attribute), 69 extent (geopyspark.Nesw attribute), 110 extent (geopyspark.Nesw attribute), 110 extent (geopyspark.ProjectedExtent attribute), 66, 67 extent (geopyspark.ProjectedExtent attribute), 67 Feature (class in geopyspark), 114 Feature (class in geopyspark.vector_pipe, 167 Features Collection (class in geopyspark.vector_pipe, features_collection), 170 FEET (geopyspark.geotrellis.constants.Unit attribute), 135 FEET (geopyspark.Unit attribute), 84 filter_by_times() (geopyspark.geotrellis.layer.RasterLayer method), 140 filter_by_times() (geopyspark.geotrellis.layer.TiledRasterLayer method), 149 filter_by_times() (geopyspark.RasterLayer method), 149 filter_by_times() (geopyspark.RasterLayer method), 149 filter_by_times() (geopyspark.RasterLayer method), 88 from_norc() (in module geopyspark.colorMap class method), 136 from_colors() (geopyspark.geotrellis.holo, 130 from_dataframe() (geopyspark.geotrellis.Metadata class method), 138 from_dict() (geopyspark.geotrellis.Metadata class method), 85 from_dict() (geopyspark.Metadata class method), 85 from_listogram() (geopyspark.ColorMap class method), 131 from_numpy_array() (geopyspark.Geotrellis.color.ColorMap class method), 131 from_numpy_array() (geopyspark.Tile class method), 65 from_numpy_array() (geopyspark.Tile class method), 65 from_numpy_rad() (geopyspark.Tile dRasterLayer class method), 150 from_numpy_rdd() (geopyspark.RasterLayer class method), 88 from_numpy_rdd() (geopyspark.TiledRasterLayer class method), 88 from_numpy_rdd() (geopyspark.TiledRasterLayer class method), 89 from_numpy_rdd() (geopyspark.TiledRasterLayer class method), 160 from_clors() (geopyspark.ColorMap class method), 80 from_dict() (geopyspark.ColorMap class m		
extent (geopyspark.geotrellis.ProjectedExtent attribute), 119 extent (geopyspark.geotrellis.ProjectedExtent attribute), 119 extent (geopyspark.geotrellis.TemporalProjectedExtent attribute), 119, 120 extent (geopyspark.LayoutDefinition attribute), 71 extent (geopyspark.Mesw attribute), 69 extent (geopyspark.Mesw attribute), 69 extent (geopyspark.ProjectedExtent attribute), 67 Feature (class in geopyspark.Nesw attribute), 110 feature (class in geopyspark.vector_pipe.features_collection (class in geopyspark.vector_pipe.features_collection), 170 FEET (geopyspark.geotrellis.constants.Unit attribute), 135 FEET (geopyspark.Unit attribute), 84 filter_by_times() (geopyspark.geotrellis.layer.RasterLayer method), 141 filter_by_times() (geopyspark.RasterLayer method), 149 filter_by_times() (geopyspark.RasterLayer method), 149 filter_by_times() (geopyspark.RasterLayer method), 88 from_oclors() (geopyspark.geotrellis.color.ColorMap class method), 130 rem_dict() (geopyspark.geotrellis.histogram.Histogram class method), 138 from_dict() (geopyspark.geotrellis.Metadata class method), 135 from_dict() (geopyspark.RasterLayer method), 131 from_minumpy_array() (geopyspark.Geotrellis.color.ColorMap class method), 131 from_numpy_array() (geopyspark.geotrellis.color.ColorMap class method), 131 from_numpy_array() (geopyspark.geotrellis.color.ColorMap class method), 131 from_numpy_array() (geopyspark.geotrellis.color.ColorMap class method), 117 from_numpy_array() (geopyspark.Tile class method), 65 from_numpy_radd() (geopyspark.RasterLayer class method), 142 from_numpy_rdd() (geopyspark.RasterLayer class method), 150 from_numpy_rdd() (geopyspark.RasterLayer class method), 88 from_numpy_rdd() (geopyspark.RasterLayer class method), 89 from_numpy_rdd() (geopyspark.RasterLayer class method), 149 filter_by_times() (geopyspark.RasterLayer method), 88 from_colors() (geopyspark.geotrellis.histogram.Histogram class method), 150 from_numpy_array() (geopyspark.Geotrellis.layer.RasterLayer class method), 160 from_numpy_rdd() (geopyspark.RasterLayer		
extent (geopyspark.geotrellis.ProjectedExtent attribute), 119, 120		
extent (geopyspark.geotrellis.ProjectedExtent attribute), 119 extent (geopyspark.geotrellis.TemporalProjectedExtent attribute), 119, 120 extent (geopyspark.LayoutDefinition attribute), 71 extent (geopyspark.LayoutDefinition attribute), 71 extent (geopyspark.Metadata attribute), 69 extent (geopyspark.Nesw attribute), 110 extent (geopyspark.ProjectedExtent attribute), 69 extent (geopyspark.ProjectedExtent attribute), 66, 67 extent (geopyspark.ProjectedExtent attribute), 67 Feature (class in geopyspark.Nesw attribute), 67 Feature (class in geopyspark.vector_pipe), 167 Features Collection (class in geopyspark.vector_pipe.features_collection), 170 FEET (geopyspark.geotrellis.constants.Unit attribute), 135 FEET (geopyspark.geotrellis.constants.Unit attribute), 135 FEET (geopyspark.geotrellis.layer.RasterLayer method), 141 filter_by_times() (geopyspark.geotrellis.layer.TiledRasterLayer method), 149 filter_by_times() (geopyspark.RasterLayer method), 88 from_nom_dict() (geopyspark.geotrellis.histogram.Histogram class method), 125 from_dict() (geopyspark.geotrellis.Metadata class method), 125 from_dict() (geopyspark.Beatogram class method), 89 from_histogram() (geopyspark.Geotrellis.color.ColorMap class method), 131 from_numpy_array() (geopyspark.geotrellis.color.ColorMap class method), 117 from_numpy_raray() (geopyspark.Tile class method), 65 from_numpy_rad() (geopyspark.Tile class method), 65 from_numpy_rad() (geopyspark.TiledRasterLayer class method), 150 from_numpy_rad() (geopyspark.RasterLayer class method), 88 from_numpy_rad() (geopyspark.RasterLayer class method), 88 from_numpy_rad() (geopyspark.TiledRasterLayer class method), 97 from_numpy_rad() (geopyspark.Geotrellis.layer.TiledRasterLayer class method), 160 from_numpy_rad() (geopyspark.Geotr		
park.vector_pipe.osm_reader), 171 extent (geopyspark.geotrellis.TemporalProjectedExtent attribute), 119, 120 extent (geopyspark.LayoutDefinition attribute), 71 extent (geopyspark.Metadata attribute), 69 extent (geopyspark.Nesw attribute), 110 extent (geopyspark.Nesw attribute), 110 extent (geopyspark.ProjectedExtent attribute), 66, 67 extent (geopyspark.TemporalProjectedExtent attribute), 67 Feature (class in geopyspark), 114 Feature (class in geopyspark.vector_pipe), 167 FeaturesCollection (class in geopyspark.geotrellis.constants.Unit attribute), 135 FEET (geopyspark.geotrellis.constants.Unit attribute), 135 FEET (geopyspark.Unit attribute), 84 filter_by_times() (geopyspark.geotrellis.layer.RasterLayer method), 141 filter_by_times() (geopyspark.geotrellis.layer.TiledRasterLayer method), 149 filter_by_times() (geopyspark.geotrellis.layer.TiledRasterLayer method), 88 park.geotrellis.layer.TiledRasterLayer method), 149 filter_by_times() (geopyspark.RasterLayer method), 88 from_dict() (geopyspark.geotrellis.Metadata class method), 125 from_dict() (geopyspark.geotrellis.Metadata class method), 125 from_dict() (geopyspark.geotrellis.Metadata class method), 125 from_dict() (geopyspark.Geopyspark.Geotrellis.Netadata class method), 125 from_dict() (geopyspark.ProjectedExtent attribute), 66, 67 from_dict() (geopyspark.ProjectedExtent attribute), 66, 67 from_dict() (geopyspark.ProjectedLass method), 125 from_dict() (geopyspark.ProjectedExtent attribute), 66, 67 from_dict() (geopyspark.ProjectedLass method), 125 from_dict() (geopyspark.ProjectedLass method), 125 from_dict() (geopyspark.ProjectedLass method), 125 from_dict() (geopyspark.ProjectedLass method), 125 from_dict() (geopyspark.Geotrellis.Netadata class method), 69 from_histogram() (geopyspark.ProjectedLass method), 131 from_numpy_array() (geopyspark.Tile class method), 65 from_numpy_rdd() (geopyspark.ProjectedLasterLayer class method), 142 from_numpy_rdd() (geopyspark.ProjectedLasterLayer class method), 150 from_numpy_rdd() (geopysp		
extent (geopyspark.geotrellis.TemporalProjectedExtent attribute), 119, 120 extent (geopyspark.LayoutDefinition attribute), 69 extent (geopyspark.New attribute), 110 extent (geopyspark.ProjectedExtent attribute), 66, 67 extent (geopyspark.ProjectedExtent attribute), 66, 67 extent (geopyspark.TemporalProjectedExtent attribute), 67 Feature (class in geopyspark), 114 Feature (class in geopyspark.vector_pipe), 167 FeaturesCollection (class in geopyspark.geotrellis.constants.Unit attribute), 135 FEET (geopyspark.geotrellis.constants.Unit attribute), 135 FEET (geopyspark.Unit attribute), 84 filter_by_times() (geopyspark.geotrellis.layer.RasterLayer method), 141 filter_by_times() (geopyspark.geotrellis.layer.TiledRasterLayer method), 149 filter_by_times() (geopyspark.RasterLayer method), 88 from_orc() (in module geopyspark.geotrellis.histogram.Histogram class method), 125 from_dict() (geopyspark.geotrellis.Metadata class method), 125 from_dict() (geopyspark.geotrellis.Metadata class method), 85 from_dict() (geopyspark.geotrellis.lass method), 80 from_histogram() (geopyspark.geotrellis.lass method), 117 fr		
extent (geopyspark.LayoutDefinition attribute), 71 extent (geopyspark.Nesw attribute), 69 extent (geopyspark.Nesw attribute), 110 extent (geopyspark.Nesw attribute), 110 extent (geopyspark.Nesw attribute), 110 extent (geopyspark.ProjectedExtent attribute), 66, 67 extent (geopyspark.TemporalProjectedExtent attribute), 67 Feature (class in geopyspark), 114 Feature (class in geopyspark), 114 Feature (class in geopyspark.vector_pipe), 167 FeaturesCollection (class in geopyspark.geotrellis.constants.Unit attribute), 135 FEET (geopyspark.geotrellis.constants.Unit attribute), 135 FEET (geopyspark.geotrellis.layer.RasterLayer method), 141 filter_by_times() (geopyspark.geotrellis.layer.RasterLayer method), 149 filter_by_times() (geopyspark.geotrellis.layer.TiledRasterLayer method), 88 from_numpy_rdd() (geopyspark.geotrellis.layer.laterLayer class method), 150 from_numpy_rdd() (geopyspark.RasterLayer class method), 88 from_numpy_rdd() (geopyspark.RasterLayer class method), 169 from_numpy_array() (geopyspark.geotrellis.layer.RasterLayer class method), 117 from_numpy_array() (geopyspark.TiledRasterLayer class method), 65 from_numpy_rdd() (geopyspark.RasterLayer class method), 150 from_numpy_rdd() (geopyspark.RasterLayer class method), 88 from_numpy_rdd() (geopyspark.RasterLayer class method), 97 filter_by_times() (geopyspark.RasterLayer method), 88 from_norc() (in module geopys-	119	
extent (geopyspark.LayoutDefinition attribute), 71 extent (geopyspark.Metadata attribute), 69 extent (geopyspark.Nesw attribute), 110 extent (geopyspark.ProjectedExtent attribute), 66, 67 extent (geopyspark.ProjectedExtent attribute), 66, 67 extent (geopyspark.TemporalProjectedExtent attribute), 67 Feature (class in geopyspark), 114 Feature (class in geopyspark.vector_pipe), 167 FeaturesCollection (class in geopyspark.vector_pipe.features_collection), 170 FEET (geopyspark.Geotrellis.constants.Unit attribute), 135 FEET (geopyspark.Unit attribute), 84 filter_by_times() (geopyspark.geotrellis.layer.RasterLayer method), 141 filter_by_times() (geopyspark.geotrellis.layer.TiledRasterLayer method), 149 filter_by_times() (geopyspark.RasterLayer method), 149 filter_by_times() (geopyspark.RasterLayer method), 88 from_dict() (geopyspark.Histogram class method), 125 from_dict() (geopyspark.Histogram class method), 85 from_dict() (geopyspark.Histogram class method), 85 from_dict() (geopyspark.Histogram class method), 80 from_histogram() (geopyspark.geotrellis.color.ColorMap class method), 131 from_numpy_array() (geopyspark.geotrellis.Tile class method), 117 from_numpy_array() (geopyspark.Tileclass method), 65 from_numpy_rdd() (geopyspark.RasterLayer class method), 142 from_numpy_rdd() (geopyspark.RasterLayer class method), 150 from_numpy_rdd() (geopyspark.RasterLayer class method), 150 from_numpy_rdd() (geopyspark.RasterLayer class method), 88 from_numpy_rdd() (geopyspark.RasterLayer class method), 97 filter_by_times() (geopyspark.RasterLayer method), 88 from_numpy_rdd() (geopyspark.RasterLayer class method), 97	extent (geopyspark.geotrellis.TemporalProjectedExtent	from_dict() (geopyspark.geotrellis.histogram.Histogram
extent (geopyspark.Metadata attribute), 69 extent (geopyspark.Nesw attribute), 110 extent (geopyspark.ProjectedExtent attribute), 66, 67 extent (geopyspark.ProjectedExtent attribute), 67 Feature (geopyspark.TemporalProjectedExtent attribute), 67 Feature (class in geopyspark), 114 Feature (class in geopyspark.vector_pipe), 167 FeaturesCollection (class in geopyspark.vector_pipe.features_collection), 170 FEET (geopyspark.geotrellis.constants.Unit attribute), 135 FEET (geopyspark.Unit attribute), 84 filter_by_times() (geopyspark.geotrellis.layer.RasterLayer method), 141 filter_by_times() (geopyspark.geotrellis.layer.RasterLayer method), 140 filter_by_times() (geopyspark.geotrellis.layer.TiledRasterLayer method), 149 filter_by_times() (geopyspark.RasterLayer method), 149 filter_by_times() (geopyspark.RasterLayer method), 88 from_numpy_rdd() (geopyspark.RasterLayer class method), 97 from_orc() (in module geopys-	attribute), 119, 120	class method), 138
extent (geopyspark.Nesw attribute), 110 extent (geopyspark.ProjectedExtent attribute), 66, 67 extent (geopyspark.TemporalProjectedExtent attribute), 67 Feature (class in geopyspark), 114 Feature (class in geopyspark.vector_pipe), 167 Feature (class in geopyspark.vector_pipe, 167 Feature (class in geopyspark.geotrellis.constants.Unit attribute), 135 FEET (geopyspark.Unit attribute), 135 FEET (geopyspark.Unit attribute), 135 FEET (geopyspark.Unit attribute), 135 Filter_by_times() (geopyspark.geotrellis.layer.RasterLayer method), 141 filter_by_times() (geopyspark.geotrellis.layer.TiledRasterLayer method), 149 filter_by_times() (geopyspark.RasterLayer method), 149 filter_by_times() (geopyspark.RasterLayer method), 88 from_numpy_rdd() (geopyspark.TiledRasterLayer class method), 88 from_numpy_rdd() (geopyspark.RasterLayer class method), 97 from_orc() (in module geopys-	extent (geopyspark.LayoutDefinition attribute), 71	from_dict() (geopyspark.geotrellis.Metadata class
extent (geopyspark.ProjectedExtent attribute), 66, 67 extent (geopyspark.TemporalProjectedExtent attribute), 67 Feature (class in geopyspark), 114 Feature (class in geopyspark.vector_pipe), 167 FeaturesCollection (class in geopyspark.vector_pipe.features_collection), 170 FEET (geopyspark.geotrellis.constants.Unit attribute), 135 FEET (geopyspark.Unit attribute), 135 FEET (geopyspark.Unit attribute), 135 FEET (geopyspark.Unit attribute), 141 filter_by_times() (geopyspark.geotrellis.layer.RasterLayer method), 140 filter_by_times() (geopyspark.geotrellis.layer.TiledRasterLayer method), 149 filter_by_times() (geopyspark.RasterLayer method), 88 from_numpy_rdd() (geopyspark.TiledRasterLayer class method), 69 from_dict() (geopyspark.Metadata class method), 69 from_histogram() (geopyspark.geotrellis.color.ColorMap class method), 131 from_numpy_array() (geopyspark.geotrellis.Tile class method), 117 from_numpy_array() (geopyspark.Tile class method), 65 from_numpy_rdd() (geopyspark.geotrellis.layer.RasterLayer class method), 142 from_numpy_rdd() (geopyspark.RasterLayer class method), 150 from_numpy_rdd() (geopyspark.RasterLayer class method), 88 from_numpy_rdd() (geopyspark.RasterLayer class method), 88 from_numpy_rdd() (geopyspark.TiledRasterLayer class method), 97 filter_by_times() (geopyspark.RasterLayer method), 88 from_orc() (in module geopys-	extent (geopyspark.Metadata attribute), 69	method), 125
extent (geopyspark.TemporalProjectedExtent attribute), 67 Feature (class in geopyspark), 114 Feature (class in geopyspark.vector_pipe), 167 FeaturesCollection (class in geopyspark.vector_pipe, 167 FeaturesCollection (class in geopyspark.vector_pipe, 167 FEET (geopyspark.geotrellis.constants.Unit attribute), 135 FEET (geopyspark.geotrellis.constants.Unit attribute), 135 FEET (geopyspark.Unit attribute), 84 filter_by_times() (geopyspark.geotrellis.layer.RasterLayer method), 141 from_numpy_array() (geopyspark.Tile class method), 65 from_numpy_array() (geopyspark.Tile class method), 65 from_numpy_array() (geopyspark.Tile class method), 65 from_numpy_radd() (geopyspark.geotrellis.layer.RasterLayer class method), 142 from_numpy_rdd() (geopyspark.RasterLayer class method), 150 from_numpy_rdd() (geopyspark.RasterLayer class method), 88 from_numpy_rdd() (geopyspark.TiledRasterLayer class method), 97 filter_by_times() (geopyspark.RasterLayer method), 88 from_orc() (in module geopyspark.TiledRasterLayer geopyspark.TiledRasterLayer class method), 97 filter_by_times() (geopyspark.RasterLayer method), 88	extent (geopyspark.Nesw attribute), 110	from_dict() (geopyspark.Histogram class method), 85
extent (geopyspark.TemporalProjectedExtent attribute), 67 Feature (class in geopyspark), 114 Feature (class in geopyspark.vector_pipe), 167 FeaturesCollection (class in geopyspark.vector_pipe, 167 FeaturesCollection (class in geopyspark.vector_pipe, 167 FEET (geopyspark.geotrellis.constants.Unit attribute), 135 FEET (geopyspark.geotrellis.constants.Unit attribute), 135 FEET (geopyspark.Unit attribute), 84 filter_by_times() (geopyspark.geotrellis.layer.RasterLayer method), 141 from_numpy_array() (geopyspark.Tile class method), 65 from_numpy_array() (geopyspark.Tile class method), 65 from_numpy_array() (geopyspark.Tile class method), 65 from_numpy_radd() (geopyspark.geotrellis.layer.RasterLayer class method), 142 from_numpy_rdd() (geopyspark.RasterLayer class method), 150 from_numpy_rdd() (geopyspark.RasterLayer class method), 88 from_numpy_rdd() (geopyspark.TiledRasterLayer class method), 97 filter_by_times() (geopyspark.RasterLayer method), 88 from_orc() (in module geopyspark.TiledRasterLayer geopyspark.TiledRasterLayer class method), 97 filter_by_times() (geopyspark.RasterLayer method), 88	extent (geopyspark.ProjectedExtent attribute), 66, 67	from_dict() (geopyspark.Metadata class method), 69
Feature (class in geopyspark), 114 Feature (class in geopyspark.vector_pipe), 167 FeaturesCollection (class in geopyspark.vector_pipe), 167 FeaturesCollection (class in geopyspark.vector_pipe.features_collection), 170 FEET (geopyspark.geotrellis.constants.Unit attribute), 135 FEET (geopyspark.Unit attribute), 84 filter_by_times() (geopyspark.geotrellis.layer.RasterLayer method), 141 filter_by_times() (geopyspark.geotrellis.layer.TiledRasterLayer method), 150 from_numpy_rdd() (geopyspark.RasterLayer class method), 188 from_numpy_rdd() (geopyspark.RasterLayer class method), 189 from_numpy_rdd() (geopyspark.RasterLayer class method), 197 filter_by_times() (geopyspark.RasterLayer method), 88 from_numpy_rdd() (geopyspark.RasterLayer class method), 97 filter_by_times() (geopyspark.RasterLayer method), 88 from_orc() (in module geopys-		from_histogram() (geopyspark.ColorMap class method),
Class method), 131 Feature (class in geopyspark), 114 Feature (class in geopyspark.vector_pipe), 167 FeaturesCollection (class in geopyspark.vector_pipe), 167 FEET (geopyspark.geotrellis.constants.Unit attribute), 135 FEET (geopyspark.Unit attribute), 84 FEET (geopyspark.Unit attribute), 84 filter_by_times() (geopyspark.geotrellis.layer.RasterLayer method), 141 from_numpy_array() (geopyspark.Tile class method), 65 from_numpy_raray() (geopyspark.Tile class method), 65 from_numpy_rad() (geopyspark.geotrellis.layer.RasterLayer class method), 142 from_numpy_rad() (geopyspark.RasterLayer class method), 150 from_numpy_rad() (geopyspark.RasterLayer class method), 88 from_numpy_rad() (geopyspark.RasterLayer class method), 88 from_numpy_rad() (geopyspark.RasterLayer class method), 97 filter_by_times() (geopyspark.RasterLayer method), 88 from_orc() (in module geopyspark.TiledRasterLayer class method), 97		
Class method), 131 Feature (class in geopyspark), 114 Feature (class in geopyspark.vector_pipe), 167 FeaturesCollection (class in geopyspark.vector_pipe), 167 FEET (geopyspark.geotrellis.constants.Unit attribute), 135 FEET (geopyspark.Unit attribute), 84 FEET (geopyspark.Unit attribute), 84 filter_by_times() (geopyspark.geotrellis.layer.RasterLayer method), 141 from_numpy_array() (geopyspark.Tile class method), 65 from_numpy_raray() (geopyspark.Tile class method), 65 from_numpy_rad() (geopyspark.geotrellis.layer.RasterLayer class method), 142 from_numpy_rad() (geopyspark.RasterLayer class method), 150 from_numpy_rad() (geopyspark.RasterLayer class method), 88 from_numpy_rad() (geopyspark.RasterLayer class method), 88 from_numpy_rad() (geopyspark.RasterLayer class method), 97 filter_by_times() (geopyspark.RasterLayer method), 88 from_orc() (in module geopyspark.TiledRasterLayer class method), 97	_	from histogram() (geopyspark.geotrellis.color.ColorMap
Feature (class in geopyspark), 114 Feature (class in geopyspark.vector_pipe), 167 FeaturesCollection (class in geopyspark.vector_pipe), 167 FEET (geopyspark.geotrellis.constants.Unit attribute), 135 FEET (geopyspark.Unit attribute), 84 filter_by_times() (geopyspark.geotrellis.layer.RasterLayer method), 141 from_numpy_array() (geopyspark.geotrellis.Tile class method), 65 from_numpy_array() (geopyspark.Tile class method), 65 from_numpy_array() (geopyspark.Tile class method), 65 from_numpy_rdd() (geopyspark.geotrellis.layer.RasterLayer class method), 142 from_numpy_rdd() (geopyspark.geotrellis.layer.TiledRasterLayer class method), 150 from_numpy_rdd() (geopyspark.RasterLayer class method), 88 from_numpy_rdd() (geopyspark.RasterLayer class method), 88 from_numpy_rdd() (geopyspark.TiledRasterLayer class method), 97 filter_by_times() (geopyspark.RasterLayer method), 88 from_orc() (in module geopys-	F	
Feature (class in geopyspark.vector_pipe), 167 FeaturesCollection (class in geopyspark.vector_pipe.features_collection), 170 FEET (geopyspark.geotrellis.constants.Unit attribute), 135 FEET (geopyspark.Unit attribute), 84 Filter_by_times() (geopyspark.geotrellis.layer.RasterLayer method), 150 Filter_by_times() (geopyspark.geotrellis.layer.TiledRasterLayer method), 141 Filter_by_times() (geopyspark.geotrellis.layer.TiledRasterLayer method), 149 From_numpy_rdd() (geopyspark.RasterLayer class method), 150 From_numpy_rdd() (geopyspark.RasterLayer class method), 88 From_numpy_rdd() (geopyspark.TiledRasterLayer class method), 97 From_numpy_rdd() (geopyspark.TiledRasterLayer class method), 150 From_numpy_rdd() (geopyspark.TiledRasterLayer class method), 149 From_numpy_rdd() (geopyspark.TiledRasterLayer class method), 150 From_numpy_rdd() (geopyspark.TiledRasterLayer class method), 149 From_numpy_rdd() (geopyspark.TiledRasterLayer class method)	Feature (class in geopyspark), 114	
FeaturesCollection (class in geopys-park.vector_pipe.features_collection), 170 from_numpy_array() (geopyspark.Tile class method), 65 from_numpy_rdd() (geopys-park.geotrellis.constants.Unit attribute), 135 from_numpy_rdd() (geopys-park.geotrellis.layer.RasterLayer class method), 142 from_numpy_rdd() (geopys-park.geotrellis.layer.RasterLayer method), 150 from_numpy_rdd() (geopyspark.RasterLayer class method), 150 from_numpy_rdd() (geopyspark.RasterLayer class method), 88 park.geotrellis.layer.TiledRasterLayer method), 88 from_numpy_rdd() (geopyspark.TiledRasterLayer class method), 97 filter_by_times() (geopyspark.RasterLayer method), 88 from_orc() (in module geopys-park.geopyspark.RasterLayer method), 88 from_orc() (in module geopys-park.geopyspark.RasterLayer method), 97 from_orc() (in module geopys-park.geopyspark.geopyspark.geopyspark.geopyspark.RasterLayer method), 88 from_orc() (in module geopys-park.geopysp		
park.vector_pipe.features_collection), 170 from_numpy_rdd() (geopys-park.geotrellis.constants.Unit attribute), 135 FEET (geopyspark.Unit attribute), 84 from_numpy_rdd() (geopys-park.geotrellis.layer.RasterLayer dass method), 142 FEET (geopyspark.Unit attribute), 84 from_numpy_rdd() (geopys-park.geotrellis.layer.TiledRasterLayer class method), 150 from_numpy_rdd() (geopyspark.RasterLayer class method), 150 from_numpy_rdd() (geopyspark.RasterLayer class method), 88 from_numpy_rdd() (geopyspark.TiledRasterLayer class method), 97 filter_by_times() (geopyspark.RasterLayer method), 88 from_orc() (in module geopys-park.geopys-park.geotrellis.layer.TiledRasterLayer class method), 97 from_numpy_rdd() (geopyspark.TiledRasterLayer class method), 97 from_orc() (in module geopys-park.ge		
FEET (geopyspark.geotrellis.constants.Unit attribute), 135 FEET (geopyspark.Unit attribute), 84 filter_by_times() (geopyspark.geotrellis.layer.RasterLayer (geopyspark.geotrellis.layer.RasterLayer method), 150 from_numpy_rdd() (geopyspark.RasterLayer class method), 150 from_numpy_rdd() (geopyspark.RasterLayer class method), 88 park.geotrellis.layer.TiledRasterLayer method), 88 from_numpy_rdd() (geopyspark.TiledRasterLayer class method), 97 filter_by_times() (geopyspark.RasterLayer method), 88 from_orc() (in module geopyspark.	` · · · · · · · · · · · · · · · · · · ·	
FEET (geopyspark.Unit attribute), 84 from_numpy_rdd() (geopys- park.geotrellis.layer.RasterLayer method), 141 from_numpy_rdd() (geopyspark.RasterLayer class filter_by_times() (geopyspark.geotrellis.layer.TiledRasterLayer class park.geotrellis.layer.TiledRasterLayer method), 149 from_numpy_rdd() (geopyspark.RasterLayer class method), 97 filter_by_times() (geopyspark.RasterLayer method), 88 from_orc() (in module geopys-		
FEET (geopyspark.Unit attribute), 84 from_numpy_rdd() (geopyspark.geotrellis.layer.RasterLayer method), 150 from_numpy_rdd() (geopyspark.RasterLayer method), 150 from_numpy_rdd() (geopyspark.RasterLayer class filter_by_times() (geopyspark.geotrellis.layer.TiledRasterLayer method), 88 park.geotrellis.layer.TiledRasterLayer method), 97 filter_by_times() (geopyspark.RasterLayer method), 88 from_orc() (in module geopyspark.geopyspark.geopyspark.geotrellis.layer.TiledRasterLayer class method), 97		
filter_by_times() (geopys-park.geotrellis.layer.RasterLayer method), 150 141 from_numpy_rdd() (geopyspark.RasterLayer class filter_by_times() (geopys-park.geotrellis.layer.TiledRasterLayer method), 88 park.geotrellis.layer.TiledRasterLayer method), from_numpy_rdd() (geopyspark.TiledRasterLayer class method), 97 filter_by_times() (geopyspark.RasterLayer method), 88 from_orc() (in module geopys-		
park.geotrellis.layer.RasterLayer method), method), 150 141 from_numpy_rdd() (geopyspark.RasterLayer class filter_by_times() (geopys- method), 88 park.geotrellis.layer.TiledRasterLayer method), from_numpy_rdd() (geopyspark.TiledRasterLayer class method), 97 filter_by_times() (geopyspark.RasterLayer method), 88 from_orc() (in module geopys-	- 10 1	
141 from_numpy_rdd() (geopyspark.RasterLayer class filter_by_times() (geopys-park.geotrellis.layer.TiledRasterLayer method), 88 from_numpy_rdd() (geopyspark.RasterLayer class method), 97 filter_by_times() (geopyspark.RasterLayer method), 88 from_orc() (in module geopys-		
filter_by_times() (geopys-method), 88 park.geotrellis.layer.TiledRasterLayer method), from_numpy_rdd() (geopyspark.TiledRasterLayer class method), 97 filter_by_times() (geopyspark.RasterLayer method), 88 from_orc() (in module geopys-		
park.geotrellis.layer.TiledRasterLayer method), from_numpy_rdd() (geopyspark.TiledRasterLayer class method), 97 filter_by_times() (geopyspark.RasterLayer method), 88 from_orc() (in module geopys-		
149 method), 97 filter_by_times() (geopyspark.RasterLayer method), 88 from_orc() (in module geopys-		
filter_by_times() (geopyspark.RasterLayer method), 88 from_orc() (in module geopys-		
	mici_oy_times() (geopyspark.kasterLayer method), 88	park.vector pipe.osm reader), 171

from_polygon() (geopyspark.Extent class method), 66 from_polygon() (geopyspark.geotrellis.Extent class method), 118	get_line_features_rdd() (geopys-park.vector_pipe.features_collection.FeaturesCollection method), 170
G	get_line_tags() (geopys-park.vector_pipe.features_collection.FeaturesCollection
geometry (geopyspark.Feature attribute), 114 geometry (geopyspark.vector_pipe.Feature attribute), 168 geopyspark (module), 64	method), 170 get_min_max() (geopyspark.geotrellis.layer.RasterLayer method), 142
geopyspark (module), 64 geopyspark.geotrellis.catalog (module), 126 geopyspark.geotrellis.color (module), 129	get_min_max() (geopys-park.geotrellis.layer.TiledRasterLayer method),
geopyspark.geotrellis.combine_bands (module), 131 geopyspark.geotrellis.constants (module), 132	get_min_max() (geopyspark.RasterLayer method), 89
geopyspark.geotrellis.cost_distance (module), 136 geopyspark.geotrellis.euclidean_distance (module), 136	get_min_max() (geopyspark.TiledRasterLayer method), 97 get_multipolygon_features_rdd() (geopys-
geopyspark.geotrellis.geotiff (module), 136 geopyspark.geotrellis.hillshade (module), 137 geopyspark.geotrellis.histogram (module), 138	park.vector_pipe.features_collection.FeaturesCollection method), 170
geopyspark.geotrellis.layer (module), 140 geopyspark.geotrellis.neighborhood (module), 162	get_multipolygon_tags() (geopys-park.vector_pipe.features_collection.FeaturesCollection
geopyspark.geotrellis.rasterize (module), 164 geopyspark.geotrellis.tms (module), 166	method), 170 get_partition_strategy() (geopys-
geopyspark.geotrellis.union (module), 167 geopyspark.vector_pipe.features_collection (module),	park.geotrellis.layer.Pyramid method), 161 get_partition_strategy() (geopys- park.geotrellis.layer.RasterLayer method),
geopyspark.vector_pipe.osm_reader (module), 171	get_partition_strategy() (geopys-
geopyspark_conf() (in module geopyspark), 64 get() (in module geopyspark.geotrellis.geotiff), 136 get_class_histogram() (geopys-	park.geotrellis.layer.TiledRasterLayer method), 151
park.geotrellis.layer.RasterLayer method),	get_partition_strategy() (geopyspark.Pyramid method), 108
get_class_histogram() (geopys-park.geotrellis.layer.TiledRasterLayer method),	get_partition_strategy() (geopyspark.RasterLayer method), 89
150 get_class_histogram() (geopyspark.RasterLayer method),	get_partition_strategy() (geopyspark.TiledRasterLayer method), 97
get_class_histogram() (geopyspark.TiledRasterLayer method), 97	get_point_features_rdd() (geopys- park.vector_pipe.features_collection.FeaturesCollection method), 170
get_colors_from_colors() (in module geopyspark), 78 get_colors_from_colors() (in module geopys-	get_point_tags() (geopys- park.vector_pipe.features_collection.FeaturesCollection
park.geotrellis.color), 129 get_colors_from_matplotlib() (in module geopyspark), 78	method), 171 get_point_values() (geopys- park.geotrellis.layer.TiledRasterLayer method),
get_colors_from_matplotlib() (in module geopys- park.geotrellis.color), 129 get_histogram() (geopyspark.geotrellis.layer.Pyramid	get_point_values() (geopyspark.TiledRasterLayer
method), 161 get_histogram() (geopyspark.geotrellis.layer.RasterLayer	method), 98 get_polygon_features_rdd() (geopys-
method), 142 get_histogram() (geopys-	park.vector_pipe.features_collection.FeaturesCollection method), 171
park.geotrellis.layer.TiledRasterLayer method), 151	get_polygon_tags() (geopys- park.vector_pipe.features_collection.FeaturesCollection
get_histogram() (geopyspark.Pyramid method), 108 get_histogram() (geopyspark.RasterLayer method), 89	method), 171 get_quantile_breaks() (geopys- park.geotrellis.layer.RasterLayer method),
get_histogram() (geopyspark.TiledRasterLayer method),	142

get_quantile_breaks() (geopys- park.geotrellis.layer.TiledRasterLayer method),	HEATMAP_DARK_RED_TO_YELLOW_WHITE (geopyspark.ColorRamp attribute), 83
152	HEATMAP_DARK_RED_TO_YELLOW_WHITE
get_quantile_breaks() (geopyspark.RasterLayer method),	(geopyspark.geotrellis.constants.ColorRamp
89	attribute), 134
get_quantile_breaks() (geopyspark.TiledRasterLayer	HEATMAP_LIGHT_PURPLE_TO_DARK_PURPLE_TO_WHITE
method), 98	(geopyspark.ColorRamp attribute), 83
get_quantile_breaks_exact_int() (geopys-	HEATMAP_LIGHT_PURPLE_TO_DARK_PURPLE_TO_WHITE
park.geotrellis.layer.RasterLayer method), 142	(geopyspark.geotrellis.constants.ColorRamp attribute), 134
get_quantile_breaks_exact_int() (geopys-	HEATMAP_YELLOW_TO_RED (geopys-
park.geotrellis.layer.TiledRasterLayer method),	park.ColorRamp attribute), 83
152	HEATMAP_YELLOW_TO_RED (geopys-
get_quantile_breaks_exact_int() (geopys-	park.geotrellis.constants.ColorRamp attribute),
park.RasterLayer method), 89	134
get_quantile_breaks_exact_int() (geopys-	HILBERT (geopyspark.geotrellis.constants.IndexingMethod
park.TiledRasterLayer method), 99	attribute), 132
getNumPartitions() (geopyspark.geotrellis.layer.Pyramid method), 161	HILBERT (geopyspark.IndexingMethod attribute), 81 hillshade() (in module geopyspark), 84
getNumPartitions() (geopys-	hillshade() (in module geopyspark.geotrellis.hillshade),
park.geotrellis.layer.RasterLayer method),	137
142	Histogram (class in geopyspark), 85
getNumPartitions() (geopys-	Histogram (class in geopyspark.geotrellis.histogram), 138
park.geotrellis.layer.TiledRasterLayer method), 150	histogram (geopyspark.geotrellis.layer.Pyramid attribute), 161
getNumPartitions() (geopyspark.Pyramid method), 108	histogram (geopyspark.Pyramid attribute), 108
getNumPartitions() (geopyspark.RasterLayer method), 88	histogram_series() (geopyspark.TiledRasterLayer
getNumPartitions() (geopyspark.TiledRasterLayer	method), 99
method), 97	host (geopyspark.geotrellis.tms.TMS attribute), 166, 167
GlobalLayout (class in geopyspark), 70	host (geopyspark.TMS attribute), 112, 113
GlobalLayout (class in geopyspark.geotrellis), 120 GREATER_THAN (geopyspark.ClassificationStrategy	Hot (geopyspark.ColorRamp attribute), 83 Hot (geopyspark.geotrellis.constants.ColorRamp at-
attribute), 82	Hot (geopyspark.geotrellis.constants.ColorRamp at- tribute), 134
GREATER_THAN (geopys-	HOURS (geopyspark.geotrellis.constants.TimeUnit at-
park.geotrellis.constants.ClassificationStrategy	tribute), 133
attribute), 133	HOURS (geopyspark.TimeUnit attribute), 81
GREATER_THAN_OR_EQUAL_TO (geopys-	(6.11.1
park.ClassificationStrategy attribute), 82	
GREATER_THAN_OR_EQUAL_TO (geopys-	ICC_LAB (geopyspark.ColorSpace attribute), 83
park.geotrellis.constants.ClassificationStrategy	ICC_LAB (geopyspark.geotrellis.constants.ColorSpace
attribute), 133	attribute), 135
GREEN_TO_RED_ORANGE (geopyspark.ColorRamp	implements (geopyspark.TileRender.Java attribute), 112
attribute), 83	includePartial (geopyspark.geotrellis.RasterizerOptions
GREEN_TO_RED_ORANGE (geopys-	attribute), 124
park.geotrellis.constants.ColorRamp attribute), 134	includePartial (geopyspark.RasterizerOptions attribute),
137	index() (convened Pounds method) 72
H	index() (geopyspark.Bounds method), 72 index() (geopyspark.CellValue method), 116
HashPartitionStrategy (class in geopyspark), 73	index() (geopyspark.Cen value method), 116 index() (geopyspark.Extent method), 66
HEATMAP_BLUE_TO_YELLOW_TO_RED_SPECTRU	Mndex() (geopyspark Feature method) 114
(geopyspark.ColorRamp attribute), 83	index() (geopyspark.geotrellis.Bounds method), 124
HEATMAP_BLUE_TO_YELLOW_TO_RED_SPECTRU	Mndex() (geopyspark.geotrellis.Extent method). 118
(geopyspark.geotrellis.constants.ColorRamp	index() (geopyspark.geotrellis.GlobalLayout method),
attribute), 134	120

$index() \ (geopyspark.geotrellis. Layout Definition \ method), \\ 123$	INT16RAW (geopyspark.geotrellis.constants.CellType attribute), 134
index() (geopyspark.geotrellis.LocalLayout method), 121, 122	INT32 (geopyspark.CellType attribute), 82 INT32 (geopyspark.geotrellis.constants.CellType at-
index() (geopyspark.geotrellis.ProjectedExtent method),	tribute), 134
119	INT32RAW (geopyspark.CellType attribute), 82
index() (geopyspark.geotrellis.RasterizerOptions method), 124	INT32RAW (geopyspark.geotrellis.constants.CellType attribute), 134
index() (geopyspark.geotrellis.SpaceTimeKey method), 124	INT8 (geopyspark.CellType attribute), 82 INT8 (geopyspark.geotrellis.constants.CellType at-
index() (geopyspark.geotrellis.SpatialKey method), 123	tribute), 134
index() (geopyspark.geotrellis.TemporalProjectedExtent method), 120	INT8RAW (geopyspark.CellType attribute), 82 INT8RAW (geopyspark.geotrellis.constants.CellType at-
index() (geopyspark.geotrellis.Tile method), 118	tribute), 134
index() (geopyspark.geotrellis.TileLayout method), 122	is_cached (geopyspark.geotrellis.layer.Pyramid attribute),
index() (geopyspark.GlobalLayout method), 70	161
index() (geopyspark.HashPartitionStrategy method), 73	is_cached (geopyspark.Pyramid attribute), 108
index() (geopyspark.LayoutDefinition method), 71	is_floating_point_layer (geopys-
index() (geopyspark.LocalLayout method), 71	park.geotrellis.layer.TiledRasterLayer at-
index() (geopyspark.ProjectedExtent method), 67	tribute), 147
index() (geopyspark.Properties method), 116	is_floating_point_layer (geopyspark.TiledRasterLayer at-
index() (geopyspark.RasterizerOptions method), 72	tribute), 94
index() (geopyspark/taster/zer options intendex), 72 index() (geopyspark.SpaceTimeKey method), 68	isEmpty() (geopyspark.geotrellis.layer.Pyramid method),
index() (geopyspark.SpaceTimePartitionStrategy	161
method), 75	isEmpty() (geopyspark.geotrellis.layer.RasterLayer
index() (geopyspark.SpatialKey method), 68	method), 142
index() (geopyspark.SpatialPartitionStrategy method), 74 index() (geopyspark.TemporalProjectedExtent method),	isEmpty() (geopyspark.geotrellis.layer.TiledRasterLayer method), 152
67	isEmpty() (geopyspark.Pyramid method), 108
index() (geopyspark.Tile method), 65	isEmpty() (geopyspark.RasterLayer method), 89
index() (geopyspark.TileLayout method), 70	isEmpty() (geopyspark.TiledRasterLayer method), 99
index() (geopyspark.vector_pipe.CellValue method), 170	item_count() (geopyspark.geotrellis.histogram.Histogram
index() (geopyspark.vector_pipe.Feature method), 168	method), 139
index() (geopyspark.vector_pipe.Properties method), 169	item_count() (geopyspark.Histogram method), 85
IndexingMethod (class in geopyspark), 80	ITU_LAB (geopyspark.ColorSpace attribute), 83
IndexingMethod (class in geopys-	ITU_LAB (geopyspark.geotrellis.constants.ColorSpace
park.geotrellis.constants), 132	attribute), 135
INFERNO (geopyspark.ColorRamp attribute), 83	· ·
INFERNO (geopyspark.geotrellis.constants.ColorRamp	L
attribute), 134	LANCZOS (geopyspark.geotrellis.constants.ResampleMethod
inner_radius (geopyspark.Annulus attribute), 110	attribute), 132
inner_radius (geopyspark.geotrellis.neighborhood.Annulus attribute), 163	LANCZOS (geopyspark.ResampleMethod attribute), 81 layer() (geopyspark.AttributeStore method), 78
instant (geopyspark.geotrellis.SpaceTimeKey attribute),	layer() (geopyspark.geotrellis.catalog.AttributeStore
124	method), 129
instant (geopyspark.geotrellis.TemporalProjectedExtent	layer_metadata (geopys-
attribute), 119, 120	park.geotrellis.layer.TiledRasterLayer at-
instant (geopyspark.SpaceTimeKey attribute), 68	tribute), 147
instant (geopyspark.TemporalProjectedExtent attribute), 67	layer_metadata (geopyspark.TiledRasterLayer attribute), 94
INT16 (geopyspark.CellType attribute), 82	layer_metadata() (geopyspark.AttributeStore.Attributes
INT16 (geopyspark.geotrellis.constants.CellType at-	method), 77
tribute), 134	layer_type (geopyspark.geotrellis.layer.RasterLayer at-
INT16RAW (geopyspark.CellType attribute), 82	tribute), 140

layer_type (geopyspark.geotrellis.layer.TiledRasterLayer attribute), 147	loads() (geopyspark.geotrellis.protobufserializer.ProtoBufSerializer method), 164
layer_type (geopyspark.Pyramid attribute), 108 layer_type (geopyspark.RasterLayer attribute), 87, 89	local_max() (geopyspark.geotrellis.layer.TiledRasterLayer method), 152
layer_type (geopyspark.TiledRasterLayer attribute), 94,	local_max() (geopyspark.TiledRasterLayer method), 99
99	LocalLayout (class in geopyspark), 71
layers() (geopyspark.AttributeStore method), 78	LocalLayout (class in geopyspark.geotrellis), 121
layers() (geopyspark.geotrellis.catalog.AttributeStore	LOG_L (geopyspark.ColorSpace attribute), 83
method), 129	LOG_L (geopyspark.geotrellis.constants.ColorSpace at-
LayerType (class in geopyspark), 80	tribute), 135
LayerType (class in geopyspark.geotrellis.constants), 132 layout_definition (geopyspark.geotrellis.Metadata at-	LOG_LUV (geopyspark.ColorSpace attribute), 83 LOG_LUV (geopyspark.geotrellis.constants.ColorSpace
tribute), 125	attribute), 135
layout_definition (geopyspark.Metadata attribute), 69	lookup() (geopyspark.geotrellis.layer.TiledRasterLayer
layoutCols (geopyspark.geotrellis.TileLayout attribute),	method), 152
122	lookup() (geopyspark.TiledRasterLayer method), 99
layoutCols (geopyspark.TileLayout attribute), 69, 70	M
Layout Definition (class in geopyspark), 71	
LayoutDefinition (class in geopyspark.geotrellis), 122 layoutRows (geopyspark.geotrellis.TileLayout attribute),	MAGMA (geopyspark.ColorRamp attribute), 83
122	MAGMA (geopyspark.geotrellis.constants.ColorRamp attribute), 134
layoutRows (geopyspark.TileLayout attribute), 69, 70	map_cells() (geopyspark.geotrellis.layer.RasterLayer
LESS_THAN (geopyspark.ClassificationStrategy at-	method), 143
tribute), 82	map_cells() (geopyspark.geotrellis.layer.TiledRasterLayer
LESS_THAN (geopys-	method), 153
park.geotrellis.constants.ClassificationStrategy	map_cells() (geopyspark.RasterLayer method), 89
attribute), 133	map_cells() (geopyspark.TiledRasterLayer method), 99
LESS_THAN_OR_EQUAL_TO (geopys-park.ClassificationStrategy attribute), 82	map_tiles() (geopyspark.geotrellis.layer.RasterLayer
LESS_THAN_OR_EQUAL_TO (geopys-	method), 143
park.geotrellis.constants.ClassificationStrategy	map_tiles() (geopyspark.geotrellis.layer.TiledRasterLayer method), 153
attribute), 133	map_tiles() (geopyspark.RasterLayer method), 89
levels (geopyspark.geotrellis.layer.Pyramid attribute),	map_tiles() (geopyspark.TiledRasterLayer method), 100
161	mask() (geopyspark.geotrellis.layer.TiledRasterLayer
levels (geopyspark.Pyramid attribute), 108	method), 153
LIGHT_TO_DARK_GREEN (geopyspark.ColorRamp	mask() (geopyspark.TiledRasterLayer method), 100
attribute), 83	MAX (geopyspark.geotrellis.constants.Operation at-
LIGHT_TO_DARK_GREEN (geopys-park.geotrellis.constants.ColorRamp attribute),	tribute), 133
134	MAX (geopyspark.geotrellis.constants.ResampleMethod attribute), 132
LIGHT_TO_DARK_SUNSET (geopyspark.ColorRamp	MAX (geopyspark.Operation attribute), 81
attribute), 83	MAX (geopyspark.Operation attribute), 81
LIGHT_TO_DARK_SUNSET (geopys-	max() (geopyspark.geotrellis.histogram.Histogram
park.geotrellis.constants.ColorRamp attribute),	method), 139
134	max() (geopyspark.Histogram method), 85
LIGHT_YELLOW_TO_ORANGE (geopys-	max_series() (geopyspark.TiledRasterLayer method), 101
park.ColorRamp attribute), 83	max_zoom (geopyspark.geotrellis.layer.Pyramid at-
LIGHT_YELLOW_TO_ORANGE (geopys-park.geotrellis.constants.ColorRamp attribute),	tribute), 161
134	max_zoom (geopyspark.Pyramid attribute), 108, 109
LINEAR_RAW (geopyspark.ColorSpace attribute), 83	maxKey (geopyspark.Bounds attribute), 72 maxKey (geopyspark.geotrellis.Bounds attribute), 125
LINEAR_RAW (geopys-	MEAN (geopyspark.geotrellis.constants.Operation
park.geotrellis.constants.ColorSpace attribute),	attribute), 133
135	MEAN (geopyspark.Operation attribute), 81

maan() (as any an art as at wall is high a grown High a grown	atteilharta) 122
mean() (geopyspark.geotrellis.histogram.Histogram method), 139	attribute), 133 MODE (geopyspark.geotrellis.constants.ResampleMethod
mean() (geopyspark.Histogram method), 86	attribute), 133
mean_series() (geopyspark.TiledRasterLayer method), 101	MODE (geopyspark.Operation attribute), 81 MODE (geopyspark.ResampleMethod attribute), 81
MEDIAN (geopyspark.geotrellis.constants.Operation attribute), 133	mode() (geopyspark.geotrellis.histogram.Histogram method), 139
MEDIAN (geopyspark.geotrellis.constants.ResampleMetho	
attribute), 132 MEDIAN (geopyspark.Operation attribute), 81	MONTHS (geopyspark.geotrellis.constants.TimeUnit attribute), 133
MEDIAN (geopyspark. ResampleMethod attribute), 81	MONTHS (geopyspark.TimeUnit attribute), 81
median() (geopyspark.geotrellis.histogram.Histogram	WONTHS (geopyspark. TimeOnit attribute), 81
method), 139	N
median() (geopyspark.Histogram method), 86	name (geopyspark.Annulus attribute), 110
merge() (geopyspark.geotrellis.histogram.Histogram	name (geopyspark.Circle attribute), 109
method), 139 merge() (geopyspark.geotrellis.layer.RasterLayer	name (geopyspark.geotrellis.neighborhood.Annulus attribute), 163
method), 143	name (geopyspark.geotrellis.neighborhood.Circle at-
merge() (geopyspark.geotrellis.layer.TiledRasterLayer method), 154	tribute), 162
**	name (geopyspark.geotrellis.neighborhood.Nesw at-
merge() (geopyspark.Histogram method), 86	tribute), 163
merge() (geopyspark.RasterLayer method), 90	name (geopyspark.geotrellis.neighborhood.Wedge
merge() (geopyspark.TiledRasterLayer method), 101	attribute), 163
Metadata (class in geopyspark), 68	name (geopyspark.Nesw attribute), 110
Metadata (class in geopyspark.geotrellis), 125	name (geopyspark.Wedge attribute), 110
METERS (geopyspark.geotrellis.constants.Unit attribute), 135	NEAREST_NEIGHBOR (geopys-
METERS (geopyspark.Unit attribute), 84	park.geotrellis.constants.ResampleMethod
	attribute), 133
MILLIS (geopyspark.geotrellis.constants.TimeUnit attribute), 133	NEAREST_NEIGHBOR (geopyspark.ResampleMethod attribute), 81
MILLIS (geopyspark.TimeUnit attribute), 81	Neighborhood (class in geopyspark), 82
MIN (geopyspark.geotrellis.constants.Operation at-	Neighborhood (class in geopyspark.geotrellis.constants),
tribute), 133	133
MIN (geopyspark.geotrellis.constants.ResampleMethod	Nesw (class in geopyspark), 110
attribute), 132	Nesw (class in geopyspark.geotrellis.neighborhood), 163
MIN (geopyspark.Operation attribute), 81	NESW (geopyspark.geotrellis.constants.Neighborhood
MIN (geopyspark.ResampleMethod attribute), 81	attribute), 133
min() (geopyspark.geotrellis.histogram.Histogram	NESW (geopyspark.Neighborhood attribute), 82
method), 139	nlcd_colormap() (geopyspark.ColorMap static method),
min() (geopyspark.Histogram method), 86	80
min_max() (geopyspark.geotrellis.histogram.Histogram method), 139	nlcd_colormap() (geopyspark.geotrellis.color.ColorMap static method), 131
min_max() (geopyspark.Histogram method), 86	NO_COMPRESSION (geopyspark.Compression at-
min_series() (geopyspark.TiledRasterLayer method), 101	tribute), 84
minKey (geopyspark.Bounds attribute), 72	NO_COMPRESSION (geopys-
minKey (geopyspark.geotrellis.Bounds attribute), 124,	park.geotrellis.constants.Compression at-
125	tribute), 135
minor_version (geopyspark.Properties attribute), 115, 116	NO_DATA_INT (in module geopys-
minor_version (geopyspark.vector_pipe.Properties	park.geotrellis.constants), 132
attribute), 169	no_data_value (geopyspark.geotrellis.Metadata attribute),
MINUTES (geopyspark.geotrellis.constants.TimeUnit at-	125
tribute), 133	no_data_value (geopyspark.geotrellis.Tile attribute), 117,
MINUTES (geopyspark.TimeUnit attribute), 81	118
MODE (geopyspark.geotrellis.constants.Operation	no data value (geonyspark Metadata attribute) 69

no_data_value (geopyspark.Tile attribute), 64, 65 normalize() (geopyspark.geotrellis.layer.TiledRasterLayer	param_3 (geopyspark.geotrellis.neighborhood.Wedge attribute), 162
method), 154 normalize() (geopyspark.TiledRasterLayer method), 101	param_3 (geopyspark.Nesw attribute), 110 param_3 (geopyspark.Wedge attribute), 110
num_partitions (geopyspark.HashPartitionStrategy attribute), 73	partitionBy() (geopyspark.geotrellis.layer.RasterLayer method), 144
num_partitions (geopyspark.SpaceTimePartitionStrategy attribute), 74, 75	partitionBy() (geopyspark.geotrellis.layer.TiledRasterLayer method), 155
num_partitions (geopyspark.SpatialPartitionStrategy attribute), 73, 74	partitionBy() (geopyspark.RasterLayer method), 90 partitionBy() (geopyspark.TiledRasterLayer method), 102
0	persist() (geopyspark.geotrellis.layer.Pyramid method),
Operation (class in geopyspark), 81	161
Operation (class in geopyspark.geotrellis.constants), 133 outer_radius (geopyspark.Annulus attribute), 110	persist() (geopyspark.geotrellis.layer.RasterLayer method), 144
outer_radius (geopyspark.geotrellis.neighborhood.Annulus attribute), 163	persist() (geopyspark.geotrellis.layer.TiledRasterLayer method), 155
audio aud), 130	persist() (geopyspark.Pyramid method), 109
P	persist() (geopyspark.RasterLayer method), 91
PALETTE (geopyspark.ColorSpace attribute), 83	persist() (geopyspark.TiledRasterLayer method), 102
PALETTE (geopyspark.colorspace autroute), 83 PALETTE (geopyspark.geotrellis.constants.ColorSpace	PLASMA (geopyspark.ColorRamp attribute), 83
attribute), 135	PLASMA (geopyspark.geotrellis.constants.ColorRamp attribute), 134
param_1 (geopyspark.Annulus attribute), 110	polygonal_max() (geopys-
param_1 (geopyspark.Circle attribute), 109	park.geotrellis.layer.TiledRasterLayer method),
param_1 (geopyspark.geotrellis.neighborhood.Annulus attribute), 163	155
param_1 (geopyspark.geotrellis.neighborhood.Circle attribute), 162	polygonal_max() (geopyspark.TiledRasterLayer method), 102
param_1 (geopyspark.geotrellis.neighborhood.Nesw at-	polygonal_mean() (geopys-
tribute), 163	park.geotrellis.layer.TiledRasterLayer method), 155
param_1 (geopyspark.geotrellis.neighborhood.Wedge attribute), 162	polygonal_mean() (geopyspark.TiledRasterLayer method), 102
param_1 (geopyspark.Nesw attribute), 110	
param_1 (geopyspark.Wedge attribute), 109	polygonal_min() (geopys-park.geotrellis.layer.TiledRasterLayer method),
param_2 (geopyspark.Annulus attribute), 110	park.geotrems.rayer.medkasterLayer method),
param_2 (geopyspark.Circle attribute), 109	
param_2 (geopyspark.geotrellis.neighborhood.Annulus attribute), 163	polygonal_min() (geopyspark.TiledRasterLayer method), 102
param_2 (geopyspark.geotrellis.neighborhood.Circle attribute), 162	polygonal_sum() (geopys-park.geotrellis.layer.TiledRasterLayer method),
param_2 (geopyspark.geotrellis.neighborhood.Nesw attribute), 163	156 polygonal_sum() (geopyspark.TiledRasterLayer method),
param_2 (geopyspark.geotrellis.neighborhood.Wedge at-	103
tribute), 162	port (geopyspark.geotrellis.tms.TMS attribute), 166, 167
param_2 (geopyspark.Nesw attribute), 110	port (geopyspark.TMS attribute), 112, 113
param_2 (geopyspark.Wedge attribute), 110	proj4 (geopyspark.geotrellis.ProjectedExtent attribute),
param_3 (geopyspark.Annulus attribute), 110	119
param_3 (geopyspark.Circle attribute), 109	proj4 (geopyspark.geotrellis.TemporalProjectedExtent at-
param_3 (geopyspark.geotrellis.neighborhood.Annulus attribute), 163	tribute), 120 proj4 (geopyspark.ProjectedExtent attribute), 66, 67
param_3 (geopyspark.geotrellis.neighborhood.Circle at-	proj4 (geopyspark.TemporalProjectedExtent attribute), 67 ProjectedExtent (class in geopyspark), 66
tribute), 162 param_3 (geopyspark.geotrellis.neighborhood.Nesw at-	ProjectedExtent (class in geopyspark.geotrellis), 119 Properties (class in geopyspark), 115
tribute), 163	Topotatos (otass in Scopjopark), Tis

Properties (class in geopyspark.vector_pipe), 168 properties (geopyspark.Feature attribute), 114, 115 properties (geopyspark.vector_pipe.Feature attribute),	read_value() (in module geopyspark), 75 read_value() (in module geopyspark.geotrellis.catalog), 126
168 protobuf (in module geopyspark.geotrellis), 163	reclassify() (geopyspark.geotrellis.layer.RasterLayer method), 144
ProtoBufSerializer (class in geopys- park.geotrellis.protobufserializer), 164	reclassify() (geopyspark.geotrellis.layer.TiledRasterLayer method), 156
Pyramid (class in geopyspark), 107	reclassify() (geopyspark.RasterLayer method), 91
Pyramid (class in geopyspark.geotrellis.layer), 160 pyramid() (geopyspark.geotrellis.layer.TiledRasterLayer method), 156	reclassify() (geopyspark.TiledRasterLayer method), 103 render_function (geopyspark.geotrellis.tms.TileRender attribute), 166
pyramid() (geopyspark.TiledRasterLayer method), 103 pysc (geopyspark.geotrellis.layer.Pyramid attribute), 160 pysc (geopyspark.geotrellis.layer.RasterLayer attribute),	render_function (geopyspark.TileRender attribute), 112 renderEncoded() (geopyspark.geotrellis.tms.TileRender method), 166
pysc (geopyspark.geotrellis.layer.TiledRasterLayer attribute), 147	renderEncoded() (geopyspark.TileRender method), 112 repartition() (geopyspark.geotrellis.layer.RasterLayer method), 145
pysc (geopyspark.geotrellis.tms.TMS attribute), 166 pysc (geopyspark.Pyramid attribute), 108, 109	repartition() (geopyspark.geotrellis.layer.TiledRasterLayer method), 157
pysc (geopyspark.RasterLayer attribute), 87, 91 pysc (geopyspark.TiledRasterLayer attribute), 94, 103 pysc (geopyspark.TMS attribute), 112	repartition() (geopyspark.RasterLayer method), 91 repartition() (geopyspark.TiledRasterLayer method), 104 reproject() (geopyspark.geotrellis.layer.RasterLayer method), 145
Q	$reproject() \ (geopy spark.geotrell is. layer. Tiled Raster Layer$
quantile_breaks() (geopys-	method), 157
park.geotrellis.histogram.Histogram method), 139	reproject() (geopyspark.RasterLayer method), 91 reproject() (geopyspark.TiledRasterLayer method), 104
quantile_breaks() (geopyspark.Histogram method), 86 query() (in module geopyspark), 76	requiresEncoding() (geopyspark.TileRender method), 112
query() (in module geopyspark.geotrellis.catalog), 126	ResampleMethod (class in geopyspark), 81 ResampleMethod (class in geopys-
R	park.geotrellis.constants), 132
radius (geopyspark.Circle attribute), 109 radius (geopyspark.geotrellis.neighborhood.Circle	RGB (geopyspark.ColorSpace attribute), 83 RGB (geopyspark.geotrellis.constants.ColorSpace attribute), 135
radius (geopyspark.geotrellis.neighborhood.Wedge attribute), 162	row (geopyspark.geotrellis.SpaceTimeKey attribute), 123, 124
radius (geopyspark.Wedge attribute), 109 rasterize() (in module geopyspark), 110	row (geopyspark.geotrellis.SpatialKey attribute), 123 row (geopyspark.SpaceTimeKey attribute), 68
rasterize() (in module geopyspark.geotrellis.rasterize), 164	row (geopyspark.SpatialKey attribute), 68 ROWMAJOR (geopys-
rasterize_features() (in module geopyspark), 111	park.geotrellis.constants.IndexingMethod
rasterize_features() (in module geopys- park.geotrellis.rasterize), 165	attribute), 132 ROWMAJOR (geopyspark.IndexingMethod attribute), 81
RasterizerOptions (class in geopyspark), 72	S
RasterizerOptions (class in geopyspark.geotrellis), 124 RasterLayer (class in geopyspark), 86	sampleType (geopyspark.geotrellis.RasterizerOptions attribute), 124
RasterLayer (class in geopyspark.geotrellis.layer), 140 read() (geopyspark.AttributeStore.Attributes method), 77	sampleType (geopyspark.RasterizerOptions attribute), 72
read() (geopyspark.AttributeStore.At	
read_layer_metadata() (in module geopyspark), 75	157
read_layer_metadata() (in module geopyspank), 75	save_stitched() (geopyspark.TiledRasterLayer method),
park.geotrellis.catalog), 126	104

scala_features (geopys-	attribute), 135
park.vector_pipe.features_collection.FeaturesCol	1837RHPED (geopyspark.StorageMethod attribute), 83
attribute), 170	SUM (geopyspark.geotrellis.constants.Operation at-
scala_histogram (geopys-	tribute), 133
park.geotrellis.histogram.Histogram attribute),	SUM (geopyspark.Operation attribute), 81
138	$sum_series() \ (geopyspark. Tiled Raster Layer \ method), \ 105$
scala_histogram (geopyspark.Histogram attribute), 85	T
SECONDS (geopyspark.geotrellis.constants.TimeUnit at-	Т
tribute), 133	tags (geopyspark.Properties attribute), 115, 116
SECONDS (geopyspark.TimeUnit attribute), 81	tags (geopyspark.vector_pipe.Properties attribute), 169
server (geopyspark.geotrellis.tms.TMS attribute), 166	TemporalProjectedExtent (class in geopyspark), 67
server (geopyspark.TMS attribute), 112	TemporalProjectedExtent (class in geopyspark.geotrellis),
set_handshake() (geopyspark.TMS method), 113	119
slope() (geopyspark.geotrellis.layer.TiledRasterLayer	threshold (geopyspark.geotrellis.GlobalLayout attribute),
method), 158	120
slope() (geopyspark.TiledRasterLayer method), 105	threshold (geopyspark.GlobalLayout attribute), 70
SPACETIME (geopyspark.geotrellis.constants.LayerType attribute), 132	Tile (class in geopyspark), 64
SPACETIME (geopyspark.LayerType attribute), 80	Tile (class in geopyspark.geotrellis), 117
SpaceTimeKey (class in geopyspark), 68	tile_cols (geopyspark.geotrellis.LocalLayout attribute),
SpaceTimeKey (class in geopyspark, geotrellis), 123	121, 122
SpaceTimePartitionStrategy (class in geopyspark), 74	tile_cols (geopyspark.LocalLayout attribute), 71
SPATIAL (geopyspark.geotrellis.constants.LayerType at-	tile_layout (geopyspark.geotrellis.Metadata attribute),
tribute), 132	tile_layout (geopyspark.Metadata attribute), 69
SPATIAL (geopyspark.LayerType attribute), 80	tile_rows (geopyspark.wetadata attribute), obtile_rows (geopyspark.geotrellis.LocalLayout attribute),
SpatialKey (class in geopyspark), 67	121, 122
SpatialKey (class in geopyspark.geotrellis), 123	tile_rows (geopyspark.LocalLayout attribute), 71
SpatialPartitionStrategy (class in geopyspark), 73	tile_size (geopyspark.geotrellis.GlobalLayout attribute),
Square (class in geopyspark), 109	120, 121
SQUARE (geopyspark.geotrellis.constants.Neighborhood	tile_size (geopyspark.GlobalLayout attribute), 70
attribute), 133	tile_to_layout() (geopyspark.geotrellis.layer.RasterLayer
SQUARE (geopyspark.Neighborhood attribute), 82	method), 145
srdd (geopyspark.geotrellis.layer.RasterLayer attribute),	tile_to_layout() (geopys-
140	park.geotrellis.layer.TiledRasterLayer method),
srdd (geopyspark.geotrellis.layer.TiledRasterLayer	158
attribute), 147	tile_to_layout() (geopyspark.RasterLayer method), 92
srdd (geopyspark.RasterLayer attribute), 87, 92	$tile_to_layout() \ \ (geopyspark.TiledRasterLayer \ \ method),$
srdd (geopyspark.TiledRasterLayer attribute), 94, 105	105
STANDARD_DEVIATION (geopys-park.geotrellis.constants.Operation attribute),	tileCols (geopyspark.geotrellis.TileLayout attribute), 122
park.geotrellis.constants.Operation attribute),	tileCols (geopyspark.TileLayout attribute), 70
STANDARD_DEVIATION (geopyspark.Operation at-	TILED (geopyspark.geotrellis.constants.StorageMethod
tribute), 81	attribute), 135
star_series() (geopyspark.TiledRasterLayer method), 105	TILED (geopyspark.StorageMethod attribute), 83 TiledRasterLayer (class in geopyspark), 94
start_angle (geopyspark.geotrellis.neighborhood.Wedge	TiledRasterLayer (class in geopyspark, 94 TiledRasterLayer (class in geopyspark.geotrellis.layer),
attribute), 162	147
start_angle (geopyspark.Wedge attribute), 109	TileLayout (class in geopyspark), 69
stitch() (geopyspark.geotrellis.layer.TiledRasterLayer	TileLayout (class in geopyspark, geotrellis), 122
method), 158	tileLayout (geopyspark.geotrellis.LayoutDefinition at-
stitch() (geopyspark.TiledRasterLayer method), 105	tribute), 123
StorageMethod (class in geopyspark), 83	tileLayout (geopyspark.LayoutDefinition attribute), 71
StorageMethod (class in geopyspark.geotrellis.constants),	TileRender (class in geopyspark), 112
135	TileRender (class in geopyspark.geotrellis.tms), 166
STRIPED (geopyspark.geotrellis.constants.StorageMethod	TileRender, Java (class in geopyspark), 112

tileRows (geopyspark.geotrellis.TileLayout attribute),	method), 160
122	tobler() (geopyspark.TiledRasterLayer method), 107
tileRows (geopyspark.TileLayout attribute), 70	TRANSPARENCY_MASK (geopyspark.ColorSpace at-
time_resolution (geopyspark.SpaceTimePartitionStrategy	tribute), 83
attribute), 75	TRANSPARENCY_MASK (geopys-
time_unit (geopyspark.SpaceTimePartitionStrategy attribute), 74, 75	park.geotrellis.constants.ColorSpace attribute), 135
timestamp (geopyspark.Properties attribute), 115, 116	
timestamp (geopyspark.vector_pipe.Properties attribute),	U
169	uid (geopyspark.Properties attribute), 115, 116
TimeUnit (class in geopyspark), 81	uid (geopyspark.vector_pipe.Properties attribute), 168,
TimeUnit (class in geopyspark.geotrellis.constants), 133	169
TMS (class in geopyspark), 112	UINT16 (geopyspark.CellType attribute), 82
TMS (class in geopyspark.geotrellis.tms), 166	UINT16 (geopyspark.geotrellis.constants.CellType at-
to_dict() (geopyspark.geotrellis.histogram.Histogram	tribute), 134
method), 139	UINT16RAW (geopyspark.CellType attribute), 82
to_dict() (geopyspark.geotrellis.Metadata method), 125	UINT16RAW (geopyspark.geotrellis.constants.CellType
to_dict() (geopyspark.Histogram method), 86	attribute), 134
to_dict() (geopyspark.Metadata method), 69	UINT8 (geopyspark.CellType attribute), 82
to_geotiff_rdd() (geopyspark.geotrellis.layer.RasterLayer method), 145	UINT8 (geopyspark.geotrellis.constants.CellType attribute), 134
to_geotiff_rdd() (geopys-	UINT8RAW (geopyspark.CellType attribute), 82
park.geotrellis.layer.TiledRasterLayer method), 159	UINT8RAW (geopyspark.geotrellis.constants.CellType attribute), 134
to_geotiff_rdd() (geopyspark.RasterLayer method), 92	unbind() (geopyspark.geotrellis.tms.TMS method), 167
to_geotiff_rdd() (geopyspark.TiledRasterLayer method),	unbind() (geopyspark.TMS method), 113
106	union() (in module geopyspark), 113
to_numpy_rdd() (geopyspark.geotrellis.layer.RasterLayer	union() (in module geopyspark.geotrellis.union), 167
method), 146	Unit (class in geopyspark), 84
to_numpy_rdd() (geopys-	Unit (class in geopyspark, geotrellis.constants), 135
park.geotrellis.layer.TiledRasterLayer method),	unpersist() (geopyspark.geotrellis.layer.Pyramid method),
159	161
to_numpy_rdd() (geopyspark.RasterLayer method), 93	unpersist() (geopyspark.geotrellis.layer.RasterLayer
to_numpy_rdd() (geopyspark.TiledRasterLayer method),	method), 147
106	unpersist() (geopyspark.geotrellis.layer.TiledRasterLayer
to_png_rdd() (geopyspark.geotrellis.layer.RasterLayer	method), 160
method), 146	unpersist() (geopyspark.Pyramid method), 109
$to_png_rdd() (geopyspark.geotrellis.layer. Tiled Raster Layer. Tiled Raster Layer.$	runpersist() (geopyspark.RasterLayer method), 93
method), 159	unpersist() (geopyspark.TiledRasterLayer method), 107
to_png_rdd() (geopyspark.RasterLayer method), 93	url_pattern (geopyspark.geotrellis.tms.TMS attribute),
to_png_rdd() (geopyspark.TiledRasterLayer method),	166, 167
106	url_pattern (geopyspark.TMS attribute), 112, 113
to_polygon (geopyspark.Extent attribute), 66	user (geopyspark.Properties attribute), 115, 116
to_polygon (geopyspark.geotrellis.Extent attribute), 118	user (geopyspark.vector_pipe.Properties attribute), 168,
to_spatial_layer() (geopys-	169
park.geotrellis.layer.RasterLayer method),	
146	V
to_spatial_layer() (geopys-	value (geopyspark.CellValue attribute), 116
park.geotrellis.layer.TiledRasterLayer method),	value (geopyspark.vector_pipe.CellValue attribute), 169,
to_spatial_layer() (geopyspark.RasterLayer method), 93	values() (geopyspark.geotrellis.histogram.Histogram
to_spatial_layer() (geopyspark.TiledRasterLayer	method), 140
method), 107	values() (geopyspark.Histogram method), 86
tobler() (geopyspark.geotrellis.layer.TiledRasterLayer	raides() (geopyspark.mstogram memod), 60

VARIANCE (geopyspark.geotrellis.constants.Operation	X
attribute), 133	xmax (geopyspark.Extent attribute), 66
VARIANCE (geopyspark.Operation attribute), 81	xmax (geopyspark.geotrellis.Extent attribute), 118
version (geopyspark.Properties attribute), 115, 116	xmin (geopyspark.Extent attribute), 65, 66
version (geopyspark.vector_pipe.Properties attribute), 169	xmin (geopyspark.geotrellis.Extent attribute), 118
VIRIDIS (geopyspark.ColorRamp attribute), 83	Υ
VIRIDIS (geopyspark.geotrellis.constants.ColorRamp attribute), 134	Y_CB_CR (geopyspark.ColorSpace attribute), 83 Y_CB_CR (geopyspark.geotrellis.constants.ColorSpace
visible (geopyspark.Properties attribute), 115, 116 visible (geopyspark.vector_pipe.Properties attribute), 169	attribute), 135
W	YEARS (geopyspark.geotrellis.constants.TimeUnit attribute), 133
	YEARS (geopyspark.TimeUnit attribute), 81
Wedge (class in geopyspark), 109	ymax (geopyspark.Extent attribute), 66
Wedge (class in geopyspark.geotrellis.neighborhood),	ymax (geopyspark.geotrellis.Extent attribute), 118, 119
WEDGE (geography gostnellie constants Neighborhood	ymin (geopyspark.Extent attribute), 66
WEDGE (geopyspark.geotrellis.constants.Neighborhood attribute), 133	ymin (geopyspark.geotrellis.Extent attribute), 118, 119
WEDGE (geopyspark.Neighborhood attribute), 82	Z
WEEKS (geopyspark.geotrellis.constants.TimeUnit at-	zfactor_calculator() (in module geopyspark), 73
tribute), 133	zfactor_lat_lng_calculator() (in module geopyspark), 72
WEEKS (geopyspark.TimeUnit attribute), 81 WHITE_IS_ZERO (geopyspark.ColorSpace attribute),	zindex (geopyspark.CellValue attribute), 116
83	zindex (geopyspark.vector_pipe.CellValue attribute), 169,
WHITE_IS_ZERO (geopys-	zoom (geopyspark.geotrellis.GlobalLayout attribute),
park.geotrellis.constants.ColorSpace attribute),	120, 121
135	zoom (geopyspark.GlobalLayout attribute), 70, 71
with_no_data() (geopyspark.geotrellis.layer.RasterLayer method), 147	zoom_level (geopyspark.geotrellis.layer.TiledRasterLayer attribute), 148
with_no_data() (geopys-	zoom_level (geopyspark.TiledRasterLayer attribute), 94
park.geotrellis.layer.TiledRasterLayer method), 160	ZORDER (geopyspark.geotrellis.constants.IndexingMethod attribute), 132
with_no_data() (geopyspark.RasterLayer method), 93	ZORDER (geopyspark.IndexingMethod attribute), 81
with_no_data() (geopyspark.TiledRasterLayer method), 107	Zoriz zir (georg spanimus inigiriemed anirome), er
wrapped_rdds() (geopyspark.geotrellis.layer.Pyramid method), 161	
wrapped_rdds() (geopyspark.geotrellis.layer.RasterLayer method), 147	
wrapped_rdds() (geopys-	
park.geotrellis.layer.TiledRasterLayer method),	
wrapped_rdds() (geopyspark.Pyramid method), 109	
wrapped_rdds() (geopyspark.RasterLayer method), 94	
wrapped_rdds() (geopyspark.TiledRasterLayer method), 107	
write() (geopyspark.AttributeStore.Attributes method), 77	
write() (geopyspark.geotrellis.catalog.AttributeStore.Attrib method), 128	utes
write() (in module geopyspark), 76	
write() (in module geopyspark.geotrellis.catalog), 127	