

 Navigation

 	
 index

 	
 next |

 	geomalgo 0.3.0 documentation

GeomAlgo documentation

geomalgo aims at prodiving basic geometric 2D and 3D algorithms, for
example computing the area of 2D triangle, or finding intersection points of
3D triangle and a 3D segment.

geomalgo algorithms are primary based on geomalgorithms [http://geomalgorithms.com].

geomalgo provides a convenient Python API, and a Cython API to obtain C
performances, typically for computation inside loops.

Get started with the examples gallery, and read the details in API section.

Installation

Install [http://conda.pydata.org/miniconda.html] the Conda [http://conda.pydata.org] package manager, and install geomalgo with:

conda install -c dfroger geomalgo

Documentation

	Tutorials

	Python API

	Cython API

	Developer’s Guide

Development and contact

geomalgo is developed on GitHub [https://github.com/dfroger/geomalgo],
were issues and pull requests can be made. Or do not hesitate to send me an
email at david.froger@mailoo.org .

 Copyright 2016, David Froger.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	geomalgo 0.3.0 documentation

Tutorials

	GeomAlgo first tutorial

	Introduction

 Copyright 2016, David Froger.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	geomalgo 0.3.0 documentation

 	Tutorials

GeomAlgo first tutorial

This first tutorial introduces geomalgo through simple examples, exploring three differents aspects of its API:

	Python API: Manipulate Python objects in the Python interactive interpreter.

	Cython API: Use Cython compiler to add static typing and manipulate C structures.

	Work on large data sets: Use SoA [https://en.wikipedia.org/wiki/AOS_and_SOA] memory layout and compile to C code to efficiently work large date sets.

These concepts will be demonstrated on a simple example: computing intersection between segments.

Using the Python interface

This tutorial is written in a Jupyter notebook. pylab is imported, and matplotlib figures are inlined in the notebook. geomalgo is imported as ga.

In [1]:

%pylab inline

%load_ext Cython
%load_ext wurlitzer

import geomalgo as ga

Populating the interactive namespace from numpy and matplotlib

In [2]:

%%cython
cimport geomalgo as ga
cdef:
 ga.CSegment2D seg

Creating points and segments

The first geomalgo class (actually, extension type) we manipulate is geomalgo.Point2D.
It takes point coordinates as argument. The Python API also accept an optional name, and provides a plot method, usefull to quickly create matplotlib figures.

In [3]:

A = ga.Point2D(2, 1, name='A')
B = ga.Point2D(6, 4, name='B')

C = ga.Point2D(5, 2, name='C')
D = ga.Point2D(2, 3.5, name='D')

for obj in [A, B, C, D]:
 obj.plot()

[image: ../_images/tuto_first_tuto_6_0.png]

These four points can be used to create two segments, using geomalgo.Segment2D.
Like points, segments have a plot method.

In [4]:

AB = ga.Segment2D(A, B)
CD = ga.Segment2D(C, D)

for obj in [A, B, C, D, AB, CD]:
 obj.plot()

[image: ../_images/tuto_first_tuto_8_0.png]

Computing intersection

The next task we want to achieve is to compute the intersection between the two segments.

There is a Segment2D.intersect_segment() method to compute intersection with another segment. It returns two objects, which can be:

	both None if segments do not intersect,

	a point and None if there is one intersection point,

	two points when segments are colinear.

In [5]:

I0, I1 = AB.intersect_segment(CD)
print(I0)
print(I1)

for obj in [A, B, C, D, AB, CD]:
 obj.plot()

I0.plot(name='I', color='red')

Error in callback <function sys_pipes_forever at 0x7f681db2a8c8> (for pre_execute):

OSError Traceback (most recent call last)
/home/dfroger/miniconda3/envs/geomalgo/lib/python3.5/site-packages/wurlitzer.py in sys_pipes_forever(encoding)
 252 if _mighty_wurlitzer is None:
 253 _mighty_wurlitzer = sys_pipes(encoding)
--> 254 _mighty_wurlitzer.__enter__()
 255
 256

/home/dfroger/miniconda3/envs/geomalgo/lib/python3.5/contextlib.py in __enter__(self)
 57 def __enter__(self):
 58 try:
---> 59 return next(self.gen)
 60 except StopIteration:
 61 raise RuntimeError("generator didn't yield") from None

/home/dfroger/miniconda3/envs/geomalgo/lib/python3.5/site-packages/wurlitzer.py in pipes(stdout, stderr, encoding)
 222 w = Wurlitzer(stdout=stdout_w, stderr=stderr_w, encoding=capture_encoding)
 223 try:
--> 224 with w:
 225 yield stdout_r, stderr_r
 226 finally:

/home/dfroger/miniconda3/envs/geomalgo/lib/python3.5/site-packages/wurlitzer.py in __enter__(self)
 123 names = {}
 124 if self._stdout:
--> 125 pipe = self._setup_pipe('stdout')
 126 pipes.append(pipe)
 127 names[pipe] = 'stdout'

/home/dfroger/miniconda3/envs/geomalgo/lib/python3.5/site-packages/wurlitzer.py in _setup_pipe(self, name)
 74 def _setup_pipe(self, name):
 75 real_fd = getattr(sys, '__%s__' % name).fileno()
---> 76 save_fd = os.dup(real_fd)
 77 self._save_fds[name] = save_fd
 78

OSError: [Errno 9] Bad file descriptor

Point2D(4.0, 2.5)
None

[image: ../_images/tuto_first_tuto_11_3.png]

Segment relative coordinates

Another usefull information is to locate the intersection point not only with cartesian coordiante,
but also with coordiante relative to each segment. This is achieve with the return_coords flag.

Note that as there is not second intersection point, we can ignore None value, assigning them to a _ variable.

In [6]:

I0, _, (AB_coord, CD_coord, _, _) = AB.intersect_segment(CD, return_coords=True)
print(AB_coord, CD_coord)

0.5 0.3333333333333333

AB_coord is \(\frac{1}{2}\), meaning the point is in the middle of the segment, while CD_coord is \(\frac{1}{3}\), meaning the point is at a distance \(\frac{|CD|}{3}\) from the point C.

To change from cartesian coordinates to segment coordiante, use the Point2D.at() method:

In [7]:

print(AB.at(AB_coord))
print(CD.at(CD_coord))

Point2D(4.0, 2.5)
Point2D(4.0, 2.5)

To change from segment coordinate to cartesian coordiantes, use the Point2D.where() method:

In [8]:

print(AB.where(I0))
print(CD.where(I0))

Error in callback <function sys_pipes_forever at 0x7f681db2a8c8> (for pre_execute):

OSError Traceback (most recent call last)
/home/dfroger/miniconda3/envs/geomalgo/lib/python3.5/site-packages/wurlitzer.py in sys_pipes_forever(encoding)
 252 if _mighty_wurlitzer is None:
 253 _mighty_wurlitzer = sys_pipes(encoding)
--> 254 _mighty_wurlitzer.__enter__()
 255
 256

/home/dfroger/miniconda3/envs/geomalgo/lib/python3.5/contextlib.py in __enter__(self)
 57 def __enter__(self):
 58 try:
---> 59 return next(self.gen)
 60 except StopIteration:
 61 raise RuntimeError("generator didn't yield") from None

/home/dfroger/miniconda3/envs/geomalgo/lib/python3.5/site-packages/wurlitzer.py in pipes(stdout, stderr, encoding)
 222 w = Wurlitzer(stdout=stdout_w, stderr=stderr_w, encoding=capture_encoding)
 223 try:
--> 224 with w:
 225 yield stdout_r, stderr_r
 226 finally:

/home/dfroger/miniconda3/envs/geomalgo/lib/python3.5/site-packages/wurlitzer.py in __enter__(self)
 123 names = {}
 124 if self._stdout:
--> 125 pipe = self._setup_pipe('stdout')
 126 pipes.append(pipe)
 127 names[pipe] = 'stdout'

/home/dfroger/miniconda3/envs/geomalgo/lib/python3.5/site-packages/wurlitzer.py in _setup_pipe(self, name)
 74 def _setup_pipe(self, name):
 75 real_fd = getattr(sys, '__%s__' % name).fileno()
---> 76 save_fd = os.dup(real_fd)
 77 self._save_fds[name] = save_fd
 78

OSError: [Errno 9] Bad file descriptor

0.5
0.3333333333333333

Conlusion

This concludes the first tutorial part.

The Python interpreter has allowed us to interactively construct points, segments, and compute intersection between them.
This a very handy way to perform temporary computation, using Python interpreter as an advanced calculator, or test a idea, write a prototype, etc.

The code can then be written to a Python script to be reused, and to build a library or an application.
All the code will be interpreted and dynamically typed. If performance become an issue, we will want to add static typing. This is what will be covered in next section.

Using the Cython interface

geomalgo provides a cython API, making it easy to:

	compile code instead of interpret it,

	add static typing for extension types, C built in, functions, etc,

	compile to full performance C code, using C structures instead of extension types.

We first activate cython compilation in the notebook.

Compiling the code

Instead of interpreting source code, cython compiles cython code to C code,
and the build a native Python module. Learn more about Cython [http://cython.org/].
For example, let’s rewrite the code in Cython. The %%cython magic do (learn more about
building cython code [http://docs.cython.org/en/latest/src/quickstart/build.html]):

	compile Cython code to C code,

	compile C code to Python native module,

	execute the module (hence, the Cython code).

In [9]:

%%cython

import geomalgo as ga

A = ga.Point2D(2, 1, name='A')
B = ga.Point2D(6, 4, name='B')
C = ga.Point2D(5, 2, name='C')
D = ga.Point2D(2, 3.5, name='D')
AB = ga.Segment2D(A, B)
CD = ga.Segment2D(C, D)

I0, I1 = AB.intersect_segment(CD)
print(I0)
print(I1)

Point2D(4.0, 2.5)
None

Adding static typing

Once the code is written in Cython, which compile to C, static typing can be added.
The above code rewrittes to (notice the cimport instead of import):

In [10]:

%%cython

cimport geomalgo as ga

cdef:
 ga.Point2D A, B, C, D
 ga.Segment2D AB, CD

A = ga.Point2D(2, 1, name='A')
B = ga.Point2D(6, 4, name='B')
C = ga.Point2D(5, 2, name='C')
D = ga.Point2D(2, 3.5, name='D')
AB = ga.Segment2D(A, B)
CD = ga.Segment2D(C, D)

I0, I1 = AB.intersect_segment(CD)
print(I0)
print(I1)

Point2D(4.0, 2.5)
None

Using C structure instead of extension type

Calling extention type methods is as fast as calling C functions on C structure,
provided that extension type attributes and methods are all statically typed (cdef).
However, extension types can not be stack allocated as efficiently as C structure.
GeomAlgo relies on stack allocation for basic types (points, segments, etc).
For performance, we need be able to use C structures, instead of extension types.

At the end of this section, we will see that extension are wrapper around these C structures,
and methods wrapper around C functions.

The above code is rewritten using CPoint2D, CSegment2D and
intersect_segment2d_segment2d().

In [11]:

%%cython

from libc.stdio cimport printf

cimport geomalgo as ga

cdef:
 ga.CPoint2D A, B, C, D, I0, I1
 ga.CSegment2D AB, CD
 double coords[4]
 int n

A.x, A.y = 2, 1
B.x, B.y = 6, 4

C.x, C.y = 5, 2
D.x, D.y = 2, 3.5

ga.segment2d_set(&AB, &A, &B)
ga.segment2d_set(&CD, &C, &D)

n = ga.intersect_segment2d_segment2d(&AB, &CD, &I0, &I1, coords)

printf("Number of intersection: %d\n", n)
printf("Intersection point: (%.2f, %.2f)\n", I0.x, I0.y)

Number of intersection: 1
Intersection point: (4.00, 2.50)

This generate “pure” C code, without reference to Python. It is as efficient as writting in C directly.

Relations between Python and Cython API

A Point2D is a wrapper around a CPoint2D, and coordinates are hold by CPoint2D.

For example:

In [12]:

%%cython

cimport geomalgo as ga

cdef:
 ga.Point2D X
 ga.CPoint2D* C_X

X = ga.Point2D(1, 2)

C_X = X.cpoint2d

	The Python API of a Segment2D extension type has two attributes:

	
	Point2D A (extension type)

	Point2D B (extension type)

	The Cython API has access to an additionnal attribute:

	
	CSegment2D (C structure)

	The CSegment2D struture has two members:

	
	CPoint2D* A (C structure)

	CPoint2D* B (C structure)

CSegment2D and Point2D A and B points to the same CPoint2D* A and B.

For example:

In [13]:

%%cython

cimport geomalgo as ga

cdef:
 ga.Point2D X, Y
 ga.Segment2D XY

X = ga.Point2D(1, 2)
Y = ga.Point2D(3, 4)

XY = ga.Segment2D(X, Y)

cdef:
 ga.CSegment2D* C_XY
 ga.CPoint2D* C_X
 ga.CPoint2D* C_Y

C_XY = &XY.csegment2d

Points can be accessed via X and Y
C_X = X.cpoint2d

Or via C_XY
C_Y = C_XY.B

Working with large dataset

To conclude this tutorial, in this last part, the segment intersection computation will be applied to a (potentialy large) collection of segment.

In [14]:

A = ga.Point2D(0, 0, name='A')
B = ga.Point2D(8, 8, name='B')
AB = ga.Segment2D(A, B)

segment_list = [
 ga.Segment2D((2,1), (1,2)),
 ga.Segment2D((3,2), (3,4)),
 ga.Segment2D((2,6), (3,7)),
 ga.Segment2D((5,5), (6,6)),
 ga.Segment2D((4,4), (5,4)),
 ga.Segment2D((6,8), (8,6)),
 ga.Segment2D((5,1), (6,1)),
]

figure(figsize=(8,8))

def plot_segments():
 for obj in [A, B, AB]:
 obj.plot()

 for i, seg in enumerate(segment_list):
 seg.plot(style='r-')
 text(seg.B.x, seg.B.y+0.1, i, color='red')

plot_segments()
axis('scaled')
grid()

[image: ../_images/tuto_first_tuto_36_0.png]

For example, we want to compute all intersection of red segments with the blue one, indexed by red segment indices. This should be optimized for a large number of red segments.

Memory layout

Segment coordinates will be stored as SoA. geomalgo provides a SegmentCollection extension type to groups the 4 arrays together.

In [22]:

xa = np.array([seg.A.x for seg in segment_list], dtype='d')
xb = np.array([seg.B.x for seg in segment_list], dtype='d')

ya = np.array([seg.A.y for seg in segment_list], dtype='d')
yb = np.array([seg.B.y for seg in segment_list], dtype='d')

segments = ga.Segment2DCollection(xa, xb, ya, yb)

A CSegment2D and its 2 CPoints2D are declared to iterate on the collection.

The Segment2DCollection.get is used to set PQ for the current segment index.

In [23]:

%%cython

from libc.stdio cimport printf

cimport geomalgo as ga

def iter_segments(ga.Segment2DCollection segments):
 cdef:
 ga.CSegment2D PQ
 ga.CPoint2D P, Q
 int S

 ga.segment2d_set(&PQ, &P, &Q)

 for S in range(segments.size):
 segments.get(S, &PQ)
 printf("(%.0f, %.0f), (%.0f, %.0f)\n", P.x, P.y, Q.x, Q.y)

In [25]:

iter_segments(segments)

(2, 1), (1, 2)
(3, 2), (3, 4)
(2, 6), (3, 7)
(5, 5), (6, 6)
(4, 4), (5, 4)
(6, 8), (8, 6)
(5, 1), (6, 1)

Computing intersection

Once we can iterate the segment collection, intersection can be computed as
in the previous part with the intersect_segment2d_segment2d function.

We need to choose where to store the results. Each red segment may intersection
the blue one on 0, 1 or 2 points. The total number of intersections points in
not knonw in advance. We choose to allocate arrays to store results for the
maximal number of intersection points. We also choose to store only the
coordinates relative to the segment AB.

In [26]:

%%cython

import numpy as np
cimport geomalgo as ga

def compute_intersections(ga.Segment2D AB, ga.Segment2DCollection segments):
 cdef:
 ga.CSegment2D PQ
 ga.CPoint2D P, Q
 ga.CPoint2D I0, I1
 double coords[4]
 int S, C

 # Count of intersections for each segment. May be 0, 1 or 2.
 int[:] count = np.empty(segments.size, dtype='int32')
 int countmax = 2

 # Intersection coordinate relative to AB.
 double[:,:] coord = np.empty((segments.size, countmax), dtype='d')

 ga.segment2d_set(&PQ, &P, &Q)

 for S in range(segments.size):
 segments.get(S, &PQ)
 count[S] = ga.intersect_segment2d_segment2d(&AB.csegment2d,
 &PQ, &I0, &I1, coords)
 for C in range(count[S]):
 coord[S,C] = coords[C*2]

 return np.asarray(count), np.asarray(coord)

Let’s call this function on our segments, and plot the result.

In [27]:

counts, coords = compute_intersections(AB, segments)

In [29]:

print(counts)
print(coords)

[1 1 0 2 1 1 0]
[[0.1875 0.]
 [0.375 0.]
 [0. 0.]
 [0.625 0.75]
 [0.5 0.]
 [0.875 0.]
 [0. 0.]]

In [32]:

figure(figsize=(8,8))
plot_segments()
grid()
axis('scaled')

for S, (count, coord) in enumerate(zip(counts, coords)):
 for C in range(count):
 coord = coords[S, C]
 P = AB.at(coord)
 plot(P.x, P.y, 'ro')

[image: ../_images/tuto_first_tuto_48_0.png]

A high level Python extension type may now be create to wrap the compute_intersections code and its
results in a Pythonic API.

Conlusion

In this tutorial, we’ve explored the Python and Cython API of geomalgo, and how to easily
move from one to another depending on the needs.

Python API allows interactive processing using the Python scientific stack (numpy, matplotlib,
jupyter notebook, etc), while Cython API give use C like performances.

Collection of object are stored as SoA, which can be iterate using a stack allocated
element structure: for example, a Segment2DCollection is allocated using 4 arrays,
and can be iterated using a CSegment2D structure to be processed.

In []:

 Copyright 2016, David Froger.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	geomalgo 0.3.0 documentation

 	Tutorials

Introduction

In [1]:

%pylab inline

import geomalgo as ga

Populating the interactive namespace from numpy and matplotlib

A triangulation is a subdivision of a two-dimensional domain into triangles.

A triangulation is defined by:

	its vertices: two 1D arrays x and y for coordiantes,

	its triangles: one 2D array trivtx, giving the 3 vertice indices of
each triangle.

In [2]:

x = array([0, 1, 2, 0, 1, 2, 0, 1], dtype='d')
y = array([0, 0, 0, 1, 1, 1, 2, 2], dtype='d')
trivtx = array([[0, 1, 3], [1, 2, 4], [1, 4, 3], [2, 5, 4],
 [3, 4, 6], [4, 7, 6]], dtype='int32')

Plot triangulation.
triplot(x, y, trivtx)

Plot vertices indices.
for ivert, (xvert, yvert) in enumerate(zip(x, y)):
 text(xvert, yvert, ivert)

Plot triangle indices.
for itri, (v0, v1, v2) in enumerate(trivtx):
 xcenter = (x[v0] + x[v1] + x[v2]) / 3.
 ycenter = (y[v0] + y[v1] + y[v2]) / 3.
 text(xcenter, ycenter, itri, color='red')

axis('scaled')
show()

[image: ../_images/tuto_triangulation_intro_3_0.png]

For example, the vertice indices of triangle 2 are 1, 4 and 3:

In [3]:

print(trivtx[2])

[1 4 3]

The main purpose of this extension type is to group this arrays together

In [4]:

TG = ga.Triangulation2D(x, y, trivtx)

In []:

 Copyright 2016, David Froger.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	geomalgo 0.3.0 documentation

Python API

	Point2D

	triangulation

 Copyright 2016, David Froger.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	geomalgo 0.3.0 documentation

 	Python API

Point2D

The Point2D class represents points in two-dimensional space.

Comute distance between two points:

>>> A.distance(B)
5

	
class Point2D(x: float, y:float)

	A point in two-dimensional space, of coordinates \((x, y)\).

	
x: float

	First point coordiante

	
y: float

	First point coordiante

	
distance(self, other)

	Compute distance

 Copyright 2016, David Froger.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	geomalgo 0.3.0 documentation

 	Python API

triangulation

	Triangulation2D

	BoundaryEdges

 Copyright 2016, David Froger.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	geomalgo 0.3.0 documentation

 	Python API

 	triangulation

Triangulation2D

See Introduction for a introduction on
Triangulation2D.

Contruction

	
class Triangulation2D(x, y, trivtx)

	

	Parameters:	
	x (double[NV]) – Vertice first coordinates.

	y (double[NV]) – Vertice second coordiantes.

	trivtx (double[NT,3]) – Triangle vertice indices.

Attributes

Triangulation2D has the following array attributes:

	
x: double[NV]

	Vertice first coordinates.

	
y: double[NV]

	Vertice second coordinates.

	
trivtx: int[NT,3]

	Triangle vertice indices.

Triangulation2D has the following array size attributes:

	
NV: int

	The number of vertices

	
NT: int

	The number of triangles

The main purpose of this extension type is to groups together the 3 arrays
that defines a triangulation in its attributes:

Methods

Triangulation2D has the following methods:

	
__getitem__(self, triangle_index: int)

	

Return a Triangle2D instance

 Copyright 2016, David Froger.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	geomalgo 0.3.0 documentation

 	Python API

 	triangulation

BoundaryEdges

Contruction

	
build_edges(trivtx, NV, intern_edges_order=None, boundary_edges_order=None)

	

	Parameters:	
	trivtx (int[NT,3]) – Triangle vertice indices.

	NV (int [https://docs.python.org/library/functions.html#int]) – Number of vertices.

	It returns:

	a BoundaryEdges object
a InternEdges object

Attributes

	
size: int

	Number of boundary edges in the triangulation.

	
vertices: int[:,:]

	

	
triangle: int[:]

	

	
next_boundary_edge: int[:]

	

	
label: int[:]

	

	
length: double[:]

	

	
normal: double[:,:]

	

	
edge_map: EdgeMap

	

 Copyright 2016, David Froger.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	geomalgo 0.3.0 documentation

Cython API

	Point2D

	Segment2D

	Vector2D

	Triangle2d

	Triangulation

 Copyright 2016, David Froger.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	geomalgo 0.3.0 documentation

 	Cython API

Point2D

The Cython API for points in two-dimensional points provide a simple CPoint2D
strucutre and some computational functions.

Structures

	
CPoint2D

	
	
double x

	

	
double y

	Represents a point two-dimensional space, of coordinates \((x, y)\).

	
CPoint2D* new_point2d()

	Allocate a new CPoint2D

	
del_point2d(CPoint2D*cpoint2d)

	Delete a CPoint2D

	
bint point2d_equal(CPoint2D*A, CPoint2D*B)

	Test whether two points \(A\) and \(B\) are strictly equal.

Computational functions

	
void subtract_points2d(CVector2D*AB, const CPoint2D*B, const CPoint2D*A)

	Compute the vector \(\mathbf{AB} = B - A\).

Variable AB must be already allocated.

	
void point2d_plus_vector2d(CPoint2D*B, CPoint2D*A, doublealpha, CVector2D*AB)

	Compute the point \(B = A + \alpha \mathbf{AB}\).

B must be already allocated.

	
double point2d_distance(CPoint2D*A, CPoint2D*B)

	Compute the distance between points \(A\) and \(B\).

	
double point2d_square_distance(CPoint2D*A, CPoint2D*B)

	Compute the square of distance between to points \(A\) and \(B\).

Sometime, the knowledge of the square distance is enough, and for
performance, computing the square root can be avoided.

	
double is_left(CPoint2D*A, CPoint2D*B, CPoint2D*P)

	Test if the point \(P\) is left, right, or of an infinite
line \((AB)\).

	The value returned is:

	
	Strictly negative if \(P\) is right of the line through \(A\)
to \(B\).

	Strictly positive if \(P\) is left of the line through A to B.

	Zero if \(P\) is on the line \((AB)\).

Python and Cython API relation

 Copyright 2016, David Froger.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	geomalgo 0.3.0 documentation

 	Cython API

Segment2D

Structures

	
CSegment2D

	
	
CPoint2D* A

	\(A\) is the first segment point.

	
CPoint2D* B

	\(B\) is the second segment point.

Note

CSegment2D represents a segment by two points. A segment may
also be represented by a point and a vector. There is no C structure
that represent a segment this way. If needed by a function, a
Point2D and a Vector2D must be passed explicitly.
See for example segment2d_where.

	
CSegment2D* new_segment2d()

	Allocate a new CSegment2D.

This do not allocate members A, B.

	
void del_segment2d(CSegment2D*csegment2d)

	Delete a CSegment2D.

This do not delete members A, B.

	
void segment2d_set(CSegment2D*AB, CPoint2D*A, CPoint2D*B)

	Set members A and B.

Computational functions

	
double segment2d_distance_point2d(CSegment2D*AB, CVector2D*u, CPoint2D*P)

	Compute distance of a point \(P\) to the segment \([AB]\).

\(\mathbf{u}\) is the vector from \(A\) to \(A\).

	
double segment2d_square_distance_point2d(CSegment2D*AB, CVector2D*u, CPoint2D*P)

	Compute distance of a point \(P\) to the segment \([AB]\).

\(\mathbf{u}\) is the vector from \(A\) to \(A\).

Sometime, the knowledge of the square distance is enough, and for
performance, computing the square root can be avoided.

	
double segment2d_where(CPoint2D*A, CVector2D*AB, CPoint2D*P)

	Compute \(\alpha\) such as \(P = A + \alpha \mathbf{AB}\).

This assumes point \(P\) in on line \((AB)\).

	
void segment2d_middle(CPoint2D*M, CSegment2D*AB)

	Compute the point \(M\), middle of the segment \([AB]\).

 Copyright 2016, David Froger.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	geomalgo 0.3.0 documentation

 	Cython API

Vector2D

Structures

	
CVector2D

	
	
double x

	\(x\) is the first vector component

	
double y

	\(y\) is the second vector component

	
CVector2D* new_vector2d()

	

	
void del_vector2d(CVector2D*V)

	

Computational functions

	
void vector2d_times_scalar(CVector2D*t, doublealpha, CVector2D*u)

	Compute the vector \(\mathbf{t} = \alpha \mathbf{u}\)

t must be already allocated.

	
void subtract_vector2d(CVector2D*AB, CVector2D*AC, CVector2D*BC)

	Compute the vector \(\mathbf{AB} = \mathbf{AC} - \mathbf{BC}\)

AB must be already allocated.

	
void add_vector2d(CVector2D*AC, CVector2D*AB, CVector2D*BC)

	Compute the vector \(\mathbf{AC} = \mathbf{AB} + \mathbf{BC}\)

AC must be already allocated.

	
double cross_product2d(CVector2D*u, CVector2D*v)

	Compute the cross product \(u_x v_y - u_y v_x\) between
vectors \(\mathbf{u}\) and \(\mathbf{v}\).

	
double dot_product2d(CVector2D*u, CVector2D*v)

	Compute the dot product \(u_x v_x + u_y v_y\) between vectors
\(\mathbf{u}\) and \(\mathbf{v}\).

	
double compute_norm2d(CVector2D*u)

	Compute the norm \(|\mathbf{u}| = \sqrt{u_x^2 + u_y^2}\).

	
void normalize_vector2d(CVector2D*u)

	Normalize vector \(\mathbf{u}\) so that its
norm \(|\mathbf{u}|\) is 1.

	
void compute_normal2d(CVector2D*n, CVector2D*u, doublenorm)

	Compute the unitary (\(|\mathbf{u}=1|\)) normal \(\mathbf{u}\)
of vector \(\mathbf{u}\).

norm argument can be previously obtained with
normalize_vector2d()

n must be already allocated.

 Copyright 2016, David Froger.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	geomalgo 0.3.0 documentation

 	Cython API

Triangle2d

Structures

	
CTriangle2D

	
	
CPoint2D* A

	\(A\) is the first triangle vertice.

	
CPoint2D* B

	\(B\) is the second triangle vertice.

	
CPoint2D* C

	\(C\) is the third triangle vertice.

	
CTriangle2D* new_triangle2d()

	Allocate a new CTriangle2D.

This do not allocate members A, B, and C.

	
void del_triangle2d(CTriangle2D*ctri2d)

	Delete a CTriangle2D.

This do not delete members A, B, and C.

	
void triangle2d_set(CTriangle2D*ABC, CPoint2D*A, CPoint2D*B, CPoint2D*C)

	Set triangle points \(A\), \(B\), \(C\).

Computational functions

	
bint triangle2d_includes_point2d(CTriangle2D*ABC, CPoint2D*P, doubleedge_width_square)

	Test if the triangle \(ABC\) includes (contains) the point \(P\).

If point \(P\) is on one of the edge of triangle \(ABC\), due to
numerical accuracy issues [https://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html],
the test may failed.

To solve this issue, if edge_width_square is not 0, ABC will be
considered to include \(P\) if distance between \(P\) and one of
\(ABC\) edge is less than edge_width (the root square of
edge_width_square).

	
int triangle2d_on_edges(CTriangle2D*ABC, CPoint2D*P, doubleedge_width_square)

	Test if point \(P\) is on one of the edge of triangle \(ABC\).

\(P\) will be considered to be on one of the edge of triangle
\(ABC\). if distance between \(P\) and one of \(ABC\) edge is
less than edge_width (the root square of edge_width_square).

	Returns:

	
	0 if \(P\) is on edge \([AB]\),

	1 if \(P\) is on edge \([BC]\),

	2 if \(P\) is on edge \([CA]\),

	-2 if \(P\) is not on any edge.

	
double triangle2d_signed_area(CTriangle2D*T)

	Compute the signed area of triangle \(T\).

Triangle area is the absolute value of the signed area.

	If signed area is positive, triangle is counterclockwise.

	If signed area is negative, triangle is clockwise.

	If signed area is zero, triangle is degenerated.

	
double triangle2d_area(CTriangle2D*T)

	Compute the area of triangle \(T\).

	
void triangle2d_center(CTriangle2D*T, CPoint2D*C)

	Compute the center \(C\) of triangle \(T\).

Variable C must be already allocated.

	
void triangle2d_gradx_grady_det(CTriangle2D*tri, doublesigned_area, doublegradx[3], doublegrady[3], doubledet[3])

	Compute factors for linear interpolation of data defined on triangle
vertices \(A\), \(B\) and \(C\) to points included in the
triangle.

 Copyright 2016, David Froger.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	geomalgo 0.3.0 documentation

 	Cython API

Triangulation

Structures

 Copyright 2016, David Froger.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	geomalgo 0.3.0 documentation

Developer’s Guide

Build

conda install python=3.5 cython craftr

Test

conda install nose

Documentation

conda install matplotlib jupyter nbsphinx sphinx_rtd_theme sphinx-gallery
pip install wurlitzer

Release

Update CHANGELOG file.

Bump version number in files:

	conda-recipe/meta.yaml

	setup.py

	geomalgo/__init__.py

	Commit and tag:

	git commit -m ‘Bump to verions X.Y.Z’
git tag X.Y.Z
git push –tags

Change version number to X.Y.<Z+1>dev in files:

	conda-recipe/meta.yaml

	setup.py

	geomalgo/__init__.py

Warning

Changing version number to X.Y.<Z+1>dev is important, because on each commit,
conda packages are built on Travis, and uploaded to anaconda.org.

If version number remains to X.Y.Z, development package will erase tagged
package on anaconda.org

 Copyright 2016, David Froger.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	geomalgo 0.3.0 documentation

Index

 _
 | A
 | B
 | C
 | D
 | I
 | N
 | P
 | S
 | T
 | V

_

 	

 	__getitem__()

A

 	

 	add_vector2d (C function)

B

 	

 	build_edges() (built-in function)

C

 	

 	compute_norm2d (C function)

 	compute_normal2d (C function)

 	CPoint2D (C type)

 	CPoint2D.x (C member)

 	CPoint2D.y (C member)

 	cross_product2d (C function)

 	CSegment2D (C type)

 	CSegment2D.A (C member)

 	

 	CSegment2D.B (C member)

 	CTriangle2D (C type)

 	CTriangle2D.A (C member)

 	CTriangle2D.B (C member)

 	CTriangle2D.C (C member)

 	CVector2D (C type)

 	CVector2D.x (C member)

 	CVector2D.y (C member)

D

 	

 	del_point2d (C function)

 	del_segment2d (C function)

 	del_triangle2d (C function)

 	

 	del_vector2d (C function)

 	distance() (Point2D method)

 	dot_product2d (C function)

I

 	

 	is_left (C function)

N

 	

 	new_point2d (C function)

 	new_segment2d (C function)

 	new_triangle2d (C function)

 	

 	new_vector2d (C function)

 	normalize_vector2d (C function)

P

 	

 	Point2D (built-in class)

 	point2d_distance (C function)

 	point2d_equal (C function)

 	

 	point2d_plus_vector2d (C function)

 	point2d_square_distance (C function)

S

 	

 	segment2d_distance_point2d (C function)

 	segment2d_middle (C function)

 	segment2d_set (C function)

 	segment2d_square_distance_point2d (C function)

 	

 	segment2d_where (C function)

 	subtract_points2d (C function)

 	subtract_vector2d (C function)

T

 	

 	triangle2d_area (C function)

 	triangle2d_center (C function)

 	triangle2d_gradx_grady_det (C function)

 	triangle2d_includes_point2d (C function)

 	

 	triangle2d_on_edges (C function)

 	triangle2d_set (C function)

 	triangle2d_signed_area (C function)

 	Triangulation2D (built-in class)

V

 	

 	vector2d_times_scalar (C function)

 Copyright 2016, David Froger.
 Created using Sphinx 1.3.5.

 _static/comment-bright.png

_static/up-pressed.png

_static/down.png

_static/comment.png

_images/tuto_first_tuto_48_0.png

_images/tuto_first_tuto_11_3.png
40

35

30

25

20

15

10

_images/tuto_first_tuto_36_0.png

_images/tuto_first_tuto_8_0.png
40

35

30

25

20

15

10

o
c

A

20 25 30 35 40 45 50 55 g0

_images/tuto_triangulation_intro_3_0.png
200

175

150

125

100

o075

050

025

000

_images/tuto_first_tuto_6_0.png
40

35

30

25

20

15

10

o
.
c
.
A
.
20 25 30 35 40 45 50 55 g0

_static/up.png

_static/minus.png

search.html

 Navigation

 		
 index

 		geomalgo 0.3.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, David Froger.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/plus.png

