

Welcome to geog0111: Scientific Computing

UCL Geography: Level 7 course, Scientific Computing

[image: image0]

Online Notebooks via Binder:

Run the notebooks on Binder server directly by click on different chaper, it may take
some time to start but just wait a bit….

Go to full list of notebooks [https://mybinder.org/v2/gh/profLewis/geog0111/master]

Go to individual chapter:

Chapter0_help [https://mybinder.org/v2/gh/profLewis/geog0111/master?filepath=Chapter0_help.ipynb]

Chapter1_Python_introduction [https://mybinder.org/v2/gh/profLewis/geog0111/master?filepath=Chapter1_Python_introduction.ipynb]

Chapter1_Python_introduction_answers [https://mybinder.org/v2/gh/profLewis/geog0111/master?filepath=Chapter1_Python_introduction_answers.ipynb]

Chapter2_Numpy_matplotlib [https://mybinder.org/v2/gh/profLewis/geog0111/master?filepath=Chapter2_Numpy_matplotlib.ipynb]

Chapter2_Numpy_matplotlib_answers [https://mybinder.org/v2/gh/profLewis/geog0111/master?filepath=Chapter2_Numpy_matplotlib_answers.ipynb]

Chapter3_0_GDAL [https://mybinder.org/v2/gh/profLewis/geog0111/master?filepath=Chapter3_0_GDAL.ipynb]

Chapter3_1_GDAL [https://mybinder.org/v2/gh/profLewis/geog0111/master?filepath=Chapter3_1_GDAL.ipynb]

Chapter3_1_GDAL_answers [https://mybinder.org/v2/gh/profLewis/geog0111/master?filepath=Chapter3_1_GDAL_answers.ipynb]

Chapter3_2_MODIS_download [https://mybinder.org/v2/gh/profLewis/geog0111/master?filepath=Chapter3_2_MODIS_download.ipynb]

Chapter3_2_MODIS_download_answers [https://mybinder.org/v2/gh/profLewis/geog0111/master?filepath=Chapter3_2_MODIS_download_answers.ipynb]

Chapter3_3_GDAL_masking [https://mybinder.org/v2/gh/profLewis/geog0111/master?filepath=Chapter3_3_GDAL_masking.ipynb]

Chapter3_4_GDAL_stacking_and_interpolating [https://mybinder.org/v2/gh/profLewis/geog0111/master?filepath=Chapter3_4_GDAL_stacking_and_interpolating.ipynb]

Chapter3_4a_GDAL_stacking_and_interpolating-convolution [https://mybinder.org/v2/gh/profLewis/geog0111/master?filepath=Chapter3_4a_GDAL_stacking_and_interpolating-convolution.ipynb]

Chapter3_5_Movies [https://mybinder.org/v2/gh/profLewis/geog0111/master?filepath=Chapter3_5_Movies.ipynb]

Chapter3_6A_GDAL_Reconciling_projections_prerequisites [https://mybinder.org/v2/gh/profLewis/geog0111/master?filepath=Chapter3_6A_GDAL_Reconciling_projections_prerequisites.ipynb]

Chapter3_6_GDAL_Reconciling_projections [https://mybinder.org/v2/gh/profLewis/geog0111/master?filepath=Chapter3_6_GDAL_Reconciling_projections.ipynb]

Chapter4_Practical_Part1 [https://mybinder.org/v2/gh/profLewis/geog0111/master?filepath=Chapter4_Practical_Part1.ipynb]

Chapter5_Linear_models [https://mybinder.org/v2/gh/profLewis/geog0111/master?filepath=Chapter5_Linear_models.ipynb]

Chapter5_Modelling_and_optimisation [https://mybinder.org/v2/gh/profLewis/geog0111/master?filepath=Chapter5_Modelling_and_optimisation.ipynb]

Chapter6_NonLinear_Model_Fitting [https://mybinder.org/v2/gh/profLewis/geog0111/master?filepath=Chapter6_NonLinear_Model_Fitting.ipynb]

Chapter6_NonLinear_Model_Fitting_Solutions [https://mybinder.org/v2/gh/profLewis/geog0111/master?filepath=Chapter6_NonLinear_Model_Fitting_Solutions.ipynb]

Chapter7_FittingPhenologyModels [https://mybinder.org/v2/gh/profLewis/geog0111/master?filepath=Chapter7_FittingPhenologyModels.ipynb]

Chapter7_FittingPhenologyModels_Solutions [https://mybinder.org/v2/gh/profLewis/geog0111/master?filepath=Chapter7_FittingPhenologyModels_Solutions.ipynb]

Chapter8_Practical_Part2 [https://mybinder.org/v2/gh/profLewis/geog0111/master?filepath=Chapter8_Practical_Part2.ipynb]

Chapter9_Fire_and_Teleconnections [https://mybinder.org/v2/gh/profLewis/geog0111/master?filepath=Chapter9_Fire_and_Teleconnections.ipynb]

Chapter9_Fire_and_Teleconnections_Solution [https://mybinder.org/v2/gh/profLewis/geog0111/master?filepath=Chapter9_Fire_and_Teleconnections_Solution.ipynb]

Connection [https://mybinder.org/v2/gh/profLewis/geog0111/master?filepath=Connection.ipynb]

Course information

Course Convenor

Prof P. Lewis [http://www.geog.ucl.ac.uk/~plewis]

N.B. 2018-19 Course Convenors: Dr Qingling Wu and Dr. Jose Gomez-Dans

Course and Contributing Staff

Prof Philip Lewis [http://www.geog.ucl.ac.uk/~plewis]

Dr. Jose Gomez-Dans [http://www.geog.ucl.ac.uk/about-the-department/people/research-staff/research-staff/jose-gomez-dans/]

Dr Qingling Wu [http://www.geog.ucl.ac.uk/about-the-department/people/research-staff/research-staff/qingling-wu/]

Mr Feng Yin [https://www.geog.ucl.ac.uk/people/research-staff/feng-yin]

Mr James Brennan [https://www.geog.ucl.ac.uk/people/research-students/james-brennan]

Purpose of this course

This course, geog0111 Scientific Computing, is a term 1 MSc module worth
15 credits (25% of the term 1 credits) that aims to:

	impart an understanding of scientific computing

	give students a grounding in the basic principles of algorithm
development and program construction

	to introduce principles of computer-based image analysis and model
development

It is open to students from a number of MSc courses run by the
Department of Geography UCL, but the material should be of wider value
to others wishing to make use of scientific computing.

The module will cover:

	Computing in Python

	Computing for image analysis

	Computing for environmental modelling

	Data visualisation for scientific applications

Learning Outcomes

At the end of the module, students should:

	have an understanding of the Python programmibng language and
experience of its use

	have an understanding of algorithm development and be able to use
widely used scientific computing software to manipulate datasets and
accomplish analytical tasks

	have an understanding of the technical issues specific to image-based
analysis, model implementation and scientific visualisation

Timetable

The course takes place over 10 weeks in term 1, in the Geography
Department Unix Computing Lab (PB110) in the Pearson Building [http://www.ucl.ac.uk/estates/roombooking/building-location/?id=003], UCL.

Classes take place from the second week of term to the final week of
term, other than Reading week. See UCL term dates [http://www.ucl.ac.uk/staff/term-dates] for further
information.

The timetable is available on the UCL Academic Calendar

Assessment

Assessment is through two pieces of coursework, submitted in both paper
form and electronically via Moodle.

See the Moodle page [https://moodle-1819.ucl.ac.uk/course/view.php?id=2796] for more details.

Useful links

Course Moodle page [https://moodle-1819.ucl.ac.uk/course/view.php?id=2796]

Python

Python [http://www.python.org/] is a high level programming language that is freely available,
elatively easy to learn and portable acros

Contents:

	1. Introduction to Python With ANSWERS
	1.1 Getting Started

	symbol meaning
	1.2 Text and looping

	1.3. Groups of things

	1. Introduction to Python
	1.1 Getting Started

	symbol meaning
	1.2 Text and looping

	1.3. Groups of things

	2. Manipulating and plotting data in Python: numpy, and matplotlib libraries With ANSWERS
	2.1 Functions

	2.2 numpy

	2.3 Plotting with Matplotlib

	2.4 Indexing and slicing arrays

	2.5 Reading data

	2. Manipulating and plotting data in Python: numpy, and matplotlib libraries
	2.1 Functions

	2.2 numpy

	2.3 Plotting with Matplotlib

	2.4 Indexing and slicing arrays

	2.5 Reading data

	3 Geospatial processing with gdal
	3.1 MODIS LAI product

	3.1.2 gdal

	3.2 Automatic downloading of NASA MODIS products

	3.3 GDAL masking

	3.4 GDAL stacking and interpoilation

	3.5 Movies
	3.6 Summary

	3 Geospatial processing with gdal
	3.1 MODIS LAI product

	3.1.2 gdal

	3.2 Automatic downloading of NASA MODIS products

	3.3 GDAL masking

	3.4 GDAL stacking and interpolating

	3.5 Summary

	3 Geospatial processing with gdal
	3.1 MODIS LAI product

	3.1.2 gdal

	3.2 Automatic downloading of NASA MODIS products

	3.3 GDAL masking

	3.4 GDAL stacking and interpolating

	3.X Summary

	3.2 Accessing MODIS Data products
	3.2.1 Introduction

	3.2.2 Accessing NASA MODIS URLs

	3.2.2.1 datetime

	3.2.3 MODIS filename format

	3.2.4 Saving binary data to a file

	3.2.4 downloading the data file

	3.2.5 Visualisation

	3.2.6 Summary

	3.2 Accessing MODIS Data products
	3.2.1 Introduction

	3.2.2 Accessing NASA MODIS URLs

	3.2.2.1 datetime

	3.2.3 MODIS filename format

	3.2.4 Saving binary data to a file

	3.2.4 downloading the data file

	3.2.5 Visualisation

	3.2.6 Summary

	3.3 GDAL, and OGR masking
	3.3.1 The MODIS LAI data

	3.3.2 MODIS dataset access

	3.3.3 Reading and displaying data

	3.3.4 The country borders dataset

	3.4.4 Weighted interpolation
	3.4.4.1 Smoothing

	3.4.4.2 weighted smoothing

	3.4 Stacking and interpolating data
	3.4.1 Introduction

	3.4.2 QA data

	3.4.3 A time series

	3.4.4 Weighted interpolation

	3.4.5 Making movies

	3.5 LAI Movies

	3.6 Reconciling projections
	3.6.A Introduction

	3.6.A.1 Requirements

	3.6 Reconciling projections
	3.6.1 Introduction

	3.6.1.1 Projections

	3.6.1.2 Changing Projections

	3.6.2 Requirements

	3.6.3 Reconcile the datasets

	3.6.3.6 Putting this together

	3.6.6 Summary

	4. Assessed Practical
	4.1 Introduction

	4.1.2 Purpose of the work

	4.3 Coursework

	Table of Contents

	Fitting to the Mauna Loa \(CO_2\) record
	Introduction

	Obtaining the data

	Loading the data into Python

	A model for \(CO_2\) concentration

	Solving the problem using linear algebra

	A model with seasonality

	A phase shift

	Prediction

	Uncertainty

	5 Modelling and optimisation
	5.1 Introduction

	5.2 Get datasets

	5.3 Interpretation of the data

	Fitting non-linear models
	A synthetic experiment

	Next: Real data

	Fitting non-linear models
	A synthetic experiment

	Fitting MODIS LAI data

	Fitting models of phenology to MODIS LAI data
	The phenology model

	Interpreting the QA LAI data

	Selecting data from a raster file

	Uncertainty

	Fitting models of phenology to MODIS LAI data
	The phenology model

	Interpreting the QA LAI data

	Selecting data from a raster file

	Uncertainty

	8. Assessed Practical
	8.1 Introduction

	8.1.2 Purpose of the work

	8.2 The model

	8.3 Coursework

	Group project: Fire and teleconnections
	In this Session..

	Splitting the tasks

	Model testing

	Refinements

	Group project: Fire and teleconnections
	In this Session..

	Splitting the tasks

	Solution: getting the data

	Solution: getting hold of the teleconnection data

	Solution: the model fitting part

	Connecting to notebooks from outside UCL
	Remote access to your UCL shell

	Actually accessing the Jupyter notebooks remotely

Indices and tables

	Index

	Module Index

	Search Page

1. Introduction to Python With ANSWERS

Table of Contents

	
	Introduction to Python With ANSWERS

	1.1 Getting Started

	1.1.1 Comments and print function

	1.1.2 Variables, Values and Data types

	1.1.3 Arithmetic

	1.1.4 Assignment Operators

	1.1.5 Logical Operators

	1.1.6 Comparison Operators and if

	1.1.7 Summary

	1.2 Text and looping

	1.2.1 len

	1.2.2 for … in … and enumerate

	1.2.3 slice

	1.2.4 replace

	1.2.5 find

	1.2.5 split and splitlines

	1.2.6 Summary

	1.3. Groups of things

	1.3.1 tuple

	1.3.2 list

	1.3.3 np.array

	1.3.4 dict

	1.3.5 Summary

Python is a popular general purpose, free language. As opposed to other
systems that are focused towards a particular task (e.g. R for
statistics), Python has a strong following on the web, on systems
operations and in data analysis. For scientific computing, a large
number of useful add-ons (“libraries”) are available to help you analyse
and process data. This is an invaluable resource.

In addition to being free, Python is also very portable, and easy to
pick up.

The aim of this Chapter is to introduce you to some of the fundamental
concepts in Python. Mainly, this is based around fundamental data types
in Python (int, float, str, bool etc.) and ways to group
them (tuple, list, array, string and dict).

Although some of the examples we use are very simple to explain a
concept, the more developed ones should be directly applicable to the
sort of programming you are likely to need to do.

Further, a more advanced section of the chapter is available, that goes
into some more detail and complkications. This too has a set of
exercises with worked examples.

In this session, you will be introduced to some of the basic concepts in
Python.

The session should last 4 hours (one week).

1.1 Getting Started

1.1.1 Comments and print function

Comments are statements ignored by the language interpreter.

Any text after a # in a code block is a comment.

You can ‘run’ the code in a code block using the ‘run’ widget (above) or
hitting the keys (‘typing’) and at the same time.

E1.1.1 Exercise

	Try running the code block below

	Explain what happened (‘what the computer did’)

Hello world

ANSWER

Nothing ‘apparently’ happened, but really, the code block was
interpreted as a set of Python commands and executed. As there is only a
comment, there was no output.

You can also use text blocks (contained in quotes) to contain comments,
but note that if it is the last statement in the code, the text block
may be printed out to the terminal.

single line text
'hello world is not printed'

multi-line text
'''
Hello
world
is printed
'''

'nHello nworldnis printedn'

E1.1.2 Exercise

	Copy the text from above in the window below

	Then put a new text block at the end and note down what happens

	What does the \n mean/do?

do the exercise here
ANSWER

single line text
'hello world is not printed'

multi-line text
'''
Hello
world
is printed
'''

'''
Another text block
'''

'nAnother text blockn'

ANSWER

The last output is printed. In this case, it is the string
'\nAnother text block\n'.

The \n is a newline character. It setrs the text cursor to the start
of a new line.

To print some statement (by default, to the screen you are using), use
the print method:

print('hello world')

hello world

print('hello','world')

hello world

In Python 3.X, print is a function with the argument(s) (here, the
string you want printed) enclosed in the function’s (round) brackets.

E1.1.3 Exercise

	Copy the print statement from above code block.

	Change the words in the quotes and print them out.

	Add some comments to the code block explaining what you have done and
seen.

do the exercise here
ANSWER

'''
The print statement below sends text to the output channel (the 'screen' as it were).
In this case, it prints the string 'good', followed by a space, then the string 'morning'
'''
print('good','morning')

good morning

1.1.2 Variables, Values and Data types

The idea of variables is fundamental to any programming. You can
think of this as the name of something, so it is a way of allowing
us to refer to some object in the language.

What the variable is set to is called its value.

So let’s start with a variable we will call (declare to be) x.

We will give a value of the string 'one' to this variable:

x = 'one'

print(x)

one

E1.1.4 Exercise

	set the a variable called x to some different string (e.g. ‘hello
world’)

	print the value of the variable x

	Try this again, putting some ‘newlines’ (\n) in the string

do the exercise here
ANSWER

x = 'hello world'

print(x)
'''
Note the space before the final
hello world, as there is a comma
between '\n' and x
'''
print(x,'\n',x)

hello world
hello world
 hello world

Now we set x to the value 1

x = 1

print(x,'is type',type(x))

1 is type <class 'int'>

In a computing language, the sort of thing the variable can be set to
is called its data type.

In python, we can access this with the method type() as in the
example above.

In the example above, the datatype is an integer number
(e.g. 1, 2, 3, 4).

In ‘natural language’, we might read the example above as ‘x is one’.

E1.1.5 Exercise

	set the a variable called x to the integer 5

	print the value and type of the variable x

	change the data type used for x to something else (e.g. a string)

do the exercise here
ANSWER

x = 5
'''
We use the methods type() and str() here
'''
print(x,type(x),str(x))

5 <class 'int'> 5

Setting x = 1 is different to:

x = 'one'

because here we have set value of the variable x to a string
(i.e. some text).

A string is enclosed in quotes, e.g. "one" or 'one', or even
"'one'" or '"one"'.

print ("one")
print ('one')
print ("'one'")
print ('"one"')

one
one
'one'
"one"

E1.1.6 Exercise

	create a variable name containing your name, as a string.

	using this variable and the print function, print out a statement
such as my name is Fred (if your name were Fred)

do the exercise here
ANSWER

name = 'Professor Philip Lewis'
print('My name is',name)

My name is Professor Philip Lewis

Setting x = 1 or x = 'one' is different to:

x = 1.0

because here we have set value of the variable x to a floating
point number (these are treated and stored differently to integers in
computing).

This in turn is different to:

x = True

where True is a logical or boolean datatype (something is
True or False).

E1.1.7 Exercise

	in the code block below, create a variable called my_var and set
it to some value (your choice of value, but be clear about the data
type you intend)

	print the value of the variable to the screen, along with the data
type.

do the exercise here
ANSWER

set to integer
my_var = 100
print(my_var,type(my_var))

100 <class 'int'>

We have so far seen four datatypes:

	integer (int): 32 bits long on most machines

	(double-precision) floating point (float): (64 bits long)

	Boolean (bool)

	string (str)

but we will come across more (and even create our own!) as we go through
the course.

In each of these cases above, we have used the variable x to contain
these different data types.

As we saw above, if you want to know what the data type of a variable
is, you can use the method type()

print (type(1));
print (type(1.0));
print (type('one'));
print (type(True));

<class 'int'>
<class 'float'>
<class 'str'>
<class 'bool'>

You can explicitly convert between data types, e.g.:

print ('int(1.1) = ',int(1.1))
print ('float(1) = ',float(1))
print ('str(1) = ',str(1))
print ('bool(1) = ',bool(1))

int(1.1) = 1
float(1) = 1.0
str(1) = 1
bool(1) = True

but only when it makes sense:

print ("converting the string '1' to an integer makes sense:",int('1'))

converting the string '1' to an integer makes sense: 1

print ("converting the string 'one' to an integer doesn't:",int('one'))

ValueError Traceback (most recent call last)

<ipython-input-23-11bdc0c0e878> in <module>
----> 1 print ("converting the string 'one' to an integer doesn't:",int('one'))

ValueError: invalid literal for int() with base 10: 'one'

When you get an error (such as above), you will need to learn to read
the error message to work out what you did wrong.

E1.1.8 Exercise

	why did the statement above not work?

	type some other data conversions below that do work.

do the exercise here
ANSWER

print(str(1),str('1 2 3'))
print(int('1'))

1 1 2 3
1

We tried to convert a string (‘one’) to an integer, that doesn’t make
sense. It is ok e.g. for int('1') though.

1.1.3 Arithmetic

Often we will want to do some
arithmetic [http://www.tutorialspoint.com/python/python_basic_operators.htm]
with numbers in a program, and we use the ‘normal’ (derived from C)
operators for this.

Note the way this works for integers and floating point representations.

'''
 Some examples of arithmetic operations in Python

 Note how, if we mix float and int, the result is raised to float
 (as the more general form)
'''

print (10 + 100) # int addition
print (10. - 100) # float subtraction
print (1./2.) # float division
print (1/2) # int division
print (10.*20.) # float multiplication
print (2 ** 3.) # float exponent

print (65%2) # int remainder
print (65//2) # floor operation

110
-90.0
0.5
0.5
200.0
8.0
1
32

E1.1.9 Exercise

	change the numbers in the examples above to make sure you understand
these basic operations.

	try combining operations and use brackets () to check that that
works as expected.

	see what happens when you add (i.e. use +) strings together

do the exercise here
ANSWER

print (1 + 10) # int addition
print (1. - 10) # float subtraction
print (3./2.) # float division
print (3/2) # int division
print (1.*2.) # float multiplication
print (2 ** 8.) # float exponent

print (129%2) # int remainder
print (129//2) # floor operation

11
-9.0
1.5
1.5
2.0
256.0
1
64

Most of these are obvious. The integer division in this case returns a
float, which is a change from Pythjon 2.

The remainder and floor terms mean that 129 = 64 * 2 + 1,
i.e. 129 = floor * 2 + remainder

1.1.4 Assignment Operators

'''
 Assignment operators

 x = 3 assigns the value 3 to the variable x
 x += 2 adds 2 onto the value of x
 so is the same as x = x + 2
 similarly /=, *=, -=
 x %= 2 is the same as x = x % 2
 x **= 2 is the same as x = x ** 2
 x //= 2 is the same as x = x // 2

 A 'magic' trick
 ===============

 based on
 https://www.wikihow.com/Read-Someone%27s-Mind-With-Math-(Math-Trick)

 whatever you put as myNumber, the answer is 42

 Try this with integers or floating point numbers ...
'''

pick a number
myNumber = 34.67

x = myNumber

x *= 2

x *= 5

x /= myNumber

x -= 7

x += 39

The answer will always be 42
print(x)

42.0

E1.1.10 Exercise

	change the number assigned to myNumber and check if 42 is
still returned

	copy and edit the code to print the value of x each time you
change it, and add comments explaining what is happening for each
line of code. This should allow you to follow more carefully what has
happened with the arithmetic and also to simplify the code (use fewer
statements to achieve the same thing).

do the exercise here
ANSWER

myNumber = 27.6
x = myNumber
print(x)
x *= 2
print(x)
x *= 5
print(x)
x /= myNumber
print(x)
x -= 7
print(x)
x += 39
The answer will always be 42
print(x)

27.6
55.2
276.0
10.0
3.0
42.0

do the exercise here
ANSWER ... not so magic after all

myNumber = 27.6

x = 10
print(x)
x += 32
The answer will always be 42
print(x)

10
42

1.1.5 Logical Operators

Logical operators combine boolean variables. Recall from above:

print (type(True),type(False));

<class 'bool'> <class 'bool'>

The three main logical operators you will use are:

not, and, or

The impact of the not opeartor should be straightforward to
understand, though we can first write it in a ‘truth table’:

	A

	not A

	T

	F

	F

	T

print('not True is',not True)
print('not False is',not False)

not True is False
not False is True

E1.1.11 Exercise:

	write a statement to set a variable x to True and print the
value of x and not x

	what does not not x give? Make sure you understand why

do the exercise here
ANSWER

x = True
print(x)
print(not x)
print(not not x)

True
False
True

not not cancels out.

The operators and and or should also be quite straightforward to
understand: they have the same meaning as in normal english. Note that
or is ‘inclusive’ (so, read A or B as ‘either A or B or both of
them’).

print ('True and True is',True and True)
print ('True and False is',True and False)
print ('False and True is',False and True)
print ('False and False is',False and False)

True and True is True
True and False is False
False and True is False
False and False is False

So, A and B is True, if and only if both A is True and
B is True. Otherwise, it is False

We can represent this in a ‘truth table’:

	A

	B

	A and B

	T

	T

	T

	T

	F

	F

	F

	T

	F

	F

	F

	F

E1.1.12 Exercise:

	draw a truth table on some paper, label the columns A, B
and A and B and fill in the columns A and B as above

	without looking at the example above, write the value of A and B
in the third column.

	draw another truth table on some paper, label the columns A,
B and A and B and fill in the columns A and B as
above

	write the value of A or B in the third column.

If you are unsure, test the response using code, below.

do the testing here e.g.
print (True or False)

True

ANSWER

[image: image0]

[image: image1]

E1.1.13 Exercise

	Copy the following truth table onto paper and fill in the final
column:

	A

	B

	C

	((A and B) or C)

	T

	T

	T

	

	T

	T

	F

	

	T

	F

	T

	

	T

	F

	F

	

	F

	T

	T

	

	F

	T

	F

	

	F

	F

	T

	

	F

	F

	F

	

	Try some other compound statements

If you are unsure, or to check your answers, test the response using
code, below.

do the testing here e.g.
print ((True and False) or True)

True

ANSWER

Do it one statement at a time:

	A

	B

	C

	A and B

	(A and B) or C

	T

	T

	T

	T

	T

	T

	T

	F

	T

	T

	T

	F

	T

	F

	T

	T

	F

	F

	F

	F

	F

	T

	T

	F

	T

	F

	T

	F

	F

	F

	F

	F

	T

	F

	T

	F

	F

	F

	F

	F

1.1.6 Comparison Operators and if

A comparison operator ‘compares’ two terms (e.g. variables) and returns
a boolean data type (True or False).

For example, to see if the value of some variable a is ‘the same
value as’ (‘equivalent to’) the value of some variable b, we use the
equivalence operator (==). To test for non equivalence, we use the
not equivalent operator != (read the ! as ‘not’):

a = 100
b = 10

Note the use of \n and \t in here
#
print ('a is',a,'and\nb is',b,'\n')
print ('\ta is equivalent to b?',a == b)

a is 100 and
b is 10

 a is equivalent to b? False

E1.1.14 Exercise

	copy the code above and change the values (or type) of the variables
a and b to test their equivalence.

	what does the \t in the print statement do?

	add a print statement to your code that tests for ‘non
equivalence’

	write some code to see if (a or b) is equivalent to (b or a)
or not

do the exercise here
ANSWER

for logical operators
a = True
b = False

Note the use of \n and \t in here
#
print ('a is',a,'and\nb is',b,'\n')
print ('\ta is equivalent to b?',a == b)
print ('\ta is not equivalent to b?',a != b)
print ('\t(a or b) == (b or a)?',(a or b) == (b or a))

for other comparisons ... the or works differently
a = 10
b = 20

Note the use of \n and \t in here
#
print ('a is',a,'and\nb is',b,'\n')
print ('\ta is equivalent to b?',a == b)
print ('\ta is not equivalent to b?',a != b)
print ('\t(a or b) == (b or a)?',(a or b) == (b or a))

this just sets to a and b respectively, since True
print((a or b),(b or a))

a is True and
b is False

 a is equivalent to b? False
 a is not equivalent to b? True
 (a or b) == (b or a)? True
a is 10 and
b is 20

 a is equivalent to b? False
 a is not equivalent to b? True
 (a or b) == (b or a)? False
10 20

A full set of comparison operators is:

symbol meaning

== is equivalent to
!= is not equivalent to
> greater than
>= greater than or equal to
< less than
<= less than or equal to
======
===

so that, for example:

Comparison examples

is one plus one list identical to two list?
print ([1 + 1] is [2])

is one plus one list equal to two list?
print ([1 + 1] == [2])

is one less than or equal to 0.999?
print (1 <= 0.999)

is one plus one not equal to two?
print (1 + 1 != 2)

note the use of single quotes inside a double quoted string here
is 'more' greater than 'less'?
print ("more" > "less")

"is 100 less than 2?"
print (100 < 2)

False
True
False
False
True
False

Aside on string comparisons

In the case of string comparisons, the
ASCII [http://www.asciitable.com] codes of the string characters are
compared. So for example the statement “more” > “less” returns True.

Here, the comparison is effectively

m > l

Since m comes after l in the alphabet, the ASCII code for m
(109) is greater than the ASCII code for l (108) (see
http://www.asciitable.com) so

109 > 108

returns True. Note that ASCII capital letters come before the lower case
letters.

In practice, we mainly avoid string comparisons (other than to confirm
equivalence). So there is little direct use of string comparisons other
than ==. It is useful to know how this works however, in case it
crops up or happens ‘by accident’. It is also worth understanding what
ASCII codes are.

Conditional test

One common use of comparisons is for program control, using an if
statement:

if condition1 is True:
 doit1()
elif condition2 is True:
 doit2()
else:
 doit3()

where is compares identity. This allows us to run blocks of code
(e.g. the method doit1()) only under a particular condition (or set
of conditions).

In Python, the statement(s) we run on condition (here doit1() etc.)
are indented.

The indent can be one or more spaces or a <tab> character, the
choice is up to the programmer. However, it must be consistent.

test = [1+1]
print('test is {}'.format(test))

initialise retval
retval = None

conduct some tests, and set the
variable retval to True if we pass
any test

if test is [2]:
 retval = True
 print('passed test 1: "if test is [2]"')
elif test == [2]:
 retval = True
 print('passed test 2: "if test == [2]"')
else:
 retval = False
 print('failed both tests')

print('retval is',retval)

test is [2]
passed test 2: "if test == [2]"
retval is True

E1.1.15 Exercise

	copy the example above, and change it to use other examples from the
‘Comparison examples’ code block. Change the value of test to get
different responses and make notes as to why you get the result you
do.

	try out some more complicated conditions, e.g. multipler tests,
combined with an and operator.

do the exercise here
ANSWER

test = [3 / 2]
print('test is {}'.format(test))

initialise retval
retval = None

conduct some tests, and set the
variable retval to True if we pass
any test

if test is [1.5]:
 retval = True
 print('passed test 1: "if test is [1.5]"')
elif test == [1]:
 retval = True
 print('passed test 2: "if test == [1]"')
else:
 retval = False
 print('failed both tests')

print('retval is',retval)

test is [1.5]
failed both tests
retval is False

So be careful how you use is. It is not the same as == which
only tests for equivalence. is is really a pointer comparison, so
are they the same object?

In this section, you have had an introduction to the Python programming
language, running in a `jupyter notebook <http://jupyter.org>`__
environment.

You have seen how to write comments in code, how to form print
statements and basic concepts of variables, values, and data types. You
have seen how to maniputae data with arithmetic and assignment
operators, as well as the basics in dealing with logic and tests
returning logical values.

1.2 Text and looping

In Python, collections of characters (a, b, 1, …) are called
strings. Strings and characters are input by surrounding the relevant
text in either double (") or single (') quotes. There are a
number of special characters that can be encoded in a string provided
they’re “escaped”. For example, some we have come across are:

	\n: the carriage return

	\t: a tabulator

print ("I'm a happy string")
print ('I\'m a happy string') # the apostrophe has been escaped as not to be confused by end of string
print ("\tI'm a happy string")
print ("I'm\na\nhappy\nstring")

I'm a happy string
I'm a happy string
 I'm a happy string
I'm
a
happy
string

We can do a number of things with strings, which are very useful. These
so-called string methods are defined on all strings by Python by
default, and can be used with every string. For one, we can concatenate
strings using the + symbol as we saw above.

1.2.1 len

Gives the length of the string as number of characters:

t = ''
print ('the length of',t,'is',len(t))

s = "Hello" + "there" + "everyone"

print ('the length of',s,'is',len(s))

the length of is 0
the length of Hellothereeveryone is 18

Exercise E1.2.1

	what does a zero-length string look like?

	The Hello there everyone example above has no spaces between the
words. Copy the code to the block below and modify it to have spaces.

	confirm that you get the expected increase in length.

do exercise here
ANSWER

zero = ''
s = "Hello" + " " + "there" + " " + "everyone"
print(s)
print ('the length of',s,'is',len(s))

Hello there everyone
the length of Hello there everyone is 20

1.2.2 for ... in ... and enumerate

Very commonly, we need to iterate or ‘loop’ over some set of items.

The basic stucture for doing this (in Python, and many other languages)
is for item in group:, where item is the name of some variable
and group is a set of values.

The loop is run so that item takes on the first value in group,
then the second, etc.

for loop
group = [4,3,2,1]

for item in group:
 '''print counter in loop'''
 print(item)

print ('blast off!')

4
3
2
1
blast off!

The group in this example is the list of integer numbers
[4,3,2,1]. A list is a group of comma-separated items contained
in square brackets [].

In Python, the statement(s) we run whilst looping (here print(item))
are indented.

The indent can be one or more spaces or a <tab> character, the
choice is up to the programmer. However, it must be consistent.

Exercise 1.2.1

	generate a list of strings called group with the names of (some
of) the items in your pocket or bag (or make some up!)

	set up a for loop to go through and print each item

do exercise here
ANSWER

group = ['cat','fish','egg']
for item in group:
 print('I have',item,'in my pocket')

I have cat in my pocket
I have fish in my pocket
I have egg in my pocket

Quite often, we want to keep track of the ‘index’ of the item in the
loop (the ‘item number’).

One way to do this would be to use a variable (called count here).

Before we enter the loop, we initialise the value to zero.

for loop
group = ['hat','dog','keys']

initialise a variable count
count = 0

for item in group:
 '''print counter in loop'''

 print('item',count,'is',item)

 # add 1 onto count
 count += 1

item 0 is hat
item 1 is dog
item 2 is keys

Exercise 1.2.2

	copy the code above, and check to see if the value of count at
the end of the loop is the same as the length of the list. Why should
this be so?

	change the code so that the counting starts at 1, rather than 0.

do exercise here
ANSWER

for loop
group = ['hat','dog','keys']

initialise a variable count
count = 0

for item in group:
 '''print counter in loop'''

 print('item',count,'is',item)

 # add 1 onto count
 count += 1
'''
Expect the same as we have incremented
count once for each item in group, so it
should be the same as the length of the group!
'''
print(count,len(group))

item 0 is hat
item 1 is dog
item 2 is keys
3 3

Since counting in loops is a common task, we can use the built in method
enumerate() to achieve the same thing as above. The syntax is then:

for loop
group = ['hat','dog','keys']

for count,item in enumerate(group):
 '''print counter in loop'''
 print('item',count,'is',item)

item 0 is hat
item 1 is dog
item 2 is keys

Exercise 1.2.3

	copy the code above, and check to see if the value of count at
the end of the loop is the same as the length of the list.

	change the code so that the printed count starts at 1, rather than 0.

Hint: how can you make it print count+1 rather than count?

do exercise here
ANSWER

for loop
group = ['hat','dog','keys']

for count,item in enumerate(group):
 '''print counter in loop'''
 print('item',count,'is',item)

'''
In this case, count starts at 0 and takes the
values 0, 1 and 2 as we loop over the 3 items.
'''
print(count,len(group))
'''
print count + 1 !!
'''
print('item',count+1,'is',item)

item 0 is hat
item 1 is dog
item 2 is keys
2 3
item 3 is keys

1.2.3 slice

A string can be thought of as an ordered ‘array’ of characters.

So, for example the string hello can be thought of as a construct
containing h then e, l, l, and o.

We can index a string, so that e.g. 'hello'[0] is h,
'hello'[1] is e etc.

We have seen above the idea of the ‘length’ of a string. In this
example, the length of the string hello is 5.

string = 'hello'

length
slen = len(string)
print('length of {} is {}'.format(string,slen))

select these indices
indices = 0,1,3

loop over each item in indices
for index in indices:
 print('character {} of {} is {}'.format(index,string,string[index]))

length of hello is 5
character 0 of hello is h
character 1 of hello is e
character 3 of hello is l

Exercise E1.2.4

	copy the code above, and see what happens if you set a value in
indices that is the value of length of the string. Why does it
respond so?

	make the code robust to this issue, but using an if statement to
test if index is in the required range.

do exercise here
ANSWER

string = 'hello'

length
slen = len(string)
print('length of {} is {}'.format(string,slen))

select these indices
indices = 0,1,3,6

loop over each item in indices
'''
WE expect a failure as we have
asked for an out of range index
'''

for index in indices:
 print('character {} of {} is {}'.format(index,string,string[index]))

length of hello is 5
character 0 of hello is h
character 1 of hello is e
character 3 of hello is l

IndexError Traceback (most recent call last)

<ipython-input-68-88baf263801d> in <module>
 18
 19 for index in indices:
---> 20 print('character {} of {} is {}'.format(index,string,string[index]))
 21

IndexError: string index out of range

do exercise here
ANSWER

string = 'hello'

length
slen = len(string)
print('length of {} is {}'.format(string,slen))

select these indices
indices = 0,1,3,6

loop over each item in indices
'''
Fix by using condition
'''

for index in indices:
 if index < slen:
 print('character {} of {} is {}'.format(index,string,string[index]))
 else:
 print('index {} beyond the string length {}'.format(index,slen))

length of hello is 5
character 0 of hello is h
character 1 of hello is e
character 3 of hello is l
index 6 beyond the string length 5

We can use the idea of a ‘slice’ to access particular elements within
the string.

For a slice, we can specify:

	start index (0 is the first)

	stop index (not including this)

	skip (do every ‘skip’ character)

When specifying this as array access, this is given as, e.g.:

array[start:stop:skip]

	The default start is 0

	The default stop is the length of the array

	The default skip is 1

You can specify a slice with the default values by leaving the terms
out:

array[::2]

would give values in the array array from 0 to the end, in steps of
2.

This idea is fundamental to array processing in Python. We will see
later that the same mechanism applies to all ordered groups.

s = "Hello World"
print (s,len(s))

start = 0
stop = 11
skip = 2
print (s[start:stop:skip])

use -ve numbers to specify from the end
use None to take the default value

start = -3
stop = None
skip = 1
print (s[start:stop:skip])

Hello World 11
HloWrd
rld

Exercise E1.2.5

The example above allows us to access an individual character(s) of the
array.

	copy the example above, and print the string starting from the
default start value, up to the default stop value, in steps of 2.

	write code to print out the 4\(^{th}\) letter (character) of
the string s.

do exercise here
ANSWER

s = "Hello World"

take the default start by setting to None
start = None
stop = None
skip = 2
print (s[start:stop:skip])

4th char ... start at 0 remember!
print(s[3])

HloWrd
l

1.2.4 replace

We can replace all occurrences of a string within a string by some other
string. We can also replace a string by an empty string, thus in effect
removing it:

print ("I'm a very happy string".replace("happy", "unhappy"))

I'm a very unhappy string

Exercise E1.2.6

	copy the statement above, and use the replace method to make it
print out "I'm a happy string".

Hint: you want to replace the string very with, effectively,
nothing, i.e. a zero-length string.

do exercise here
ANSWER

note that we replace 'very '
print ("I'm a very happy string".replace("very ", ""))

I'm a happy string

1.2.5 find

Quite often, we might want to find a string inside another string, and
potentially give the location (as in characters from the start of the
string) where this string occurs. We can use the find method, which
will return either a -1 if the string isn’t found, or an integer
giving the index of where the string starts (for the first time).

print ("I'm a very happy string".find("a"))
print ("I'm a very happy string".find("happy"))

4
11

Let’s use the idea of find() to sort out a messy table of data that
we get from a web page.

First, we need to import the package requests to access some
information from a URL [https://en.wikipedia.org/wiki/URL] (from a
web page). The data we get will be in
html [https://en.wikipedia.org/wiki/HTML].

The data we will examine is a dataset of
ENSO [https://en.wikipedia.org/wiki/ENSO] values for each month of
the year from January 1950 to present, made available by
NOAA [https://en.wikipedia.org/wiki/NOAA]/

If you visit you will see the data table we are interested in. So, how
do we ‘grab’ this?

The URL [https://en.wikipedia.org/wiki/URL] points to
html [https://en.wikipedia.org/wiki/HTML] code. When you display
this in a browser, it is rendered appropriately.

If you access the html directly, you will get the following:

Web scraping example

import requests

url = "http://www.esrl.noaa.gov/psd/enso/mei/table.html"

This line will pull the URL data as a string
txt = requests.get(url).text

show the first 1000 characters (see 'slice' above: this is the same as [None:1000:None])
print(txt[:1000])

<html>
<head><title>MEI timeseries from Dec/Jan 1940/50 up to the present</title></head>
<body>
<pre>
MEI Index (updated: 13 October 2018)

Bimonthly MEI values (in 1/1000 of standard deviations), starting with Dec1949/Jan1950, thru last
month. More information on the MEI can be found on the MEI homepage.
Missing values are left blank. Note that values can still change with each monthly update, even
though such changes are typically smaller than +/-0.1. All values are normalized for each bimonthly
season so that the 44 values from 1950 to 1993 have an average of zero and a standard deviation of "1".
Responses to 'FAQs' can be found below this table:

YEAR DECJAN JANFEB FEBMAR MARAPR APRMAY MAYJUN JUNJUL JULAUG AUGSEP SEPOCT OCTNOV NOVDEC
1950 -1.03 -1.133 -1.283 -1.071 -1.434 -1.412 -1.269 -1.042 -.631 -.406 -1.138 -1.235
1951 -1.049 -1.152 -1.178 -.511 -.374 .288 .679 .818 .726 .768 .726 .504
1952 .433 .138 .071 .224 -.307 -.756 -.305 -.374 .

We notice the presence of html codes in the text string
(e.g. <html>, <pre>). There are particular packages for neatly
parsing html (scraping information from web pages), one of the most
common being
BeautifulSoup [https://www.crummy.com/software/BeautifulSoup/bs4/doc/].
This will tend to be more useful if the html is well fomatted, and the
data contained in <table> sections, or similar structures. Here, we
just have a block of text in the <pre> section.

If we want to just access the dataset here then, we might notice that
the data we want to access starts when we see the string YEAR.

We can use find() to discover the index of this in the string:

start = txt.find('YEAR')

print('start of useful data at index {}\n---------------------------------'.format(start))
print(txt[start:start+1000])

start of useful data at index 688

YEAR DECJAN JANFEB FEBMAR MARAPR APRMAY MAYJUN JUNJUL JULAUG AUGSEP SEPOCT OCTNOV NOVDEC
1950 -1.03 -1.133 -1.283 -1.071 -1.434 -1.412 -1.269 -1.042 -.631 -.406 -1.138 -1.235
1951 -1.049 -1.152 -1.178 -.511 -.374 .288 .679 .818 .726 .768 .726 .504
1952 .433 .138 .071 .224 -.307 -.756 -.305 -.374 .31 .306 -.328 -.098
1953 .044 .401 .277 .687 .756 .191 .382 .209 .483 .124 .099 .351
1954 -.036 -.027 .154 -.616 -1.465 -1.558 -1.355 -1.456 -1.159 -1.32 -1.113 -1.088
1955 -.74 -.669 -1.117 -1.621 -1.653 -2.247 -1.976 -2.05 -1.829 -1.725 -1.813 -1.846
1956 -1.408 -1.275 -1.371 -1.216 -1.304 -1.523 -1.244 -1.118 -1.35 -1.461 -1.014 -.993
1957 -.915 -.348 .108 .383 .813 .73 .926 1.132 1.117 1.114 1.167 1.268
1958 1.473 1.454 1.313 .991 .673 .812 .7 .421 .171 .237 .501 .691
1959 .553 .81 .502 .202 -.025 -.062 -.112 .111 .092 -.038 -.151 -.247
1960 -.287 -.253 -.082 .007 -.322 -.287 -.318 -.25 -.47 -.332 -.308 -.39
1961 -.15 -.235 -.073 .017 -.302 -.185 -.208 -.3 -.3 -.51 -.416 -.60

If we look again at the web page
http://www.esrl.noaa.gov/psd/enso/mei/table.html, we might notice that
the end of the useful data is delimited by two newlines and the string
(1), i.e., as a string \n\n(1). So we should be able to use
find() again to get the location of the end of the data
(i.e. stop, in the sense of a slice).

Exercise 1.2.6

	use this observation to form a string called data_table,
containing all of the useful data (i.e. txt[start:stop]).

	print the string data_table.

do exercise here
ANSWER

start = txt.find('YEAR')
end = txt.find('\n\n(1)')

print('start of useful data at index {}\n---------------------------------'.format(start))
data_table = txt[start:end]

print(data_table)

start of useful data at index 688

YEAR DECJAN JANFEB FEBMAR MARAPR APRMAY MAYJUN JUNJUL JULAUG AUGSEP SEPOCT OCTNOV NOVDEC
1950 -1.03 -1.133 -1.283 -1.071 -1.434 -1.412 -1.269 -1.042 -.631 -.406 -1.138 -1.235
1951 -1.049 -1.152 -1.178 -.511 -.374 .288 .679 .818 .726 .768 .726 .504
1952 .433 .138 .071 .224 -.307 -.756 -.305 -.374 .31 .306 -.328 -.098
1953 .044 .401 .277 .687 .756 .191 .382 .209 .483 .124 .099 .351
1954 -.036 -.027 .154 -.616 -1.465 -1.558 -1.355 -1.456 -1.159 -1.32 -1.113 -1.088
1955 -.74 -.669 -1.117 -1.621 -1.653 -2.247 -1.976 -2.05 -1.829 -1.725 -1.813 -1.846
1956 -1.408 -1.275 -1.371 -1.216 -1.304 -1.523 -1.244 -1.118 -1.35 -1.461 -1.014 -.993
1957 -.915 -.348 .108 .383 .813 .73 .926 1.132 1.117 1.114 1.167 1.268
1958 1.473 1.454 1.313 .991 .673 .812 .7 .421 .171 .237 .501 .691
1959 .553 .81 .502 .202 -.025 -.062 -.112 .111 .092 -.038 -.151 -.247
1960 -.287 -.253 -.082 .007 -.322 -.287 -.318 -.25 -.47 -.332 -.308 -.39
1961 -.15 -.235 -.073 .017 -.302 -.185 -.208 -.3 -.3 -.51 -.416 -.608
1962 -1.065 -.963 -.692 -1.04 -.89 -.87 -.683 -.538 -.56 -.642 -.598 -.482
1963 -.718 -.837 -.675 -.761 -.473 -.144 .404 .59 .734 .848 .866 .765
1964 .878 .481 -.256 -.545 -1.234 -1.15 -1.384 -1.486 -1.309 -1.196 -1.211 -.907
1965 -.536 -.329 -.259 .086 .464 .867 1.367 1.425 1.379 1.25 1.378 1.27
1966 1.307 1.186 .689 .515 -.178 -.193 -.116 .152 -.094 -.018 .022 -.181
1967 -.462 -.898 -1.05 -1.03 -.448 -.236 -.492 -.391 -.627 -.655 -.407 -.357
1968 -.602 -.727 -.635 -.944 -1.093 -.812 -.503 -.104 .213 .46 .607 .367
1969 .67 .849 .458 .622 .674 .801 .49 .212 .162 .537 .683 .417
1970 .38 .432 .228 .014 -.099 -.636 -1.055 -1.007 -1.251 -1.068 -1.063 -1.203
1971 -1.204 -1.507 -1.79 -1.839 -1.429 -1.42 -1.207 -1.213 -1.467 -1.399 -1.301 -.969
1972 -.575 -.398 -.256 -.166 .423 .966 1.826 1.8 1.522 1.667 1.74 1.787
1973 1.723 1.515 .87 .491 -.099 -.758 -1.056 -1.334 -1.734 -1.65 -1.482 -1.826
1974 -1.912 -1.768 -1.743 -1.62 -1.048 -.694 -.75 -.664 -.628 -1.031 -1.23 -.886
1975 -.522 -.576 -.85 -.927 -.838 -1.148 -1.497 -1.712 -1.876 -1.968 -1.748 -1.732
1976 -1.587 -1.366 -1.213 -1.157 -.483 .276 .633 .654 1.018 .978 .511 .565
1977 .529 .29 .145 .552 .31 .414 .888 .684 .783 1.016 .99 .877
1978 .777 .912 .935 .199 -.378 -.605 -.42 -.199 -.391 .003 .203 .406
1979 .608 .379 .002 .301 .374 .429 .396 .615 .759 .694 .759 1.004
1980 .677 .601 .684 .912 .958 .911 .769 .329 .263 .223 .27 .111
1981 -.25 -.14 .455 .669 .189 -.024 -.026 -.09 .174 .132 -.021 -.126
1982 -.258 -.125 .1 .008 .443 .93 1.612 1.778 1.783 2.061 2.441 2.425
1983 2.677 2.931 3.008 2.812 2.498 2.235 1.793 1.159 .459 .056 -.115 -.17
1984 -.314 -.509 .151 .39 .18 -.049 -.054 -.155 -.12 .026 -.332 -.585
1985 -.546 -.576 -.696 -.468 -.706 -.166 -.126 -.365 -.535 -.119 -.042 -.279
1986 -.293 -.183 .028 -.107 .353 .279 .401 .765 1.077 1.002 .89 1.202
1987 1.249 1.218 1.716 1.855 2.107 1.958 1.878 1.973 1.851 1.671 1.286 1.293
1988 1.115 .716 .495 .389 .193 -.582 -1.109 -1.295 -1.526 -1.313 -1.447 -1.311
1989 -1.103 -1.241 -1.035 -.76 -.393 -.242 -.43 -.494 -.315 -.319 -.058 .131
1990 .243 .573 .951 .46 .652 .511 .147 .127 .366 .303 .4 .362
1991 .319 .323 .399 .449 .741 1.051 1.044 1.008 .739 1.031 1.202 1.34
1992 1.747 1.886 1.985 2.247 2.085 1.735 1.045 .559 .488 .663 .595 .664
1993 .692 .99 .987 1.408 1.993 1.616 1.204 1.026 .966 1.09 .848 .595
1994 .352 .193 .159 .465 .58 .803 .904 .762 .893 1.437 1.312 1.251
1995 1.219 .959 .845 .453 .57 .507 .234 -.147 -.445 -.461 -.463 -.537
1996 -.597 -.566 -.236 -.391 -.041 .087 -.173 -.374 -.457 -.338 -.134 -.325
1997 -.48 -.605 -.248 .527 1.132 2.275 2.825 3.002 2.99 2.423 2.551 2.344
1998 2.455 2.777 2.751 2.658 2.206 1.336 .392 -.336 -.636 -.789 -1.069 -.908
1999 -1.039 -1.123 -.95 -.88 -.596 -.339 -.478 -.739 -.967 -.954 -1.031 -1.142
2000 -1.122 -1.189 -1.09 -.397 .251 .001 -.159 -.145 -.238 -.367 -.701 -.55
2001 -.496 -.649 -.548 -.05 .282 .052 .297 .332 -.174 -.255 -.138 .033
2002 .017 -.16 -.118 .401 .886 .932 .712 1.002 .881 1.02 1.101 1.156
2003 1.214 .944 .83 .413 .214 .107 .177 .309 .46 .534 .584 .362
2004 .332 .37 -.036 .358 .558 .315 .571 .617 .558 .524 .818 .684
2005 .325 .816 1.057 .626 .885 .589 .519 .343 .296 -.152 -.374 -.55
2006 -.428 -.414 -.521 -.571 .045 .526 .716 .748 .8 .976 1.297 .965
2007 .985 .537 .125 .026 .348 -.155 -.248 -.442 -1.197 -1.204 -1.149 -1.178
2008 -1.006 -1.371 -1.552 -.858 -.345 .142 .088 -.269 -.58 -.681 -.584 -.646
2009 -.714 -.69 -.705 -.106 .326 .751 1.06 1.05 .707 .924 1.134 1.059
2010 1.066 1.526 1.462 .978 .658 -.228 -1.103 -1.671 -1.879 -1.888 -1.472 -1.558
2011 -1.719 -1.544 -1.554 -1.387 -.199 -.003 -.193 -.517 -.778 -.917 -.933 -.945
2012 -.98 -.675 -.382 .11 .757 .842 1.126 .607 .316 .097 .141 .111
2013 .103 -.068 -.026 .09 .205 -.094 -.314 -.481 -.155 .148 -.042 -.234
2014 -.27 -.259 .018 .295 1.001 1.046 .915 .937 .557 .45 .773 .566
2015 .417 .464 .614 .916 1.583 2.097 1.981 2.334 2.479 2.256 2.3 2.12
2016 2.216 2.17 1.963 2.094 1.752 1.053 .352 .167 -.118 -.363 -.197 -.11
2017 -.052 -.043 -.08 .744 1.445 1.039 .456 .009 -.478 -.551 -.277 -.576
2018 -.623 -.731 -.502 -.432 .465 .469 .076 .132 .509

This exercise is a very good example of web
scraping [https://en.wikipedia.org/wiki/Web_scraping]. Web scraping
is often rather messy (you have to work out some ‘key’ to reliably
delimit the information you want) but can be extreemely valuable for
accessing datasets that are not cleanly presented. We have only gonbe
part of the way to extracting a useful dataset here, because the dataset
we are interested in (the ENSO data) are still represented as a string,
whereas we really want them to be a set of floating point numbers. We
will deal with this later.

1.2.5 split and splitlines

The first ‘line’ of
`should contain the 'header' information, i.e. the title of the data columns (YEAR,DECJANetc.). We want to separate the header from the numbers in the data table, so we want to 'split' the string calleddata_table`
into a header string and data string.

One approach to this would be split the string into ‘lines’ of text
(rather than one block). Effectively that means splitting into multiple
strings whenever we hit a \n character. Rather than do that
explicitly, we use the splitlines() method:

import requests
url = "http://www.esrl.noaa.gov/psd/enso/mei/table.html"
txt = requests.get(url).text

copy the useful data
start = txt.find('YEAR')
stop = txt.find('\n\n(1)')
data_table = txt[start:stop]

split into a list of strings
data_lines = data_table.splitlines()

tell me something useful
print(type(data_lines),len(data_lines))

loop over some examples
for i in 0,1,len(data_lines)-1:
 print('line {} {}\n\t{}'.format(i,type(data_lines[i]),data_lines[i]))

<class 'list'> 70
line 0 <class 'str'>
 YEAR DECJAN JANFEB FEBMAR MARAPR APRMAY MAYJUN JUNJUL JULAUG AUGSEP SEPOCT OCTNOV NOVDEC
line 1 <class 'str'>
 1950 -1.03 -1.133 -1.283 -1.071 -1.434 -1.412 -1.269 -1.042 -.631 -.406 -1.138 -1.235
line 69 <class 'str'>
 2018 -.623 -.731 -.502 -.432 .465 .469 .076 .132 .509

This splits each ‘line’ of text into an entry in a list, so that the
header data is now given in the first entry (data_lines[0]) and the
lines containinmg data, after that.

From the print out above, we notice that the final ‘data line’ (index
-1) is shorter than (has fewer entries than) the other lines. This
is because we are only part way through this year!.

In ‘real’ datasets, we quite often have ‘messy’ lines of data such as
this (or data missing for other reasons). How you want to deal with the
‘messy bits’ depends on the sort of analysis you want to do.

One option (the simplest) would be to simply remove the last line
(ignore this year’s data):

header = data_lines[0]

select the data block as being from entry 1 to -1
so, **not including the last row**
data = data_lines[1:-1]

print('header:',header)

for i in 0,1,len(data)-1:
 print('line {} {}\n\t{}'.format(i,type(data[i]),data[i]))

header: YEAR DECJAN JANFEB FEBMAR MARAPR APRMAY MAYJUN JUNJUL JULAUG AUGSEP SEPOCT OCTNOV NOVDEC
line 0 <class 'str'>
 1950 -1.03 -1.133 -1.283 -1.071 -1.434 -1.412 -1.269 -1.042 -.631 -.406 -1.138 -1.235
line 1 <class 'str'>
 1951 -1.049 -1.152 -1.178 -.511 -.374 .288 .679 .818 .726 .768 .726 .504
line 67 <class 'str'>
 2017 -.052 -.043 -.08 .744 1.445 1.039 .456 .009 -.478 -.551 -.277 -.576

Exercise 1.2.7

	copy the code from above and explore the response using line indices
-1 and -2.

do exercise here
ANSWER

header = data_lines[0]

select the data block as being from entry 1 to -1
so, **not including the last row**
data = data_lines[1:-1]

print('header:',header)

THE LAST TWO LINES
for i in -1,-2:
 print('line {} {}\n\t{}'.format(i,type(data[i]),data[i]))

header: YEAR DECJAN JANFEB FEBMAR MARAPR APRMAY MAYJUN JUNJUL JULAUG AUGSEP SEPOCT OCTNOV NOVDEC
line -1 <class 'str'>
 2017 -.052 -.043 -.08 .744 1.445 1.039 .456 .009 -.478 -.551 -.277 -.576
line -2 <class 'str'>
 2016 2.216 2.17 1.963 2.094 1.752 1.053 .352 .167 -.118 -.363 -.197 -.11

If we want to manipulate or plot the information contained in this (the
numbers), we need to convert each of the string representations to a
floating point number, e.g. the number -1.03 rather than the string
'-1.03'.

Each entry in the list data is a string, as we saw above.

We can split an individual string (such as data[0] into a list of
strings, using the string method split(). By default, this splits on
‘white space’ (i.e. spaces or tab characters), so, e.g.:

line = data[0].split()
print(data[0])
print(line,len(line))

1950 -1.03 -1.133 -1.283 -1.071 -1.434 -1.412 -1.269 -1.042 -.631 -.406 -1.138 -1.235
['1950', '-1.03', '-1.133', '-1.283', '-1.071', '-1.434', '-1.412', '-1.269', '-1.042', '-.631', '-.406', '-1.138', '-1.235'] 13

So, we have split the long string into 13 strings in a list.

We want to generate a new list with 13 corresponding floating point
values:

split the line on whitespace
line = data[0].split()

make a new list of the same length
by copying the variable line
float_data = line.copy()

for index,line_data in enumerate(line):
 # insert the cast float into the list
 # in the right order (use index)
 float_data[index] = float(line_data)

this is the string list
print(line)

this is the float list
print(float_data)

['1950', '-1.03', '-1.133', '-1.283', '-1.071', '-1.434', '-1.412', '-1.269', '-1.042', '-.631', '-.406', '-1.138', '-1.235']
[1950.0, -1.03, -1.133, -1.283, -1.071, -1.434, -1.412, -1.269, -1.042, -0.631, -0.406, -1.138, -1.235]

Exercise 1.2.8

	set a variable to be the string
"2, 3, 5, 7, 11, 13, 17, 19, 23, 29"

	use the approach above to generate a list of integers of the
first 10 prime numbers.

	print the list with syntax of the pattern of ‘prime number 3 is 7’

Make sure you convert each prime number to an integer, rather than
leaving it as a string!

Hint: We can still use the method split() to do split the string
into a list of strings, but this time the
separator [https://python-reference.readthedocs.io/en/latest/docs/str/split.html]
is a comma, rather than whitespace.

do exercise here
ANSWER

'''
We recognise these numbers as the first 10 prime numbers!!
'''
pstring = "2, 3, 5, 7, 11, 13, 17, 19, 23, 29"

d = [int(p) for p in pstring.split(',')]
print(d)

or

d = []
for p in pstring.split(','):
 d.append(int(p))
print(d)

or, perhaps the neatest, when we know some numpy (later!)
import numpy as np

d = np.array(pstring.split(',')).astype(int)
print(list(d))

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

Normally, we wouldn’t go to the trouble of first copying the list.

Instead, where the contents of the loop are simple (e.g. a single
statement) we would use a different way of using a for loop, called
an implicit loop.

In this case:

for item in group:
 doit(group)

becomes:

[doit(group) for item in group]

with the additional feature that everything returned by doit(group)
for each item of group is put in a list.

split the line on whitespace

implicit for loop
float_data = [float(line_data) for line_data in data[0].split()]

this is the string list
print(line)
this is the float list
print(float_data)

['1950', '-1.03', '-1.133', '-1.283', '-1.071', '-1.434', '-1.412', '-1.269', '-1.042', '-.631', '-.406', '-1.138', '-1.235']
[1950.0, -1.03, -1.133, -1.283, -1.071, -1.434, -1.412, -1.269, -1.042, -0.631, -0.406, -1.138, -1.235]

The statement:

float_data = [float(line_data) for line_data in line]

is much more Pythonic [https://docs.python-guide.org/writing/style/]
than the code above. It is simple, elegant and neat.

We can nest for statements, i.e. put one for loop inside another. This
allows us to treat data of multiple dimensions.

In the examples above, we converted only the data in data[0] to a
list of floating point numbers. If we wanted to process all lines of
data, we would have to loop over them as well, in an ‘outer’ loop.

use a step of 10 for illustration purposes
to save space when printing

step = 10

for index,line in enumerate(data_table.splitlines()[1:-1:step]):
 # convert each line to list of floats
 float_data = [float(line_data) for line_data in line.split()]
 print('line {} is {}'.format(index*step,float_data))

line 0 is [1950.0, -1.03, -1.133, -1.283, -1.071, -1.434, -1.412, -1.269, -1.042, -0.631, -0.406, -1.138, -1.235]
line 10 is [1960.0, -0.287, -0.253, -0.082, 0.007, -0.322, -0.287, -0.318, -0.25, -0.47, -0.332, -0.308, -0.39]
line 20 is [1970.0, 0.38, 0.432, 0.228, 0.014, -0.099, -0.636, -1.055, -1.007, -1.251, -1.068, -1.063, -1.203]
line 30 is [1980.0, 0.677, 0.601, 0.684, 0.912, 0.958, 0.911, 0.769, 0.329, 0.263, 0.223, 0.27, 0.111]
line 40 is [1990.0, 0.243, 0.573, 0.951, 0.46, 0.652, 0.511, 0.147, 0.127, 0.366, 0.303, 0.4, 0.362]
line 50 is [2000.0, -1.122, -1.189, -1.09, -0.397, 0.251, 0.001, -0.159, -0.145, -0.238, -0.367, -0.701, -0.55]
line 60 is [2010.0, 1.066, 1.526, 1.462, 0.978, 0.658, -0.228, -1.103, -1.671, -1.879, -1.888, -1.472, -1.558]

Note that whilst we have calculated float_data in the loop for each
line, it gets over-written with each new line as things stand.

We can do the same thing, and generate a list of the responses more
neatly, using an implicit loop inside another implicit loop:

all_float_data = [[float(line_data) for line_data in line.split()] for line in data_table.splitlines()[1:-1]]

The variable all_float_data is now a sort of ‘two dimensional’ list,
within which we can refer to individual items as
e.g. all_float_data[10][3] for row 10, column 3.

Let’s use this idea to print out column 0 of each row (containing the
YEAR data). We will use the method range(nrows) that
(implicitly) generates a list [0,1,2,3, ..., nrows-1].

Notice the use of end=' ' in the print statement. This replaces
the usual newline by whetever is specified by the keyword end. Note
also that we have used {:.0f} to specify the format term. This
indicates that the term is to be printed as a floating point number (the
f) with zero numbers after the decimal point (.0)

nrows = len(all_float_data)
i = 0

print('column {} of the data gives:\n'.format(i))
for row in range(nrows):
 print('{:.0f}'.format(all_float_data[row][i]),end=' ')

column 0 of the data gives:

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Exercise 1.2.9

	use an implicit loop to create a list of ENSO values in a variable
enso for the years 1950 up to last year for the period
DECJAN.

	produce a plot of ENSO for DECJAN as a function of year (see
below on how to do that).

Hint: check which column in the header is DECJAN. To start you off
on this, we give you the implicit loop code for extracting the column
containing the YEAR data (column 0). We also give you the code to
achieve the plotting.

do exercise here
ANSWER

generate a list called years of column 0 data
years = [all_float_data[row][0] for row in range(nrows)]

very similar to aboive, but using column 1
enso = [all_float_data[row][1] for row in range(nrows)]

for plotting
import pylab as plt
%matplotlib inline

#
plt.figure(0,figsize=(12,3))
plt.plot(years,enso)
plt.xlabel('year')
plt.ylabel('ENSO')

Text(0, 0.5, 'ENSO')

[image: _images/Chapter1_Python_introduction_answers_155_1.png]

1.2.6 Summary

In section 1.2 you have been introduced to text representation in
Python, as strings (type str), and shown that this sort of variable
can be thought of an an ‘array’, and that it has a length attribute that
can be accessed with len().

Other useful string manipulation methods you were introduced to are:
replace(), find(), split() and splitlines(), though of
course there are many
more [https://docs.python.org/3/library/string.html].

In an ‘array’, we can use an index to refer to a particular item
(e.g. index 0 for the first item, 1 for the second, -1 for the last). We
can use this idea to manipulate strings.

In a more general sense, we can take a ‘slice’ of an array, with the
syntax [start:stop:skip] giving access to a regularly spaced part of
an array. We can use this, for example, to print out every 10th value
(skip=10).

You were also introduced to the idea of looping control structures,
using a for ... in ...: statement, and the equivalent implicit form.
This introduced the idea of indented code
blocks [https://wiki.python.org/moin/Why%20separate%20sections%20by%20indentation%20instead%20of%20by%20brackets%20or%20%27end%27]
and (related) nested structures (loops within loops).

In passing, you have also been shown how to pull html data from a URL
(scraping) using the
`requests <http://docs.python-requests.org/en/master/>`__ package,
and also how to produce a simple data plot, using
`pylab <https://matplotlib.org/index.html>`__.

1.3. Groups of things

Very often, we will want to group items together. There are several main
mechanisms for doing this in Python, known as:

	string e.g. hello

	tuple, e.g. (1, 2, 3)

	list, e.g. [1, 2, 3]

	numpy array e.g. np.array([1, 2, 3])

A slightly different form of group is a dictionary:

	dict, e.g. {1:'one', 2:'two', 3:'three'}

You will notice that each of the grouping structures tuple, list and
dict use a different form of bracket. The numpy array is fundamental to
much work that we will do later.

We have dealt with the idea of a string as an ordered collection in the
material above, so will deal with the others here.

We noted the concept of length (len()), that elements of the ordered
collection could be accessed via an index, and came across the concept
of a slice. All of these same ideas apply to the first set of groups
(string, tuple, list, numpy array) as they are all ordered collections.

A dictionary is not (by default) ordered, however, so indices have no
role. Instead, we use ‘keys’.

1.3.1 tuple

A tuple is a group of items separated by commas. In the case of a tuple,
the brackets are optional. You can have a group of differnt types in a
tuple (e.g. int, int, str, bool)

load into the tuple
t = (1, 2, 'three', False)

unload from the tuple
a,b,c,d = t

print(t)
print(a,b,c,d)

(1, 2, 'three', False)
1 2 three False

If there is only one element in a tuple, you must put a comma , at the
end, otherwise it is not interpreted as a tuple:

t = (1)
print (t,type(t))
t = (1,)
print (t,type(t))

1 <class 'int'>
(1,) <class 'tuple'>

You can have an empty tuple though:

t = ()
print (t,type(t))

() <class 'tuple'>

E1.3.1 Exercise

	create a tuple called t that contains the integers 1 to 5 inclusive

	print out the value of t

	use the tuple to set variables a1,a2,a3,a4,a5

do exercise here
ANSWER

t = (1,2,3,4,5)
print(t)
a1,a2,a3,a4,a5 = t
print(a1,a2,a3,a4,a5)

(1, 2, 3, 4, 5)
1 2 3 4 5

1.3.2 list

A list is similar to a tuple. One main difference is that you
can change individual elements in a list but not in a tuple. To convert
between a list and tuple, use the ‘casting’ methods list() and
tuple():

a tuple
t0 = (1,2,3)

cast to a list
l = list(t0)

cast to a tuple
t = tuple(l)

print('type of {} is {}'.format(t,type(t)))
print('type of {} is {}'.format(l,type(l)))

type of (1, 2, 3) is <class 'tuple'>
type of [1, 2, 3] is <class 'list'>

You can concatenate (join) lists or tuples with the + operator:

l0 = [1,2,3]
l1 = [4,5,6]

l = l0 + l1
print ('joint list:',l)

joint list: [1, 2, 3, 4, 5, 6]

E1.3.2 Exercise * copy the code from the cell above, but instead of
lists, use tuples * loop over each element in the tuple and print out
the data type and value of the element

Hint: use a for ... in ... construct.

do exercise here
ANSWER

l0 = (1,2,3)
l1 = (4,5,6)

l = l0 + l1
print ('joint tuple:',l)

for t in l:
 print(type(t),t)

joint tuple: (1, 2, 3, 4, 5, 6)
<class 'int'> 1
<class 'int'> 2
<class 'int'> 3
<class 'int'> 4
<class 'int'> 5
<class 'int'> 6

A common method associated with lists or tuples is: * index()

Some useful methods that will operate on lists and tuples are: *
len() * sort() * min(),max()

l0 = (2,8,4,32,16)

print the index of the item integer 4
in the tuple / list

item_number = 4

Note the dot . here
as index is a method of the class list
ind = l0.index(item_number)

notice that this is different
as len() is not a list method, but
does operatate on lists/tuples
Note: do not use len as a variable name!
llen = len(l0)

note the use of integers in the braces e.g. {0}
rather than empty braces as before. This allows us to
refer to particular items in the format argument list
print('the index of {0} in {1} is {2}'.format(item_number,l0,ind))
print('the length of the {0} {1} is {2}'.format(type(l0),l0,llen))

the index of 4 in (2, 8, 4, 32, 16) is 2
the length of the <class 'tuple'> (2, 8, 4, 32, 16) is 5

E1.3.3 Exercise

	copy the code to the block below, and test that this works with
lists, as well as tuples

	find the index of the integer 16 in the tuple/list

	what is the index of the first item?

	what is the length of the tuple/list?

	what is the index of the last item?

do exercise here
ANSWER

change this to a list
l0 = [2,8,4,32,16]

print the index of the item integer 4
in the tuple / list

item_number = 4

Note the dot . here
as index is a method of the class list
ind = l0.index(item_number)

notice that this is different
as len() is not a list method, but
does operatate on lists/tuples
Note: do not use len as a variable name!
llen = len(l0)

note the use of integers in the braces e.g. {0}
rather than empty braces as before. This allows us to
refer to particular items in the format argument list
print('the index of {0} in {1} is {2}'.format(item_number,l0,ind))
print('the length of the {0} {1} is {2}'.format(type(l0),l0,llen))

'''
find the index of the integer 16 in the tuple/list
what is the index of the first item?
what is the length of the tuple/list?
what is the index of the last item?
'''

print('16 is item number',l0.index(16))
print('the first item has index 0:',l0.index(2))
print('list length',len(l0))
print('the last item has index 4 (len - 1):',l0.index(16))

the index of 4 in [2, 8, 4, 32, 16] is 2
the length of the <class 'list'> [2, 8, 4, 32, 16] is 5
16 is item number 4
the first item has index 0: 0
list length 5
the last item has index 4 (len - 1): 4

A list has a much richer set of methods than a tuple. This is because we
can add or remove list items (but not tuple).

	insert(i,j) : insert j beore item i in the list

	append(j) : append j to the end of the list

	sort() : sort the list

This shows that tuples and lists are ‘ordered’ (i.e. they maintain the
order they are loaded in) so that indiviual elements may be accessed
through an ‘index’. The index values start at 0 as we saw above. The
index of the last element in a list/tuple is the length of the group,
minus 1. This can also be referred to an index -1.

l0 = [2,8,4,32,16]

insert 64 at the begining (before item 0)
Note that this inserts 'in place'
i.e. the list is changed by calling this
l0.insert(0,64)

insert 128 *before* the last item (item -1)
l0.insert(-1,128)

append 256 on the end
l0.append(256)

copy the list
and sort the copy
Note the use of the copy() method here
to create a copy
l1 = l0.copy()

Note that this sorts 'in place'
i.e. the list is changed by calling this
l1.sort()

print('the list {0} once sorted is {1}'.format(l0,l1))

the list [64, 2, 8, 4, 32, 128, 16, 256] once sorted is [2, 4, 8, 16, 32, 64, 128, 256]

E1.3.4 Exercise

	copy the above code and try out some different locations for
inserting values (e.g. what does index -2 mean?)

	what happens if you take off the .copy() statement in the line
l1 = l0.copy(), i.e. just use l1 = l0? Why is
this? [https://www.afternerd.com/blog/python-copy-list/]

do exercise here
ANSWER

l0 = [2,8,4,32,16]

insert 64 at index -2 (2 from end)
Note that this inserts 'in place'
i.e. the list is changed by calling this
l0.insert(-2,64)
print(l0)

copy the list
and sort the copy
Note the use of the copy() method here
to create a copy
l1 = l0.copy()

Note that this sorts 'in place'
i.e. the list is changed by calling this
l1.sort()

print('the list {0} once sorted is {1}'.format(l0,l1))

[2, 8, 4, 64, 32, 16]
the list [2, 8, 4, 64, 32, 16] once sorted is [2, 4, 8, 16, 32, 64]

do exercise here
ANSWER

l0 = [2,8,4,32,16]

insert 64 at index -2 (2 from end)
Note that this inserts 'in place'
i.e. the list is changed by calling this
l0.insert(-2,64)
print(l0)

copy the list
and sort the copy
Note the use of the copy() method here
to create a copy
l1 = l0

Note that this sorts 'in place'
i.e. the list is changed by calling this
l1.sort()

'''
Note that without the copy, we have altered l0
even though we did l1.sort()
'''

print('the list {0} once sorted is {1}'.format(l0,l1))

'''
For not in place sort, use sorted()
'''

l0 = [2,8,4,32,16]
print('the list {0} once sorted is {1}'.format(l0,sorted(l0)))

[2, 8, 4, 64, 32, 16]
the list [2, 4, 8, 16, 32, 64] once sorted is [2, 4, 8, 16, 32, 64]
the list [2, 8, 4, 32, 16] once sorted is [2, 4, 8, 16, 32]

1.3.3 np.array

An array is a group of objects of the same type. Because they are of the
same type, they can be stored efficiently in compter memory, and also
accessed efficiently.

Whilst there are different ways of forming arrays, the most common is to
use numpy arrays, using the package numpy. To use this, we must
first import the package into the current workspace. We do this with the
import method. Using the optional as statement allows us to use
a shorter (or more suitable) name for the package. We will generally
call numpy np, so we use:

import numpy as np

to import (‘load’) the numpy package.

Often, we will read data from a file/URL as we did above for the ENSO
dataset. In that case, we had to step through each item to convert from
string form to floating point number.

This sort of thing is much more simply done using methods associated
with numpy arrays.

A particularly useful numpy method is np.loadtxt(file) that loads an
ASCII table of data straight into a numpy array.

Whilst this is designed to load data from a file, we can use
io.StringIO() from the io package to make data that we already
have as a string seem to np.loadtxt as if it were a file. This is a
useful ‘trick’ for using methods that expect data in a file. The
unpack=True option makes sure the data array is compoised the way we
would expect it. The usecols option lets us select only those data
columns we wish to read (0 and 1 here).

An alternative to np.loadtxt() is np.genfromtxt(). This has some
additional features, such the invalid_raise flag. If this is set
False, the loading is made somewhat tolerant to data errors
(e.g. inconsistent number of columns). Further, we can explicitly set
what will indicate missing_values in the input and what we would
like to replace them with (filling_values) which can be useful for
tidying up datasets.

import requests
import numpy as np
import io

access dataset as above
url = "http://www.esrl.noaa.gov/psd/enso/mei/table.html"
txt = requests.get(url).text

copy the useful data
start_head = txt.find('YEAR')
start_data = txt.find('1950\t')
stop_data = txt.find('2018\t')

select a data column
data_column = 1

header = txt[start_head:start_data].split()
data = np.loadtxt(io.StringIO(txt[start_data:stop_data]),unpack=True,usecols=[0,data_column])

so data[0] is the year data
data[1] is the enso data for column data_column
print some attributes of the data array

print('array type',type(data))
print('data type',data.dtype)
print('number of dimensions',data.ndim)
print('data shape',data.shape)
print('data size',data.size)

for plotting
import pylab as plt
%matplotlib inline

#
plt.figure(0,figsize=(12,3))
plt.plot(data[0],data[1],label=header[data_column])
plt.xlabel('year')
plt.ylabel('ENSO')
plt.title('ENSO data from {0}'.format(url))
plt.legend(loc='best')

array type <class 'numpy.ndarray'>
data type float64
number of dimensions 2
data shape (2, 68)
data size 136

<matplotlib.legend.Legend at 0x11b8b2668>

[image: _images/Chapter1_Python_introduction_answers_182_2.png]
We saw in the example above that a numpy array
(<class 'numpy.ndarray'>) has a set of attributes that include
shape, ndim, dtype and size that we can use to query
information about the array. We will learn morre about processing data
with numpy arrays later in the course, but you should already see that
they are a useful construct for manipulating multi-dimensional datasets.

Exercise 1.3.4

	copy the code from the block above and modify it to plot the ENSO
data for the period FEBMAR. Check this by looking at the data in
the original
table [http://www.esrl.noaa.gov/psd/enso/mei/table.html].

	modify the code to produce a plot of all periods (so the graph
should have 12 lines, correctly labelled)

Hint: You will need to consider what, if anything to set of usecols
(what happends if you don’t set usecols?) and provide a looping
structure for the plotting.

do exercise here
#ANSWER

import requests
import numpy as np
import io

access dataset as above
url = "http://www.esrl.noaa.gov/psd/enso/mei/table.html"
txt = requests.get(url).text

copy the useful data
start_head = txt.find('YEAR')
start_data = txt.find('1950\t')
stop_data = txt.find('2018\t')

select a data column
'''
Use column 3 for FEBMAR

The code is written so that we only need
change this one variable
'''
data_column = 3

header = txt[start_head:start_data].split()
data = np.loadtxt(io.StringIO(txt[start_data:stop_data]),unpack=True,usecols=[0,data_column])

so data[0] is the year data
data[1] is the enso data for column data_column
print some attributes of the data array

print('array type',type(data))
print('data type',data.dtype)
print('number of dimensions',data.ndim)
print('data shape',data.shape)
print('data size',data.size)

for plotting
import pylab as plt
%matplotlib inline

#
plt.figure(0,figsize=(12,3))

plt.plot(data[0],data[1],label=header[data_column])
plt.xlabel('year')
plt.ylabel('ENSO')
plt.title('ENSO data from {0}'.format(url))
plt.legend(loc='best')

array type <class 'numpy.ndarray'>
data type float64
number of dimensions 2
data shape (2, 68)
data size 136

<matplotlib.legend.Legend at 0x11bcb0a20>

[image: _images/Chapter1_Python_introduction_answers_184_2.png]

1.3.4 dict

The collections we have used so far have all been ordered. This means
that we can refer to a particular element in the group by an index,
e.g. array[10].

A dictionary is not (by default) ordered. Instead of indices, we use
‘keys’ to refer to elements: each element has a key associated with it.
It can be very useful for data organisation (e.g. databases) to have a
key to refer to, rather than e.g. some arbitrary column number in a
gridded dataset.

A dictionary is defined as a group in braces (curley brackets). For each
elerment, we specify the key and then the value, separated by :.

a = {'one': 1, 'two': 2, 'three': 3}

we then refer to the keys and values in the dict as:

print ('a:\n\t',a)
print ('a.keys():\n\t',a.keys()) # the keys
print ('a.values():\n\t',a.values()) # returns the values
print ('a.items():\n\t',a.items()) # returns a list of tuples

a:
 {'one': 1, 'two': 2, 'three': 3}
a.keys():
 dict_keys(['one', 'two', 'three'])
a.values():
 dict_values([1, 2, 3])
a.items():
 dict_items([('one', 1), ('two', 2), ('three', 3)])

Because dictionaries are not ordered, we cannot guarantee the order they
will come out in a for loop, but we will often use such a loop to
iterate over the items in a dictionary.

for key,value in a.items():
 print(key,value)

one 1
two 2
three 3

We refer to specific items using the key e.g.:

print(a['one'])

1

You can add to a dictionary:

a.update({'four':4,'five':5})
print(a)

or for a single value
a['six'] = 6
print(a)

{'one': 1, 'two': 2, 'three': 3, 'four': 4, 'five': 5}
{'one': 1, 'two': 2, 'three': 3, 'four': 4, 'five': 5, 'six': 6}

Quite often, you find that you have the keys you want to use in a
dictionary as a list or array, and the values in another list.

In such a case, we can use the method zip(keys,values) to load into
the dictionary. For example:

values = [1,2,3,4]
keys = ['one','two','three','four']

a = dict(zip(keys,values))

print(a)

{'one': 1, 'two': 2, 'three': 3, 'four': 4}

We will use this idea to make a dictionary of our ENSO dataset, using
the items in the header for the keys. In this way, we obtain a more
elegant representation of the dataset, and can refer to items by names
(keys) instead of column numbers.

import requests
import numpy as np
import io

access dataset as above
url = "http://www.esrl.noaa.gov/psd/enso/mei/table.html"
txt = requests.get(url).text

copy the useful data
start_head = txt.find('YEAR')
start_data = txt.find('1950\t')
stop_data = txt.find('2018\t')

header = txt[start_head:start_data].split()
data = np.loadtxt(io.StringIO(txt[start_data:stop_data]),unpack=True)

use zip to load into a dictionary
data_dict = dict(zip(header, data))

key = 'MAYJUN'
plot data
plt.figure(0,figsize=(12,7))
plt.title('ENSO data from {0}'.format(url))
plt.plot(data_dict['YEAR'],data_dict[key],label=key)
plt.xlabel('year')
plt.ylabel('ENSO')
plt.legend(loc='best')

<matplotlib.legend.Legend at 0x11bdc31d0>

[image: _images/Chapter1_Python_introduction_answers_197_1.png]
Exercise 1.3.5

	copy the code above, and modify so that datasets for months
['MAYJUN','JUNJUL','JULAUG'] are plotted on the graph

Hint: use a for loop

do exercise here
ANSWER

import requests
import numpy as np
import io

access dataset as above
url = "http://www.esrl.noaa.gov/psd/enso/mei/table.html"
txt = requests.get(url).text

copy the useful data
start_head = txt.find('YEAR')
start_data = txt.find('1950\t')
stop_data = txt.find('2018\t')

header = txt[start_head:start_data].split()
data = np.loadtxt(io.StringIO(txt[start_data:stop_data]),unpack=True)

use zip to load into a dictionary
data_dict = dict(zip(header, data))

'''
Do the loop here
'''
for i,key in enumerate(['MAYJUN','JUNJUL','JULAUG']):
 # plot data
 '''
 Use enumeration i as figure number
 '''
 plt.figure(i,figsize=(12,7))
 plt.title('ENSO data from {0}'.format(url))
 plt.plot(data_dict['YEAR'],data_dict[key],label=key)
 plt.xlabel('year')
 plt.ylabel('ENSO')
 plt.legend(loc='best')

[image: _images/Chapter1_Python_introduction_answers_199_0.png]
[image: _images/Chapter1_Python_introduction_answers_199_1.png]
[image: _images/Chapter1_Python_introduction_answers_199_2.png]
We can also usefully use a dictionary with a printing format statement.
In that case, we refer directly to the key in ther format string. This
can make printing statements much easier to read. We don;’t directly
pass the dictionary to the fortmat staterment, but rather
**dict, where **dict means “treat the key-value pairs in the
dictionary as additional named arguments to this function call”.

So, in the example:

import requests
import numpy as np
import io

access dataset as above
url = "http://www.esrl.noaa.gov/psd/enso/mei/table.html"
txt = requests.get(url).text

copy the useful data
start_head = txt.find('YEAR')
start_data = txt.find('1950\t')
stop_data = txt.find('2018\t')

header = txt[start_head:start_data].split()
data = np.loadtxt(io.StringIO(txt[start_data:stop_data]),unpack=True)

use zip to load into a dictionary
data_dict = dict(zip(header, data))
print(data_dict.keys())

print the data for MAYJUN
print('data for MAYJUN: {MAYJUN}'.format(**data_dict))

dict_keys(['YEAR', 'DECJAN', 'JANFEB', 'FEBMAR', 'MARAPR', 'APRMAY', 'MAYJUN', 'JUNJUL', 'JULAUG', 'AUGSEP', 'SEPOCT', 'OCTNOV', 'NOVDEC'])
data for MAYJUN: [-1.412e+00 2.880e-01 -7.560e-01 1.910e-01 -1.558e+00 -2.247e+00
 -1.523e+00 7.300e-01 8.120e-01 -6.200e-02 -2.870e-01 -1.850e-01
 -8.700e-01 -1.440e-01 -1.150e+00 8.670e-01 -1.930e-01 -2.360e-01
 -8.120e-01 8.010e-01 -6.360e-01 -1.420e+00 9.660e-01 -7.580e-01
 -6.940e-01 -1.148e+00 2.760e-01 4.140e-01 -6.050e-01 4.290e-01
 9.110e-01 -2.400e-02 9.300e-01 2.235e+00 -4.900e-02 -1.660e-01
 2.790e-01 1.958e+00 -5.820e-01 -2.420e-01 5.110e-01 1.051e+00
 1.735e+00 1.616e+00 8.030e-01 5.070e-01 8.700e-02 2.275e+00
 1.336e+00 -3.390e-01 1.000e-03 5.200e-02 9.320e-01 1.070e-01
 3.150e-01 5.890e-01 5.260e-01 -1.550e-01 1.420e-01 7.510e-01
 -2.280e-01 -3.000e-03 8.420e-01 -9.400e-02 1.046e+00 2.097e+00
 1.053e+00 1.039e+00]

The line print('data for MAYJUN: {MAYJUN}'.format(**data_dict)) is
equivalent to writing:

print('data for {MAYJUN}'.format(YEAR=data_dict[YEAR],DECJAN=data_dict[DECJAN], ...))

In this way, we use the keys in the dictionary as keywords to pass to a
method.

Another useful example of such a use of a dictionary is in saving a
numpy dataset to file.

If the data are numpy arrays in a dictionary as above, we can store the
dataset using:

import requests
import numpy as np
import io

access dataset as above
url = "http://www.esrl.noaa.gov/psd/enso/mei/table.html"
txt = requests.get(url).text

copy the useful data
start_head = txt.find('YEAR')
start_data = txt.find('1950\t')
stop_data = txt.find('2018\t')

header = txt[start_head:start_data].split()
data = np.loadtxt(io.StringIO(txt[start_data:stop_data]),unpack=True)

use zip to load into a dictionary
data_dict = dict(zip(header, data))

filename = 'enso_mei.npz'

save the dataset
np.savez_compressed(filename,**data_dict)

What we load from the file is a dictionary-like object
<class 'numpy.lib.npyio.NpzFile'>.

If needed, we can cast this to a dictionary with dict(), but it is
generally more efficient to keep the original type.

load the dataset

filename = 'enso_mei.npz'

loaded_data = np.load(filename)

print(type(loaded_data))

test they are the same using np.array_equal
for k in loaded_data.keys():
 print('\t',k,np.array_equal(data_dict[k], loaded_data[k]))

<class 'numpy.lib.npyio.NpzFile'>
 YEAR True
 DECJAN True
 JANFEB True
 FEBMAR True
 MARAPR True
 APRMAY True
 MAYJUN True
 JUNJUL True
 JULAUG True
 AUGSEP True
 SEPOCT True
 OCTNOV True
 NOVDEC True

Exercise 1.3.6

	Using what you have learned above, access the Met Office data file
`https://www.metoffice.gov.uk/hadobs/hadukp/data/monthly/HadSEEP_monthly_qc.txt <https://www.metoffice.gov.uk/hadobs/hadukp/data/monthly/HadSEEP_monthly_qc.txt>`__
and create a ‘data package’ in a numpy.npz file that has keys
of YEAR and each month in the year, with associated datasets of
Monthly Southeast England precipitation (mm).

	confirm that tha data in your npz file is the same as in your
original dictionary

	produce a plot of October rainfall using these data for the years
1900 onwards

do exercise here
ANSWER

'''
Exploration of dataset shows:

Monthly Southeast England precipitation (mm). Daily automated values used after 1996.
Wigley & Jones (J.Climatol.,1987), Gregory et al. (Int.J.Clim.,1991)
Jones & Conway (Int.J.Climatol.,1997), Alexander & Jones (ASL,2001). Values may change after QC.
YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ANN
 1873 87.1 50.4 52.9 19.9 41.1 63.6 53.2 56.4 62.0 86.0 59.4 15.7 647.7
 1874 46.8 44.9 15.8 48.4 24.1 49.9 28.3 43.6 79.4 96.1 63.9 52.3 593.5

so we have 3 lines of header
then the column titles
then the data

we can define these as before using

txt.find('YEAR')
start_data = txt.find('1873')
stop_data = None

Other than the filenames then, the code
is identical
'''

import requests
import numpy as np
import io

access dataset as above
url = "https://www.metoffice.gov.uk/hadobs/hadukp/data/monthly/HadSEEP_monthly_qc.txt"
txt = requests.get(url).text

copy the useful data
start_head = txt.find('YEAR')
start_data = txt.find('1873')
stop_data = None

header = txt[start_head:start_data].split()
data = np.loadtxt(io.StringIO(txt[start_data:stop_data]),unpack=True)

use zip to load into a dictionary
data_dict = dict(zip(header, data))

filename = 'HadSEEP_monthly_qc.npz'

save the dataset
np.savez_compressed(filename,**data_dict)

ANSWER

loaded_data = np.load(filename)

print(type(loaded_data))

test they are the same using np.array_equal
for k in loaded_data.keys():
 print('\t',k,np.array_equal(data_dict[k], loaded_data[k]))

<class 'numpy.lib.npyio.NpzFile'>
 YEAR True
 JAN True
 FEB True
 MAR True
 APR True
 MAY True
 JUN True
 JUL True
 AUG True
 SEP True
 OCT True
 NOV True
 DEC True
 ANN True

ANSWER

'''
October rainfall, 1900+
'''

year = loaded_data['YEAR']

mask where years match
mask = year >= 1900

oct = loaded_data['OCT']

set invalid data points to nan
oct[oct<0] = np.nan

plt.plot(year[mask],oct[mask])

[<matplotlib.lines.Line2D at 0x11c76a9e8>]

[image: _images/Chapter1_Python_introduction_answers_210_1.png]

1.3.5 Summary

In this section, we have extended the types of data we might come across
to include groups . We dealt with ordered groups of various types
(tuple, list), and introduced the numpy package for numpy arrays
(np.array). We saw dictionaries as collections with which we refer
to individual items with a key.

We learned in the previous section how to pull apart a dataset presented
as a string using loops and various using methods and to construct a
useful dataset ‘by hand’ in a list or similar structure. It is useful,
when learning to program, to know how to do this.

Here, we saw that packages such as numpy provide higher level routines
that make reading data easier, and we would generally use these in
practice. We saw how we can use zip() to help load a dataset from
arrays into a dictionary, and also the value of using a dictionary
representation when saving numpy files.

1. Introduction to Python

Table of Contents

	
	Introduction to Python

	1.1 Getting Started

	1.1.1 Comments and print function

	1.1.2 Variables, Values and Data types

	1.1.3 Arithmetic

	1.1.4 Assignment Operators

	1.1.5 Logical Operators

	1.1.6 Comparison Operators and if

	1.1.7 Summary

	1.2 Text and looping

	1.2.1 len

	1.2.2 for … in … and enumerate

	1.2.3 slice

	1.2.4 replace

	1.2.5 find

	1.2.5 split and splitlines

	1.2.6 Summary

	1.3. Groups of things

	1.3.1 tuple

	1.3.2 list

	1.3.3 np.array

	1.3.4 dict

	1.3.5 Summary

Python is a popular general purpose, free language. As opposed to other
systems that are focused towards a particular task (e.g. R for
statistics), Python has a strong following on the web, on systems
operations and in data analysis. For scientific computing, a large
number of useful add-ons (“libraries”) are available to help you analyse
and process data. This is an invaluable resource.

In addition to being free, Python is also very portable, and easy to
pick up.

The aim of this Chapter is to introduce you to some of the fundamental
concepts in Python. Mainly, this is based around fundamental data types
in Python (int, float, str, bool etc.) and ways to group
them (tuple, list, array, string and dict).

Although some of the examples we use are very simple to explain a
concept, the more developed ones should be directly applicable to the
sort of programming you are likely to need to do.

Further, a more advanced section of the chapter is available, that goes
into some more detail and complkications. This too has a set of
exercises with worked examples.

In this session, you will be introduced to some of the basic concepts in
Python.

The session should last 4 hours (one week).

1.1 Getting Started

1.1.1 Comments and print function

Comments are statements ignored by the language interpreter.

Any text after a # in a code block is a comment.

You can ‘run’ the code in a code block using the ‘run’ widget (above) or
hitting the keys (‘typing’) and at the same time.

E1.1.1 Exercise

	Try running the code block below

	Explain what happened (‘what the computer did’)

Hello world

You can also use text blocks (contained in quotes) to contain comments,
but note that if it is the last statement in the code, the text block
may be printed out to the terminal.

single line text
'hello world is not printed'

multi-line text
'''
Hello
world
is printed
'''

'nHello nworldnis printedn'

E1.1.2 Exercise

	Copy the text from above in the window below

	Then put a new text block at the end and note down what happens

	What does the \n mean/do?

do the exercise here

To print some statement (by default, to the screen you are using), use
the print method:

print('hello world')

hello world

print('hello','world')

hello world

In Python 3.X, print is a function with the argument(s) (here, the
string you want printed) enclosed in the function’s (round) brackets.

E1.1.3 Exercise

	Copy the print statement from above code block.

	Change the words in the quotes and print them out.

	Add some comments to the code block explaining what you have done and
seen.

do the exercise here

1.1.2 Variables, Values and Data types

The idea of variables is fundamental to any programming. You can
think of this as the name of something, so it is a way of allowing
us to refer to some object in the language.

What the variable is set to is called its value.

So let’s start with a variable we will call (declare to be) x.

We will give a value of the string 'one' to this variable:

x = 'one'

print(x)

one

E1.1.4 Exercise

	set the a variable called x to some different string (e.g. ‘hello
world’)

	print the value of the variable x

	Try this again, putting some ‘newlines’ (\n) in the string

do the exercise here

Now we set x to the value 1

x = 1

print(x,'is type',type(x))

1 is type <class 'int'>

In a computing language, the sort of thing the variable can be set to
is called its data type.

In python, we can access this with the method type() as in the
example above.

In the example above, the datatype is an integer number
(e.g. 1, 2, 3, 4).

In ‘natural language’, we might read the example above as ‘x is one’.

E1.1.5 Exercise

	set the a variable called x to the integer 5

	print the value and type of the variable x

	change the data type used for x to something else (e.g. a string)

do the exercise here

Setting x = 1 is different to:

x = 'one'

because here we have set value of the variable x to a string
(i.e. some text).

A string is enclosed in quotes, e.g. "one" or 'one', or even
"'one'" or '"one"'.

print ("one")
print ('one')
print ("'one'")
print ('"one"')

one
one
'one'
"one"

E1.1.6 Exercise

	create a variable name containing your name, as a string.

	using this variable and the print function, print out a statement
such as my name is Fred (if your name were Fred)

do the exercise here

Setting x = 1 or x = 'one' is different to:

x = 1.0

because here we have set value of the variable x to a floating
point number (these are treated and stored differently to integers in
computing).

This in turn is different to:

x = True

where True is a logical or boolean datatype (something is
True or False).

E1.1.7 Exercise

	in the code block below, create a variable called my_var and set
it to some value (your choice of value, but be clear about the data
type you intend)

	print the value of the variable to the screen, along with the data
type.

do the exercise here

We have so far seen four datatypes:

	integer (int): 32 bits long on most machines

	(double-precision) floating point (float): (64 bits long)

	Boolean (bool)

	string (str)

but we will come across more (and even create our own!) as we go through
the course.

In each of these cases above, we have used the variable x to contain
these different data types.

As we saw above, if you want to know what the data type of a variable
is, you can use the method type()

print (type(1));
print (type(1.0));
print (type('one'));
print (type(True));

<class 'int'>
<class 'float'>
<class 'str'>
<class 'bool'>

You can explicitly convert between data types, e.g.:

print ('int(1.1) = ',int(1.1))
print ('float(1) = ',float(1))
print ('str(1) = ',str(1))
print ('bool(1) = ',bool(1))

int(1.1) = 1
float(1) = 1.0
str(1) = 1
bool(1) = True

but only when it makes sense:

print ("converting the string '1' to an integer makes sense:",int('1'))

converting the string '1' to an integer makes sense: 1

print ("converting the string 'one' to an integer doesn't:",int('one'))

ValueError Traceback (most recent call last)

<ipython-input-74-11bdc0c0e878> in <module>()
----> 1 print ("converting the string 'one' to an integer doesn't:",int('one'))

ValueError: invalid literal for int() with base 10: 'one'

When you get an error (such as above), you will need to learn to read
the error message to work out what you did wrong.

E1.1.8 Exercise

	why did the statement abovce not work?

	type some other data conversions below that do work.

do the exercise here

1.1.3 Arithmetic

Often we will want to do some
arithmetic [http://www.tutorialspoint.com/python/python_basic_operators.htm]
with numbers in a program, and we use the ‘normal’ (derived from C)
operators for this.

Note the way this works for integers and floating point representations.

'''
 Some examples of arithmetic operations in Python

 Note how, if we mix float and int, the result is raised to float
 (as the more general form)
'''

print (10 + 100) # int addition
print (10. - 100) # float subtraction
print (1./2.) # float division
print (1/2) # int division
print (10.*20.) # float multiplication
print (2 ** 3.) # float exponent

print (65%2) # int remainder
print (65//2) # floor operation

110
-90.0
0.5
0.5
200.0
8.0
1
32

E1.1.9 Exercise

	change the numbers in the examples above to make sure you understand
these basic operations.

	try combining operations and use brackets () to check that that
works as expected.

	see what happens when you add (i.e. use +) strings together

do the exercise here

1.1.4 Assignment Operators

'''
 Assignment operators

 x = 3 assigns the value 3 to the variable x
 x += 2 adds 2 onto the value of x
 so is the same as x = x + 2
 similarly /=, *=, -=
 x %= 2 is the same as x = x % 2
 x **= 2 is the same as x = x ** 2
 x //= 2 is the same as x = x // 2

 A 'magic' trick
 ===============

 based on
 https://www.wikihow.com/Read-Someone%27s-Mind-With-Math-(Math-Trick)

 whatever you put as myNumber, the answer is 42

 Try this with integers or floating point numbers ...
'''

pick a number
myNumber = 34.67

x = myNumber

x *= 2

x *= 5

x /= myNumber

x -= 7

x += 39

The answer will always be 42
print(x)

42.0

E1.1.10 Exercise

	change the number assigned to myNumber and check if 42 is
still returned

	copy and edit the code to print the value of x each time you
change it, and add comments explaining what is happening for each
line of code. This should allow you to follow more carefully what has
happened with the arithmetic and also to simplify the code (use fewer
statements to achieve the same thing).

do the exercise here

1.1.5 Logical Operators

Logical operators combine boolean variables. Recall from above:

print (type(True),type(False));

<class 'bool'> <class 'bool'>

The three main logical operators you will use are:

not, and, or

The impact of the not opeartor should be straightforward to
understand, though we can first write it in a ‘truth table’:

	A

	not A

	T

	F

	F

	T

print('not True is',not True)
print('not False is',not False)

not True is False
not False is True

E1.1.11 Exercise:

	write a statement to set a variable x to True and print the
value of x and not x

	what does not not x give? Make sure you understand why

do the exercise here

The operators and and or should also be quite straightforward to
understand: they have the same meaning as in normal english. Note that
or is ‘inclusive’ (so, read A or B as ‘either A or B or both of
them’).

print ('True and True is',True and True)
print ('True and False is',True and False)
print ('False and True is',False and True)
print ('False and False is',False and False)

True and True is True
True and False is False
False and True is False
False and False is False

So, A and B is True, if and only if both A is True and
B is True. Otherwise, it is False

We can represent this in a ‘truth table’:

	A

	B

	A and B

	T

	T

	T

	T

	F

	F

	F

	T

	F

	F

	F

	F

E1.1.12 Exercise:

	draw a truth table on some paper, label the columns A, B
and A and B and fill in the columns A and B as above

	without looking at the example above, write the value of A and B
in the third column.

	draw another truth table on some paper, label the columns A,
B and A and B and fill in the columns A and B as
above

	write the value of A or B in the third column.

If you are unsure, test the response using code, below.

do the testing here e.g.
print (True or False)

True

E1.1.13 Exercise

	Copy the following truth table onto paper and fill in the final
column:

	A

	B

	C

	((A and B) or C)

	T

	T

	T

	

	T

	T

	F

	

	T

	F

	T

	

	T

	F

	F

	

	F

	T

	T

	

	F

	T

	F

	

	F

	F

	T

	

	F

	F

	F

	

	Try some other compound statements

If you are unsure, or to check your answers, test the response using
code, below.

do the testing here e.g.
print ((True and False) or True)

True

1.1.6 Comparison Operators and if

A comparison operator ‘compares’ two terms (e.g. variables) and returns
a boolean data type (True or False).

For example, to see if the value of some variable a is ‘the same
value as’ (‘equivalent to’) the value of some variable b, we use the
equivalence operator (==). To test for non equivalence, we use the
not equivalent operator != (read the ! as ‘not’):

a = 100
b = 10

Note the use of \n and \t in here
#
print ('a is',a,'and\nb is',b,'\n')
print ('\ta is equivalent to b?',a == b)

a is 100 and
b is 10

 a is equivalent to b? False

E1.1.14 Exercise

	copy the code above and change the values (or type) of the variables
a and b to test their equivalence.

	what does the \t in the print statement do?

	add a print statement to your code that tests for ‘non
equivalence’

	write some code to see if (a or b) is equivalent to (b or a)
or not

do the exercise here

A full set of comparison operators is:

symbol meaning

== is equivalent to
!= is not equivalent to
> greater than
>= greater than or equal to
< less than
<= less than or equal to
======
===

so that, for example:

Comparison examples

is one plus one list identical to two list?
print ([1 + 1] is [2])

is one plus one list equal to two list?
print ([1 + 1] == [2])

is one less than or equal to 0.999?
print (1 <= 0.999)

is one plus one not equal to two?
print (1 + 1 != 2)

note the use of single quotes inside a double quoted string here
is 'more' greater than 'less'?
print ("more" > "less")

"is 100 less than 2?"
print (100 < 2)

False
True
False
False
True
False

Aside on string comparisons

In the case of string comparisons, the
ASCII [http://www.asciitable.com] codes of the string characters are
compared. So for example the statement “more” > “less” returns True.

Here, the comparison is effectively

m > l

Since m comes after l in the alphabet, the ASCII code for m
(109) is greater than the ASCII code for l (108) (see
http://www.asciitable.com) so

109 > 108

returns True. Note that ASCII capital letters come before the lower case
letters.

In practice, we mainly avoid string comparisons (other than to confirm
equivalence). So there is little direct use of string comparisons other
than ==. It is useful to know how this works however, in case it
crops up or happens ‘by accident’. It is also worth understanding what
ASCII codes are.

Conditional test

One common use of comparisons is for program control, using an if
statement:

if condition1 is True:
 doit1()
elif condition2 is True:
 doit2()
else:
 doit3()

where is compares identity. This allows us to run blocks of code
(e.g. the method doit1()) only under a particular condition (or set
of conditions).

In Python, the statement(s) we run on condition (here doit1() etc.)
are indented.

The indent can be one or more spaces or a <tab> character, the
choice is up to the programmer. However, it must be consistent.

test = [1+1]
print('test is {}'.format(test))

initialise retval
retval = None

conduct some tests, and set the
variable retval to True if we pass
any test

if test is [2]:
 retval = True
 print('passed test 1: "if test is [2]"')
elif test == [2]:
 retval = True
 print('passed test 2: "if test == [2]"')
else:
 retval = False
 print('failed both tests')

print('retval is',retval)

test is [2]
passed test 2: "if test == [2]"
retval is True

E1.1.15 Exercise

	copy the example above, and change it to use other examples from the
‘Comparison examples’ code block. Change the value of test to get
different responses and make notes as to why you get the result you
do.

	try out some more complicated conditions, e.g. multipler tests,
combined with an and operator.

do the exercise here

In this section, you have had an introduction to the Python programming
language, running in a `jupyter notebook <http://jupyter.org>`__
environment.

You have seen how to write comments in code, how to form print
statements and basic concepts of variables, values, and data types. You
have seen how to maniputae data with arithmetic and assignment
operators, as well as the basics in dealing with logic and tests
returning logical values.

1.2 Text and looping

In Python, collections of characters (a, b, 1, …) are called
strings. Strings and characters are input by surrounding the relevant
text in either double (") or single (') quotes. There are a
number of special characters that can be encoded in a string provided
they’re “escaped”. For example, some we have come across are:

	\n: the carriage return

	\t: a tabulator

print ("I'm a happy string")
print ('I\'m a happy string') # the apostrophe has been escaped as not to be confused by end of string
print ("\tI'm a happy string")
print ("I'm\na\nhappy\nstring")

I'm a happy string
I'm a happy string
 I'm a happy string
I'm
a
happy
string

We can do a number of things with strings, which are very useful. These
so-called string methods are defined on all strings by Python by
default, and can be used with every string. For one, we can concatenate
strings using the + symbol as we saw above.

1.2.1 len

Gives the length of the string as number of characters:

t = ''
print ('the length of',t,'is',len(t))

s = "Hello" + "there" + "everyone"

print ('the length of',s,'is',len(s))

the length of is 0
the length of Hellothereeveryone is 18

Exercise E1.2.1

	what does a zero-length string look like?

	The Hello there everyone example above has no spaces between the
words. Copy the code to the block below and modify it to have spaces.

	confirm that you get the expected increase in length.

do exercise here

1.2.2 for ... in ... and enumerate

Very commonly, we need to iterate or ‘loop’ over some set of items.

The basic stucture for doing this (in Python, and many other languages)
is for item in group:, where item is the name of some variable
and group is a set of values.

The loop is run so that item takes on the first value in group,
then the second, etc.

for loop
group = [4,3,2,1]

for item in group:
 '''print counter in loop'''
 print(item)

print ('blast off!')

4
3
2
1
blast off!

The group in this example is the list of integer numbers
[4,3,2,1]. A list is a group of comma-separated items contained
in square brackets [].

In Python, the statement(s) we run whilst looping (here print(item))
are indented.

The indent can be one or more spaces or a <tab> character, the
choice is up to the programmer. However, it must be consistent.

Exercise 1.2.1

	generate a list of strings called group with the names of (some
of) the items in your pocket or bag (or make some up!)

	set up a for loop to go through and print each item

do exercise here

Quite often, we want to keep track of the ‘index’ of the item in the
loop (the ‘item number’).

One way to do this would be to use a variable (called count here).

Before we enter the loop, we initialise the value to zero.

for loop
group = ['hat','dog','keys']

initialise a variable count
count = 0

for item in group:
 '''print counter in loop'''

 print('item',count,'is',item)

 # add 1 onto count
 count += 1

item 0 is hat
item 1 is dog
item 2 is keys

Exercise 1.2.2

	copy the code above, and check to see if the value of count at
the end of the loop is the same as the length of the list. Why should
this be so?

	change the code so that the counting starts at 1, rather than 0.

do exercise here

Since counting in loops is a common task, we can use the built in method
enumerate() to achieve the same thing as above. The syntax is then:

for loop
group = ['hat','dog','keys']

for count,item in enumerate(group):
 '''print counter in loop'''
 print('item',count,'is',item)

item 0 is hat
item 1 is dog
item 2 is keys

Exercise 1.2.3

	copy the code above, and check to see if the value of count at
the end of the loop is the same as the length of the list.

	change the code so that the printed count starts at 1, rather than 0.

Hint: how can you make it print count+1 rather than count?

do exercise here

1.2.3 slice

A string can be thought of as an ordered ‘array’ of characters.

So, for example the string hello can be thought of as a construct
containing h then e, l, l, and o.

We can index a string, so that e.g. 'hello'[0] is h,
'hello'[1] is e etc.

We have seen above the idea of the ‘length’ of a string. In this
example, the length of the string hello is 5.

string = 'hello'

length
slen = len(string)
print('length of {} is {}'.format(string,slen))

select these indices
indices = 0,1,3

loop over each item in indices
for index in indices:
 print('character {} of {} is {}'.format(index,string,string[index]))

length of hello is 5
character 0 of hello is h
character 1 of hello is e
character 3 of hello is l

Exercise E1.2.4

	copy the code above, and see what happens if you set a value in
indices that is the value of length of the string. Why does it
respond so?

	make the code robust to this issue, but using an if statement to
test if index is in the required range.

do exercise here

We can use the idea of a ‘slice’ to access particular elements within
the string.

For a slice, we can specify:

	start index (0 is the first)

	stop index (not including this)

	skip (do every ‘skip’ character)

When specifying this as array access, this is given as, e.g.:

array[start:stop:skip]

	The default start is 0

	The default stop is the length of the array

	The default skip is 1

You can specify a slice with the default values by leaving the terms
out:

array[::2]

would give values in the array array from 0 to the end, in steps of
2.

This idea is fundamental to array processing in Python. We will see
later that the same mechanism applies to all ordered groups.

s = "Hello World"
print (s,len(s))

start = 0
stop = 11
skip = 2
print (s[start:stop:skip])

use -ve numbers to specify from the end
use None to take the default value

start = -3
stop = None
skip = 1
print (s[start:stop:skip])

Hello World 11
HloWrd
rld

Exercise E1.2.5

The example above allows us to access an individual character(s) of the
array.

	copy the example above, and print the string starting from the
default start value, up to the default stop value, in steps of 2.

	write code to print out the 4\(^{th}\) letter (character) of
the string s.

do exercise here

1.2.4 replace

We can replace all occurrences of a string within a string by some other
string. We can also replace a string by an empty string, thus in effect
removing it:

print ("I'm a very happy string".replace("happy", "unhappy"))

I'm a very unhappy string

Exercise E1.2.6

	copy the statement above, and use the replace method to make it
print out "I'm a happy string".

Hint: you want to replace the string very with, effectively,
nothing, i.e. a zero-length string.

do exercise here

1.2.5 find

Quite often, we might want to find a string inside another string, and
potentially give the location (as in characters from the start of the
string) where this string occurs. We can use the find method, which
will return either a -1 if the string isn’t found, or an integer
giving the index of where the string starts (for the first time).

print ("I'm a very happy string".find("a"))
print ("I'm a very happy string".find("happy"))

4
11

Let’s use the idea of find() to sort out a messy table of data that
we get from a web page.

First, we need to import the package requests to access some
information from a URL [https://en.wikipedia.org/wiki/URL] (from a
web page). The data we get will be in
html [https://en.wikipedia.org/wiki/HTML].

The data we will examine is a dataset of
ENSO [https://en.wikipedia.org/wiki/ENSO] values for each month of
the year from January 1950 to present, made available by
NOAA [https://en.wikipedia.org/wiki/NOAA]/

If you visit you will see the data table we are interested in. So, how
do we ‘grab’ this?

The URL [https://en.wikipedia.org/wiki/URL] points to
html [https://en.wikipedia.org/wiki/HTML] code. When you display
this in a browser, it is rendered appropriately.

If you access the html directly, you will get the following:

Web scraping example

import requests

url = "http://www.esrl.noaa.gov/psd/enso/mei/table.html"

This line will pull the URL data as a string
txt = requests.get(url).text

show the first 1000 characters (see 'slice' above: this is the same as [None:1000:None])
print(txt[:1000])

<html>
<head><title>MEI timeseries from Dec/Jan 1940/50 up to the present</title></head>
<body>
<pre>
MEI Index (updated: 7 September 2018)

Bimonthly MEI values (in 1/1000 of standard deviations), starting with Dec1949/Jan1950, thru last
month. More information on the MEI can be found on the MEI homepage.
Missing values are left blank. Note that values can still change with each monthly update, even
though such changes are typically smaller than +/-0.1. All values are normalized for each bimonthly
season so that the 44 values from 1950 to 1993 have an average of zero and a standard deviation of "1".
Responses to 'FAQs' can be found below this table:

YEAR DECJAN JANFEB FEBMAR MARAPR APRMAY MAYJUN JUNJUL JULAUG AUGSEP SEPOCT OCTNOV NOVDEC
1950 -1.03 -1.133 -1.283 -1.071 -1.434 -1.412 -1.269 -1.042 -.597 -.406 -1.138 -1.235
1951 -1.049 -1.152 -1.178 -.511 -.374 .288 .679 .818 .773 .768 .726 .504
1952 .433 .138 .071 .224 -.307 -.756 -.305 -.374

We notice the presence of html codes in the text string
(e.g. <html>, <pre>). There are particular packages for neatly
parsing html (scraping information from web pages), one of the most
common being
BeautifulSoup [https://www.crummy.com/software/BeautifulSoup/bs4/doc/].
This will tend to be more useful if the html is well fomatted, and the
data contained in <table> sections, or similar structures. Here, we
just have a block of text in the <pre> section.

If we want to just access the dataset here then, we might notice that
the data we want to access starts when we see the string YEAR.

We can use find() to discover the index of this in the string:

start = txt.find('YEAR')

print('start of useful data at index {}\n---------------------------------'.format(start))
print(txt[start:start+1000])

start of useful data at index 689

YEAR DECJAN JANFEB FEBMAR MARAPR APRMAY MAYJUN JUNJUL JULAUG AUGSEP SEPOCT OCTNOV NOVDEC
1950 -1.03 -1.133 -1.283 -1.071 -1.434 -1.412 -1.269 -1.042 -.597 -.406 -1.138 -1.235
1951 -1.049 -1.152 -1.178 -.511 -.374 .288 .679 .818 .773 .768 .726 .504
1952 .433 .138 .071 .224 -.307 -.756 -.305 -.374 .347 .306 -.328 -.098
1953 .044 .401 .277 .687 .756 .191 .382 .209 .527 .124 .099 .351
1954 -.036 -.027 .154 -.616 -1.465 -1.558 -1.355 -1.456 -1.138 -1.32 -1.113 -1.088
1955 -.74 -.669 -1.117 -1.621 -1.653 -2.247 -1.976 -2.05 -1.803 -1.725 -1.813 -1.846
1956 -1.408 -1.275 -1.371 -1.216 -1.304 -1.523 -1.244 -1.118 -1.327 -1.461 -1.014 -.993
1957 -.915 -.348 .108 .383 .813 .73 .926 1.132 1.158 1.114 1.167 1.268
1958 1.473 1.454 1.313 .991 .673 .812 .7 .421 .209 .237 .501 .691
1959 .553 .81 .502 .202 -.025 -.062 -.112 .111 .126 -.038 -.151 -.247
1960 -.287 -.253 -.082 .007 -.322 -.287 -.318 -.25 -.439 -.332 -.308 -.39
1961 -.15 -.235 -.073 .017 -.302 -.185 -.208 -.3 -.271 -.51 -.416

If we look again at the web page
http://www.esrl.noaa.gov/psd/enso/mei/table.html, we might notice that
the end of the useful data is delimited by two newlines and the string
(1), i.e., as a string \n\n(1). So we should be able to use
find() again to get the location of the end of the data
(i.e. stop, in the sense of a slice).

Exercise 1.2.6

	use this observation to form a string called data_table,
containing all of the useful data (i.e. txt[start:stop]).

	print the string data_table.

do exercise here

This exercise is a very good example of web
scraping [https://en.wikipedia.org/wiki/Web_scraping]. Web scraping
is often rather messy (you have to work out some ‘key’ to reliably
delimit the information you want) but can be extreemely valuable for
accessing datasets that are not cleanly presented. We have only gonbe
part of the way to extracting a useful dataset here, because the dataset
we are interested in (the ENSO data) are still represented as a string,
whereas we really want them to be a set of floating point numbers. We
will deal with this later.

1.2.5 split and splitlines

The first ‘line’ of
`should contain the 'header' information, i.e. the title of the data columns (YEAR,DECJANetc.). We want to separate the header from the numbers in the data table, so we want to 'split' the string calleddata_table`
into a header string and data string.

One approach to this would be split the string into ‘lines’ of text
(rather than one block). Effectively that means splitting into multiple
strings whenever we hit a \n character. Rather than do that
explicitly, we use the splitlines() method:

import requests
url = "http://www.esrl.noaa.gov/psd/enso/mei/table.html"
txt = requests.get(url).text

copy the useful data
start = txt.find('YEAR')
stop = txt.find('\n\n(1)')
data_table = txt[start:stop]

split into a list of strings
data_lines = data_table.splitlines()

tell me something useful
print(type(data_lines),len(data_lines))

loop over some examples
for i in 0,1,len(data_lines)-1:
 print('line {} {}\n\t{}'.format(i,type(data_lines[i]),data_lines[i]))

<class 'list'> 70
line 0 <class 'str'>
 YEAR DECJAN JANFEB FEBMAR MARAPR APRMAY MAYJUN JUNJUL JULAUG AUGSEP SEPOCT OCTNOV NOVDEC
line 1 <class 'str'>
 1950 -1.03 -1.133 -1.283 -1.071 -1.434 -1.412 -1.269 -1.042 -.597 -.406 -1.138 -1.235
line 69 <class 'str'>
 2018 -.623 -.731 -.502 -.432 .465 .469 .076 .132

This splits each ‘line’ of text into an entry in a list, so that the
header data is now given in the first entry (data_lines[0]) and the
lines containinmg data, after that.

From the print out above, we notice that the final ‘data line’ (index
-1) is shorter than (has fewer entries than) the other lines. This
is because we are only part way through this year!.

In ‘real’ datasets, we quite often have ‘messy’ lines of data such as
this (or data missing for other reasons). How you want to deal with the
‘messy bits’ depends on the sort of analysis you want to do.

One option (the simplest) would be to simply remove the last line
(ignore this year’s data):

header = data_lines[0]

select the data block as being from entry 1 to -1
so, **not including the last row**
data = data_lines[1:-1]

print('header:',header)

for i in 0,1,len(data)-1:
 print('line {} {}\n\t{}'.format(i,type(data[i]),data[i]))

header: YEAR DECJAN JANFEB FEBMAR MARAPR APRMAY MAYJUN JUNJUL JULAUG AUGSEP SEPOCT OCTNOV NOVDEC
line 0 <class 'str'>
 1950 -1.03 -1.133 -1.283 -1.071 -1.434 -1.412 -1.269 -1.042 -.597 -.406 -1.138 -1.235
line 1 <class 'str'>
 1951 -1.049 -1.152 -1.178 -.511 -.374 .288 .679 .818 .773 .768 .726 .504
line 67 <class 'str'>
 2017 -.052 -.043 -.08 .744 1.445 1.039 .456 .009 -.449 -.551 -.277 -.576

Exercise 1.2.7

	copy the code from above and explore the response using line indices
-1 and -2.

do exercise here

If we want to manipulate or plot the information contained in this (the
numbers), we need to convert each of the string representations to a
floating point number, e.g. the number -1.03 rather than the string
'-1.03'.

Each entry in the list data is a string, as we saw above.

We can split an individual string (such as data[0] into a list of
strings, using the string method split(). By default, this splits on
‘white space’ (i.e. spaces or tab characters), so, e.g.:

line = data[0].split()
print(data[0])
print(line,len(line))

1950 -1.03 -1.133 -1.283 -1.071 -1.434 -1.412 -1.269 -1.042 -.597 -.406 -1.138 -1.235
['1950', '-1.03', '-1.133', '-1.283', '-1.071', '-1.434', '-1.412', '-1.269', '-1.042', '-.597', '-.406', '-1.138', '-1.235'] 13

So, we have split the long string into 13 strings in a list.

We want to generate a new list with 13 corresponding floating point
values:

split the line on whitespace
line = data[0].split()

make a new list of the same length
by copying the variable line
float_data = line.copy()

for index,line_data in enumerate(line):
 # insert the cast float into the list
 # in the right order (use index)
 float_data[index] = float(line_data)

this is the string list
print(line)

this is the float list
print(float_data)

['1950', '-1.03', '-1.133', '-1.283', '-1.071', '-1.434', '-1.412', '-1.269', '-1.042', '-.597', '-.406', '-1.138', '-1.235']
[1950.0, -1.03, -1.133, -1.283, -1.071, -1.434, -1.412, -1.269, -1.042, -0.597, -0.406, -1.138, -1.235]

Exercise 1.2.8

	set a variable to be the string
"2, 3, 5, 7, 11, 13, 17, 19, 23, 29"

	use the approach above to generate a list of integers of the
first 10 prime numbers.

	print the list with syntax of the pattern of ‘prime number 3 is 7’

Make sure you convert each prime number to an integer, rather than
leaving it as a string!

Hint: We can still use the method split() to do split the string
into a list of strings, but this time the
separator [https://python-reference.readthedocs.io/en/latest/docs/str/split.html]
is a comma, rather than whitespace.

do exercise here
pstring = "2, 3, 5, 7, 11, 13, 17, 19, 23, 29"

Normally, we wouldn’t go to the trouble of first copying the list.

Instead, where the contents of the loop are simple (e.g. a single
statement) we would use a different way of using a for loop, called
an implicit loop.

In this case:

for item in group:
 doit(group)

becomes:

[doit(group) for item in group]

with the additional feature that everything returned by doit(group)
for each item of group is put in a list.

split the line on whitespace

implicit for loop
float_data = [float(line_data) for line_data in data[0].split()]

this is the string list
print(line)
this is the float list
print(float_data)

2010 1.066 1.526 1.462 .978 .658 -.228 -1.103 -1.671 -1.86 -1.888 -1.472 -1.558
[1950.0, -1.03, -1.133, -1.283, -1.071, -1.434, -1.412, -1.269, -1.042, -0.597, -0.406, -1.138, -1.235]

The statement:

float_data = [float(line_data) for line_data in line]

is much more Pythonic [https://docs.python-guide.org/writing/style/]
than the code above. It is simple, elegant and neat.

We can nest for statements, i.e. put one for loop inside another. This
allows us to treat data of multiple dimensions.

In the examples above, we converted only the data in data[0] to a
list of floating point numbers. If we wanted to process all lines of
data, we would have to loop over them as well, in an ‘outer’ loop.

use a step of 10 for illustration purposes
to save space when printing

step = 10

for index,line in enumerate(data_table.splitlines()[1:-1:step]):
 # convert each line to list of floats
 float_data = [float(line_data) for line_data in line.split()]
 print('line {} is {}'.format(index*step,float_data))

line 0 is [1950.0, -1.03, -1.133, -1.283, -1.071, -1.434, -1.412, -1.269, -1.042, -0.597, -0.406, -1.138, -1.235]
line 10 is [1960.0, -0.287, -0.253, -0.082, 0.007, -0.322, -0.287, -0.318, -0.25, -0.439, -0.332, -0.308, -0.39]
line 20 is [1970.0, 0.38, 0.432, 0.228, 0.014, -0.099, -0.636, -1.055, -1.007, -1.226, -1.068, -1.063, -1.203]
line 30 is [1980.0, 0.677, 0.601, 0.684, 0.912, 0.958, 0.911, 0.769, 0.329, 0.302, 0.223, 0.27, 0.111]
line 40 is [1990.0, 0.243, 0.573, 0.951, 0.46, 0.652, 0.511, 0.147, 0.127, 0.398, 0.303, 0.4, 0.362]
line 50 is [2000.0, -1.122, -1.189, -1.09, -0.397, 0.251, 0.001, -0.159, -0.145, -0.21, -0.367, -0.701, -0.55]
line 60 is [2010.0, 1.066, 1.526, 1.462, 0.978, 0.658, -0.228, -1.103, -1.671, -1.86, -1.888, -1.472, -1.558]

Note that whilst we have calculated float_data in the loop for each
line, it gets over-written with each new line as things stand.

We can do the same thing, and generate a list of the responses more
neatly, using an implicit loop inside another implicit loop:

all_float_data = [[float(line_data) for line_data in line.split()] for line in data_table.splitlines()[1:-1]]

The variable all_float_data is now a sort of ‘two dimensional’ list,
within which we can refer to individual items as
e.g. all_float_data[10][3] for row 10, column 3.

Let’s use this idea to print out column 0 of each row (containing the
YEAR data). We will use the method range(nrows) that
(implicitly) generates a list [0,1,2,3, ..., nrows-1].

Notice the use of end=' ' in the print statement. This replaces
the usual newline by whetever is specified by the keyword end. Note
also that we have used {:.0f} to specify the format term. This
indicates that the term is to be printed as a floating point number (the
f) with zero numbers after the decimal point (.0)

nrows = len(all_float_data)
i = 0

print('column {} of the data gives:\n'.format(i))
for row in range(nrows):
 print('{:.0f}'.format(all_float_data[row][i]),end=' ')

column 0 of the data gives:

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Exercise 1.2.9

	use an implicit loop to create a list of ENSO values in a variable
enso for the years 1950 up to last year for the period
DECJAN.

	produce a plot of ENSO for DECJAN as a function of year (see
below on how to do that).

Hint: check which column in the header is DECJAN. To start you off
on this, we give you the implicit loop code for extracting the column
containing the YEAR data (column 0). We also give you the code to
achieve the plotting.

do exercise here

generate a list called years of column 0 data
years = [all_float_data[row][0] for row in range(nrows)]

you need to put the enso data in here!
this is put in as a dummy that should plot a straight line!
enso = years.copy()

for plotting
import pylab as plt
%matplotlib inline

#
plt.figure(0,figsize=(12,3))
plt.plot(years,enso)
plt.xlabel('year')
plt.ylabel('ENSO')

Text(0,0.5,'ENSO')

[image: _images/Chapter1_Python_introduction_145_1.png]

1.2.6 Summary

In section 1.2 you have been introduced to text representation in
Python, as strings (type str), and shown that this sort of variable
can be thought of an an ‘array’, and that it has a length attribute that
can be accessed with len().

Other useful string manipulation methods you were introduced to are:
replace(), find(), split() and splitlines(), though of
course there are many
more [https://docs.python.org/3/library/string.html].

In an ‘array’, we can use an index to refer to a particular item
(e.g. index 0 for the first item, 1 for the second, -1 for the last). We
can use this idea to manipulate strings.

In a more general sense, we can take a ‘slice’ of an array, with the
syntax [start:stop:skip] giving access to a regularly spaced part of
an array. We can use this, for example, to print out every 10th value
(skip=10).

You were also introduced to the idea of looping control structures,
using a for ... in ...: statement, and the equivalent implicit form.
This introduced the idea of indented code
blocks [https://wiki.python.org/moin/Why%20separate%20sections%20by%20indentation%20instead%20of%20by%20brackets%20or%20%27end%27]
and (related) nested structures (loops within loops).

In passing, you have also been shown how to pull html data from a URL
(scraping) using the
`requests <http://docs.python-requests.org/en/master/>`__ package,
and also how to produce a simple data plot, using
`pylab <https://matplotlib.org/index.html>`__.

1.3. Groups of things

Very often, we will want to group items together. There are several main
mechanisms for doing this in Python, known as:

	string e.g. hello

	tuple, e.g. (1, 2, 3)

	list, e.g. [1, 2, 3]

	numpy array e.g. np.array([1, 2, 3])

A slightly different form of group is a dictionary:

	dict, e.g. {1:'one', 2:'two', 3:'three'}

You will notice that each of the grouping structures tuple, list and
dict use a different form of bracket. The numpy array is fundamental to
much work that we will do later.

We have dealt with the idea of a string as an ordered collection in the
material above, so will deal with the others here.

We noted the concept of length (len()), that elements of the ordered
collection could be accessed via an index, and came across the concept
of a slice. All of these same ideas apply to the first set of groups
(string, tuple, list, numpy array) as they are all ordered collections.

A dictionary is not (by default) ordered, however, so indices have no
role. Instead, we use ‘keys’.

1.3.1 tuple

A tuple is a group of items separated by commas. In the case of a tuple,
the brackets are optional. You can have a group of differnt types in a
tuple (e.g. int, int, str, bool)

load into the tuple
t = (1, 2, 'three', False)

unload from the tuple
a,b,c,d = t

print(t)
print(a,b,c,d)

(1, 2, 'three', False)
1 2 three False

If there is only one element in a tuple, you must put a comma , at the
end, otherwise it is not interpreted as a tuple:

t = (1)
print (t,type(t))
t = (1,)
print (t,type(t))

1 <class 'int'>
(1,) <class 'tuple'>

You can have an empty tuple though:

t = ()
print (t,type(t))

() <class 'tuple'>

E1.3.1 Exercise

	create a tuple called t that contains the integers 1 to 5 inclusive

	print out the value of t

	use the tuple to set variables a1,a2,a3,a4,a5

do exercise here

1.3.2 list

A list is similar to a tuple. One main difference is that you
can change individual elements in a list but not in a tuple. To convert
between a list and tuple, use the ‘casting’ methods list() and
tuple():

a tuple
t0 = (1,2,3)

cast to a list
l = list(t0)

cast to a tuple
t = tuple(l)

print('type of {} is {}'.format(t,type(t)))
print('type of {} is {}'.format(l,type(l)))

type of (1, 2, 3) is <class 'tuple'>
type of [1, 2, 3] is <class 'list'>

You can concatenate (join) lists or tuples with the + operator:

l0 = [1,2,3]
l1 = [4,5,6]

l = l0 + l1
print ('joint list:',l)

joint list: [1, 2, 3, 4, 5, 6]

E1.3.2 Exercise * copy the code from the cell above, but instead of
lists, use tuples * loop over each element in the tuple and print out
the data type and value of the element

Hint: use a for ... in ... construct.

do exercise here

A common method associated with lists or tuples is: * index()

Some useful methods that will operate on lists and tuples are: *
len() * sort() * min(),max()

l0 = (2,8,4,32,16)

print the index of the item integer 4
in the tuple / list

item_number = 4

Note the dot . here
as index is a method of the class list
ind = l0.index(item_number)

notice that this is different
as len() is not a list method, but
does operatate on lists/tuples
Note: do not use len as a variable name!
llen = len(l0)

note the use of integers in the braces e.g. {0}
rather than empty braces as before. This allows us to
refer to particular items in the format argument list
print('the index of {0} in {1} is {2}'.format(item_number,l0,ind))
print('the length of the {0} {1} is {2}'.format(type(l0),l0,llen))

the index of 4 in (2, 8, 4, 32, 16) is 2
the length of the <class 'tuple'> (2, 8, 4, 32, 16) is 5

E1.3.3 Exercise

	copy the code to the block below, and test that this works with
lists, as well as tuples

	find the index of the integer 16 in the tuple/list

	what is the index of the first item?

	what is the length of the tuple/list?

	what is the index of the last item?

do exercise here

A list has a much richer set of methods than a tuple. This is because we
can add or remove list items (but not tuple).

	insert(i,j) : insert j beore item i in the list

	append(j) : append j to the end of the list

	sort() : sort the list

This shows that tuples and lists are ‘ordered’ (i.e. they maintain the
order they are loaded in) so that indiviual elements may be accessed
through an ‘index’. The index values start at 0 as we saw above. The
index of the last element in a list/tuple is the length of the group,
minus 1. This can also be referred to an index -1.

l0 = [2,8,4,32,16]

insert 64 at the begining (before item 0)
Note that this inserts 'in place'
i.e. the list is changed by calling this
l0.insert(0,64)

insert 128 *before* the last item (item -1)
l0.insert(-1,128)

append 256 on the end
l0.append(256)

copy the list
and sort the copy
Note the use of the copy() method here
to create a copy
l1 = l0.copy()

Note that this sorts 'in place'
i.e. the list is changed by calling this
l1.sort()

print('the list {0} once sorted is {1}'.format(l0,l1))

the list [64, 2, 8, 4, 32, 128, 16, 256] once sorted is [2, 4, 8, 16, 32, 64, 128, 256]

E1.3.4 Exercise

	copy the above code and try out some different locations for
inserting values (e.g. what does index -2 mean?)

	what happens if you take off the .copy() statement in the line
l1 = l0.copy(), i.e. just use l1 = l0? Why is
this? [https://www.afternerd.com/blog/python-copy-list/]

do exercise here

1.3.3 np.array

An array is a group of objects of the same type. Because they are of the
same type, they can be stored efficiently in compter memory, and also
accessed efficiently.

Whilst there are different ways of forming arrays, the most common is to
use numpy arrays, using the package numpy. To use this, we must
first import the package into the current workspace. We do this with the
import method. Using the optional as statement allows us to use
a shorter (or more suitable) name for the package. We will generally
call numpy np, so we use:

import numpy as np

to import (‘load’) the numpy package.

Often, we will read data from a file/URL as we did above for the ENSO
dataset. In that case, we had to step through each item to convert from
string form to floating point number.

This sort of thing is much more simply done using methods associated
with numpy arrays.

A particularly useful numpy method is np.loadtxt(file) that loads an
ASCII table of data straight into a numpy array.

Whilst this is designed to load data from a file, we can use
io.StringIO() from the io package to make data that we already
have as a string seem to np.loadtxt as if it were a file. This is a
useful ‘trick’ for using methods that expect data in a file. The
unpack=True option makes sure the data array is compoised the way we
would expect it. The usecols option lets us select only those data
columns we wish to read (0 and 1 here).

An alternative to np.loadtxt() is np.genfromtxt(). This has some
additional features, such the invalid_raise flag. If this is set
False, the loading is made somewhat tolerant to data errors
(e.g. inconsistent number of columns). Further, we can explicitly set
what will indicate missing_values in the input and what we would
like to replace them with (filling_values) which can be useful for
tidying up datasets.

import requests
import numpy as np
import io

access dataset as above
url = "http://www.esrl.noaa.gov/psd/enso/mei/table.html"
txt = requests.get(url).text

copy the useful data
start_head = txt.find('YEAR')
start_data = txt.find('1950\t')
stop_data = txt.find('2018\t')

select a data column
data_column = 1

header = txt[start_head:start_data].split()
data = np.loadtxt(io.StringIO(txt[start_data:stop_data]),unpack=True,usecols=[0,data_column])

so data[0] is the year data
data[1] is the enso data for column data_column
print some attributes of the data array

print('array type',type(data))
print('data type',data.dtype)
print('number of dimensions',data.ndim)
print('data shape',data.shape)
print('data size',data.size)

for plotting
import pylab as plt
%matplotlib inline

#
plt.figure(0,figsize=(12,3))
plt.plot(data[0],data[1],label=header[data_column])
plt.xlabel('year')
plt.ylabel('ENSO')
plt.title('ENSO data from {0}'.format(url))
plt.legend(loc='best')

array type <class 'numpy.ndarray'>
data type float64
number of dimensions 2
data shape (2, 68)
data size 136

<matplotlib.legend.Legend at 0x11ea0dda0>

[image: _images/Chapter1_Python_introduction_171_2.png]
We saw in the example above that a numpy array
(<class 'numpy.ndarray'>) has a set of attributes that include
shape, ndim, dtype and size that we can use to query
information about the array. We will learn morre about processing data
with numpy arrays later in the course, but you should already see that
they are a useful construct for manipulating multi-dimensional datasets.

Exercise 1.3.4

	copy the code from the block above and modify it to plot the ENSO
data for the period FEBMAR. Check this by looking at the data in
the original
table [http://www.esrl.noaa.gov/psd/enso/mei/table.html].

	modify the code to produce a plot of all periods (so the graph
should have 12 lines, correctly labelled)

Hint: You will need to consider what, if anything to set of usecols
(what happends if you don’t set usecols?) and provide a looping
structure for the plotting.

do exercise here

1.3.4 dict

The collections we have used so far have all been ordered. This means
that we can refer to a particular element in the group by an index,
e.g. array[10].

A dictionary is not (by default) ordered. Instead of indices, we use
‘keys’ to refer to elements: each element has a key associated with it.
It can be very useful for data organisation (e.g. databases) to have a
key to refer to, rather than e.g. some arbitrary column number in a
gridded dataset.

A dictionary is defined as a group in braces (curley brackets). For each
elerment, we specify the key and then the value, separated by :.

a = {'one': 1, 'two': 2, 'three': 3}

we then refer to the keys and values in the dict as:

print ('a:\n\t',a)
print ('a.keys():\n\t',a.keys()) # the keys
print ('a.values():\n\t',a.values()) # returns the values
print ('a.items():\n\t',a.items()) # returns a list of tuples

a:
 {'one': 1, 'two': 2, 'three': 3}
a.keys():
 dict_keys(['one', 'two', 'three'])
a.values():
 dict_values([1, 2, 3])
a.items():
 dict_items([('one', 1), ('two', 2), ('three', 3)])

Because dictionaries are not ordered, we cannot guarantee the order they
will come out in a for loop, but we will often use such a loop to
iterate over the items in a dictionary.

for key,value in a.items():
 print(key,value)

one 1
two 2
three 3

We refer to specific items using the key e.g.:

print(a['one'])

1

You can add to a dictionary:

a.update({'four':4,'five':5})
print(a)

or for a single value
a['six'] = 6
print(a)

{'one': 1, 'two': 2, 'three': 3, 'four': 4, 'five': 5}
{'one': 1, 'two': 2, 'three': 3, 'four': 4, 'five': 5, 'six': 6}

Quite often, you find that you have the keys you want to use in a
dictionary as a list or array, and the values in another list.

In such a case, we can use the method zip(keys,values) to load into
the dictionary. For example:

values = [1,2,3,4]
keys = ['one','two','three','four']

a = dict(zip(keys,values))

print(a)

{'one': 1, 'two': 2, 'three': 3, 'four': 4}

We will use this idea to make a dictionary of our ENSO dataset, using
the items in the header for the keys. In this way, we obtain a more
elegant representation of the dataset, and can refer to items by names
(keys) instead of column numbers.

import requests
import numpy as np
import io

access dataset as above
url = "http://www.esrl.noaa.gov/psd/enso/mei/table.html"
txt = requests.get(url).text

copy the useful data
start_head = txt.find('YEAR')
start_data = txt.find('1950\t')
stop_data = txt.find('2018\t')

header = txt[start_head:start_data].split()
data = np.loadtxt(io.StringIO(txt[start_data:stop_data]),unpack=True)

use zip to load into a dictionary
data_dict = dict(zip(header, data))

key = 'MAYJUN'
plot data
plt.figure(0,figsize=(12,7))
plt.title('ENSO data from {0}'.format(url))
plt.plot(data_dict['YEAR'],data_dict[key],label=key)
plt.xlabel('year')
plt.ylabel('ENSO')
plt.legend(loc='best')

<matplotlib.legend.Legend at 0x11fceb320>

[image: _images/Chapter1_Python_introduction_186_1.png]
Exercise 1.3.5

	copy the code above, and modify so that datasets for months
['MAYJUN','JUNJUL','JULAUG'] are plotted on the graph

Hint: use a for loop

do exercise here

We can also usefully use a dictionary with a printing format statement.
In that case, we refer directly to the key in ther format string. This
can make printing statements much easier to read. We don;’t directly
pass the dictionary to the fortmat staterment, but rather
**dict, where **dict means “treat the key-value pairs in the
dictionary as additional named arguments to this function call”.

So, in the example:

import requests
import numpy as np
import io

access dataset as above
url = "http://www.esrl.noaa.gov/psd/enso/mei/table.html"
txt = requests.get(url).text

copy the useful data
start_head = txt.find('YEAR')
start_data = txt.find('1950\t')
stop_data = txt.find('2018\t')

header = txt[start_head:start_data].split()
data = np.loadtxt(io.StringIO(txt[start_data:stop_data]),unpack=True)

use zip to load into a dictionary
data_dict = dict(zip(header, data))
print(data_dict.keys())

print the data for MAYJUN
print('data for MAYJUN: {MAYJUN}'.format(**data_dict))

dict_keys(['YEAR', 'DECJAN', 'JANFEB', 'FEBMAR', 'MARAPR', 'APRMAY', 'MAYJUN', 'JUNJUL', 'JULAUG', 'AUGSEP', 'SEPOCT', 'OCTNOV', 'NOVDEC'])
data for MAYJUN: [-1.412e+00 2.880e-01 -7.560e-01 1.910e-01 -1.558e+00 -2.247e+00
 -1.523e+00 7.300e-01 8.120e-01 -6.200e-02 -2.870e-01 -1.850e-01
 -8.700e-01 -1.440e-01 -1.150e+00 8.670e-01 -1.930e-01 -2.360e-01
 -8.120e-01 8.010e-01 -6.360e-01 -1.420e+00 9.660e-01 -7.580e-01
 -6.940e-01 -1.148e+00 2.760e-01 4.140e-01 -6.050e-01 4.290e-01
 9.110e-01 -2.400e-02 9.300e-01 2.235e+00 -4.900e-02 -1.660e-01
 2.790e-01 1.958e+00 -5.820e-01 -2.420e-01 5.110e-01 1.051e+00
 1.735e+00 1.616e+00 8.030e-01 5.070e-01 8.700e-02 2.275e+00
 1.336e+00 -3.390e-01 1.000e-03 5.200e-02 9.320e-01 1.070e-01
 3.150e-01 5.890e-01 5.260e-01 -1.550e-01 1.420e-01 7.510e-01
 -2.280e-01 -3.000e-03 8.420e-01 -9.400e-02 1.046e+00 2.097e+00
 1.053e+00 1.039e+00]

The line print('data for MAYJUN: {MAYJUN}'.format(**data_dict)) is
equivalent to writing:

print('data for {MAYJUN}'.format(YEAR=data_dict[YEAR],DECJAN=data_dict[DECJAN], ...))

In this way, we use the keys in the dictionary as keywords to pass to a
method.

Another useful example of such a use of a dictionary is in saving a
numpy dataset to file.

If the data are numpy arrays in a dictionary as above, we can store the
dataset using:

import requests
import numpy as np
import io

access dataset as above
url = "http://www.esrl.noaa.gov/psd/enso/mei/table.html"
txt = requests.get(url).text

copy the useful data
start_head = txt.find('YEAR')
start_data = txt.find('1950\t')
stop_data = txt.find('2018\t')

header = txt[start_head:start_data].split()
data = np.loadtxt(io.StringIO(txt[start_data:stop_data]),unpack=True)

use zip to load into a dictionary
data_dict = dict(zip(header, data))

filename = 'enso_mei.npz'

save the dataset
np.savez_compressed(filename,**data_dict)

What we load from the file is a dictionary-like object
<class 'numpy.lib.npyio.NpzFile'>.

If needed, we can cast this to a dictionary with dict(), but it is
generally more efficient to keep the original type.

load the dataset

filename = 'enso_mei.npz'

loaded_data = np.load(filename)

print(type(loaded_data))

test they are the same using np.array_equal
for k in loaded_data.keys():
 print('\t',k,np.array_equal(data_dict[k], loaded_data[k]))

<class 'numpy.lib.npyio.NpzFile'>
 YEAR True
 DECJAN True
 JANFEB True
 FEBMAR True
 MARAPR True
 APRMAY True
 MAYJUN True
 JUNJUL True
 JULAUG True
 AUGSEP True
 SEPOCT True
 OCTNOV True
 NOVDEC True

Exercise 1.3.6

	Using what you have learned above, access the Met Office data file
(https://www.metoffice.gov.uk/hadobs/hadukp/data/monthly/HadSEEP_monthly_qc.txt)[https://www.metoffice.gov.uk/hadobs/hadukp/data/monthly/HadSEEP_monthly_qc.txt]
and create a ‘data package’ in a numpy.npz file that has keys
of YEAR and each month in the year, with associated datasets of
Monthly Southeast England precipitation (mm).

	confirm that tha data in your npz file is the same as in your
original dictionary

	produce a plot of October rainfall using these data for the years
1900 onwards

do exercise here

1.3.5 Summary

In this section, we have extended the types of data we might come across
to include groups . We dealt with ordered groups of various types
(tuple, list), and introduced the numpy package for numpy arrays
(np.array). We saw dictionaries as collections with which we refer
to individual items with a key.

We learned in the previous section how to pull apart a dataset presented
as a string using loops and various using methods and to construct a
useful dataset ‘by hand’ in a list or similar structure. It is useful,
when learning to program, to know how to do this.

Here, we saw that packages such as numpy provide higher level routines
that make reading data easier, and we would generally use these in
practice. We saw how we can use zip() to help load a dataset from
arrays into a dictionary, and also the value of using a dictionary
representation when saving numpy files.

2. Manipulating and plotting data in Python: numpy, and matplotlib libraries With ANSWERS

Table of Contents

While Python has a rich set of modules and data types by default, for
numerical computing you’ll be using two main libraries that conform the
backbone of the Python scientific
stack [https://scipy.org/about.html]. These libraries implement a
great deal of functionality related to mathematical operations and
efficient computations on large data volumes. These libraries are
`numpy <http://numpy.org>`__ and `scipy <http://scipy.org>`__.
numpy, which we will concentrate on in this section, deals with
efficient arrays, similar to lists, that simplify many common processing
operations. Of course, just doing calculations isn’t much fun if you
can’t plot some results. To do this, we use the
`matplotlib <http://matplotlib.org>`__ library.

But first, we’ll see the concept of functions….

2.1 Functions

A function is a collection of Python statements that do something
(usually on some data). For example, you may want to convert from
Fahrenheit to Centigrade. The conversion is

\[^{\circ}C = \left(^{\circ}F -32\right)\cdot\frac{5}{9}\]

A Python function will have a name (and we hope that the name is
self-explanatory as to what the function does), and a set of input
parameters. In the case above, the function would look like this:

def fahrenheit_to_centigrade(deg_fahrenheit):
 """A function to convert from degrees Fahrenheit to degrees Centigrade

 Parameters

 deg_fahrenheit: float
 Temperature in degrees F

 Returns

 Temperature converted to degrees C
 """
 deg_c = (deg_fahrenheit - 32.)*5./9.
 return deg_c

We see that the function has a name (fahrenheit_to_centigrade), and
takes one parameter (deg_fahrenheit).

The main body of the function is indented (like if and for
statements). There is first a comment string, that describes what the
function does, as well as what the inputs are, and what the output is.
This is just useful documentation of the code.

The main body of the function calculates deg_C from the given input,
and returns it back to the user.

Notice that the document string
"""A function to convert from temperature... """ is what is printed
when you request help on the function:

help(fahrenheit_to_centigrade)

Help on function fahrenheit_to_centigrade in module __main__:

fahrenheit_to_centigrade(deg_fahrenheit)
 A function to convert from degrees Fahrenheit to degrees Centigrade

 Parameters

 deg_fahrenheit: float
 Temperature in degrees F

 Returns

 Temperature converted to degrees C

E2.1.1 Exercise

	In the vein of converting units, write functions that convert from

	inches to m (and back)

	kg to stones (and back)

Hint: A stone is equal to 14 pounds, and a pound is equal to 0.45359237
kg.

Ensure that your functions are clearly named, have sensible variable
names, a brief docmentation string, and remember to test the functions
work: just demonstrate running the function with some input pairs where
you know the output and checking it makese sense.

Space for your solution
ANSWER
conversion factors found from
googling

def inches_to_metre(value_inches):
 '''
 convert input value in inches
 to metres
 '''
 return (value_inches * 0.0254)

def metre_to_inches(value_metre):
 '''
 convert input value in metres
 to inches
 '''
 return (value_metre / 0.0254)

def kg_to_stone(value_kg):
 '''
 convert input value in Kg to stone
 '''
 return(value_kg*0.157473)

def stone_to_kg(value_stone):
 '''
 convert input value in stone to Kg
 '''
 return(value_stone/0.157473)

test:

print('6 inches is',inches_to_metre(6),'m')
print('70 Kg is',kg_to_stone(70),'stone')

6 inches is 0.15239999999999998 m
70 Kg is 11.02311 stone

2.2 numpy

2.2.1 arrays

You import the numpy library using

import numpy as np

This means that all the functionality of numpy is accessed by the
prefix np.: e.g. np.array. The main element of numpy is
the numpy array. An array is like a list, but unlike a list, all the
elements are of the same type, floating point numbers for example.

Let’s see some arrays in action…

import numpy as np # Import the numpy library

An array with 5 ones
arr = np.ones(5)
print(arr)
print(type(arr))

An array started from a list of **integers**
arr = np.array([1, 2, 3, 4])
print(arr)

An array started from a list of numbers, what's the difference??
arr = np.array([1., 2, 3, 4])
print(arr)

[1. 1. 1. 1. 1.]
<class 'numpy.ndarray'>
[1 2 3 4]
[1. 2. 3. 4.]

In the example above we have generated an array where all the elements
are 1.0, using
`np.ones <https://docs.scipy.org/doc/numpy/reference/generated/numpy.ones.html>`__,
and then we have been able to generate arrays from lists using the
`np.array <https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html>`__
function. The difference between the 2nd and 3rd examples is that in the
2nd example, all the elements of the list are integers, and in the 3rd
example, one is a floating point number. numpy automatically makes
the array floating point by converting the integers to floating point
numbers.

What can we do with arrays? We can efficiently operate on individual
elements without loops:

arr = np.ones(10)
print(2 * arr)

[2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]

numpy is clever enough to figure out that the 2 multiplying the
array is applied to all elements of the array, and returns an array of
the same size as arr with the elements of arr multiplied by 2.
We can also multiply two arrays of the same size. So let’s create an
array with the numbers 0 to 9 and one with the numbers 9 to 0 and do a
times table:

arr1 = 9 * np.ones(10)
arr2 = np.arange(1, 11) # arange gives an array from 1 to 11, 11 not included

print(arr1)
print(arr2)

print(arr1 * arr2)

[9. 9. 9. 9. 9. 9. 9. 9. 9. 9.]
[1 2 3 4 5 6 7 8 9 10]
[9. 18. 27. 36. 45. 54. 63. 72. 81. 90.]

E2.2.1 Exercise

	Using code similar to the above and a for loop, write the times
tables for 2 to 10. The solution you’re looking for should look a bit
like this:

[2 4 6 8 10 12 14 16 18 20]
[3 6 9 12 15 18 21 24 27 30]
[4 8 12 16 20 24 28 32 36 40]
[5 10 15 20 25 30 35 40 45 50]
[6 12 18 24 30 36 42 48 54 60]
[7 14 21 28 35 42 49 56 63 70]
[8 16 24 32 40 48 56 64 72 80]
[9 18 27 36 45 54 63 72 81 90]
[10 20 30 40 50 60 70 80 90 100]

Your solution here
ANSWER

a = np.arange(1, 11)

for b in range(2,11):
 print(a * b)

[2 4 6 8 10 12 14 16 18 20]
[3 6 9 12 15 18 21 24 27 30]
[4 8 12 16 20 24 28 32 36 40]
[5 10 15 20 25 30 35 40 45 50]
[6 12 18 24 30 36 42 48 54 60]
[7 14 21 28 35 42 49 56 63 70]
[8 16 24 32 40 48 56 64 72 80]
[9 18 27 36 45 54 63 72 81 90]
[10 20 30 40 50 60 70 80 90 100]

If the arrays are of the same shape, you can do standard operations
between them element-wise:

arr1 = np.array([3, 4, 5, 6.])
arr2 = np.array([30, 40, 50, 60.])

print(arr2 - arr1)
print(arr1 * arr2)

print("Array shapes:")
print("arr1: ", arr1.shape)
print("arr2: ", arr2.shape)

[27. 36. 45. 54.]
[90. 160. 250. 360.]
Array shapes:
arr1: (4,)
arr2: (4,)

The numpy documenation is huge. There’s an user’s
guide [https://docs.scipy.org/doc/numpy/user/index.html], as well as
a reference to all the contents of the
library [https://docs.scipy.org/doc/numpy/reference/index.html].
There’s even a tutorial
availabe [https://docs.scipy.org/doc/numpy/user/quickstart.html] if
you get bored with this one.

2.2.2 More detail about numpy.arrays

So far, we have seen a 1D array, which is the equivalent to a vector.
But arrays can have more dimensions: a 2D array would be equivalent to a
matrix (or an image, with rows and columns), and a 3D array would be a
volume split into voxels, as seen below

[image: numpy arrays]
numpy arrays

So a 1D array has one axis, a 2D array has 2 axes, a 3D array 3, and so
on. The shape of the array provides a tuple with the number of
elements along each axis. Let’s see this with some generally useful
array creation options:

Create a 2D array from a list of rows. Note that the 3 rows have the same number of elements!
arr1 = np.array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [10, 11, 12, 13, 14]])
A 2D array from a list of tuples.
We're specifically asking for floating point numbers
arr2 = np.array([(1.5, 2, 3), (4, 5, 6)], dtype=np.float)
print("3*5 array:")
print(arr1)
print("2*3 array:")
print(arr2)

3*5 array:
[[0 1 2 3 4]
 [5 6 7 8 9]
 [10 11 12 13 14]]
2*3 array:
[[1.5 2. 3.]
 [4. 5. 6.]]

2.2.3 Array creators

Quite often, we will want to initialise an array to be all the same
number. The methods for doing this as 0,1 and unspecified in numpy
are np.zeros(), np.ones(), np.empty() respectively.

Creates a 3*4 array of 0s
arr = np.zeros((3, 4))
print("3*4 array of 0s")
print(arr)

Creates a 2x3x4 array of int 1's
print("2*3*4 array of 1s (integers)")
arr = np.ones((2, 3, 4), dtype=np.int)
print(arr)

Creates an empty (e.g. uninitialised) 2x3 array. Elements are random
print("2*3 empty array (contents could be anything)")
arr = np.empty((2, 3))
print(arr)

3*4 array of 0s
[[0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]]
2*3*4 array of 1s (integers)
[[[1 1 1 1]
 [1 1 1 1]
 [1 1 1 1]]

 [[1 1 1 1]
 [1 1 1 1]
 [1 1 1 1]]]
2*3 empty array (contents could be anything)
[[1.5 2. 3.]
 [4. 5. 6.]]

Exercise E2.2.2

	write a function that does the following:

	create a 2-D tuple called indices containing the integers
((0, 1, 2, 3, 4),(5, 6, 7, 8, 9))

	create a 2-D numpy array called data of shape (5,10), data
type int, initialised with zero

	set the value of data[r,c] to be 1 for each of the 5
row,column pairs specified in indices.

	return the data array

	print out the result returned

The result should look like:

[[0 0 0 0 0 1 0 0 0 0]
 [0 0 0 0 0 0 1 0 0 0]
 [0 0 0 0 0 0 0 1 0 0]
 [0 0 0 0 0 0 0 0 1 0]
 [0 0 0 0 0 0 0 0 0 1]]

Hint: You could use a for loop, but what does data[indices]
give?

do exercise here
ANSWER

def doit():
 indices = ((0, 1, 2, 3, 4),(5, 6, 7, 8, 9))
 data = np.zeros((5,10),dtype=np.int)
 data[indices] = 1
 return(data)

print(doit())

[[0 0 0 0 0 1 0 0 0 0]
 [0 0 0 0 0 0 1 0 0 0]
 [0 0 0 0 0 0 0 1 0 0]
 [0 0 0 0 0 0 0 0 1 0]
 [0 0 0 0 0 0 0 0 0 1]]

Exercise 2.2.3

	write a more flexible version of you function above where
indices, the value you want to set (1 above) and the desired
shape of data are specified through function keyword arguments
(e.g. indices=((0, 1, 2, 3, 4),(5, 6, 7, 8, 9)),value=1,shape=(5,10))

do exercise here
ANSWER

def doit(indices = ((0, 1, 2, 3, 4),(5, 6, 7, 8, 9)),\
 shape = (5,10),\
 value = 1):

 data = np.zeros(shape,dtype=type(value))
 data[indices] = value
 return(data)

print(doit(value=10.5))

[[0. 0. 0. 0. 0. 10.5 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 10.5 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 10.5 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 10.5 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 10.5]]

As well as initialising arrays with the same number as above, we often
also want to initialise with common data patterns. This includes simple
integer ranges (start, stop, skip) in a similar fashion to slicing
in the last session, or variations on this theme:

array creators

print("1D array of numbers from 0 to 2 in increments of 0.3")
start = 0
stop = 2.0
skip = 0.3

arr = np.arange(start,stop,skip)
print(f'arr of shape {arr.shape}:\n\t{arr}')

start = 0
stop = 34
nsamp = 9
arr = np.linspace(start,stop,nsamp)
print(f"array of shape {arr.shape} numbers equally spaced from {start} to {stop}:\n\t{arr}")

np.linspace(stop,start,9)

1D array of numbers from 0 to 2 in increments of 0.3
arr of shape (7,):
 [0. 0.3 0.6 0.9 1.2 1.5 1.8]
array of shape (9,) numbers equally spaced from 0 to 34:
 [0. 4.25 8.5 12.75 17. 21.25 25.5 29.75 34.]

array([34. , 29.75, 25.5 , 21.25, 17. , 12.75, 8.5 , 4.25, 0.])

Exercise E2.2.4

	print an array of integer numbers from 100 to 1

	print an array with 9 numbers equally spaced between 100 and 1

Hint: what value of skip would be appropriate here? what about start
and stop?

do exercise here
print(np.arange(100,0,-1))
print(np.linspace(100,0,9))

[100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83
 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65
 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47
 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29
 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11
 10 9 8 7 6 5 4 3 2 1]
[100. 87.5 75. 62.5 50. 37.5 25. 12.5 0.]

2.2.4 Summary statistics

Below are some typical arithmetic operations that you can use on arrays.
Remember that they happen elementwise (i.e. to the whole array).

b = np.arange(4)
print(f'{b}^2 = {b**2}\n')

a = np.array([20, 30, 40, 50])
print(f"assuming in radians,\n10*sin({a}) = {10 * np.sin(a)}")

print("\nSome useful numpy array methods for summary statistics...\n")
print("Find the maximum of an array: a.max(): ", a.max())
print("Find the minimum of an array: a.min(): ", a.min())
print("Find the sum of an array: a.sum(): ", a.sum())
print("Find the mean of an array: a.mean(): ", a.mean())
print("Find the standard deviation of an array: a.std(): ", a.std())

[0 1 2 3]^2 = [0 1 4 9]

assuming in radians,
10*sin([20 30 40 50]) = [9.12945251 -9.88031624 7.4511316 -2.62374854]

Some useful numpy array methods for summary statistics...

Find the maximum of an array: a.max(): 50
Find the minimum of an array: a.min(): 20
Find the sum of an array: a.sum(): 140
Find the mean of an array: a.mean(): 35.0
Find the standard deviation of an array: a.std(): 11.180339887498949

Let’s access an interesting dataset on the frequency of satellite
launches to illustrate this.

[image: SpaceX landing]
SpaceX landing

from geog0111.nsat import nsat

'''
This dataset gives the number of
satellites launched per month and year
data from https://www.n2yo.com
'''
We use the code supplied in nsat.py
to generate the dataset (takes time)
or to load it if it exists
data,years = nsat().data,nsat().years

print(f'data shape {data.shape}')

print(f'some summary statistics over the period {years[0]} to {years[1]}:')
print(f'The total number of launches is {data.sum():d}')
print(f'The mean number of launches is {data.mean():.3f} per month')

data shape (12, 62)
some summary statistics over the period 1957 to 2019:
The total number of launches is 43611
The mean number of launches is 58.617 per month

Exercise E2.2.5

	copy the code above but generate a fuller set of summary statistics
including the standard deviation, minimum and maximum.

do exercise here
ANSWER

data,years = nsat().data,nsat().years

print(f'data shape {data.shape}')

print(f'some summary statistics over the period {years[0]} to {years[1]}:')

print(f'The total number of launches is {data.sum():d}')
print(f'The mean number of launches is {data.mean():.3f} per month')
print(f'The minimum number of launches is {data.min():.3f} per month')
print(f'The maximum number of launches is {data.max():.3f} per month')
print(f'The std dev number of launches is {data.std():.3f} per month')
print(f'The median number of launches is {np.median(data):.3f} per month')

data shape (12, 62)
some summary statistics over the period 1957 to 2019:
The total number of launches is 43611
The mean number of launches is 58.617 per month
The minimum number of launches is 0.000 per month
The maximum number of launches is 3476.000 per month
The std dev number of launches is 161.904 per month
The median number of launches is 30.000 per month

Whilst we have generated some interesting summary statistics on the
dataset, it’s not really enough to give us a good idea of the data
characteristics.

To do that, we want to be able to ask somewhat more complex questions of
the data, such as, which year has the most/least launches? which month
do most launches happen in? which month in which year had the most
launches? which years had more than 100 launches?

To be able to address these, we need some new concepts:

	methods argmin() and argmax() that provide the index where
the min/max occurs

	filtering and the related method where()

	axis methods: the dataset is two-dimensional, and for some
questions we need to operate only over one of these

To illustrate:

from geog0111.nsat import nsat
import numpy as np

data,years = nsat().data,nsat().years

year = np.arange(years[0],years[1],dtype=np.int)

sum the data over all months (axis 0)
sum_per_year = data.sum(axis=0)

imax = np.argmax(sum_per_year)
imin = np.argmin(sum_per_year)

filtering
high(low) is an array set to True where the condition
is True, and False otherwise
high = sum_per_year>=1000
low = sum_per_year<=300

print(f'the year with most launches was {year[imax]} with {sum_per_year[imax]}')
print(f'the year with fewest launches was {year[imin]} with {sum_per_year[imin]}')

print('\nThe years with >= 1000 launches are:')
print(year[high],'\nvalues:\n',sum_per_year[high])
print('The years with <= 300 launches are:')
print(year[low],'\nvalues:\n',sum_per_year[low])

the year with most launches was 1999 with 4195
the year with fewest launches was 1957 with 3

The years with >= 1000 launches are:
[1965 1975 1976 1981 1986 1987 1993 1994 1999 2006]
values:
 [1527 1195 1264 1190 1375 1130 2131 1166 4195 1158]
The years with <= 300 launches are:
[1957 1958 1959 1960 1962 1996 2002 2003 2004 2005]
values:
 [3 11 22 52 207 246 277 243 209 192]

Exercise E2.2.6

	copy the code above, and modify it to find the total launches per
month (over all years)

	show these data in a table

	which month do launches mostly take place in? which month do launches
most seldom take place in?

do exercise here
ANSWER

from geog0111.nsat import nsat
import numpy as np
from datetime import datetime

data,years = nsat().data,nsat().years

year = np.arange(years[0],years[1],dtype=np.int)

month = np.arange(0,12)
OR BETTER AS STRINGS ... use datetime for things like this
see http://blog.e-shell.org/94
month = np.array([datetime(2018, i, 1).strftime('%B') for i in range(1,13)])

sum the data over all years (axis 1)
sum_per_month = data.sum(axis=1)

imax = np.argmax(sum_per_month)
imin = np.argmin(sum_per_month)

filtering
high(low) is an array set to True where the condition
is True, and False otherwise
high = sum_per_month>=5000
low = sum_per_month<=3000

print(high,low)

print(f'the month with most launches was {month[imax]} with {sum_per_month[imax]}')
print(f'the month with fewest launches was {month[imin]} with {sum_per_month[imin]}')

print('\nThe months with >= 5000 launches are:')
print(month[high],'\nvalues:\n',sum_per_month[high])
print('The months with <= 3000 launches are:')
print(month[low],'\nvalues:\n',sum_per_month[low])

[False False False False True True False False False False False False] [True False True False False False False True False False False False]
the month with most launches was May with 6504
the month with fewest launches was January with 1868

The months with >= 5000 launches are:
['May' 'June']
values:
 [6504 5559]
The months with <= 3000 launches are:
['January' 'March' 'August']
values:
 [1868 2771 2313]

The form of filtering above (high = sum_per_year>=1000) produces a
numpy array of the same shape as that operated on (sum_per_year
here) of bool data type. It has entries of True where the
condition is met, and False where it is not met.

from geog0111.nsat import nsat
sum the data over all months (axis 0)
sum_per_year = nsat().data.sum(axis=0)

high = sum_per_year>=1000
low = sum_per_year<=300

print(f'type(sum_per_year): {type(sum_per_year)}, sum_per_year.shape: {sum_per_year.shape}, ' \
 + f'sum_per_year.dtype: {sum_per_year.dtype}')
print(f'type(high): {type(high)}, high.shape: {high.shape}, high.dtype: {high.dtype}\n')

print(f'sum_per_year: {sum_per_year}')
print(f'high: {high}')
print(f'low: {low}')

type(sum_per_year): <class 'numpy.ndarray'>, sum_per_year.shape: (62,), sum_per_year.dtype: int64
type(high): <class 'numpy.ndarray'>, high.shape: (62,), high.dtype: bool

sum_per_year: [3 11 22 52 396 207 346 401 1527 786 466 690 641 906
 636 654 875 694 1195 1264 891 783 857 637 1190 946 884 760
 788 1375 1130 814 950 691 691 740 2131 1166 534 246 960 651
 4195 730 582 277 243 209 192 1158 349 406 378 373 315 435
 352 355 335 308 512 320]
high: [False False False False False False False False True False False False
 False False False False False False True True False False False False
 True False False False False True True False False False False False
 True True False False False False True False False False False False
 False True False False False False False False False False False False
 False False]
low: [True True True True False True False False False False False False
 False False False False False False False False False False False False
 False False False False False False False False False False False False
 False False False True False False False False False True True True
 True False False False False False False False False False False False
 False False]

We can think of this logical array as a ‘data mask’ that we use to
select (filter) entries.

The figure shows log(sum_per_year) in the top line of the image
(numbers represented by colour shown in colourbar), then a
representation of the bool arrays high and low. Where the
bool value is shown yellow, the ‘data mask’ is true. [image: image0]

print(f'{sum_per_year[high]}')
print(f'{sum_per_year[low]}')

[1527 1195 1264 1190 1375 1130 2131 1166 4195 1158]
[3 11 22 52 207 246 277 243 209 192]

Sometimes, instead of just applying the filter as above, we want to know
the indices of the filtered values.

To do this, we can use the np.where() method. This takes a bool
array as its argument (such as our data masks or other conditions) and
returns a tuple of the indices where this is set True.

from geog0111.nsat import nsat
data,years = nsat().data,nsat().years
where :
which months in the dataset were particularly busy ..
we select data > 400 as a condition

indices = np.where(data > 400)
print(f'indices:\n{indices[0]}\n{indices[1]}')
print(f'\ntype(indices): {type(indices)}')
print(f'len(indices): {len(indices)}, len(indices[0]): {len(indices[0])}')
print(f'type(indices[0][0]): {type(indices[0][0])}')

year = np.arange(years[0],years[1],dtype=np.int)
month = np.arange(12)

nsamp = len(indices[0])

loop over the entries in the tuple
print('*'*23)
print('busy months')
print('*'*23)
for i in range(nsamp):
 print(f'{i:04d} month {month[indices[0][i]]:02d}'+\
 f' year {year[indices[1][i]]:04d}')
print('*'*23)

indices:
[1 3 4 4 5 5 5 6 8 8 9 9]
[29 13 37 42 24 36 49 19 40 43 8 42]

type(indices): <class 'tuple'>
len(indices): 2, len(indices[0]): 12
type(indices[0][0]): <class 'numpy.int64'>

busy months

0000 month 01 year 1986
0001 month 03 year 1970
0002 month 04 year 1994
0003 month 04 year 1999
0004 month 05 year 1981
0005 month 05 year 1993
0006 month 05 year 2006
0007 month 06 year 1976
0008 month 08 year 1997
0009 month 08 year 2000
0010 month 09 year 1965
0011 month 09 year 1999

Exercise E2.2.7

	Using code from the sections above, print out a table with the
busiest launch months with an additional column stating the number of
launches

Hint: this is just adding another column to the print statement in the
for loop

do exercise here
ANSWER

from geog0111.nsat import nsat
data,years = nsat().data,nsat().years
where :
which months in the dataset were particularly busy ..
we select data > 400 as a condition

indices = np.where(data > 400)
print(f'indices:\n{indices[0]}\n{indices[1]}')
print(f'\ntype(indices): {type(indices)}')
print(f'len(indices): {len(indices)}, len(indices[0]): {len(indices[0])}')
print(f'type(indices[0][0]): {type(indices[0][0])}')

year = np.arange(years[0],years[1],dtype=np.int)
month = np.arange(12)

nsamp = len(indices[0])

loop over the entries in the tuple
print('*'*23)
print('busy months')
print('*'*23)
for i in range(nsamp):
 '''
 Add in extra column here
 '''
 m = month[indices[0][i]]
 y = year[indices[1][i]]
 print(f'{i:04d} month {m:02d}'+\
 f' year {y:04d}'+\
 f' n_launches {data[m-1,y-years[0]]}')
print('*'*23)

indices:
[1 3 4 4 5 5 5 6 8 8 9 9]
[29 13 37 42 24 36 49 19 40 43 8 42]

type(indices): <class 'tuple'>
len(indices): 2, len(indices[0]): 12
type(indices[0][0]): <class 'numpy.int64'>

busy months

0000 month 01 year 1986 n_launches 38
0001 month 03 year 1970 n_launches 18
0002 month 04 year 1994 n_launches 21
0003 month 04 year 1999 n_launches 30
0004 month 05 year 1981 n_launches 60
0005 month 05 year 1993 n_launches 28
0006 month 05 year 2006 n_launches 16
0007 month 06 year 1976 n_launches 59
0008 month 08 year 1997 n_launches 36
0009 month 08 year 2000 n_launches 24
0010 month 09 year 1965 n_launches 34
0011 month 09 year 1999 n_launches 39

You might notice the indices in the tuple derived above using where
are ordered, but the effect of this is that the months are in
sequential order, rather than the years. We have

month[indices[0][i]]
year[indices[1][i]]

If we want to put the data in year order, there are several ways we
could go about this. An insteresting one, following the ideas in
argmax() and argmin() above is to use argsort(). This gives
the indices of the sorted array, rather than the values.

So here, we can find the indices of the year-sorted array, and apply
them to both month and year datasets:

prepare data as above
from geog0111.nsat import nsat
data,years = nsat().data,nsat().years
indices = np.where(data > 400)
year = np.arange(years[0],years[1],dtype=np.int)
month = np.arange(12,dtype=np.int)

store the months and years
in their unsorted (original) form
unsorted_months = month[indices[0]]
unsorted_years = year[indices[1]]
print(f'years not in order: {unsorted_years}')
print(f'but months are: {unsorted_months}\n')

get the indices to put years in order
year_order = np.argsort(indices[1])

apply this to months and years
print(f'year order: {year_order}\n')
print(f'years in order: {unsorted_years[year_order]}')
print(f'months in year order: {unsorted_months[year_order]}')

years not in order: [1986 1970 1994 1999 1981 1993 2006 1976 1997 2000 1965 1999]
but months are: [1 3 4 4 5 5 5 6 8 8 9 9]

year order: [10 1 7 4 0 5 2 8 3 11 9 6]

years in order: [1965 1970 1976 1981 1986 1993 1994 1997 1999 1999 2000 2006]
months in year order: [9 3 6 5 1 5 4 8 4 9 8 5]

Exercise E2.2.8

	Use this example of argsort() to redo Exercise E2.2.7, putting
the data in correct year order

do exercise here
ANSWER
'''
This is quite tricky to get right ...

first, work through the example above then apply
what you have learned

Dont forget to check the results against the
table above!

'''

from geog0111.nsat import nsat
data,years = nsat().data,nsat().years
where :
which months in the dataset were particularly busy ..
we select data > 400 as a condition

indices = np.where(data > 400)
print(f'indices:\n{indices[0]}\n{indices[1]}')
print(f'\ntype(indices): {type(indices)}')
print(f'len(indices): {len(indices)}, len(indices[0]): {len(indices[0])}')
print(f'type(indices[0][0]): {type(indices[0][0])}')

year = np.arange(years[0],years[1],dtype=np.int)
month = np.arange(12)

'''
store unsorted data
'''
unsorted_months = month[indices[0]]
unsorted_years = year[indices[1]]

get the indices to put years in order
year_order = np.argsort(indices[1])

nsamp = len(indices[0])

loop over the entries in the tuple
print('*'*23)
print('busy months')
print('*'*23)
for i in range(nsamp):
 '''
 Add in extra column here
 '''
 m = unsorted_months[year_order[i]]
 y = unsorted_years[year_order[i]]
 print(f'{i:04d} month {m:02d}'+\
 f' year {y:04d}'+\
 f' n_launches {data[m-1,y-years[0]]}')
print('*'*23)

indices:
[1 3 4 4 5 5 5 6 8 8 9 9]
[29 13 37 42 24 36 49 19 40 43 8 42]

type(indices): <class 'tuple'>
len(indices): 2, len(indices[0]): 12
type(indices[0][0]): <class 'numpy.int64'>

busy months

0000 month 09 year 1965 n_launches 34
0001 month 03 year 1970 n_launches 18
0002 month 06 year 1976 n_launches 59
0003 month 05 year 1981 n_launches 60
0004 month 01 year 1986 n_launches 38
0005 month 05 year 1993 n_launches 28
0006 month 04 year 1994 n_launches 21
0007 month 08 year 1997 n_launches 36
0008 month 04 year 1999 n_launches 30
0009 month 09 year 1999 n_launches 39
0010 month 08 year 2000 n_launches 24
0011 month 05 year 2006 n_launches 16

2.2.5 Summary

In this section, you have been introduced to more detail on arrays in
numpy. The big advantages of numpy are that you can easily
perform array operators (such as adding two arrays together), and that
numpy has a large number of useful functions for manipulating
N-dimensional data in array form. This makes it particularly appropriate
for raster geospatial data processing.

We have seen how to create various forms of array (e.g. np.ones(),
np.arange()), how to calculate some basic statistics (min(),
max() etc), and finding the array index where some pattern occurs
(e.g. argmin(), argsort() or where()).

2.3 Plotting with Matplotlib

There are quite a few graphical libraries for
Python [https://scipy.org/topical-software.html#plotting-data-visualization-3-d-programming],
but matplotlib [http://matplotlib.org] is probably the most famous
one. It does pretty much all you need in terms of 2D plots, and simple
3D plots, and is fairly straightforward to use. Have a look at the
matplotlib gallery [https://matplotlib.org/gallery/index.html] for a
fairly comprehensive list of examples of what the library can do as well
as the code that was used in the examples.

Importing matplotlib

You can import matplotlib with

import matplotlib.pyplot as plt

As with numpy, it’s custom to use the plt prefix to call
matplotlib commands. In the notebook, you should also issue the
following command just after the import

%matplotlib notebook

or

%matplotlib inline

The former command will make the plots in the notebook interactive
(i.e. point-and-click-ey), and the second will just stick the plots into
the notebook as PNG files.

Simple 2D plots

The most basic plots are 2D plots (e.g. x and y).

import matplotlib.pyplot as plt
%matplotlib inline

from geog0111.nsat import nsat
import numpy as np
'''
This dataset gives the number of
satellites launched per month and year

data from https://www.n2yo.com
'''
data,years = nsat().data,nsat().years
year = np.arange(years[0],years[1],dtype=np.int)
sum the data over all months (axis 0)
sum_per_year = data.sum(axis=0)

print(f'data shape {data.shape}')

plot x as year
plot y as the number of satellites per year
plt.plot(year,sum_per_year,label='launches per year')

data shape (12, 62)

[<matplotlib.lines.Line2D at 0x11d5c13c8>]

[image: _images/Chapter2_Numpy_matplotlib_answers_56_2.png]
Whilst this plot is fine, there are a few simple things we could do
improve it.

We will go through some of the options below, but to get a taste of
improved ploitting, lets use e.g.:

	reset the image shape/size

	plt.figure(figsize=(13,3))

	plot the mean value (as a red dashed line) for comparison

	plt.plot([year[0],year[-1]],[mean,mean],'r--',label='mean')

	limit the dataset to range of variable year

	plt.xlim(year[0],year[-1])

	put labels on the x and y axes

	plt.xlabel('year')

	plt.ylabel('# satellite launches')

	set a title

	plt.title('data from https://www.n2yo.com')

	use a legend (in conjunction with label= using plot)

	plt.legend(loc='best')

	use a log scale in the y-axis

	plt.semilogy()

What you choose to do will depend on what you want to show on the graph,
but the examples above are quite common.

import matplotlib.pyplot as plt
%matplotlib inline
from geog0111.nsat import nsat
import numpy as np
'''data as above'''
data,years = nsat().data,nsat().years
year = np.arange(years[0],years[1],dtype=np.int)
sum_per_year = data.sum(axis=0)

calculate mean of sum_per_year
mean = sum_per_year.mean()

plt.figure(figsize=(13,3))
plt.plot(year,sum_per_year,label='launches per year')
plt.plot([year[0],year[-1]],[mean,mean],'r--',label='mean')
plt.xlim(year[0],year[-1])
plt.xlabel('year')
plt.ylabel('# satellite launches')
plt.title('data from https://www.n2yo.com')
plt.legend(loc='best')
plt.semilogy()

[]

[image: _images/Chapter2_Numpy_matplotlib_answers_58_1.png]
Exercise E2.3.1

	produce a plot showing launches per year as a function of year,
showing data for selected months individually.

Hint: do a simple plot first, then add some improvements gradually. You
might set up a list of months to process and use a loop to go over each
month.

do exercise here
ANSWER

import matplotlib.pyplot as plt
%matplotlib inline
from geog0111.nsat import nsat
import numpy as np
'''data as above'''
data,years = nsat().data,nsat().years
year = np.arange(years[0],years[1],dtype=np.int)

data contains the info we want
#sum_per_year = data.sum(axis=0)

plt.figure(figsize=(13,3))
loop over the months we want
for month in [0,3,5]:
 plt.plot(year,data[month],label=f'month {month:02d}')

better still would be to use month names
as in example above

plt.xlim(year[0],year[-1])
plt.xlabel('year')
plt.ylabel('# satellite launches')
plt.title('data from https://www.n2yo.com')
plt.legend(loc='best')
plt.semilogy()

[]

[image: _images/Chapter2_Numpy_matplotlib_answers_60_1.png]
Exercise 2.3.2

Putting together some ideas from above to look at some turning points in
a function:

	generate a numpy array called x with 100 equally spaced numbers
between 0 and 5

	generate a numpy array called y which contains
\(x^3 - 9 x^2 + 26 x - 24\)

	plot y as a function of x with a red line

	plot only positive values of y (as a function of x) with
a green line

Hint: to plot with red and green line plot(x,y,'r') and
plot(x,y,'g')

do exercise here
ANSWER

x = np.linspace(0,5,100)
y = x**3 - 9 * x**2 + 26 * x - 24
mask for +ve y
w = y > 0

'''
Its quite difficult to get the green line right
as it has a gap in the middle
so may be better to plot with symbols eg +
'''
plt.plot(x,y,'r-')
plt.plot(x[w],y[w],'g+')

[<matplotlib.lines.Line2D at 0x12296a048>]

[image: _images/Chapter2_Numpy_matplotlib_answers_62_1.png]

2.4 Indexing and slicing arrays

2.4.1 Recap

Selecting different elements of the array to operate in them is a very
common task. numpy has a very rich syntax for selecting different
bits of the array. We have come across slicing before, but it is so
important to array processing, we will go over some of it again.

Similar to lists, you can refer to elements in the array by their
position. You can also use the : symbol to specify a range (a
slice) of positions first_element:(last_element+1. If you want
to start counting from the end of the array, use negative numbers:
-1 refers to the last element of the array, -2 the one before
last and so on. In a slice, you can also specify a step as the third
element in first_element:(last_element+1:step. If the step is
negative you count from the back.

All this probably appears mind bogging, but it’s easier shown in
practice. You’ll get used to it quite quickly once you start using it

import numpy as np

a = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
print(a[2]) # 2
print(a[2:5]) # [2, 3, 4]
print(a[-1]) # 10
print(a[:8]) # [0, 1, 2, 3, 4, 5, 6, 7]
print(a[2:]) # [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
print(a[5:2:-1]) # [5, 4, 3]

2
[2 3 4]
10
[0 1 2 3 4 5 6 7]
[2 3 4 5 6 7 8 9 10]
[5 4 3]

The concept extends cleanly to multidimensional arrays…

b = np.array([[0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23], [30, 31, 32, 33],
 [40, 41, 42, 43]])

print(b[2, 3]) # 23
print(b[0:5, 1]) # each row in the second column of b
print(b[:, 1]) # same thing as above
print(b[1:3, :]) # each column in the second and third row of b

23
[1 11 21 31 41]
[1 11 21 31 41]
[[10 11 12 13]
 [20 21 22 23]]

Exercise 2.4.1

	generate a 2-D numpy array of integer zeros called x, of shape
(7,7)

	we can think of this as a square. Set the central 3 by 3 samples of
the square to one

	print the result

Hint: Don’t use looping, instead work out how to define the slice of the
central 3 x 3 samples.

do exercise here
ANSWER

x = np.zeros((7,7)).astype(int)
r0,c0 = x.shape
cx,cy = int(r0/2),int(c0/2)

x[cx-1:cx+2,cy-1:cy+2] =1

print(x)

[[0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0]
 [0 0 1 1 1 0 0]
 [0 0 1 1 1 0 0]
 [0 0 1 1 1 0 0]
 [0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0]]

2.4.1 data mask

A useful way to select elements is by using what’s called a mask as we
saw above: an array of logical (boolean) elements that only selects the
elements that are True:

a = np.arange(10)
select_me = a >= 7
print(a[select_me])

[7 8 9]

The previous point also shows something interesting: you can apply
comparisons element by element. So in the previous example,
select_me is a 10 element array where all the elements of a that
are equal or higher than 7 are set to True.

If you want to build up element by element logical operations, it’s best
to use specialised functions like
`np.logical_and <https://docs.scipy.org/doc/numpy/reference/generated/numpy.logical_and.html>`__
and friends

a = np.arange(100)
sel1 = a > 45
sel2 = a < 73
print(a[np.logical_and(sel1, sel2)])

[46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
 70 71 72]

Exercise 2.4.2

	generate a numpy array called x with 100 equally spaced numbers
between 0 and 5

	generate a numpy array called y which contains
\(x^3 - 9 x^2 + 26 x - 24\)

	print the values of x for which y is greater than or equal to
zero and x lies between 3.5 and 4.5

do exercise here
ANSWER

x = np.linspace(0,5,100)
y = x**3 - 9*x**2 + 26*x - 24

conditions
w1 = np.logical_and(x>3.5,x<=4.5)
w2 = np.logical_and(y >= 0,w1)
print(x[w2])

[4.04040404 4.09090909 4.14141414 4.19191919 4.24242424 4.29292929
 4.34343434 4.39393939 4.44444444 4.49494949]

2.5 Reading data

2.5.1 np.loadtxt

It’s a bit tedious just making up numbers to play with them, but it’s
easy to load up data from external files. The most common data
interchange format is CSV (comma-seperated
values) [https://en.wikipedia.org/wiki/Comma-separated_values], a
plain text format. Think of CSV as a plain text table. Each element in
each row is separated by a comma (although other symbols, such as white
space, semicolons ;, tabs \t or pipe | symbols are often
found as delimiters). The first few lines might contain some metadata
that describes the dataset, and the first line will also contain the
names of the headers of the different columns. Lines starting with #
tend to be ignored. An example file might look like this

Monthly transatlantic airtravel, in thousands of passengers, for 1958-1960.
There are 4 fields, "Month", "1958", "1959" and "1960" and 12 records, "JAN" through "DEC".
There is also an initial header line.
And some lines with comments starting with
Data obtained from https://people.sc.fsu.edu/~jburkardt/data/csv/csv.html
"Month", "1958", "1959", "1960"
"JAN", 340, 360, 417
"FEB", 318, 342, 391
"MAR", 362, 406, 419
"APR", 348, 396, 461
"MAY", 363, 420, 472
"JUN", 435, 472, 535
"JUL", 491, 548, 622
"AUG", 505, 559, 606
"SEP", 404, 463, 508
"OCT", 359, 407, 461
"NOV", 310, 362, 390
"DEC", 337, 405, 432

We can see the first few lines are comments or metadata, the first line
without a # is the headers, and we note that text is entered between
"s. In this case, the delimiter is a comma. We can read the data
as an array with
`np.loadtxt <https://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html>`__,
telling it…

	to ignore lines starting by #

	to ignore the first column as it’s text

	to note that the separator is a comma

air_travel = np.loadtxt("data/airtravel.csv", comments="#", skiprows=6, \
 usecols=[1,2,3], delimiter=",")
print(air_travel)
print(air_travel.shape)

[[340. 360. 417.]
 [318. 342. 391.]
 [362. 406. 419.]
 [348. 396. 461.]
 [363. 420. 472.]
 [435. 472. 535.]
 [491. 548. 622.]
 [505. 559. 606.]
 [404. 463. 508.]
 [359. 407. 461.]
 [310. 362. 390.]
 [337. 405. 432.]]
(12, 3)

While np.loadtxt is quite flexible for dealing with text files,
`pandas <https://pandas.pydata.org>`__ absolutely shines at working
with tabular data. You can find a pandas quickstart tutorial
here [https://pandas.pydata.org/pandas-docs/stable/10min.html] if you
are curious about it!

Before we go into plotting, we can do some fun calculations (yay!) using
our airtravel data

Exercise 2.5.1

	Calculate the total number of passengers per year

	Calculate the average number of passengers per month

	Can you spot any trends in the data?

Hint: Remember the .sum(), .mean() methods for arrays?

Space for your solution
ANSWER

shape is (12,3) so, month, year

'''
for examining data, do a plot:

we see a clear summer month peak!!

'''
print(f'total passengers per year: {air_travel.sum(axis=0)}')
print(f'mean passengers per month: {air_travel.mean(axis=1)}')

plt.plot(air_travel.mean(axis=1))

total passengers per year: [4572. 5140. 5714.]
mean passengers per month: [372.33333333 350.33333333 395.66666667 401.66666667 418.33333333
 480.66666667 553.66666667 556.66666667 458.33333333 409.
 354. 391.33333333]

[<matplotlib.lines.Line2D at 0x122b060b8>]

[image: _images/Chapter2_Numpy_matplotlib_answers_78_2.png]
Let’s plot our previous air travel dataset… We’ll plot it as annual
lines, so the x axis will be month number (running from 1 to 12) and the
y axis will be 1000s of passengers. Different line colours will be used
for every year. We’ll also add x and y axes labels, as well as a legend:

You can probably just put this at the top of every notebook you write
Adding it here for completeness
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt

Load airtravel data
air_travel = np.loadtxt("data/airtravel.csv", skiprows=6, \
 unpack=True, usecols=[1,2,3], delimiter=",")

mths = np.arange(1, 13)
plt.figure(figsize=(10,3))
plt.plot(mths, air_travel[0], '-', label="1958")
plt.plot(mths, air_travel[1], '-', label="1959")
plt.plot(mths, air_travel[2], '-', label="1960")
plt.xlabel("Month")
plt.ylabel("1000s of travellers per month")
plt.legend(loc="best")

<matplotlib.legend.Legend at 0x11d5e4898>

[image: _images/Chapter2_Numpy_matplotlib_answers_80_1.png]
You may not want to use lines to join the data points, but symbols like
dots, crosses, etc.

plt.figure(figsize=(10,3))
plt.plot(mths, air_travel[0], 'x', label="1958")
plt.plot(mths, air_travel[1], '+', label="1959")
plt.plot(mths, air_travel[2], 'o', label="1960")
plt.xlabel("Month")
plt.ylabel("1000s of travellers per moth")
plt.legend(loc="best")

<matplotlib.legend.Legend at 0x122220d30>

[image: _images/Chapter2_Numpy_matplotlib_answers_82_1.png]
We can also use dots and lines. Moreover, we can change the type of
line: from full lines to dashed to dash-dot…

plt.figure(figsize=(10,3))
plt.plot(mths, air_travel[0], 'x-', label="1958")
plt.plot(mths, air_travel[1], '+--', label="1959")
plt.plot(mths, air_travel[2], 'o-.', label="1960")
plt.xlabel("Month")
plt.ylabel("1000s of travellers per moth")
plt.legend(loc="best")

<matplotlib.legend.Legend at 0x122314208>

[image: _images/Chapter2_Numpy_matplotlib_answers_84_1.png]
Exercise 2.5.2

The file `NOAA.csv <data/NOAA.csv>`__ contains data from
NOAA [http://www.aoml.noaa.gov/hrd/tcfaq/E11.html] on the number of
storms and hurricanes in the Atlantic basin from 1851 to 2015. The data
columns are described in the first row of the file. The year is in
column 1 and the number of hurricanes in column 3.

For those interested, the data is pulled from the website with
getNOAA.py.

	load the year and hurricane data from the file
`NOAA.csv <data/NOAA.csv>`__ into a numpy array

	produce a plot showing the number of hurricanes as a function of
year, with the data plotted in a blue line

	put a dashed red line on the graph showing the mean number of
hurricanes

	plot circle symbols for all years where the number of hurricanes is
greater than the mean + 1.96 standard deviations.

Hint: the options on np.loadtxt you probably want to use are:
skiprows, delimiter, usecol and unpack. You will need to
select the data that meet the required conditions, combining the
conditions with np.logical_and().

do exercise here

datafile = 'data/NOAA.csv'
data = np.loadtxt(datafile,skiprows=1,delimiter=',',\
 usecols = (1,3),unpack=True)

mean = data[1].mean()
std = data[1].std()

w = data[1] > mean + 1.96 * std

plt.plot(data[0],data[1],label='number of hurricanes')
plt.plot([data[0][0],data[0][-1]],[mean,mean],'r--',label='mean')
plt.plot(data[0][w],data[1][w],'o',label='+ve outliers')
plt.legend(loc='best')

<matplotlib.legend.Legend at 0x122eb3240>

[image: _images/Chapter2_Numpy_matplotlib_answers_86_1.png]

2.5.2 requests

We can use np.loadtxt or similar functions to load tabular data that
we have stored locally in e.g. csv format.

Sometimes we will need pull a data file from a
URL [https://en.wikipedia.org/wiki/URL]. We have used this idea
previously to ‘scrape’ data from a web page, but often the task is more
straightforward, and we effectively need only to ‘download’ the data in
the file.

We will use the requests package to do this and pull the data as a
string. We then use StringIO to allow np.loadtxt to think the
string comes from a data file.

import requests
from io import StringIO

Define the URL with the parameters of interest
url = "https://daymet.ornl.gov/single-pixel/api/" + \
 "data?lat=45.4&lon=-115.0534&vars=tmax&start=2000-01-01&end=2009-12-31"

data = requests.get(url).text

You can check the text file to see its contents, but we now
(i) it's separated by commas
(ii) the first 8 lines are metadata that we're not interested in.
temperature = np.loadtxt(StringIO(data), skiprows=8, delimiter=",", unpack=True)

We expect to get 10 years of data here, so 3650 daily records
the data are given for 365 days per year ...
print(temperature.shape)

(3, 3650)

If we want to store the data file, we can do so by opening a file:

We open the output file, `daymet.csv`
with open("data/daymet_tmax.csv", 'w') as fp:
 # make the HTTPS connection and pull text
 # then write to file
 r = fp.write(data)

You can check the text file to see its contents, but we now
(i) it's separated by commas
(ii) the first 9 lines are metadata that we're not interested in.
temperature = np.loadtxt("data/daymet_tmax.csv", skiprows=8, delimiter=",", unpack=True)

We expect to get ~10 years of data here, so 3650 daily records
print(temperature.shape)

(3, 3650)

The data columns are: Year, day of year (1 to 365) and Tmax
(\(C\)).

How can we plot such data? the technical issue we face is needing to use
the first two columns of data (day of year and year) to describe the
x-axis location.

print('Year ',temperature[0])
print('DOY ',temperature[1])
print('T_max',temperature[2])

Year [2000. 2000. 2000. ... 2009. 2009. 2009.]
DOY [1. 2. 3. ... 363. 364. 365.]
T_max [-1.5 -2.5 -1.5 ... -1.5 -3. -2.]

A simple way of doing this, that would suffice here, would be to convert
day of year to year fraction, then we could write:

year,doy,tmax = temperature
dates = year + (doy-1)/365.

A more elegant way might be to use
`datetime <https://docs.python.org/3/library/datetime.html>`__. This
contains a set of methods that allow you to manipulate date formats.
matplotlib understands the format used, and so it is generally
appropriate to use datetime for date information when plotting.

year,doy,tmax = temperature
dates = [datetime.datetime(int(y), 1, 1) + \
 datetime.timedelta(d - 1) for y,d in zip(year,doy)]

import datetime

year,doy,tmax = temperature
dates = year + (doy-1)/365.
using the simple way here

plt.figure(figsize=(14,3))
plt.plot(dates,tmax)
plt.title(url)
plt.ylabel('T_{max} / C')
plt.xlabel('year')

Text(0.5, 0, 'year')

[image: _images/Chapter2_Numpy_matplotlib_answers_95_1.png]
Exercise E2.5.3

	use the datetime approach to plot the dataset

	print out the value of dates for the first 10 entries to see what
the format looks like

do exercise here
ANSWER

import datetime

year,doy,tmax = temperature

see above!
dates = [datetime.datetime(int(y), 1, 1) + \
 datetime.timedelta(d - 1) for y,d in zip(year,doy)]

using the simple way here

plt.figure(figsize=(14,3))
plt.plot(dates,tmax)
plt.title(url)
plt.ylabel('T_{max} / C')
plt.xlabel('year')

Text(0.5, 0, 'year')

[image: _images/Chapter2_Numpy_matplotlib_answers_97_1.png]
Although we have used this as a one-dimensional dataset (temperature as
a function of time) we could also think of it as two-dimensional
(temperature as a function of (year,doy)). Recall that the shape of
the temperature dataset was (3,3650). We could put the
temperature column into a gridded dataset of shape (10,365) which
would then emphasise the 2-D nature.

We can do this with the numpy method reshape().

year = temperature[0].reshape(10,365)
doy = temperature[1].reshape(10,365)
tmax = temperature[2].reshape(10,365)

plt.figure(figsize=(14,3))
plt.plot(doy,tmax,'x')
plt.title(url)
plt.ylabel('T_{max} / C')
plt.xlabel('day of year')
plt.xlim([1,366])

(1, 366)

[image: _images/Chapter2_Numpy_matplotlib_answers_99_1.png]
Plotting this, we can visualise the year-on-year variations in
temperature for any particular day.

Exercise E2.5.3

	using the reshaped datasets above, calculate and plot the mean value
of tmax as a function of day of year

	calculate standard deviation of tmax as a function of day of
year, and plot dashed lines at mean +/- 1.96 standard deviations

	in another plot, show the mean, +/- 1.96 standard deviations of
tmax as a function of year (i.e. the annual average and standard
deviation)

Hint: use axis=0 when calculating the mean/std over doy of
tmax and axis=1 for processing over year.

do exercise here
ANSWER

meanval = tmax.mean(axis=1)
stdval = tmax.std(axis=1)

plt.plot(year[:,0],meanval)
plt.plot(year[:,0],meanval+1.96*stdval,'k--')
plt.plot(year[:,0],meanval-1.96*stdval,'k--')

[<matplotlib.lines.Line2D at 0x1230c6550>]

[image: _images/Chapter2_Numpy_matplotlib_answers_101_1.png]
do exercise here
ANSWER

meanval = tmax.mean(axis=0)
stdval = tmax.std(axis=0)

plt.plot(doy[0],meanval)
plt.plot(doy[0],meanval+1.96*stdval,'k--')
plt.plot(doy[0],meanval-1.96*stdval,'k--')

[<matplotlib.lines.Line2D at 0x12398a588>]

[image: _images/Chapter2_Numpy_matplotlib_answers_102_1.png]

2.5.4 Homework

Exercise E2.5.4

Select 4 locations in different regions of North America
(e.g. Anchorage, Albuquerque, Seattle, Chicago). Request data on maximum
temperature, precipitation and incident solar radiation for the years
between 1981 to 2010, and plot in 3 different figures:

	Figure 1: The mean daily temperature and the variation (a shaded
area around the mean going from mean value minus 1.96 times the
standard deviation to mean value plus 1.96 times the standard
deviation). Use a subplot or panel for each site

	Figure 2: The mean daily precipitation and the variation (a shaded
area around the mean going from mean value minus 1.96 times the
standard deviation to mean value plus 1.96 times the standard
deviation). Use a subplot or panel for each site

	Figure 3: The mean daily incident solar radiation and the variation
(a shaded area around the mean going from mean value minus 1.96
times the standard deviation to mean value plus 1.96 times the
standard deviation). Use a subplot or panel for each site

In each plot, the mean value should be a full line, and the variation
should be an envelope, visually similar to the plot shown below (clearly
not identical!!!!)

[image: la niña plot]
la niña plot

Label each plot with a title, units and so on. Some useful functions to
consider

	`plt.subplots <https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplots.html>`__
Allows you to split a figure into several panels or subplots. In
particular, pay attention to the sharex and sharey options
that allow you to have the same scales for all plots so they can be
directly compared.

	`plt.fill_between <https://matplotlib.org/api/_as_gen/matplotlib.pyplot.fill_between.html>`__
Allows you to fill the space between two curves. You may want to give
the option color=0.8 for a nice grey effect.

do exercise here
ANSWER
import requests
import matplotlib.pylab as plt
import numpy as np
from io import StringIO
%matplotlib inline

locs = ['Anchorage', 'Albuquerque', 'Seattle', 'Chicago']
lats = [61.2181, 35.0844, 47.6062, 41.8781]
lons = [-149.9003, -106.6504, -122.3321, -87.6298]

axs = []
figs = []
for i in range(3):
 fig, axs1 = plt.subplots(nrows=2, ncols=2, \
 sharex=True, sharey=False,\
 figsize=(10, 10))
 axs.append(axs1)
 figs.append(fig)

axs = np.array(axs).flatten()
figs = np.array(figs).flatten()

txt = ['prcp (mm/day)', 'srad (W/m^2)', 'temperature / C']

for i,l in enumerate(locs):

 url = "https://daymet.ornl.gov/single-pixel/api/" + \
 f"data?lat={lats[i]}&lon={lons[i]}&vars=tmax,prcp,srad&start=1981-01-01&end=2010-12-31"
 data = requests.get(url).text

 # little data size check !!!
 print (l,i,len(data))

 temperature = np.loadtxt(StringIO(data), skiprows=8, delimiter=",", unpack=True)

 nyears = int(temperature.shape[1]/365)
 year = temperature[0].reshape(nyears,365)
 doy = temperature[1].reshape(nyears,365)

 years = (year[:,0]).astype(int)

 for j in range(3):
 vari = temperature[2+j].reshape(nyears,365)
 mean_year = vari.mean(axis=0)
 # detrended mean depends what you want to show
 mean = (vari - mean_year).mean(axis=1)
 var = ((vari - mean_year)**2).mean(axis=1)
 std = np.sqrt(var)
 axs[j*4+i].set_title(l+' ' + txt[j])
 axs[j*4+i].fill_between(years,mean-std*1.96,mean+std*1.96,alpha=0.3)
 axs[j*4+i].plot(years,mean,'r')
 axs[j*4+i].set_ylabel(txt[j])

'''
Need to complete this!

Lewis
'''

Anchorage 0 410793
Albuquerque 1 411666
Seattle 2 410847
Chicago 3 411264

'nNeed to complete this!nnLewisn'

[image: _images/Chapter2_Numpy_matplotlib_answers_104_2.png]
[image: _images/Chapter2_Numpy_matplotlib_answers_104_3.png]
[image: _images/Chapter2_Numpy_matplotlib_answers_104_4.png]

2.5.5 Summary

In this section, we have learned about reading data from csv files from
the local disc or that we have pulled from the web (given a URL). We
have gone into a little more detail and sophistication on plotting
graphs, and you now should be able to produce sensible plots of datasets
or summaries of datasets (e.g. mean standard deviation).

2. Manipulating and plotting data in Python: numpy, and matplotlib libraries

Table of Contents

While Python has a rich set of modules and data types by default, for
numerical computing you’ll be using two main libraries that conform the
backbone of the Python scientific
stack [https://scipy.org/about.html]. These libraries implement a
great deal of functionality related to mathematical operations and
efficient computations on large data volumes. These libraries are
`numpy <http://numpy.org>`__ and `scipy <http://scipy.org>`__.
numpy, which we will concentrate on in this section, deals with
efficient arrays, similar to lists, that simplify many common processing
operations. Of course, just doing calculations isn’t much fun if you
can’t plot some results. To do this, we use the
`matplotlib <http://matplotlib.org>`__ library.

But first, we’ll see the concept of functions….

2.1 Functions

A function is a collection of Python statements that do something
(usually on some data). For example, you may want to convert from
Fahrenheit to Centigrade. The conversion is

\[^{\circ}C = \left(^{\circ}F -32\right)\cdot\frac{5}{9}\]

A Python function will have a name (and we hope that the name is
self-explanatory as to what the function does), and a set of input
parameters. In the case above, the function would look like this:

def fahrenheit_to_centigrade(deg_fahrenheit):
 """A function to convert from degrees Fahrenheit to degrees Centigrade

 Parameters

 deg_fahrenheit: float
 Temperature in degrees F

 Returns

 Temperature converted to degrees C
 """
 deg_c = (deg_fahrenheit - 32.)*5./9.
 return deg_c

We see that the function has a name (fahrenheit_to_centigrade), and
takes one parameter (deg_fahrenheit).

The main body of the function is indented (like if and for
statements). There is first a comment string, that describes what the
function does, as well as what the inputs are, and what the output is.
This is just useful documentation of the code.

The main body of the function calculates deg_C from the given input,
and returns it back to the user.

Notice that the document string
"""A function to convert from temperature... """ is what is printed
when you request help on the function:

help(fahrenheit_to_centigrade)

Help on function fahrenheit_to_centigrade in module __main__:

fahrenheit_to_centigrade(deg_fahrenheit)
 A function to convert from degrees Fahrenheit to degrees Centigrade

 Parameters

 deg_fahrenheit: float
 Temperature in degrees F

 Returns

 Temperature converted to degrees C

E2.1.1 Exercise

	In the vein of converting units, write functions that convert from

	inches to m (and back)

	kg to stones (and back)

Hint: A stone is equal to 14 pounds, and a pound is equal to 0.45359237
kg.

Ensure that your functions are clearly named, have sensible variable
names, a brief docmentation string, and remember to test the functions
work: just demonstrate running the function with some input pairs where
you know the output and checking it makese sense.

Space for your solution

2.2 numpy

2.2.1 arrays

You import the numpy library using

import numpy as np

This means that all the functionality of numpy is accessed by the
prefix np.: e.g. np.array. The main element of numpy is
the numpy array. An array is like a list, but unlike a list, all the
elements are of the same type, floating point numbers for example.

Let’s see some arrays in action…

import numpy as np # Import the numpy library

An array with 5 ones
arr = np.ones(5)
print(arr)
print(type(arr))

An array started from a list of **integers**
arr = np.array([1, 2, 3, 4])
print(arr)

An array started from a list of numbers, what's the difference??
arr = np.array([1., 2, 3, 4])
print(arr)

[1. 1. 1. 1. 1.]
<class 'numpy.ndarray'>
[1 2 3 4]
[1. 2. 3. 4.]

In the example above we have generated an array where all the elements
are 1.0, using
`np.ones <https://docs.scipy.org/doc/numpy/reference/generated/numpy.ones.html>`__,
and then we have been able to generate arrays from lists using the
`np.array <https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html>`__
function. The difference between the 2nd and 3rd examples is that in the
2nd example, all the elements of the list are integers, and in the 3rd
example, one is a floating point number. numpy automatically makes
the array floating point by converting the integers to floating point
numbers.

What can we do with arrays? We can efficiently operate on individual
elements without loops:

arr = np.ones(10)
print(2 * arr)

[2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]

numpy is clever enough to figure out that the 2 multiplying the
array is applied to all elements of the array, and returns an array of
the same size as arr with the elements of arr multiplied by 2.
We can also multiply two arrays of the same size. So let’s create an
array with the numbers 0 to 9 and one with the numbers 9 to 0 and do a
times table:

arr1 = 9 * np.ones(10)
arr2 = np.arange(1, 11) # arange gives an array from 1 to 11, 11 not included

print(arr1)
print(arr2)

print(arr1 * arr2)

[9. 9. 9. 9. 9. 9. 9. 9. 9. 9.]
[1 2 3 4 5 6 7 8 9 10]
[9. 18. 27. 36. 45. 54. 63. 72. 81. 90.]

E2.2.1 Exercise

	Using code similar to the above and a for loop, write the times
tables for 2 to 10. The solution you’re looking for should look a bit
like this:

[2 4 6 8 10 12 14 16 18 20]
[3 6 9 12 15 18 21 24 27 30]
[4 8 12 16 20 24 28 32 36 40]
[5 10 15 20 25 30 35 40 45 50]
[6 12 18 24 30 36 42 48 54 60]
[7 14 21 28 35 42 49 56 63 70]
[8 16 24 32 40 48 56 64 72 80]
[9 18 27 36 45 54 63 72 81 90]
[10 20 30 40 50 60 70 80 90 100]

Your solution here

If the arrays are of the same shape, you can do standard operations
between them element-wise:

arr1 = np.array([3, 4, 5, 6.])
arr2 = np.array([30, 40, 50, 60.])

print(arr2 - arr1)
print(arr1 * arr2)

print("Array shapes:")
print("arr1: ", arr1.shape)
print("arr2: ", arr2.shape)

[27. 36. 45. 54.]
[90. 160. 250. 360.]
Array shapes:
arr1: (4,)
arr2: (4,)

The numpy documenation is huge. There’s an user’s
guide [https://docs.scipy.org/doc/numpy/user/index.html], as well as
a reference to all the contents of the
library [https://docs.scipy.org/doc/numpy/reference/index.html].
There’s even a tutorial
availabe [https://docs.scipy.org/doc/numpy/user/quickstart.html] if
you get bored with this one.

2.2.2 More detail about numpy.arrays

So far, we have seen a 1D array, which is the equivalent to a vector.
But arrays can have more dimensions: a 2D array would be equivalent to a
matrix (or an image, with rows and columns), and a 3D array would be a
volume split into voxels, as seen below

[image: numpy arrays]
numpy arrays

So a 1D array has one axis, a 2D array has 2 axes, a 3D array 3, and so
on. The shape of the array provides a tuple with the number of
elements along each axis. Let’s see this with some generally useful
array creation options:

Create a 2D array from a list of rows. Note that the 3 rows have the same number of elements!
arr1 = np.array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [10, 11, 12, 13, 14]])
A 2D array from a list of tuples.
We're specifically asking for floating point numbers
arr2 = np.array([(1.5, 2, 3), (4, 5, 6)], dtype=np.float)
print("3*5 array:")
print(arr1)
print("2*3 array:")
print(arr2)

3*5 array:
[[0 1 2 3 4]
 [5 6 7 8 9]
 [10 11 12 13 14]]
2*3 array:
[[1.5 2. 3.]
 [4. 5. 6.]]

2.2.3 Array creators

Quite often, we will want to initialise an array to be all the same
number. The methods for doing this as 0,1 and unspecified in numpy
are np.zeros(), np.ones(), np.empty() respectively.

Creates a 3*4 array of 0s
arr = np.zeros((3, 4))
print("3*4 array of 0s")
print(arr)

Creates a 2x3x4 array of int 1's
print("2*3*4 array of 1s (integers)")
arr = np.ones((2, 3, 4), dtype=np.int)
print(arr)

Creates an empty (e.g. uninitialised) 2x3 array. Elements are random
print("2*3 empty array (contents could be anything)")
arr = np.empty((2, 3))
print(arr)

3*4 array of 0s
[[0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]]
2*3*4 array of 1s (integers)
[[[1 1 1 1]
 [1 1 1 1]
 [1 1 1 1]]

 [[1 1 1 1]
 [1 1 1 1]
 [1 1 1 1]]]
2*3 empty array (contents could be anything)
[[1.5 2. 3.]
 [4. 5. 6.]]

Exercise E2.2.2

	write a function that does the following:

	create a 2-D tuple called indices containing the integers
((0, 1, 2, 3, 4),(5, 6, 7, 8, 9))

	create a 2-D numpy array called data of shape (5,10), data
type int, initialised with zero

	set the value of data[r,c] to be 1 for each of the 5
row,column pairs specified in indices.

	return the data array

	print out the result returned

The result should look like:

[[0 0 0 0 0 1 0 0 0 0]
 [0 0 0 0 0 0 1 0 0 0]
 [0 0 0 0 0 0 0 1 0 0]
 [0 0 0 0 0 0 0 0 1 0]
 [0 0 0 0 0 0 0 0 0 1]]

Hint: You could use a for loop, but what does data[indices]
give?

do exercise here

Exercise 2.2.3

	write a more flexible version of you function above where
indices, the value you want to set (1 above) and the desired
shape of data are specified through function keyword arguments
(e.g. indices=((0, 1, 2, 3, 4),(5, 6, 7, 8, 9)),value=1,shape=(5,10))

do exercise here

As well as initialising arrays with the same number as above, we often
also want to initialise with common data patterns. This includes simple
integer ranges (start, stop, skip) in a similar fashion to slicing
in the last session, or variations on this theme:

array creators

print("1D array of numbers from 0 to 2 in increments of 0.3")
start = 0
stop = 2.0
skip = 0.3

arr = np.arange(start,stop,skip)
print(f'arr of shape {arr.shape}:\n\t{arr}')

start = 0
stop = 34
nsamp = 9
arr = np.linspace(start,stop,nsamp)
print(f"array of shape {arr.shape} numbers equally spaced from {start} to {stop}:\n\t{arr}")

np.linspace(stop,start,9)

1D array of numbers from 0 to 2 in increments of 0.3
arr of shape (7,):
 [0. 0.3 0.6 0.9 1.2 1.5 1.8]
array of shape (9,) numbers equally spaced from 0 to 34:
 [0. 4.25 8.5 12.75 17. 21.25 25.5 29.75 34.]

array([34. , 29.75, 25.5 , 21.25, 17. , 12.75, 8.5 , 4.25, 0.])

Exercise E2.2.4

	print an array of integer numbers from 100 to 1

	print an array with 9 numbers equally spaced between 100 and 1

Hint: what value of skip would be appropriate here? what about start
and stop?

do exercise here

2.2.4 Summary statistics

Below are some typical arithmetic operations that you can use on arrays.
Remember that they happen elementwise (i.e. to the whole array).

b = np.arange(4)
print(f'{b}^2 = {b**2}\n')

a = np.array([20, 30, 40, 50])
print(f"assuming in radians,\n10*sin({a}) = {10 * np.sin(a)}")

print("\nSome useful numpy array methods for summary statistics...\n")
print("Find the maximum of an array: a.max(): ", a.max())
print("Find the minimum of an array: a.min(): ", a.min())
print("Find the sum of an array: a.sum(): ", a.sum())
print("Find the mean of an array: a.mean(): ", a.mean())
print("Find the standard deviation of an array: a.std(): ", a.std())

[0 1 2 3]^2 = [0 1 4 9]

assuming in radians,
10*sin([20 30 40 50]) = [9.12945251 -9.88031624 7.4511316 -2.62374854]

Some useful numpy array methods for summary statistics...

Find the maximum of an array: a.max(): 50
Find the minimum of an array: a.min(): 20
Find the sum of an array: a.sum(): 140
Find the mean of an array: a.mean(): 35.0
Find the standard deviation of an array: a.std(): 11.180339887498949

Let’s access an interesting dataset on the frequency of satellite
launches to illustrate this.

[image: SpaceX landing]
SpaceX landing

from geog0111.nsat import nsat

'''
This dataset gives the number of
satellites launched per month and year
data from https://www.n2yo.com
'''
We use the code supplied in nsat.py
to generate the dataset (takes time)
or to load it if it exists
data,years = nsat().data,nsat().years

print(f'data shape {data.shape}')

print(f'some summary statistics over the period {years[0]} to {years[1]}:')
print(f'The total number of launches is {data.sum():d}')
print(f'The mean number of launches is {data.mean():.3f} per month')

data shape (12, 62)
some summary statistics over the period 1957 to 2019:
The total number of launches is 43611
The mean number of launches is 58.617 per month

Exercise E2.2.5

	copy the code above but generate a fuller set of summary statistics
including the standard deviation, minimum and maximum.

do exercise here

Whilst we have generated some interesting summary statistics on the
dataset, it’s not really enough to give us a good idea of the data
characteristics.

To do that, we want to be able to ask somewhat more complex questions of
the data, such as, which year has the most/least launches? which month
do most launches happen in? which month in which year had the most
launches? which years had more than 100 launches?

To be able to address these, we need some new concepts:

	methods argmin() and argmax() that provide the index where
the min/max occurs

	filtering and the related method where()

	axis methods: the dataset is two-dimensional, and for some
questions we need to operate only over one of these

To illustrate:

from geog0111.nsat import nsat
import numpy as np

data,years = nsat().data,nsat().years

year = np.arange(years[0],years[1],dtype=np.int)

sum the data over all months (axis 0)
sum_per_year = data.sum(axis=0)

imax = np.argmax(sum_per_year)
imin = np.argmin(sum_per_year)

filtering
high(low) is an array set to True where the condition
is True, and False otherwise
high = sum_per_year>=1000
low = sum_per_year<=300

print(f'the year with most launches was {year[imax]} with {sum_per_year[imax]}')
print(f'the year with fewest launches was {year[imin]} with {sum_per_year[imin]}')

print('\nThe years with >= 1000 launches are:')
print(year[high],'\nvalues:\n',sum_per_year[high])
print('The years with <= 300 launches are:')
print(year[low],'\nvalues:\n',sum_per_year[low])

the year with most launches was 1999 with 4195
the year with fewest launches was 1957 with 3

The years with >= 1000 launches are:
[1965 1975 1976 1981 1986 1987 1993 1994 1999 2006]
values:
 [1527 1195 1264 1190 1375 1130 2131 1166 4195 1158]
The years with <= 300 launches are:
[1957 1958 1959 1960 1962 1996 2002 2003 2004 2005]
values:
 [3 11 22 52 207 246 277 243 209 192]

Exercise E2.2.6

	copy the code above, and modify it to find the total launches per
month (over all years)

	show these data in a table

	which month do launches mostly take place in? which month do launches
most seldom take place in?

do exercise here

The form of filtering above (high = sum_per_year>=1000) produces a
numpy array of the same shape as that operated on (sum_per_year
here) of bool data type. It has entries of True where the
condition is met, and False where it is not met.

from geog0111.nsat import nsat
sum the data over all months (axis 0)
sum_per_year = nsat().data.sum(axis=0)

high = sum_per_year>=1000
low = sum_per_year<=300

print(f'type(sum_per_year): {type(sum_per_year)}, sum_per_year.shape: {sum_per_year.shape}, ' \
 + f'sum_per_year.dtype: {sum_per_year.dtype}')
print(f'type(high): {type(high)}, high.shape: {high.shape}, high.dtype: {high.dtype}\n')

print(f'sum_per_year: {sum_per_year}')
print(f'high: {high}')
print(f'low: {low}')

type(sum_per_year): <class 'numpy.ndarray'>, sum_per_year.shape: (62,), sum_per_year.dtype: int64
type(high): <class 'numpy.ndarray'>, high.shape: (62,), high.dtype: bool

sum_per_year: [3 11 22 52 396 207 346 401 1527 786 466 690 641 906
 636 654 875 694 1195 1264 891 783 857 637 1190 946 884 760
 788 1375 1130 814 950 691 691 740 2131 1166 534 246 960 651
 4195 730 582 277 243 209 192 1158 349 406 378 373 315 435
 352 355 335 308 512 320]
high: [False False False False False False False False True False False False
 False False False False False False True True False False False False
 True False False False False True True False False False False False
 True True False False False False True False False False False False
 False True False False False False False False False False False False
 False False]
low: [True True True True False True False False False False False False
 False False False False False False False False False False False False
 False False False False False False False False False False False False
 False False False True False False False False False True True True
 True False False False False False False False False False False False
 False False]

We can think of this logical array as a ‘data mask’ that we use to
select (filter) entries.

The figure shows log(sum_per_year) in the top line of the image
(numbers represented by colour shown in colourbar), then a
representation of the bool arrays high and low. Where the
bool value is shown yellow, the ‘data mask’ is true. [image: image0]

print(f'{sum_per_year[high]}')
print(f'{sum_per_year[low]}')

[1527 1195 1264 1190 1375 1130 2131 1166 4195 1158]
[3 11 22 52 207 246 277 243 209 192]

Sometimes, instead of just applying the filter as above, we want to know
the indices of the filtered values.

To do this, we can use the np.where() method. This takes a bool
array as its argument (such as our data masks or other conditions) and
returns a tuple of the indices where this is set True.

from geog0111.nsat import nsat
data,years = nsat().data,nsat().years
where :
which months in the dataset were particularly busy ..
we select data > 400 as a condition

indices = np.where(data > 400)
print(f'indices:\n{indices[0]}\n{indices[1]}')
print(f'\ntype(indices): {type(indices)}')
print(f'len(indices): {len(indices)}, len(indices[0]): {len(indices[0])}')
print(f'type(indices[0][0]): {type(indices[0][0])}')

year = np.arange(years[0],years[1],dtype=np.int)
month = np.arange(12)

nsamp = len(indices[0])

loop over the entries in the tuple
print('*'*23)
print('busy months')
print('*'*23)
for i in range(nsamp):
 print(f'{i:04d} month {month[indices[0][i]]:02d}'+\
 f' year {year[indices[1][i]]:04d}')
print('*'*23)

indices:
[1 3 4 4 5 5 5 6 8 8 9 9]
[29 13 37 42 24 36 49 19 40 43 8 42]

type(indices): <class 'tuple'>
len(indices): 2, len(indices[0]): 12
type(indices[0][0]): <class 'numpy.int64'>

busy months

0000 month 01 year 1986
0001 month 03 year 1970
0002 month 04 year 1994
0003 month 04 year 1999
0004 month 05 year 1981
0005 month 05 year 1993
0006 month 05 year 2006
0007 month 06 year 1976
0008 month 08 year 1997
0009 month 08 year 2000
0010 month 09 year 1965
0011 month 09 year 1999

Exercise E2.2.7

	Using code from the sections above, print out a table with the
busiest launch months with an additional column stating the number of
launches

Hint: this is just adding another column to the print statement in the
for loop

do exercise here

You might notice the indices in the tuple derived above using where
are ordered, but the effect of this is that the months are in
sequential order, rather than the years. We have

month[indices[0][i]]
year[indices[1][i]]

If we want to put the data in year order, there are several ways we
could go about this. An insteresting one, following the ideas in
argmax() and argmin() above is to use argsort(). This gives
the indices of the sorted array, rather than the values.

So here, we can find the indices of the year-sorted array, and apply
them to both month and year datasets:

prepare data as above
from geog0111.nsat import nsat
data,years = nsat().data,nsat().years
indices = np.where(data > 400)
year = np.arange(years[0],years[1],dtype=np.int)
month = np.arange(12,dtype=np.int)

store the months and years
in their unsorted (original) form
unsorted_months = month[indices[0]]
unsorted_years = year[indices[1]]
print(f'years not in order: {unsorted_years}')
print(f'but months are: {unsorted_months}\n')

get the indices to put years in order
year_order = np.argsort(indices[1])

apply this to months and years
print(f'year order: {year_order}\n')
print(f'years in order: {unsorted_years[year_order]}')
print(f'months in year order: {unsorted_months[year_order]}')

years not in order: [1986 1970 1994 1999 1981 1993 2006 1976 1997 2000 1965 1999]
but months are: [1 3 4 4 5 5 5 6 8 8 9 9]

year order: [10 1 7 4 0 5 2 8 3 11 9 6]

years in order: [1965 1970 1976 1981 1986 1993 1994 1997 1999 1999 2000 2006]
months in year order: [9 3 6 5 1 5 4 8 4 9 8 5]

Exercise E2.2.8

	Use this example of argsort() to redo Exercise E2.2.7, putting
the data in correct year order

do exercise here

2.2.5 Summary

In this section, you have been introduced to more detail on arrays in
numpy. The big advantages of numpy are that you can easily
perform array operators (such as adding two arrays together), and that
numpy has a large number of useful functions for manipulating
N-dimensional data in array form. This makes it particularly appropriate
for raster geospatial data processing.

We have seen how to create various forms of array (e.g. np.ones(),
np.arange()), how to calculate some basic statistics (min(),
max() etc), and finding the array index where some pattern occurs
(e.g. argmin(), argsort() or where()).

2.3 Plotting with Matplotlib

There are quite a few graphical libraries for
Python [https://scipy.org/topical-software.html#plotting-data-visualization-3-d-programming],
but matplotlib [http://matplotlib.org] is probably the most famous
one. It does pretty much all you need in terms of 2D plots, and simple
3D plots, and is fairly straightforward to use. Have a look at the
matplotlib gallery [https://matplotlib.org/gallery/index.html] for a
fairly comprehensive list of examples of what the library can do as well
as the code that was used in the examples.

Importing matplotlib

You can import matplotlib with

import matplotlib.pyplot as plt

As with numpy, it’s custom to use the plt prefix to call
matplotlib commands. In the notebook, you should also issue the
following command just after the import

%matplotlib notebook

or

%matplotlib inline

The former command will make the plots in the notebook interactive
(i.e. point-and-click-ey), and the second will just stick the plots into
the notebook as PNG files.

Simple 2D plots

The most basic plots are 2D plots (e.g. x and y).

import matplotlib.pyplot as plt
%matplotlib inline

from geog0111.nsat import nsat
import numpy as np
'''
This dataset gives the number of
satellites launched per month and year

data from https://www.n2yo.com
'''
data,years = nsat().data,nsat().years
year = np.arange(years[0],years[1],dtype=np.int)
sum the data over all months (axis 0)
sum_per_year = data.sum(axis=0)

print(f'data shape {data.shape}')

plot x as year
plot y as the number of satellites per year
plt.plot(year,sum_per_year,label='launches per year')

data shape (12, 62)

[<matplotlib.lines.Line2D at 0x1168270b8>]

[image: _images/Chapter2_Numpy_matplotlib_56_2.png]
Whilst this plot is fine, there are a few simple things we could do
improve it.

We will go through some of the options below, but to get a taste of
improved ploitting, lets use e.g.:

	reset the image shape/size

	plt.figure(figsize=(13,3))

	plot the mean value (as a red dashed line) for comparison

	plt.plot([year[0],year[-1]],[mean,mean],'r--',label='mean')

	limit the dataset to range of variable year

	plt.xlim(year[0],year[-1])

	put labels on the x and y axes

	plt.xlabel('year')

	plt.ylabel('# satellite launches')

	set a title

	plt.title('data from https://www.n2yo.com')

	use a legend (in conjunction with label= using plot)

	plt.legend(loc='best')

	use a log scale in the y-axis

	plt.semilogy()

What you choose to do will depend on what you want to show on the graph,
but the examples above are quite common.

import matplotlib.pyplot as plt
%matplotlib inline
from geog0111.nsat import nsat
import numpy as np
'''data as above'''
data,years = nsat().data,nsat().years
year = np.arange(years[0],years[1],dtype=np.int)
sum_per_year = data.sum(axis=0)

calculate mean of sum_per_year
mean = sum_per_year.mean()

plt.figure(figsize=(13,3))
plt.plot(year,sum_per_year,label='launches per year')
plt.plot([year[0],year[-1]],[mean,mean],'r--',label='mean')
plt.xlim(year[0],year[-1])
plt.xlabel('year')
plt.ylabel('# satellite launches')
plt.title('data from https://www.n2yo.com')
plt.legend(loc='best')
plt.semilogy()

[]

[image: _images/Chapter2_Numpy_matplotlib_58_1.png]
Exercise E2.3.1

	produce a plot showing launches per year as a function of year,
showing data for selected months individually.

Hint: do a simple plot first, then add some improvements gradually. You
might set up a list of months to process and use a loop to go over each
month.

do exercise here

Exercise 2.3.2

Putting together some ideas from above to look at some turning points in
a function:

	generate a numpy array called x with 100 equally spaced numbers
between 0 and 5

	generate a numpy array called y which contains
\(x^3 - 9 x^2 + 26 x - 24\)

	plot y as a function of x with a red line

	plot only positive values of y (as a function of x) with
a green line

Hint: to plot with red and green line plot(x,y,'r') and
plot(x,y,'g')

do exercise here

2.4 Indexing and slicing arrays

2.4.1 Recap

Selecting different elements of the array to operate in them is a very
common task. numpy has a very rich syntax for selecting different
bits of the array. We have come across slicing before, but it is so
important to array processing, we will go over some of it again.

Similar to lists, you can refer to elements in the array by their
position. You can also use the : symbol to specify a range (a
slice) of positions first_element:(last_element+1. If you want
to start counting from the end of the array, use negative numbers:
-1 refers to the last element of the array, -2 the one before
last and so on. In a slice, you can also specify a step as the third
element in first_element:(last_element+1:step. If the step is
negative you count from the back.

All this probably appears mind bogging, but it’s easier shown in
practice. You’ll get used to it quite quickly once you start using it

import numpy as np

a = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
print(a[2]) # 2
print(a[2:5]) # [2, 3, 4]
print(a[-1]) # 10
print(a[:8]) # [0, 1, 2, 3, 4, 5, 6, 7]
print(a[2:]) # [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
print(a[5:2:-1]) # [5, 4, 3]

2
[2 3 4]
10
[0 1 2 3 4 5 6 7]
[2 3 4 5 6 7 8 9 10]
[5 4 3]

The concept extends cleanly to multidimensional arrays…

b = np.array([[0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23], [30, 31, 32, 33],
 [40, 41, 42, 43]])

print(b[2, 3]) # 23
print(b[0:5, 1]) # each row in the second column of b
print(b[:, 1]) # same thing as above
print(b[1:3, :]) # each column in the second and third row of b

23
[1 11 21 31 41]
[1 11 21 31 41]
[[10 11 12 13]
 [20 21 22 23]]

Exercise 2.4.1

	generate a 2-D numpy array of integer zeros called x, of shape
(7,7)

	we can think of this as a square. Set the central 3 by 3 samples of
the square to one

	print the result

Hint: Don’t use looping, instead work out how to define the slice of the
central 3 x 3 samples.

do exercise here

2.4.1 data mask

A useful way to select elements is by using what’s called a mask as we
saw above: an array of logical (boolean) elements that only selects the
elements that are True:

a = np.arange(10)
select_me = a >= 7
print(a[select_me])

[7 8 9]

The previous point also shows something interesting: you can apply
comparisons element by element. So in the previous example,
select_me is a 10 element array where all the elements of a that
are equal or higher than 7 are set to True.

If you want to build up element by element logical operations, it’s best
to use specialised functions like
`np.logical_and <https://docs.scipy.org/doc/numpy/reference/generated/numpy.logical_and.html>`__
and friends

a = np.arange(100)
sel1 = a > 45
sel2 = a < 73
print(a[np.logical_and(sel1, sel2)])

[46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
 70 71 72]

Exercise 2.4.2

	generate a numpy array called x with 100 equally spaced numbers
between 0 and 5

	generate a numpy array called y which contains
\(x^3 - 9 x^2 + 26 x - 24\)

	print the values of x for which y is greater than or equal to
zero and x lies between 3.5 and 4.5

do exercise here

2.5 Reading data

2.5.1 np.loadtxt

It’s a bit tedious just making up numbers to play with them, but it’s
easy to load up data from external files. The most common data
interchange format is CSV (comma-seperated
values) [https://en.wikipedia.org/wiki/Comma-separated_values], a
plain text format. Think of CSV as a plain text table. Each element in
each row is separated by a comma (although other symbols, such as white
space, semicolons ;, tabs \t or pipe | symbols are often
found as delimiters). The first few lines might contain some metadata
that describes the dataset, and the first line will also contain the
names of the headers of the different columns. Lines starting with #
tend to be ignored. An example file might look like this

Monthly transatlantic airtravel, in thousands of passengers, for 1958-1960.
There are 4 fields, "Month", "1958", "1959" and "1960" and 12 records, "JAN" through "DEC".
There is also an initial header line.
And some lines with comments starting with
Data obtained from https://people.sc.fsu.edu/~jburkardt/data/csv/csv.html
"Month", "1958", "1959", "1960"
"JAN", 340, 360, 417
"FEB", 318, 342, 391
"MAR", 362, 406, 419
"APR", 348, 396, 461
"MAY", 363, 420, 472
"JUN", 435, 472, 535
"JUL", 491, 548, 622
"AUG", 505, 559, 606
"SEP", 404, 463, 508
"OCT", 359, 407, 461
"NOV", 310, 362, 390
"DEC", 337, 405, 432

We can see the first few lines are comments or metadata, the first line
without a # is the headers, and we note that text is entered between
"s. In this case, the delimiter is a comma. We can read the data
as an array with
`np.loadtxt <https://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html>`__,
telling it…

	to ignore lines starting by #

	to ignore the first column as it’s text

	to note that the separator is a comma

air_travel = np.loadtxt("data/airtravel.csv", comments="#", skiprows=6, \
 usecols=[1,2,3], delimiter=",")
print(air_travel)
print(air_travel.shape)

[[340. 360. 417.]
 [318. 342. 391.]
 [362. 406. 419.]
 [348. 396. 461.]
 [363. 420. 472.]
 [435. 472. 535.]
 [491. 548. 622.]
 [505. 559. 606.]
 [404. 463. 508.]
 [359. 407. 461.]
 [310. 362. 390.]
 [337. 405. 432.]]
(12, 3)

While np.loadtxt is quite flexible for dealing with text files,
`pandas <https://pandas.pydata.org>`__ absolutely shines at working
with tabular data. You can find a pandas quickstart tutorial
here [https://pandas.pydata.org/pandas-docs/stable/10min.html] if you
are curious about it!

Before we go into plotting, we can do some fun calculations (yay!) using
our airtravel data

Exercise 2.5.1

	Calculate the total number of passengers per year

	Calculate the average number of passengers per month

	Can you spot any trends in the data?

Hint: Remember the .sum(), .mean() methods for arrays?

Space for your solution

Let’s plot our previous air travel dataset… We’ll plot it as annual
lines, so the x axis will be month number (running from 1 to 12) and the
y axis will be 1000s of passengers. Different line colours will be used
for every year. We’ll also add x and y axes labels, as well as a legend:

You can probably just put this at the top of every notebook you write
Adding it here for completeness
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt

Load airtravel data
air_travel = np.loadtxt("data/airtravel.csv", skiprows=6, \
 unpack=True, usecols=[1,2,3], delimiter=",")

mths = np.arange(1, 13)
plt.figure(figsize=(10,3))
plt.plot(mths, air_travel[0], '-', label="1958")
plt.plot(mths, air_travel[1], '-', label="1959")
plt.plot(mths, air_travel[2], '-', label="1960")
plt.xlabel("Month")
plt.ylabel("1000s of travellers per month")
plt.legend(loc="best")

<matplotlib.legend.Legend at 0x1169609b0>

[image: _images/Chapter2_Numpy_matplotlib_80_1.png]
You may not want to use lines to join the data points, but symbols like
dots, crosses, etc.

plt.figure(figsize=(10,3))
plt.plot(mths, air_travel[0], 'x', label="1958")
plt.plot(mths, air_travel[1], '+', label="1959")
plt.plot(mths, air_travel[2], 'o', label="1960")
plt.xlabel("Month")
plt.ylabel("1000s of travellers per moth")
plt.legend(loc="best")

<matplotlib.legend.Legend at 0x116a925f8>

[image: _images/Chapter2_Numpy_matplotlib_82_1.png]
We can also use dots and lines. Moreover, we can change the type of
line: from full lines to dashed to dash-dot…

plt.figure(figsize=(10,3))
plt.plot(mths, air_travel[0], 'x-', label="1958")
plt.plot(mths, air_travel[1], '+--', label="1959")
plt.plot(mths, air_travel[2], 'o-.', label="1960")
plt.xlabel("Month")
plt.ylabel("1000s of travellers per moth")
plt.legend(loc="best")

<matplotlib.legend.Legend at 0x11691b7b8>

[image: _images/Chapter2_Numpy_matplotlib_84_1.png]
Exercise 2.5.2

The file `NOAA.csv <data/NOAA.csv>`__ contains data from
NOAA [http://www.aoml.noaa.gov/hrd/tcfaq/E11.html] on the number of
storms and hurricanes in the Atlantic basin from 1851 to 2015. The data
columns are described in the first row of the file. The year is in
column 1 and the number of hurricanes in column 3.

For those interested, the data is pulled from the website with
getNOAA.py.

	load the year and hurricane data from the file
`NOAA.csv <data/NOAA.csv>`__ into a numpy array

	produce a plot showing the number of hurricanes as a function of
year, with the data plotted in a blue line

	put a dashed red line on the graph showing the mean number of
hurricanes

	plot circle symbols for all years where the number of hurricanes is
greater than the mean + 1.96 standard deviations.

Hint: the options on np.loadtxt you probably want to use are:
skiprows, delimiter, usecol and unpack. You will need to
select the data that meet the required conditions, combining the
conditions with np.logical_and().

do exercise here

2.5.2 requests

We can use np.loadtxt or similar functions to load tabular data that
we have stored locally in e.g. csv format.

Sometimes we will need pull a data file from a
URL [https://en.wikipedia.org/wiki/URL]. We have used this idea
previously to ‘scrape’ data from a web page, but often the task is more
straightforward, and we effectively need only to ‘download’ the data in
the file.

We will use the requests package to do this and pull the data as a
string. We then use StringIO to allow np.loadtxt to think the
string comes from a data file.

import requests
from io import StringIO

Define the URL with the parameters of interest
url = "https://daymet.ornl.gov/single-pixel/api/" + \
 "data?lat=45.4&lon=-115.0534&vars=tmax&start=2000-01-01&end=2009-12-31"

data = requests.get(url).text

You can check the text file to see its contents, but we now
(i) it's separated by commas
(ii) the first 8 lines are metadata that we're not interested in.
temperature = np.loadtxt(StringIO(data), skiprows=8, delimiter=",", unpack=True)

We expect to get 10 years of data here, so 3650 daily records
the data are given for 365 days per year ...
print(temperature.shape)

(3, 3650)

If we want to store the data file, we can do so by opening a file:

We open the output file, `daymet.csv`
with open("data/daymet_tmax.csv", 'w') as fp:
 # make the HTTPS connection and pull text
 # then write to file
 r = fp.write(data)

You can check the text file to see its contents, but we now
(i) it's separated by commas
(ii) the first 9 lines are metadata that we're not interested in.
temperature = np.loadtxt("data/daymet_tmax.csv", skiprows=8, delimiter=",", unpack=True)

We expect to get ~10 years of data here, so 3650 daily records
print(temperature.shape)

(3, 3650)

The data columns are: Year, day of year (1 to 365) and Tmax
(\(C\)).

How can we plot such data? the technical issue we face is needing to use
the first two columns of data (day of year and year) to describe the
x-axis location.

print('Year ',temperature[0])
print('DOY ',temperature[1])
print('T_max',temperature[2])

Year [2000. 2000. 2000. ... 2009. 2009. 2009.]
DOY [1. 2. 3. ... 363. 364. 365.]
T_max [-1.5 -2.5 -1.5 ... -1.5 -3. -2.]

A simple way of doing this, that would suffice here, would be to convert
day of year to year fraction, then we could write:

year,doy,tmax = temperature
dates = year + (doy-1)/365.

A more elegant way might be to use
`datetime <https://docs.python.org/3/library/datetime.html>`__. This
contains a set of methods that allow you to manipulate date formats.
matplotlib understands the format used, and so it is generally
appropriate to use datetime for date information when plotting.

year,doy,tmax = temperature
dates = [datetime.datetime(int(y), 1, 1) + \
 datetime.timedelta(d - 1) for y,d in zip(year,doy)]

import datetime

year,doy,tmax = temperature
dates = year + (doy-1)/365.
using the simple way here

plt.figure(figsize=(14,3))
plt.plot(dates,tmax)
plt.title(url)
plt.ylabel('T_{max} / C')
plt.xlabel('year')

Text(0.5, 0, 'year')

[image: _images/Chapter2_Numpy_matplotlib_95_1.png]
Exercise E2.5.3

	use the datetime approach to plot the dataset

	print out the value of dates for the first 10 entries to see what
the format looks like

do exercise here

Although we have used this as a one-dimensional dataset (temperature as
a function of time) we could also think of it as two-dimensional
(temperature as a function of (year,doy)). Recall that the shape of
the temperature dataset was (3,3650). We could put the
temperature column into a gridded dataset of shape (10,365) which
would then emphasise the 2-D nature.

We can do this with the numpy method reshape().

year = temperature[0].reshape(10,365)
doy = temperature[1].reshape(10,365)
tmax = temperature[2].reshape(10,365)

plt.figure(figsize=(14,3))
plt.plot(doy,tmax,'x')
plt.title(url)
plt.ylabel('T_{max} / C')
plt.xlabel('day of year')
plt.xlim([1,366])

(1, 366)

[image: _images/Chapter2_Numpy_matplotlib_99_1.png]
Plotting this, we can visualise the year-on-year variations in
temperature for any particular day.

Exercise E2.5.3

	using the reshaped datasets above, calculate and plot the mean value
of tmax as a function of day of year

	calculate standard deviation of tmax as a function of day of
year, and plot dashed lines at mean +/- 1.96 standard deviations

	in another plot, show the mean, +/- 1.96 standard deviations of
tmax as a function of year (i.e. the annual average and standard
deviation)

Hint: use axis=0 when calculating the mean/std over doy of
tmax and axis=1 for processing over year.

2.5.4 Homework

Exercise E2.5.4

Select 4 locations in different regions of North America
(e.g. Anchorage, Albuquerque, Seattle, Chicago). Request data on maximum
temperature, precipitation and incident solar radiation for the years
between 1981 to 2010, and plot in 3 different figures:

	Figure 1: The mean daily temperature and the variation (a shaded
area around the mean going from mean value minus 1.96 times the
standard deviation to mean value plus 1.96 times the standard
deviation). Use a subplot or panel for each site

	Figure 2: The mean daily precipitation and the variation (a shaded
area around the mean going from mean value minus 1.96 times the
standard deviation to mean value plus 1.96 times the standard
deviation). Use a subplot or panel for each site

	Figure 3: The mean daily incident solar radiation and the variation
(a shaded area around the mean going from mean value minus 1.96
times the standard deviation to mean value plus 1.96 times the
standard deviation). Use a subplot or panel for each site

In each plot, the mean value should be a full line, and the variation
should be an envelope, visually similar to the plot shown below (clearly
not identical!!!!)

[image: la niña plot]
la niña plot

Label each plot with a title, units and so on. Some useful functions to
consider

	`plt.subplots <https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplots.html>`__
Allows you to split a figure into several panels or subplots. In
particular, pay attention to the sharex and sharey options
that allow you to have the same scales for all plots so they can be
directly compared.

	`plt.fill_between <https://matplotlib.org/api/_as_gen/matplotlib.pyplot.fill_between.html>`__
Allows you to fill the space between two curves. You may want to give
the option color=0.8 for a nice grey effect.

do exercise here

2.5.5 Summary

In this section, we have learned about reading data from csv files from
the local disc or that we have pulled from the web (given a URL). We
have gone into a little more detail and sophistication on plotting
graphs, and you now should be able to produce sensible plots of datasets
or summaries of datasets (e.g. mean standard deviation).

3 Geospatial processing with gdal

Table of Contents

GDAL [https://gdal.org] is the workhorse of geospatial processing.
Basically, GDAL offers a common library to access a vast number of
formats (if you want to see how vast, check
this [https://gdal.org/formats_list.html]). In addition to letting
you open and convert obscure formats to something more useful, a lot of
functionality in terms of processing raster data is available (for
example, working with projections, combining datasets, accessing remote
datasets, etc).

For vector data, the counterpart to GDAL is OGR (which is now a part of
the GDAL library anyway), which also supports many vector
formats [https://gdal.org/ogr_formats.html]. The combination of both
libraries is a very powerful tool to work with geospatial data, not only
from Python, but from many other popular computer
languages [https://trac.osgeo.org/gdal/#GDALOGRInOtherLanguages].

In this session, we will introduce the gdal geospatial module which
can read a wide range of raster scientific data formats. We will also
introduce the related ogr vector package.

In pacticular, we will learn how to:

	access and download NASA geophysical datasets (specifically, the
MODIS LAI/FPAR product)

	apply a vector mask to the dataset

	apply quality control flags to the data

	stack datasets into a 3D numpy dataset for further analysis,
including interpolation of missing values

	visualise the data

	store the stacked dataset

These are all tasks that you will be required to do for thepart 1
formal assessmentof this course.
You will however be using a different NASA dataset.

3.1 MODIS LAI product

To introduce geospatial processing, we will use a dataset from the MODIS
LAI product over the UK.

You should note that the dataset you need to use for your assessed
practical is a MODIS dataset with similar characteristics to the one in
this example.

The data product
MOD15 [https://modis.gsfc.nasa.gov/data/dataprod/mod15.php] LAI/FPAR
has been generated from NASA MODIS sensors Terra and Aqua data since
2002. We are now in dataset collection 6 (the data version to use).

LAI is defined as the one-sided green leaf area per unit ground area in broadleaf canopies and as half the total needle surface area per unit ground area in coniferous canopies. FPAR is the fraction of photosynthetically active radiation (400-700 nm) absorbed by green vegetation. Both variables are used for calculating surface photosynthesis, evapotranspiration, and net primary production, which in turn are used to calculate terrestrial energy, carbon, water cycle processes, and biogeochemistry of vegetation. Algorithm refinements have improved quality of retrievals and consistency with field measurements over all biomes, with a focus on woody vegetation.

We use such data to map and understand about the dynamics of terrestrial
vegetation / carbon, for example, for climate studies.

The raster data are arranged in tiles, indexed by row and column, to
cover the globe:

[image: MODIS tiles]
MODIS tiles

Exercise 3.1.1

The pattern on the tile names is hXXvYY where XX is the
horizontal coordinate and YY the vertical.

	use the map above to work out the names of the two tiles that we will
need to access data over the UK

	set the variable tiles to contain these two names in a list

For example, for the two tiles covering Madegascar, we would set:

tiles = ['h22v10','h22v11']

do exercise here

3.1.1 NASA Earthdata access

3.1.1.1 Register at NASA Earthdata

Before you attempt to do this section, you will need to register at
NASA Earthdata [https://urs.earthdata.nasa.gov/home].

We have set up these notes so that you don’t have to put your username
and password in plain text. Instead, you need to enter your username and
password when prompted by cylog. The password is stored in an
encrypted file, although it can be accessed as plain text within your
Python session.

N.B. using ``cylog().login()`` is only intended to work with access to
NASA Earthdata and to prevent you having to expose your username and
password in these notes.

cylog().login() returns the tuple (username,password) in plain
text.

from geog0111.cylog import cylog
import requests

url = 'https://e4ftl01.cr.usgs.gov/MOTA/MCD15A3H.006/2018.09.30/'

grab the HTML information
html = requests.get(url,auth=cylog(init=False).login()).text

test a few lines of the html
if html[:20] == '<!DOCTYPE HTML PUBLI':
 print('this seems to be ok ... ')
 print('use cylog().login() anywhere you need to specify the tuple (username,password)')

this seems to be ok ...
use cylog().login() anywhere you need to specify the tuple (username,password)

The NASA servers go down for weekly maintenance, usually on Wednesday
afternoon (UK time), so you might not want to attempt this exercise
then.

3.1.2 gdal

We should now check to see if you have gdal properly installed.

import gdal
version = gdal.VersionInfo()

if int(version) >= 2020400:
 print('gdal ok',version)
else:
 print('gdal problem',version,'2.2.4+ expected')

gdal ok 2020400

If there is a problem and you are on the geography system, we should be
able to fix it for you.

If you are not on the geography system, try running:

conda env update -f environment.yml

before going any further. If an update occurs, shutdown and restart your
notebooks.

3.2 Automatic downloading of NASA MODIS products

In this section, you will learn
how to:

	scan the directories (on the Earthdata server) where the MODIS data
are stored

	get the dataset filename for a given tile, date and product

	get to URL associated with the dataset

	use the URL to pull the dataset over to store in the local file
system

3.3 GDAL masking

In this section you will learn how
to:

	load locally stored files into gdal

	select a particular dataset

	form a virtual ‘stitched’ dataset from multiple files

	apply a mask to the data from a vector boundary

	crop the dataset

3.4 GDAL stacking and interpoilation

In this section
you will learn how to:

	access and interpret MODIS LAI QA data

	use gdal to create cropped spatial virtual datasets

	use gdal to create a time series virtual dataset

	use convolution in scipy to smooth a temporal dataset, and
thereby interpolate

	produce a movie from a time series of imagery, as an animated gif

Additional information on colvolution is given in section
3.4a

3.5 Movies

In this section you see some LAI
movies.

3.6 Summary

In this session, we have learned to use some geospatial tools using GDAL
in Python. A good set of working notes on how to use
GDAL [http://jgomezdans.github.io/gdal_notes/] has been developed
that you will find useful for further reading, as well as looking at the
advanced section.

We have also very briefly introduced dealing with vector datasets in
ogr, but this was mainly through the use of a pre-defined function
that will take an ESRI shapefile (vector dataset), warp this to the
projection of a raster dataset, and produce a mask for a given layer in
the vector file.

You should by now know how to:

	access and download NASA (or similar) datasets

	form tiled spatial dataxsets using gdal VRT files

	make a time series of spatial data

	interpret QA information from bit fields in a dataset and use this to
create a weighting

	use convolution to smooth and interpolate a dataset

	generate associated plots and animations

3 Geospatial processing with gdal

Table of Contents

GDAL [https://gdal.org] is the workhorse of geospatial processing.
Basically, GDAL offers a common library to access a vast number of
formats (if you want to see how vast, check
this [https://gdal.org/formats_list.html]). In addition to letting
you open and convert obscure formats to something more useful, a lot of
functionality in terms of processing raster data is available (for
example, working with projections, combining datasets, accessing remote
datasets, etc).

For vector data, the counterpart to GDAL is OGR (which is now a part of
the GDAL library anyway), which also supports many vector
formats [https://gdal.org/ogr_formats.html]. The combination of both
libraries is a very powerful tool to work with geospatial data, not only
from Python, but from many other popular computer
languages [https://trac.osgeo.org/gdal/#GDALOGRInOtherLanguages].

In this session, we will introduce the gdal geospatial module which
can read a wide range of raster scientific data formats. We will also
introduce the related ogr vector package.

In pacticular, we will learn how to:

	access and download NASA geophysical datasets (specifically, the
MODIS LAI/FPAR product)

	apply a vector mask to the dataset

	apply quality control flags to the data

	stack datasets into a 3D numpy dataset for further analysis,
including interpolation of missing values

	visualise the data

	store the stacked dataset

These are all tasks that you will be required to do for thepart 1
formal assessmentof this course.
You will however be using a different NASA dataset.

3.1 MODIS LAI product

To introduce geospatial processing, we will use a dataset from the MODIS
LAI product over the UK.

You should note that the dataset you need to use for your assessed
practical is a MODIS dataset with similar characteristics to the one in
this example.

The data product
MOD15 [https://modis.gsfc.nasa.gov/data/dataprod/mod15.php] LAI/FPAR
has been generated from NASA MODIS sensors Terra and Aqua data since
2002. We are now in dataset collection 6 (the data version to use).

LAI is defined as the one-sided green leaf area per unit ground area in broadleaf canopies and as half the total needle surface area per unit ground area in coniferous canopies. FPAR is the fraction of photosynthetically active radiation (400-700 nm) absorbed by green vegetation. Both variables are used for calculating surface photosynthesis, evapotranspiration, and net primary production, which in turn are used to calculate terrestrial energy, carbon, water cycle processes, and biogeochemistry of vegetation. Algorithm refinements have improved quality of retrievals and consistency with field measurements over all biomes, with a focus on woody vegetation.

We use such data to map and understand about the dynamics of terrestrial
vegetation / carbon, for example, for climate studies.

The raster data are arranged in tiles, indexed by row and column, to
cover the globe:

[image: MODIS tiles]
MODIS tiles

Exercise 3.1.1

The pattern on the tile names is hXXvYY where XX is the
horizontal coordinate and YY the vertical.

	use the map above to work out the names of the two tiles that we will
need to access data over the UK

	set the variable tiles to contain these two names in a list

For example, for the two tiles covering Madegascar, we would set:

tiles = ['h22v10','h22v11']

do exercise here
ANSWER

tiles = ['h17v03','h17v03']

3.1.1 NASA Earthdata access

3.1.1.1 Register at NASA Earthdata

Before you attempt to do this section, you will need to register at
NASA Earthdata [https://urs.earthdata.nasa.gov/home].

We have set up these notes so that you don’t have to put your username
and password in plain text. Instead, you need to enter your username and
password when prompted by cylog. The password is stored in an
encrypted file, although it can be accessed as plain text within your
Python session.

N.B. using ``cylog().login()`` is only intended to work with access to
NASA Earthdata and to prevent you having to expose your username and
password in these notes.

cylog().login() returns the tuple (username,password) in plain
text.

import geog0111.nasa_requests as nasa_requests
from geog0111.cylog import cylog
%matplotlib inline

url = 'https://e4ftl01.cr.usgs.gov/MOTA/MCD15A3H.006/2018.09.30/'

grab the HTML information
try:
 html = nasa_requests.get(url).text
 # test a few lines of the html
 if html[:20] == '<!DOCTYPE HTML PUBLI':
 print('this seems to be ok ... ')
 print('use cylog().login() anywhere you need to specify the tuple (username,password)')
except:
 print('login error ... try entering your username password again')
 print('then re-run this cell until it works')
 cylog(init=True)

The NASA servers go down for weekly maintenance, usually on Wednesday
afternoon (UK time), so you might not want to attempt this exercise
then.

3.1.2 gdal

We should now check to see if you have gdal properly installed.

import gdal
version = gdal.VersionInfo()

if int(version) >= 2020400:
 print('gdal ok',version)
else:
 print('gdal problem',version,'2.2.4+ expected')

If there is a problem and you are on the geography system, we should be
able to fix it for you.

If you are not on the geography system, try running:

conda env update -f environment.yml

before going any further. If an update occurs, shutdown and restart your
notebooks.

3.2 Automatic downloading of NASA MODIS products

In this section, you will learn
how to:

	scan the directories (on the Earthdata server) where the MODIS data
are stored

	get the dataset filename for a given tile, date and product

	get to URL associated with the dataset

	use the URL to pull the dataset over to store in the local file
system

3.3 GDAL masking

In this section you will learn how
to:

	load locally stored files into gdal

	select a particular dataset

	form a virtual ‘stitched’ dataset from multiple files

	apply a mask to the data from a vector boundary

	crop the dataset

3.4 GDAL stacking and interpolating

In this section
you will learn how to:

	generate a numpy time series of spatial data

	interpolate/smooth the dataset

3.5 Summary

In this session, we have learned to use some geospatial tools using GDAL
in Python. A good set of working notes on how to use
GDAL [http://jgomezdans.github.io/gdal_notes/] has been developed
that you will find useful for further reading, as well as looking at the
advanced section.

We have also very briefly introduced dealing with vector datasets in
ogr, but this was mainly through the use of a pre-defined function
that will take an ESRI shapefile (vector dataset), warp this to the
projection of a raster dataset, and produce a mask for a given layer in
the vector file.

If there is time in the class, we will develop some exercises to examine
the datasets we have generated and/or to explore some different datasets
or different locations.

3 Geospatial processing with gdal

Table of Contents

GDAL [https://gdal.org] is the workhorse of geospatial processing.
Basically, GDAL offers a common library to access a vast number of
formats (if you want to see how vast, check
this [https://gdal.org/formats_list.html]). In addition to letting
you open and convert obscure formats to something more useful, a lot of
functionality in terms of processing raster data is available (for
example, working with projections, combining datasets, accessing remote
datasets, etc).

For vector data, the counterpart to GDAL is OGR (which is now a part of
the GDAL library anyway), which also supports many vector
formats [https://gdal.org/ogr_formats.html]. The combination of both
libraries is a very powerful tool to work with geospatial data, not only
from Python, but from many other popular computer
languages [https://trac.osgeo.org/gdal/#GDALOGRInOtherLanguages].

In this session, we will introduce the gdal geospatial module which
can read a wide range of raster scientific data formats. We will also
introduce the related ogr vector package.

In pacticular, we will learn how to:

	access and download NASA geophysical datasets (specifically, the
MODIS LAI/FPAR product)

	apply a vector mask to the dataset

	apply quality control flags to the data

	stack datasets into a 3D numpy dataset for further analysis,
including interpolation of missing values

	visualise the data

	store the stacked dataset

These are all tasks that you will be required to do for thepart 1
formal assessmentof this course.
You will however be using a different NASA dataset.

3.1 MODIS LAI product

To introduce geospatial processing, we will use a dataset from the MODIS
LAI product over the UK.

You should note that the dataset you need to use for your assessed
practical is a MODIS dataset with similar characteristics to the one in
this example.

The data product
MOD15 [https://modis.gsfc.nasa.gov/data/dataprod/mod15.php] LAI/FPAR
has been generated from NASA MODIS sensors Terra and Aqua data since
2002. We are now in dataset collection 6 (the data version to use).

LAI is defined as the one-sided green leaf area per unit ground area in broadleaf canopies and as half the total needle surface area per unit ground area in coniferous canopies. FPAR is the fraction of photosynthetically active radiation (400-700 nm) absorbed by green vegetation. Both variables are used for calculating surface photosynthesis, evapotranspiration, and net primary production, which in turn are used to calculate terrestrial energy, carbon, water cycle processes, and biogeochemistry of vegetation. Algorithm refinements have improved quality of retrievals and consistency with field measurements over all biomes, with a focus on woody vegetation.

We use such data to map and understand about the dynamics of terrestrial
vegetation / carbon, for example, for climate studies.

The raster data are arranged in tiles, indexed by row and column, to
cover the globe:

[image: MODIS tiles]
MODIS tiles

Exercise 3.1.1

The pattern on the tile names is hXXvYY where XX is the
horizontal coordinate and YY the vertical.

	use the map above to work out the names of the two tiles that we will
need to access data over the UK

	set the variable tiles to contain these two names in a list

For example, for the two tiles covering Madegascar, we would set:

tiles = ['h22v10','h22v11']

do exercise here

3.1.1 NASA Earthdata access

3.1.1.1 Register at NASA Earthdata

Before you attempt to do this section, you will need to register at
NASA Earthdata [https://urs.earthdata.nasa.gov/home].

We have set up these notes so that you don’t have to put your username
and password in plain text. Instead, you need to enter your username and
password when prompted by cylog. The password is stored in an
encrypted file, although it can be accessed as plain text within your
Python session.

N.B. using ``cylog().login()`` is only intended to work with access to
NASA Earthdata and to prevent you having to expose your username and
password in these notes.

cylog().login() returns the tuple (username,password) in plain
text.

import geog0111.nasa_requests as nasa_requests
from geog0111.cylog import cylog
%matplotlib inline

url = 'https://e4ftl01.cr.usgs.gov/MOTA/MCD15A3H.006/2018.09.30/'

grab the HTML information
try:
 html = nasa_requests.get(url).text
 # test a few lines of the html
 if html[:20] == '<!DOCTYPE HTML PUBLI':
 print('this seems to be ok ... ')
 print('use cylog().login() anywhere you need to specify the tuple (username,password)')
except:
 print('login error ... try entering your username password again')
 print('then re-run this cell until it works')
 cylog(init=True)

this seems to be ok ...
use cylog().login() anywhere you need to specify the tuple (username,password)

The NASA servers go down for weekly maintenance, usually on Wednesday
afternoon (UK time), so you might not want to attempt this exercise
then.

3.1.2 gdal

We should now check to see if you have gdal properly installed.

import gdal
version = gdal.VersionInfo()

if int(version) >= 2020400:
 print('gdal ok',version)
else:
 print('gdal problem',version,'2.2.4+ expected')

gdal ok 2020400

If there is a problem and you are on the geography system, we should be
able to fix it for you.

If you are not on the geography system, try running:

conda env update -f environment.yml

before going any further. If an update occurs, shutdown and restart your
notebooks.

3.2 Automatic downloading of NASA MODIS products

In this section, you will learn
how to:

	scan the directories (on the Earthdata server) where the MODIS data
are stored

	get the dataset filename for a given tile, date and product

	get to URL associated with the dataset

	use the URL to pull the dataset over to store in the local file
system

3.3 GDAL masking

In this section you will learn how
to:

	load locally stored files into gdal

	select a particular dataset

	form a virtual ‘stitched’ dataset from multiple files

	apply a mask to the data from a vector boundary

	crop the dataset

3.4 GDAL stacking and interpolating

In this section
you will learn how to:

	generate a numpy time series of spatial data

	interpolate/smooth the dataset

3.X Summary

In this session, we have learned to use some geospatial tools using GDAL
in Python. A good set of working notes on how to use
GDAL [http://jgomezdans.github.io/gdal_notes/] has been developed
that you will find useful for further reading, as well as looking at the
advanced section.

We have also very briefly introduced dealing with vector datasets in
ogr, but this was mainly through the use of a pre-defined function
that will take an ESRI shapefile (vector dataset), warp this to the
projection of a raster dataset, and produce a mask for a given layer in
the vector file.

If there is time in the class, we will develop some exercises to examine
the datasets we have generated and/or to explore some different datasets
or different locations.

3.2 Accessing MODIS Data products

Table of Contents

3.2.1 Introduction

[up to 3.0]

In this section, you will learn how to:

	scan the directories (on the Earthdata server) where the MODIS data
are stored

	get the dataset filename for a given tile, date and product

	get to URL associated with the dataset

	use the URL to pull the dataset over to store in the local file
system

You should already know:

	basic use of Python (sections 1 and 2)

	the MODIS product grid system

	the two tiles needed to cover the UK

tiles = ['h17v03', 'h18v03']

	what LAI is and the code for the MODIS LAI/FPAR product
MOD15 [https://modis.gsfc.nasa.gov/data/dataprod/mod15.php]

	your username and password for NASA
Earthdata [https://urs.earthdata.nasa.gov/home], or have
previously entered this with `cylog <geog0111/cylog.py>`__.

Let’s first just test your NASA login:

import geog0111.nasa_requests as nasa_requests
from geog0111.cylog import cylog

url = 'https://e4ftl01.cr.usgs.gov/MOTA/MCD15A3H.006/2018.09.30/'

grab the HTML information
try:
 html = nasa_requests.get(url).text
 # test a few lines of the html
 if html[:20] == '<!DOCTYPE HTML PUBLI':
 print('this seems to be ok ... ')
 print('use cylog().login() anywhere you need to specify the tuple (username,password)')
except:
 print('login error ... try entering your username password again')
 print('then re-run this cell until it works')
 cylog(init=True)

We use the local class geog0111.nrequests here, in place of the
usual requests as this lets the user avoid exposure to some of the
tricky bits of getting data from the NASA server.

3.2.2 Accessing NASA MODIS URLs

Although you can access MODIS datasets through the NASA
Earthdata [https://urs.earthdata.nasa.gov/home] interface, there are
many occasions that we would want to just automatically pull datasets.
This is particularly true when you want a time series of data that might
involve many files. For example, for analysing LAI or other variables
over space/time) we will want to write code that pulls the time series
of data.

This is also something you will need to do the your assessed practical.

If the data we want to use are accessible to us as a URL, we can simply
use requests as in previous exercises.

Sometimes, we will be able to specify the parameters of the dataset we
want, e.g. using JSON [https://www.json.org]. At othertimes (as in
the case here) we might need to do a little work ourselves to construct
the particular URL we want.

If you visit the site https://e4ftl01.cr.usgs.gov/MOTA/MCD15A3H.006, you
will see ‘date’ style links (e.g. 2018.09.30) through to
sub-directories.

In these,
e.g. https://e4ftl01.cr.usgs.gov/MOTA/MCD15A3H.006/2018.09.30/ you
will find URLs of a set of files.

The files pointed to by the URLs are the MODIS MOD15 4-day composite 500
m LAI/FPAR product
MCD15A3H [https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd15a3h_v006].

There are links to several datasets on the page, including ‘quicklook
files’ that are jpeg format images of the datasets, e.g.:

[image: MCD15A3H.A2018273.h17v03]
MCD15A3H.A2018273.h17v03

as well as xml files and hdf datasets.

3.2.2.1 datetime

The URL we have used above,
https://e4ftl01.cr.usgs.gov/MOTA/MCD15A3H.006/2018.09.30/ starts with a
call to the server directory MOTA, so we can think of
https://e4ftl01.cr.usgs.gov/MOTA asd the base level URL.

The rest of the directoy information MCD15A3H.006/2018.09.30 tells
us:

	the product name MCD15A3H

	the product version 006

	the date of the dataset 2018.09.30

There are several ways we could specify the date information. The most
‘human readable’ is probably YYYY.MM.DD as given here.

Sometimes we will want to refer to it by ‘day of year’ (doy)
(sometimes mistakenly referred to as Julian
day [https://en.wikipedia.org/wiki/Julian_day]) for a particular
year. Day of year will be an integer that goes from 1 to 365 or 366
(inclusive).

We can use the Python datetime to do this:

import datetime

year = 2018

for doy in [1,60,365,366]: # set it up as Jan 1st, plus doy - 1 d =
datetime.datetime(year,1,1) + datetime.timedelta(doy-1)

note the careful formatting to include zeros in datestr
datestr = f'{d.year:4d}.{d.month:02d}.{d.day:02d}'

print(f'doy {doy:3d} in {year} is {datestr}')

Exercise 3.2.1

	copy the above code, and change the year to a leap year to see if it
works as expected

	write some code that loops over each day in the year and converts
from doy to the format of datestr above.

	modify the code so that it forms the full directory URL for the MODIS
dataset,
e.g. https://e4ftl01.cr.usgs.gov/MOTA/MCD15A3H.006/2018.09.30/
for each doy

	use what you have learned to write a function called get_url(),
which you give the year and day of year and which returns the full
URL. It should use keywords to define product, version and
base_url.

	For homework, tidy up your function, making sure you document it
properly. Think aboiut what might happen if you enter incorrect
information.

Hint:

	number of days in year

ndays_in_year = (datetime.datetime(year,12,31) -
datetime.datetime(year,1,1)).days + 1

Remember that doy goes from 1 to 365 or 366 (inclusive).

	datestr format

We use datestr = f'{d.year:4d}.{d.month:02d}.{d.day:02d}' as the
date string format. The elements such as {d.year:4d} mean that
d.year is interpreted as an integer (d) of length 4. When we
put a 0 in front, such as in 02d the resultant string is
‘padded’ with 0. Try something like:

value = 10
print(f'{value:X10f}')

	some bigger hints …

To get the full URL, you will probably want to define something along
the lines of:

url = f'{base_url}/{product}.{version:03d}/{datestr}'

assuming version is an integer.

do exercise here
ANSWERS

import datetime
leap year
so we expect Dec 31st is doy 366
year = 2004
for doy in [1,60,365,366]:
set it up as Jan 1st, plus doy - 1
 d = datetime.datetime(year,1,1) + datetime.timedelta(doy-1)

 # note the careful formatting to include zeros in datestr
 datestr = f'{d.year:4d}.{d.month:02d}.{d.day:02d}'
 filestr = 'https://e4ftl01.cr.usgs.gov/MOTA/MCD15A3H.006/' + datestr
 print(f'doy {doy:3d} in {year} is {filestr}')

def get_url(year,doy,basestr='https://e4ftl01.cr.usgs.gov/MOTA/MCD15A3H.006/'):
 '''
 which you give the year and day of year and which returns the full URL.
 It should use keywords to define product, version and base_url
 '''
 d = datetime.datetime(year,1,1) + datetime.timedelta(doy-1)
 datestr = f'{d.year:4d}.{d.month:02d}.{d.day:02d}'
 filestr = basestr + datestr
 return(filestr)

print(get_url(2000,1))

doy 1 in 2004 is https://e4ftl01.cr.usgs.gov/MOTA/MCD15A3H.006/2004.01.01
doy 60 in 2004 is https://e4ftl01.cr.usgs.gov/MOTA/MCD15A3H.006/2004.02.29
doy 365 in 2004 is https://e4ftl01.cr.usgs.gov/MOTA/MCD15A3H.006/2004.12.30
doy 366 in 2004 is https://e4ftl01.cr.usgs.gov/MOTA/MCD15A3H.006/2004.12.31
https://e4ftl01.cr.usgs.gov/MOTA/MCD15A3H.006/2000.01.01

3.2.2.2 html

When we access this ‘listing’ (directory links such as
https://e4ftl01.cr.usgs.gov/MOTA/MCD15A3H.006/2018.09.30/) from Python,
we will obtain the information in
HTML [https://www.w3schools.com/html/]. We don’t expect you to know
this language in any great depth, but knowing some of the basics is
oftem useful.

import geog0111.nasa_requests as nasa_requests
from geog0111.get_url import get_url
import datetime

doy,year = 273,2018
use your get_url function
or the one supplied in geog0111
url = get_url(doy,year).url
print(url)

pull the html
html = nasa_requests.get(url).text

print a few lines of the html
print(html[:951])
etc
print('\n','-'*30,'etc','-'*30)
at the end
print(html[-964:])

https://e4ftl01.cr.usgs.gov/MOTA/MCD15A3H.006/2018.09.30

In HTML the code text such as:

MCD15A3H.A2018273.h35v10.006.2018278143650.hdf

specifies an HTML link, that will appear as

MCD15A3H.A2018273.h35v10.006.2018278143650.hdf 2018-10-05 09:42 7.6K

and link to the URL specified in the href field:
MCD15A3H.A2018273.h35v10.006.2018278143650.hdf.

We could interpret this information by searching for strings etc., but
the package BeautifulSoup can help us a lot in this.

import geog0111.nasa_requests as nasa_requests
from geog0111.get_url import get_url
from bs4 import BeautifulSoup

doy,year = 273,2018
url = get_url(doy,year).url
html = nasa_requests.get(url).text

use BeautifulSoup
to get all urls referenced with
html code
soup = BeautifulSoup(html,'lxml')
links = [mylink.attrs['href'] for mylink in soup.find_all('a')]

Exercise E3.2.2

	copy the code in the block above and print out some of the
linformation in the list links (e.g. the last 20 entries)

	using an implicit loop, make a list called hdf_filenames of only
those filenames (links) that have hdf as their filename
extension.

Hint 1: first you might select an example item from the links
list:

item = links[-1]
print('item is',item)

and print:

item[-3:]

but maybe better (why would this be?) is:

item.split('.')[-1]

Hint 2: An implicit loop is a construct of the form:

[item for item in links]

In an implicit for loop, we can actually add a conditional statement if
we like, e.g. try:

hdf_filenames = [item for item in links if item[-5] == '4']

This will print out item if the condition item[-5] == '4' is
met. That’s a bit of a pointless test, but illustrates the pattern
required. Try this now with the condition you want to use to select
hdf files.

do exercise here
ANSWER

import geog0111.nasa_requests as nasa_requests
from geog0111.get_url import get_url
from bs4 import BeautifulSoup

doy,year = 273,2018
url = get_url(doy,year).url
html = nasa_requests.get(url).text

use BeautifulSoup
to get all urls referenced with
html code
soup = BeautifulSoup(html,'lxml')
links = [mylink.attrs['href'] for mylink in soup.find_all('a')]
print(links[-20:])

hdfs = [mylink.attrs['href'] for mylink in soup.find_all('a') if mylink.attrs['href'].split('.')[-1] == 'hdf']
print(hdfs[-20:])

3.2.3 MODIS filename format

The hdf filenames are of the form:

MCD15A3H.A2018273.h35v10.006.2018278143650.hdf

where:

	the first field (MCD15A3H) gives the product code

	the second (A2018273) gives the observation date: day of year
273, 2018 here

	the third (h35v10) gives the ‘MODIS tile’ code for the data
location

	the remaining fields specify the product version number (006) and
a code representing the processing date.

If we want a particular dataset, we would assume then that we know the
information to construct the first four fields.

We then have the task remaining of finding an address of the pattern:

MCD15A3H.A2018273.h17v03.006.*.hdf

where * represents a wildcard (unknown element of the URL/filename).

Putting together the code from above to get a list of the hdf files:

#from geog0111.nasa_requests import nasa_requests
from bs4 import BeautifulSoup
from geog0111.get_url import get_url
import geog0111.nasa_requests as nasa_requests

doy,year = 273,2018
url = get_url(doy,year).url
html = nasa_requests.get(url).text
soup = BeautifulSoup(html,'lxml')
links = [mylink.attrs['href'] for mylink in soup.find_all('a')]

get all files that end 'hdf' as in example above
hdf_filenames = [item for item in links if item.split('.')[-1] == 'hdf']

We now want to specify a particular tile or tiles to access.

In this case, we want to look at the field item.split('.')[-4] and
check to see if it is the list tiles.

Exercise 3.2.3

	copy the code above and print out the first 10 values in the list
hdf_filenames. Can you recognise where the tile information is in
the string?

Now, let’s check what we get when we look at item.split('.')[-4].

	set a variable called tiles containing the names of the UK tiles
(as in Exercise 3.1.1)

	write a loop for item in links: to loop over each item in the
list links

	inside this loop set the condition
if item.split('.')[-1] == 'hdf': to select only hdf files, as
above

	inside this conditional statement, print out item.split('.')[-4]
to see if it looks like the tile names

	having confirmed that you are getting the right information, add
another conditional statement to see if
item.split('.')[-4] in tiles, and then print only those filenames
that pass both of your tests

	see if you can combine the two tests (the two if statements) into
a single one

Hint 1: if you print all of the tilenames, this will go on for quite
some time. Instead it may be better to use
print(item.split('.')[-4],end=' '), which will put a space, rather
than a newline between each item printed.

Hint 2: recall what the logical statement (A and B) gives when
thinking about the combined if statement

do exercise here
ANSWER
hdf_filenames = [item for item in links if item.split('.')[-1] == 'hdf']
print hdf_filenames[-20:]

You should end up with something like:

import geog0111.nasa_requests as nasa_requests
from bs4 import BeautifulSoup
from geog0111.get_url import get_url

doy,year = 273,2018
tiles = ['h17v03', 'h18v03']

url = get_url(doy,year).url
html = nasa_requests.get(url).text
soup = BeautifulSoup(html,'lxml')
links = [mylink.attrs['href'] for mylink in soup.find_all('a')]

tile_filenames = [item for item in links \
 if (item.split('.')[-1] == 'hdf') and \
 (item.split('.')[-4] in tiles)]

Exercise E3.2.4

	print out the first 10 items in tile_filenames and check the
result is as you expect.

	write a function called modis_tiles() that takes as input
doy, year and tiles and returns a list of the modis tile
urls.

Hint

	Don’t forget to put in a mechanism to allow you to change the default
base_url, product and version (as you did for the
function get_url())

	In some circumstances, yopu can get repeats of filenames in the list.
One way to get around this is to convert the list to a numpy
array, and use
`np.unique() <https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.unique.html>`__
to remove duplicates.

import numpy as np
tile_filenames = np.unique(tile_filenames)

do exercise here

You should end up with something like:

from geog0111.modis_tiles import modis_tiles

doy,year = 273,2018
tiles = ['h17v03', 'h18v03']

tile_urls = modis_tiles(doy,year,tiles)

Exercise E3.2.5

	print out the first 10 items in tile_urls and check the result is
as you expect.

do exercise here

3.2.4 Saving binary data to a file

We suppose that we want to save the dataset to a local file on the
system.

To do that, we need to know how to save a binary dataset to a file. To
do this well, we should also consider factors such as whether we want to
save a file we already have.

Before we go any further we should check:

	that the directory exists (if not, create it)

	that the file doesn’t already exist (else, don’t bother)

We can conveniently use methods in
`pathlib.Path <https://docs.python.org/3/library/pathlib.html>`__
for this.

So, import Path:

from pathlib import Path

We suppose we might want to put a file (variable filename) into the
directory destination_folder:

To test if a directory exists and create if not:

dest_path = Path(destination_folder)
if not dest_path.exists():
 dest_path.mkdir()

To make a compound name of dest_path and filename:

output_fname = dest_path.joinpath(filename)

To test if a file exists:

if not output_fname.exists():
 print(f"{str(output_fname))} doesn't exist yet ..."})

Exercise E3.2.6

	set a variable destination_folder to data and write code to
create this folder (‘directory’) if it doesn’t already exist.

	set a variable filename to test.bin and write code to check
to see if this file is in the folder destination_folder. If not,
print a message to say so.

do exercise here

We now try to read the binary file data/test_image.bin.

This involves opening a binary file for reading:

fp = open(input_fname, 'rb')

Then reading the data:

data = fp.read()

Then close fp

fp.close()

input_fname = 'data/test_image.bin'
fp = open(input_fname, 'rb')
data = fp.read()
fp.close()
print(f'data read is {len(data)} bytes')

data read is 9136806 bytes

And now, write the data as data/test.bin.

This involves opening a binary file for writing:

fp = open(output_fname, 'wb')

Then reading the data:

d = fp.write(data)

and closing as before:

fp.close()

output_fname = 'data/test.bin'
fp = open(output_fname, 'wb')
d = fp.write(data)
print(f'data written is {d} bytes')

data written is 9136806 bytes

We can avoid the need for the close by using the construct:

with open(output_fname, 'wb') as fp:
 d = fp.write(data)

d = 0
with open(output_fname, 'wb') as fp:
 d = fp.write(data)
print(f'data written is {d} bytes')

data written is 9136806 bytes

Exercise E3.2.7

With the ideas above, write some code to:

	check to see if the output directory data exists

	if not, create it

	check to see if the input file data/test_image.bin exists

	if so, read it in to data

	check to see if the output file data/test.bin exists

	if not (and if you read data), save data to this file

	once you are happy with the code operation, write a function:
save_data(data,filename,destination_folder) that takes the binary
dataset data and writes it to the file filename in directory
destination_folder. It should return the n umber of bytes
written, and should check to see if files / directories exist and act
accordingly.

	add a keyword option to save_data() that will overwrite the
filename, even if it already exists.

do exercise here

You should now know how to save a binary data file.

3.2.4 downloading the data file

The following code uses the nasa_requests library to pull some
binary data from a URL.

The response is tested (r.ok), and if it is ok, then we split the
url to derive the filename, and print this out.

The binary dataset is available as r.content, which we store to the
variable data here:

import geog0111.nasa_requests as nasa_requests
from geog0111.modis_tiles import modis_tiles
from pathlib import Path

doy,year = 273,2018
tiles = ['h17v03', 'h18v03']
destination_folder = 'data'

tile_urls = modis_tiles(doy,year,tiles)

loop over urls
for url in tile_urls:
 r = nasa_requests.get(url)

 # check response
 if r.ok:
 # get the filename from the url
 filename = url.split('/')[-1]
 # get the binary data
 data = r.content

 print(filename)
 else:
 print (f'response from {url} not good')

MCD15A3H.A2018273.h17v03.006.2018278143630.hdf
MCD15A3H.A2018273.h18v03.006.2018278143633.hdf

Exercise E3.2.8

	use the code above to write a function get_modis_files() that
takes as input doy, year and tiles, has a default
destination_folder of data, that downloads the appropriate
datasets (if they don’t already exist). It should have similar
defaults to modis_tiles(). It should return a list of the output
filenames.

do exercise here

You should end up with something like:

import geog0111.nasa_requests as nasa_requests
from geog0111.save_data import save_data

doy,year = 273,2018
tiles = ['h17v03', 'h18v03']
destination_folder = 'data'

tile_urls = modis_tiles(doy,year,tiles)

loop over urls
for url in tile_urls:
 r = nasa_requests.get(url)

 # check response
 if r.ok:
 # get the filename from the url
 filename = url.split('/')[-1]
 # get the binary data
 d = save_data(r.content,filename,destination_folder)
 print(filename,d)
 else:
 print (f'response from {url} not good')

MCD15A3H.A2018273.h17v03.006.2018278143630.hdf 0
MCD15A3H.A2018273.h18v03.006.2018278143633.hdf 0

3.2.5 Visualisation

We will learn more fully how to visualise these later, but just to show
that the datasets exist.

You might want to look at the
FIPS [https://en.wikipedia.org/wiki/List_of_FIPS_country_codes]
country codes for selecting boundary data.

import requests
import shutil
'''
Get the world borders shapefile that we will need
'''
tm_borders_url = "http://thematicmapping.org/downloads/TM_WORLD_BORDERS-0.3.zip"

r = requests.get(tm_borders_url)
with open("data/TM_WORLD_BORDERS-0.3.zip", 'wb') as fp:
 fp.write (r.content)

shutil.unpack_archive("data/TM_WORLD_BORDERS-0.3.zip",
 extract_dir="data/")

from geog0111.get_modis_files import get_modis_files
import gdal
import matplotlib.pylab as plt
import numpy as np

def mosaic_and_mask_data(gdal_fnames, vector_file, vector_where):
 stitch_vrt = gdal.BuildVRT("", gdal_fnames)
 g = gdal.Warp("", stitch_vrt,
 format = 'MEM', dstNodata=200,
 cutlineDSName = vector_file,
 cutlineWhere = vector_where)
 return g

doy,year = 273,2018
tiles = ['h17v03', 'h18v03']
destination_folder = 'data'

filenames = get_modis_files(doy,year,tiles,base_url='https://e4ftl01.cr.usgs.gov/MOTA',\
 version=6,\
 product='MCD15A3H')

this part is to access a particular dataset in the file
gdal_fnames = [f'HDF4_EOS:EOS_GRID:"{file_name:s}":MOD_Grid_MCD15A3H:Lai_500m'
 for file_name in filenames]

g = mosaic_and_mask_data(gdal_fnames, "data/TM_WORLD_BORDERS-0.3.shp",
 "FIPS='UK'")

lai = np.array(g.ReadAsArray()).astype(float) * 0.1 # for LAI scaling
valid data mask
mask = np.nonzero(lai < 20)
min_y = mask[0].min()
max_y = mask[0].max() + 1

min_x = mask[1].min()
max_x = mask[1].max() + 1

lai = lai[min_y:max_y,
 min_x:max_x]

fig = plt.figure(figsize=(12,12))
im = plt.imshow(lai, interpolation="nearest", vmin=0, vmax=6,
 cmap=plt.cm.inferno_r)
plt.title('LAI'+' '+str(tiles)+' '+str((doy,year)))
plt.colorbar()

<matplotlib.colorbar.Colorbar at 0x1196614a8>

[image: _images/Chapter3_2_MODIS_download_answers_50_1.png]
from geog0111.get_modis_files import get_modis_files
import gdal
import matplotlib.pylab as plt
import numpy as np

def mosaic_and_mask_data(gdal_fnames, vector_file, vector_where):
 stitch_vrt = gdal.BuildVRT("", gdal_fnames)
 g = gdal.Warp("", stitch_vrt,
 format = 'MEM', dstNodata=200,
 cutlineDSName = vector_file,
 cutlineWhere = vector_where)
 return g

doy,year = 273,2018
tiles = ['h17v03', 'h18v03']
destination_folder = 'data'

filenames = get_modis_files(doy,year,tiles,base_url='https://e4ftl01.cr.usgs.gov/MOTA',\
 version=6,\
 product='MCD15A3H')

this part is to access a particular dataset in the file
gdal_fnames = [f'HDF4_EOS:EOS_GRID:"{file_name:s}":MOD_Grid_MCD15A3H:Lai_500m'
 for file_name in filenames]

g = mosaic_and_mask_data(gdal_fnames, "data/TM_WORLD_BORDERS-0.3.shp",
 "FIPS='NL'")

lai = np.array(g.ReadAsArray()).astype(float) * 0.1 # for LAI scaling
valid data mask
mask = np.nonzero(lai < 20)
min_y = mask[0].min()
max_y = mask[0].max() + 1

min_x = mask[1].min()
max_x = mask[1].max() + 1

lai = lai[min_y:max_y,
 min_x:max_x]

fig = plt.figure(figsize=(12,12))
im = plt.imshow(lai, interpolation="nearest", vmin=0, vmax=6,
 cmap=plt.cm.inferno_r)
plt.title('LAI'+' '+str(tiles)+' '+str((doy,year)))
plt.colorbar()

<matplotlib.colorbar.Colorbar at 0x119591940>

[image: _images/Chapter3_2_MODIS_download_answers_51_1.png]
Exercise 3.2.7 Homework

	Have a look at the information for `MOD10A1
product <http://www.icess.ucsb.edu/modis/SnowUsrGuide/usrguide_1dtil.html>`__,
which is the 500 m MODIS daily snow cover product.

	Use what you have learned here to download the MOD10A product over
the UK

Hint: * The data are on a different server
https://n5eil01u.ecs.nsidc.org/MOST * the template for the snow
cover dataxset is
f'HDF4_EOS:EOS_GRID:"{file_name:s}":MOD_Grid_Snow_500m:NDSI_Snow_Cover'
* today-10 may not be the best example doy: choose something in winter
* valid snow cover values are 0 to 100 (use this to set
vmin=0, vmax=100 when plotting)

N.B. You will be required to download this dataset for your assessed
practical, so it is a good idea to sort code for this now

do exercise here

3.2.6 Summary

In this session, we have learned how to download MODIS datasets from
NASA Earthdata.

We have developed and tested functions that group together the commands
we want, ultimately arriving at the function
get_modis_files(doy,year,tiles,**kwargs).

We have seen ((if you’ve done the homework) that such code is re-useable
and can directly be used for your assessed practical.

3.2 Accessing MODIS Data products

Table of Contents

	3.2 Accessing MODIS Data products

	3.2.1 Introduction

	3.2.2 Accessing NASA MODIS URLs

	3.2.2.1 datetime

	3.2.2.2 html

	3.2.3 MODIS filename format

	3.2.4 Saving binary data to a file

	3.2.4 downloading the data file

	3.2.5 Visualisation

	3.2.6 Summary

3.2.1 Introduction

[up to 3.0]

In this section, you will learn how to:

	scan the directories (on the Earthdata server) where the MODIS data
are stored

	get the dataset filename for a given tile, date and product

	get to URL associated with the dataset

	use the URL to pull the dataset over to store in the local file
system

You should already know:

	basic use of Python (sections 1 and 2)

	the MODIS product grid system

	the two tiles needed to cover the UK

tiles = ['h17v03', 'h18v03']

	what LAI is and the code for the MODIS LAI/FPAR product
MOD15 [https://modis.gsfc.nasa.gov/data/dataprod/mod15.php]

	your username and password for NASA
Earthdata [https://urs.earthdata.nasa.gov/home], or have
previously entered this with `cylog <geog0111/cylog.py>`__.

Let’s first just test your NASA login:

import geog0111.nasa_requests as nasa_requests
from geog0111.cylog import cylog

url = 'https://e4ftl01.cr.usgs.gov/MOTA/MCD15A3H.006/2018.09.30/'

grab the HTML information
try:
 html = nasa_requests.get(url).text
 # test a few lines of the html
 if html[:20] == '<!DOCTYPE HTML PUBLI':
 print('this seems to be ok ... ')
 print('use cylog().login() anywhere you need to specify the tuple (username,password)')
except:
 print('login error ... try entering your username password again')
 print('then re-run this cell until it works')
 cylog(init=True)

this seems to be ok ...
use cylog().login() anywhere you need to specify the tuple (username,password)

We use the local class geog0111.nrequests here, in place of the
usual requests as this lets the user avoid exposure to some of the
tricky bits of getting data from the NASA server.

3.2.2 Accessing NASA MODIS URLs

Although you can access MODIS datasets through the NASA
Earthdata [https://urs.earthdata.nasa.gov/home] interface, there are
many occasions that we would want to just automatically pull datasets.
This is particularly true when you want a time series of data that might
involve many files. For example, for analysing LAI or other variables
over space/time) we will want to write code that pulls the time series
of data.

This is also something you will need to do the your assessed practical.

If the data we want to use are accessible to us as a URL, we can simply
use requests as in previous exercises.

Sometimes, we will be able to specify the parameters of the dataset we
want, e.g. using JSON [https://www.json.org]. At othertimes (as in
the case here) we might need to do a little work ourselves to construct
the particular URL we want.

If you visit the site https://e4ftl01.cr.usgs.gov/MOTA/MCD15A3H.006, you
will see ‘date’ style links (e.g. 2018.09.30) through to
sub-directories.

In these,
e.g. https://e4ftl01.cr.usgs.gov/MOTA/MCD15A3H.006/2018.09.30/ you
will find URLs of a set of files.

The files pointed to by the URLs are the MODIS MOD15 4-day composite 500
m LAI/FPAR product
MCD15A3H [https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd15a3h_v006].

There are links to several datasets on the page, including ‘quicklook
files’ that are jpeg format images of the datasets, e.g.:

[image: MCD15A3H.A2018273.h17v03]
MCD15A3H.A2018273.h17v03

as well as xml files and hdf datasets.

3.2.2.1 datetime

The URL we have used above,
https://e4ftl01.cr.usgs.gov/MOTA/MCD15A3H.006/2018.09.30/ starts with a
call to the server directory MOTA, so we can think of
https://e4ftl01.cr.usgs.gov/MOTA asd the base level URL.

The rest of the directoy information MCD15A3H.006/2018.09.30 tells
us:

	the product name MCD15A3H

	the product version 006

	the date of the dataset 2018.09.30

There are several ways we could specify the date information. The most
‘human readable’ is probably YYYY.MM.DD as given here.

Sometimes we will want to refer to it by ‘day of year’ (doy)
(sometimes mistakenly referred to as Julian
day [https://en.wikipedia.org/wiki/Julian_day]) for a particular
year. Day of year will be an integer that goes from 1 to 365 or 366
(inclusive).

We can use the Python datetime to do this:

import datetime

year = 2018

for doy in [1,60,365,366]: # set it up as Jan 1st, plus doy - 1 d =
datetime.datetime(year,1,1) + datetime.timedelta(doy-1)

note the careful formatting to include zeros in datestr
datestr = f'{d.year:4d}.{d.month:02d}.{d.day:02d}'

print(f'doy {doy:3d} in {year} is {datestr}')

Exercise 3.2.1

	copy the above code, and change the year to a leap year to see if it
works as expected

	write some code that loops over each day in the year and converts
from doy to the format of datestr above.

	modify the code so that it forms the full directory URL for the MODIS
dataset,
e.g. https://e4ftl01.cr.usgs.gov/MOTA/MCD15A3H.006/2018.09.30/
for each doy

	use what you have learned to write a function called get_url(),
which you give the year and day of year and which returns the full
URL. It should use keywords to define product, version and
base_url.

	For homework, tidy up your function, making sure you document it
properly. Think aboiut what might happen if you enter incorrect
information.

Hint:

	number of days in year

ndays_in_year = (datetime.datetime(year,12,31) -
datetime.datetime(year,1,1)).days + 1

Remember that doy goes from 1 to 365 or 366 (inclusive).

	datestr format

We use datestr = f'{d.year:4d}.{d.month:02d}.{d.day:02d}' as the
date string format. The elements such as {d.year:4d} mean that
d.year is interpreted as an integer (d) of length 4. When we
put a 0 in front, such as in 02d the resultant string is
‘padded’ with 0. Try something like:

value = 10
print(f'{value:X10f}')

	some bigger hints …

To get the full URL, you will probably want to define something along
the lines of:

url = f'{base_url}/{product}.{version:03d}/{datestr}'

assuming version is an integer.

do exercise here

3.2.2.2 html

When we access this ‘listing’ (directory links such as
https://e4ftl01.cr.usgs.gov/MOTA/MCD15A3H.006/2018.09.30/) from Python,
we will obtain the information in
HTML [https://www.w3schools.com/html/]. We don’t expect you to know
this language in any great depth, but knowing some of the basics is
oftem useful.

import geog0111.nasa_requests as nasa_requests
from geog0111.get_url import get_url
import datetime

doy,year = 273,2018
use your get_url function
or the one supplied in geog0111
url = get_url(doy,year).url
print(url)

pull the html
html = nasa_requests.get(url).text

print a few lines of the html
print(html[:951])
etc
print('\n','-'*30,'etc','-'*30)
at the end
print(html[-964:])

https://e4ftl01.cr.usgs.gov/MOTA/MCD15A3H.006/2018.09.30
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<html>
 <head>
 <title>Index of /MOTA/MCD15A3H.006/2018.09.30</title>
 </head>
 <body>
<pre>
**

 U.S. GOVERNMENT COMPUTER

This US Government computer is for authorized users only. By accessing this
system you are consenting to complete monitoring with no expectation of privacy.
Unauthorized access or use may subject you to disciplinary action and criminal
prosecution.

Attention user: You are downloading data from NASA's Land Processes Distributed
Active Archive Center (LP DAAC) located at the USGS Earth Resources Observation and
Science (EROS) Center.

Downloading these data requires a NASA Earthdata Login username and password.
To obtain a NASA Earthdata Login account, please visit
https://urs.earthdata.nasa.gov/users/new/

 ------------------------------ etc ------------------------------

 MCD15A3H.A2018273.h35v08.006.2018278143649.hdf.xml 2018-10-05 09:42 7.6K
 MCD15A3H.A2018273.h35v09.006.2018278143649.hdf 2018-10-05 09:42 207K
 MCD15A3H.A2018273.h35v09.006.2018278143649.hdf.xml 2018-10-05 09:42 7.6K
 MCD15A3H.A2018273.h35v10.006.2018278143650.hdf 2018-10-05 09:42 298K
 MCD15A3H.A2018273.h35v10.006.2018278143650.hdf.xml 2018-10-05 09:42 7.6K
<hr></pre>
</body></html>

In HTML the code text such as:

MCD15A3H.A2018273.h35v10.006.2018278143650.hdf

specifies an HTML link, that will appear as

MCD15A3H.A2018273.h35v10.006.2018278143650.hdf 2018-10-05 09:42 7.6K

and link to the URL specified in the href field:
MCD15A3H.A2018273.h35v10.006.2018278143650.hdf.

We could interpret this information by searching for strings etc., but
the package BeautifulSoup can help us a lot in this.

import geog0111.nasa_requests as nasa_requests
from geog0111.get_url import get_url
from bs4 import BeautifulSoup

doy,year = 273,2018
url = get_url(doy,year).url
html = nasa_requests.get(url).text

use BeautifulSoup
to get all urls referenced with
html code
soup = BeautifulSoup(html,'lxml')
links = [mylink.attrs['href'] for mylink in soup.find_all('a')]

Exercise E3.2.2

	copy the code in the block above and print out some of the
linformation in the list links (e.g. the last 20 entries)

	using an implicit loop, make a list called hdf_filenames of only
those filenames (links) that have hdf as their filename
extension.

Hint 1: first you might select an example item from the links
list:

item = links[-1]
print('item is',item)

and print:

item[-3:]

but maybe better (why would this be?) is:

item.split('.')[-1]

Hint 2: An implicit loop is a construct of the form:

[item for item in links]

In an implicit for loop, we can actually add a conditional statement if
we like, e.g. try:

hdf_filenames = [item for item in links if item[-5] == '4']

This will print out item if the condition item[-5] == '4' is
met. That’s a bit of a pointless test, but illustrates the pattern
required. Try this now with the condition you want to use to select
hdf files.

do exercise here

3.2.3 MODIS filename format

The hdf filenames are of the form:

MCD15A3H.A2018273.h35v10.006.2018278143650.hdf

where:

	the first field (MCD15A3H) gives the product code

	the second (A2018273) gives the observation date: day of year
273, 2018 here

	the third (h35v10) gives the ‘MODIS tile’ code for the data
location

	the remaining fields specify the product version number (006) and
a code representing the processing date.

If we want a particular dataset, we would assume then that we know the
information to construct the first four fields.

We then have the task remaining of finding an address of the pattern:

MCD15A3H.A2018273.h17v03.006.*.hdf

where * represents a wildcard (unknown element of the URL/filename).

Putting together the code from above to get a list of the hdf files:

#from geog0111.nasa_requests import nasa_requests
from bs4 import BeautifulSoup
from geog0111.get_url import get_url
import geog0111.nasa_requests as nasa_requests

doy,year = 273,2018
url = get_url(doy,year).url
html = nasa_requests.get(url).text
soup = BeautifulSoup(html,'lxml')
links = [mylink.attrs['href'] for mylink in soup.find_all('a')]

get all files that end 'hdf' as in example above
hdf_filenames = [item for item in links if item.split('.')[-1] == 'hdf']

We now want to specify a particular tile or tiles to access.

In this case, we want to look at the field item.split('.')[-4] and
check to see if it is the list tiles.

Exercise 3.2.3

	copy the code above and print out the first 10 values in the list
hdf_filenames. Can you recognise where the tile information is in
the string?

Now, let’s check what we get when we look at item.split('.')[-4].

	set a variable called tiles containing the names of the UK tiles
(as in Exercise 3.1.1)

	write a loop for item in links: to loop over each item in the
list links

	inside this loop set the condition
if item.split('.')[-1] == 'hdf': to select only hdf files, as
above

	inside this conditional statement, print out item.split('.')[-4]
to see if it looks like the tile names

	having confirmed that you are getting the right information, add
another conditional statement to see if
item.split('.')[-4] in tiles, and then print only those filenames
that pass both of your tests

	see if you can combine the two tests (the two if statements) into
a single one

Hint 1: if you print all of the tilenames, this will go on for quite
some time. Instead it may be better to use
print(item.split('.')[-4],end=' '), which will put a space, rather
than a newline between each item printed.

Hint 2: recall what the logical statement (A and B) gives when
thinking about the combined if statement

do exercise here

You should end up with something like:

import geog0111.nasa_requests as nasa_requests
from bs4 import BeautifulSoup
from geog0111.get_url import get_url

doy,year = 273,2018
tiles = ['h17v03', 'h18v03']

url = get_url(doy,year).url
html = nasa_requests.get(url).text
soup = BeautifulSoup(html,'lxml')
links = [mylink.attrs['href'] for mylink in soup.find_all('a')]

tile_filenames = [item for item in links \
 if (item.split('.')[-1] == 'hdf') and \
 (item.split('.')[-4] in tiles)]

Exercise E3.2.4

	print out the first 10 items in tile_filenames and check the
result is as you expect.

	write a function called modis_tiles() that takes as input
doy, year and tiles and returns a list of the modis tile
urls.

Hint

	Don’t forget to put in a mechanism to allow you to change the default
base_url, product and version (as you did for the
function get_url())

	In some circumstances, yopu can get repeats of filenames in the list.
One way to get around this is to convert the list to a numpy
array, and use
`np.unique() <https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.unique.html>`__
to remove duplicates.

import numpy as np
tile_filenames = np.unique(tile_filenames)

do exercise here

You should end up with something like:

from geog0111.modis_tiles import modis_tiles

doy,year = 273,2018
tiles = ['h17v03', 'h18v03']

tile_urls = modis_tiles(doy,year,tiles)

Exercise E3.2.5

	print out the first 10 items in tile_urls and check the result is
as you expect.

do exercise here

3.2.4 Saving binary data to a file

We suppose that we want to save the dataset to a local file on the
system.

To do that, we need to know how to save a binary dataset to a file. To
do this well, we should also consider factors such as whether we want to
save a file we already have.

Before we go any further we should check:

	that the directory exists (if not, create it)

	that the file doesn’t already exist (else, don’t bother)

We can conveniently use methods in
`pathlib.Path <https://docs.python.org/3/library/pathlib.html>`__
for this.

So, import Path:

from pathlib import Path

We suppose we might want to put a file (variable filename) into the
directory destination_folder:

To test if a directory exists and create if not:

dest_path = Path(destination_folder)
if not dest_path.exists():
 dest_path.mkdir()

To make a compound name of dest_path and filename:

output_fname = dest_path.joinpath(filename)

To test if a file exists:

if not output_fname.exists():
 print(f"{str(output_fname))} doesn't exist yet ..."})

Exercise E3.2.6

	set a variable destination_folder to data and write code to
create this folder (‘directory’) if it doesn’t already exist.

	set a variable filename to test.bin and write code to check
to see if this file is in the folder destination_folder. If not,
print a message to say so.

do exercise here

We now try to read the binary file data/test_image.bin.

This involves opening a binary file for reading:

fp = open(input_fname, 'rb')

Then reading the data:

data = fp.read()

Then close fp

fp.close()

input_fname = 'data/test_image.bin'
fp = open(input_fname, 'rb')
data = fp.read()
fp.close()
print(f'data read is {len(data)} bytes')

data read is 9136806 bytes

And now, write the data as data/test.bin.

This involves opening a binary file for writing:

fp = open(output_fname, 'wb')

Then reading the data:

d = fp.write(data)

and closing as before:

fp.close()

output_fname = 'data/test.bin'
fp = open(output_fname, 'wb')
d = fp.write(data)
print(f'data written is {d} bytes')

data written is 9136806 bytes

We can avoid the need for the close by using the construct:

with open(output_fname, 'wb') as fp:
 d = fp.write(data)

d = 0
with open(output_fname, 'wb') as fp:
 d = fp.write(data)
print(f'data written is {d} bytes')

data written is 9136806 bytes

Exercise E3.2.7

With the ideas above, write some code to:

	check to see if the output directory data exists

	if not, create it

	check to see if the input file data/test_image.bin exists

	if so, read it in to data

	check to see if the output file data/test.bin exists

	if not (and if you read data), save data to this file

	once you are happy with the code operation, write a function:
save_data(data,filename,destination_folder) that takes the binary
dataset data and writes it to the file filename in directory
destination_folder. It should return the n umber of bytes
written, and should check to see if files / directories exist and act
accordingly.

	add a keyword option to save_data() that will overwrite the
filename, even if it already exists.

do exercise here

You should now know how to save a binary data file.

3.2.4 downloading the data file

The following code uses the nasa_requests library to pull some
binary data from a URL.

The response is tested (r.ok), and if it is ok, then we split the
url to derive the filename, and print this out.

The binary dataset is available as r.content, which we store to the
variable data here:

import geog0111.nasa_requests as nasa_requests
from geog0111.modis_tiles import modis_tiles
from pathlib import Path

doy,year = 273,2018
tiles = ['h17v03', 'h18v03']
destination_folder = 'data'

tile_urls = modis_tiles(doy,year,tiles)

loop over urls
for url in tile_urls:
 r = nasa_requests.get(url)

 # check response
 if r.ok:
 # get the filename from the url
 filename = url.split('/')[-1]
 # get the binary data
 data = r.content

 print(filename)
 else:
 print (f'response from {url} not good')

MCD15A3H.A2018273.h17v03.006.2018278143630.hdf
MCD15A3H.A2018273.h18v03.006.2018278143633.hdf

Exercise E3.2.8

	use the code above to write a function get_modis_files() that
takes as input doy, year and tiles, has a default
destination_folder of data, that downloads the appropriate
datasets (if they don’t already exist). It should have similar
defaults to modis_tiles(). It should return a list of the output
filenames.

do exercise here

You should end up with something like:

import geog0111.nasa_requests as nasa_requests
from geog0111.save_data import save_data

doy,year = 273,2018
tiles = ['h17v03', 'h18v03']
destination_folder = 'data'

tile_urls = modis_tiles(doy,year,tiles)

loop over urls
for url in tile_urls:
 r = nasa_requests.get(url)

 # check response
 if r.ok:
 # get the filename from the url
 filename = url.split('/')[-1]
 # get the binary data
 d = save_data(r.content,filename,destination_folder)
 print(filename,d)
 else:
 print (f'response from {url} not good')

MCD15A3H.A2018273.h17v03.006.2018278143630.hdf 0
MCD15A3H.A2018273.h18v03.006.2018278143633.hdf 0

3.2.5 Visualisation

We will learn more fully how to visualise these later, but just to show
that the datasets exist.

You might want to look at the
FIPS [https://en.wikipedia.org/wiki/List_of_FIPS_country_codes]
country codes for selecting boundary data.

import requests
import shutil
'''
Get the world borders shapefile that we will need
'''
tm_borders_url = "http://thematicmapping.org/downloads/TM_WORLD_BORDERS-0.3.zip"

r = requests.get(tm_borders_url)
with open("data/TM_WORLD_BORDERS-0.3.zip", 'wb') as fp:
 fp.write (r.content)

shutil.unpack_archive("data/TM_WORLD_BORDERS-0.3.zip",
 extract_dir="data/")

from geog0111.get_modis_files import get_modis_files
import gdal
import matplotlib.pylab as plt
import numpy as np

def mosaic_and_mask_data(gdal_fnames, vector_file, vector_where):
 stitch_vrt = gdal.BuildVRT("", gdal_fnames)
 g = gdal.Warp("", stitch_vrt,
 format = 'MEM', dstNodata=200,
 cutlineDSName = vector_file,
 cutlineWhere = vector_where)
 return g

doy,year = 273,2018
tiles = ['h17v03', 'h18v03']
destination_folder = 'data'

filenames = get_modis_files(doy,year,tiles,base_url='https://e4ftl01.cr.usgs.gov/MOTA',\
 version=6,\
 product='MCD15A3H')

this part is to access a particular dataset in the file
gdal_fnames = [f'HDF4_EOS:EOS_GRID:"{file_name:s}":MOD_Grid_MCD15A3H:Lai_500m'
 for file_name in filenames]

g = mosaic_and_mask_data(gdal_fnames, "data/TM_WORLD_BORDERS-0.3.shp",
 "FIPS='UK'")

lai = np.array(g.ReadAsArray()).astype(float) * 0.1 # for LAI scaling
valid data mask
mask = np.nonzero(lai < 20)
min_y = mask[0].min()
max_y = mask[0].max() + 1

min_x = mask[1].min()
max_x = mask[1].max() + 1

lai = lai[min_y:max_y,
 min_x:max_x]

fig = plt.figure(figsize=(12,12))
im = plt.imshow(lai, interpolation="nearest", vmin=0, vmax=6,
 cmap=plt.cm.inferno_r)
plt.title('LAI'+' '+str(tiles)+' '+str((doy,year)))
plt.colorbar()

<matplotlib.colorbar.Colorbar at 0x1196614a8>

[image: _images/Chapter3_2_MODIS_download_50_1.png]
from geog0111.get_modis_files import get_modis_files
import gdal
import matplotlib.pylab as plt
import numpy as np

def mosaic_and_mask_data(gdal_fnames, vector_file, vector_where):
 stitch_vrt = gdal.BuildVRT("", gdal_fnames)
 g = gdal.Warp("", stitch_vrt,
 format = 'MEM', dstNodata=200,
 cutlineDSName = vector_file,
 cutlineWhere = vector_where)
 return g

doy,year = 273,2018
tiles = ['h17v03', 'h18v03']
destination_folder = 'data'

filenames = get_modis_files(doy,year,tiles,base_url='https://e4ftl01.cr.usgs.gov/MOTA',\
 version=6,\
 product='MCD15A3H')

this part is to access a particular dataset in the file
gdal_fnames = [f'HDF4_EOS:EOS_GRID:"{file_name:s}":MOD_Grid_MCD15A3H:Lai_500m'
 for file_name in filenames]

g = mosaic_and_mask_data(gdal_fnames, "data/TM_WORLD_BORDERS-0.3.shp",
 "FIPS='NL'")

lai = np.array(g.ReadAsArray()).astype(float) * 0.1 # for LAI scaling
valid data mask
mask = np.nonzero(lai < 20)
min_y = mask[0].min()
max_y = mask[0].max() + 1

min_x = mask[1].min()
max_x = mask[1].max() + 1

lai = lai[min_y:max_y,
 min_x:max_x]

fig = plt.figure(figsize=(12,12))
im = plt.imshow(lai, interpolation="nearest", vmin=0, vmax=6,
 cmap=plt.cm.inferno_r)
plt.title('LAI'+' '+str(tiles)+' '+str((doy,year)))
plt.colorbar()

<matplotlib.colorbar.Colorbar at 0x119591940>

[image: _images/Chapter3_2_MODIS_download_51_1.png]
Exercise 3.2.7 Homework

	Have a look at the information for `MOD10A1
product <http://www.icess.ucsb.edu/modis/SnowUsrGuide/usrguide_1dtil.html>`__,
which is the 500 m MODIS daily snow cover product.

	Use what you have learned here to download the MOD10A product over
the UK

Hint: * The data are on a different server
https://n5eil01u.ecs.nsidc.org/MOST * the template for the snow
cover dataxset is
f'HDF4_EOS:EOS_GRID:"{file_name:s}":MOD_Grid_Snow_500m:NDSI_Snow_Cover'
* today-10 may not be the best example doy: choose something in winter
* valid snow cover values are 0 to 100 (use this to set
vmin=0, vmax=100 when plotting)

N.B. You will be required to download this dataset for your assessed
practical, so it is a good idea to sort code for this now

do exercise here

3.2.6 Summary

In this session, we have learned how to download MODIS datasets from
NASA Earthdata.

We have developed and tested functions that group together the commands
we want, ultimately arriving at the function
get_modis_files(doy,year,tiles,**kwargs).

We have seen ((if you’ve done the homework) that such code is re-useable
and can directly be used for your assessed practical.

3.3 GDAL, and OGR masking

Table of Contents

	3.3 GDAL, and OGR masking

	3.3.1 The MODIS LAI data

	3.3.1.1 try … except …

	3.3.1.2 Get data

	3.3.1.3 File Naming Convention

	3.3.1.2 Dataset Naming Convention

	3.3.2 MODIS dataset access

	3.3.2.1 gdal.ReadAsArray()

	3.3.2.2 Metadata

	3.3.3 Reading and displaying data

	3.3.3.1 glob

	3.3.3.2 reading and displaying image data

	3.3.3.3 subplot plotting

	3.3.3.3 tile stitching

	3.3.3.4 gdal virtual file

	3.3.4 The country borders dataset

[up to 3.0]

In this section, we’ll look at combining both raster and vector data to
provide a masked dataset ready to use. We will produce a combined
dataset of leaf area index (LAI) over the UK derived from the MODIS
sensor. The MODIS LAI product is produced every 4 days and it is
provided spatially tiled. Each tile covers around 1200 km x 1200 km of
the Earth’s surface. Below you can see a map showing the MODIS tiling
convention.

3.3.1 The MODIS LAI data

Let’s first test your NASA login:

import geog0111.nasa_requests as nasa_requests
from geog0111.cylog import cylog
%matplotlib inline

url = 'https://e4ftl01.cr.usgs.gov/MOTA/MCD15A3H.006/2018.09.30/'

grab the HTML information
try:
 html = nasa_requests.get(url).text
 # test a few lines of the html
 if html[:20] == '<!DOCTYPE HTML PUBLI':
 print('this seems to be ok ... ')
 print('use cylog().login() anywhere you need to specify the tuple (username,password)')
except:
 print('login error ... try entering your username password again')
 print('then re-run this cell until it works')
 cylog(init=True)

this seems to be ok ...
use cylog().login() anywhere you need to specify the tuple (username,password)

3.3.1.1 try ... except ...

Note that we have used a try ... except structure above to trap any
errors.

import sys
try:
 # variable stupid not set
 print("I'm trying this but it will fail",stupid)
except NameError:
 '''
 trap the error
 (and ideally define some sensible behaviour)
 '''
 print("unset variable:",sys.exc_info()[1])
except:
 print("In case of other errors")
 print(sys.exc_info())
 # raise our own exception
 raise Exception('bad code')

unset variable: name 'stupid' is not defined

Generally, you should try to foresee the types of error you might
generate, and provide specific traps for these so youy can control the
code better.

In the case above, we allow the code execution to continue with a
NameError, but raise a further exception in case of any other
errors.

sys.exc_info() provides a tuple of information on what happened.

Exercise

	Write some code using try ... except to trap a
ZeroDivisionError

	provide a sensible result in such a case

hint

If you divide by zero, the result will be infinity, which is often not
what you want to happen. Instead, try dividing by a small number, such
as that provided by sys.float_info.epsilon.

do exercise here

3.3.1.2 Get data

You should by now be able to download MODIS data, but in this case, the
data are provided (or downloaded for you) in the data folder as
files MCD15A3H.A2018273.h17v03.006.2018278143630.hdf and
MCD15A3H.A2018273.h18v03.006.2018278143633.hdf (and some files
*v04*hdf we will need later) by running the code below.

from geog0111.geog_data import *

filenames = ['MCD15A3H.A2018273.h17v03.006.2018278143630.hdf', \
 'MCD15A3H.A2018273.h18v03.006.2018278143633.hdf',\
 'MCD15A3H.A2018273.h17v04.006.2018278143630.hdf',\
 'MCD15A3H.A2018273.h18v04.006.2018278143638.hdf']
destination_folder="data"

for file_name in filenames:
 f = procure_dataset(file_name,verbose=True,\
 destination_folder=destination_folder)
 print(file_name,f)

MCD15A3H.A2018273.h17v03.006.2018278143630.hdf True
MCD15A3H.A2018273.h18v03.006.2018278143633.hdf True
MCD15A3H.A2018273.h17v04.006.2018278143630.hdf True
MCD15A3H.A2018273.h18v04.006.2018278143638.hdf True

We want to select the LAI layers, so let’s have a look at the contents
(‘sub datasets’) of one of the files.

To do this with gdal:

	make the full filename (folder name, plus the filename in that
folder). Use Path for this, but convert to a string.

	open the file, store as g

	get the list g.GetSubDatasets() and loop over this

import gdal
from pathlib import Path
from geog0111.geog_data import *

filenames = ['MCD15A3H.A2018273.h17v03.006.2018278143630.hdf', \
 'MCD15A3H.A2018273.h18v03.006.2018278143633.hdf']
destination_folder="data"

for file_name in filenames:
 # form full filename as a string
 # and print with an underline of =
 file_name = Path(destination_folder).joinpath(file_name).as_posix()
 print(file_name)
 print('='*len(file_name))

 # open the file as g
 g = gdal.Open(file_name)
 # loop over the subdatasets
 for d in g.GetSubDatasets():
 print(d)

data/MCD15A3H.A2018273.h17v03.006.2018278143630.hdf
===
('HDF4_EOS:EOS_GRID:"data/MCD15A3H.A2018273.h17v03.006.2018278143630.hdf":MOD_Grid_MCD15A3H:Fpar_500m', '[2400x2400] Fpar_500m MOD_Grid_MCD15A3H (8-bit unsigned integer)')
('HDF4_EOS:EOS_GRID:"data/MCD15A3H.A2018273.h17v03.006.2018278143630.hdf":MOD_Grid_MCD15A3H:Lai_500m', '[2400x2400] Lai_500m MOD_Grid_MCD15A3H (8-bit unsigned integer)')
('HDF4_EOS:EOS_GRID:"data/MCD15A3H.A2018273.h17v03.006.2018278143630.hdf":MOD_Grid_MCD15A3H:FparLai_QC', '[2400x2400] FparLai_QC MOD_Grid_MCD15A3H (8-bit unsigned integer)')
('HDF4_EOS:EOS_GRID:"data/MCD15A3H.A2018273.h17v03.006.2018278143630.hdf":MOD_Grid_MCD15A3H:FparExtra_QC', '[2400x2400] FparExtra_QC MOD_Grid_MCD15A3H (8-bit unsigned integer)')
('HDF4_EOS:EOS_GRID:"data/MCD15A3H.A2018273.h17v03.006.2018278143630.hdf":MOD_Grid_MCD15A3H:FparStdDev_500m', '[2400x2400] FparStdDev_500m MOD_Grid_MCD15A3H (8-bit unsigned integer)')
('HDF4_EOS:EOS_GRID:"data/MCD15A3H.A2018273.h17v03.006.2018278143630.hdf":MOD_Grid_MCD15A3H:LaiStdDev_500m', '[2400x2400] LaiStdDev_500m MOD_Grid_MCD15A3H (8-bit unsigned integer)')
data/MCD15A3H.A2018273.h18v03.006.2018278143633.hdf
===
('HDF4_EOS:EOS_GRID:"data/MCD15A3H.A2018273.h18v03.006.2018278143633.hdf":MOD_Grid_MCD15A3H:Fpar_500m', '[2400x2400] Fpar_500m MOD_Grid_MCD15A3H (8-bit unsigned integer)')
('HDF4_EOS:EOS_GRID:"data/MCD15A3H.A2018273.h18v03.006.2018278143633.hdf":MOD_Grid_MCD15A3H:Lai_500m', '[2400x2400] Lai_500m MOD_Grid_MCD15A3H (8-bit unsigned integer)')
('HDF4_EOS:EOS_GRID:"data/MCD15A3H.A2018273.h18v03.006.2018278143633.hdf":MOD_Grid_MCD15A3H:FparLai_QC', '[2400x2400] FparLai_QC MOD_Grid_MCD15A3H (8-bit unsigned integer)')
('HDF4_EOS:EOS_GRID:"data/MCD15A3H.A2018273.h18v03.006.2018278143633.hdf":MOD_Grid_MCD15A3H:FparExtra_QC', '[2400x2400] FparExtra_QC MOD_Grid_MCD15A3H (8-bit unsigned integer)')
('HDF4_EOS:EOS_GRID:"data/MCD15A3H.A2018273.h18v03.006.2018278143633.hdf":MOD_Grid_MCD15A3H:FparStdDev_500m', '[2400x2400] FparStdDev_500m MOD_Grid_MCD15A3H (8-bit unsigned integer)')
('HDF4_EOS:EOS_GRID:"data/MCD15A3H.A2018273.h18v03.006.2018278143633.hdf":MOD_Grid_MCD15A3H:LaiStdDev_500m', '[2400x2400] LaiStdDev_500m MOD_Grid_MCD15A3H (8-bit unsigned integer)')

So we see that the data is in HDF4 format, and that it has a number
of layers. The dataset/layer we’re interested in

HDF4_EOS:EOS_GRID:"data/MCD15A3H.A2018273.h18v03.006.2018278143633.hdf":MOD_Grid_MCD15A3H:Lai_500m.

3.3.1.3 File Naming Convention

This section taken from NASA MODIS product
page [https://nsidc.org/data/mod10a1].

Example File Name:

data/MOD10A1.A2000055.h15v01.006.2016061160800.hdf

FOLDER/MOD[PID].A[YYYY][DDD].h[NN]v[NN].[VVV].[yyyy][ddd][hhmmss].hdf

Refer to Table 3.3.1 for descriptions of the file name variables listed
above.

	Variable

	Description

	FOLDER

	folder/directory name of file

	MOD

	MODIS/Terra (MCD means
combined)

	PID

	Product ID

	A

	Acquisition date follows

	YYYY

	Acquisition year

	DDD

	Acquisition day of year

	h[NN]v[NN]

	Horizontal tile number and
vertical tile number (see Grid
for details.)

	VVV

	Version (Collection) number

	yyyy

	Production year

	ddd

	Production day of year

	hhmmss

	Production hour/minute/second in
GMT

	.hdf

	HDF-EOS formatted data file

Table 3.3.1. Variables in the MODIS File Naming Convention

[image: image0]

3.3.1.2 Dataset Naming Convention

Example Dataset Name:

HDF4_EOS:EOS_GRID:"data/MCD15A3H.A2018273.h18v03.006.2018278143633.hdf":MOD_Grid_MCD15A3H:Lai_500m

FORMAT:"FILENAME":MOD_Grid_PRODUCT:LAYER

	Variable

	Description

	FORMAT

	file format, HDF4_EOS:EOS_GRID

	FILENAME

	dataset file name, see below

	PRODUCT

	MODIS product code e.g. MCD15A3H

	LAYER

	sub-dataset name e.g. Lai_500m

Table 3.3.2. Variables in the MODIS Dataset Naming Convention

Exercise E3.3.1

	Check you’re happy that the other datasets (e.g. LaiStdDev_500m)
follow the same convention as Lai_500m

	work out what the dataset/layer name would be for the dataset product
MOD10A1 version 6 for the \(1^{st}\) January 2018, for
tile h25v06 for the layer NDSI_Snow_Cover. You will find
product information on the relevant NASA
page [https://nsidc.org/data/mod10a1]. You may not be able to
access the production date/time, but just put a placeholder for that
now.

	phrase the filename and layer name as ‘f’ strings, e.g. starting
f'HDF4_EOS:EOS_GRID:"{filename}":MOD_Grid_{}' etc.

Hint:

You can explore the filenames by looking into the Earthdata
link [https://n5eil01u.ecs.nsidc.org/MOSA/].

[image: image1]

do exercise here

3.3.2 MODIS dataset access

3.3.2.1 gdal.ReadAsArray()

We can now access the dataset names and open the datasets in gdal
directly, e.g.:

HDF4_EOS:EOS_GRID:"data/MCD15A3H.A2018273.h18v03.006.2018278143633.hdf":MOD_Grid_MCD15A3H:Lai_500m

We can read the dataset with g.ReadAsArray(), after we have opened
it. It returns a numpy array.

import gdal
import numpy as np

filename = 'data/MCD15A3H.A2018273.h17v03.006.2018278143630.hdf'
dataset_name = f'HDF4_EOS:EOS_GRID:"{filename:s}":MOD_Grid_MCD15A3H:Lai_500m'
print(f"dataset: {dataset_name}")

g = gdal.Open(dataset_name)
data = g.ReadAsArray()

print(type(data))
print('max:',data.max())
print('max:',data.min())
get unique values, for interst
print('unique values:',np.unique(data))

dataset: HDF4_EOS:EOS_GRID:"data/MCD15A3H.A2018273.h17v03.006.2018278143630.hdf":MOD_Grid_MCD15A3H:Lai_500m
<class 'numpy.ndarray'>
max: 255
max: 0
unique values: [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 250
 253 254 255]

Exercise E3.3.2

	print out some further summary statistics of the dataset

	print out the data type and shape

	how many rows and columns does the dataset have?

do exercise here

3.3.2.2 Metadata

There will generally be a set of metadata associated with a geospatial
dataset. This will describe e.g. the processing chain, special codes in
the dataset, and projection and other information.

In gdal, w access the metedata using g.GetMetadata(). A
dictionary is returned.

filename = 'data/MCD15A3H.A2018273.h17v03.006.2018278143630.hdf'
dataset_name = f'HDF4_EOS:EOS_GRID:"{filename:s}":MOD_Grid_MCD15A3H:Lai_500m'
g = gdal.Open(dataset_name)

print ("\nMetedata Keys:\n")
get the metadata dictionary keys
for k in g.GetMetadata().keys():
 print(k)

Metedata Keys:

add_offset
add_offset_err
ALGORITHMPACKAGEACCEPTANCEDATE
ALGORITHMPACKAGEMATURITYCODE
ALGORITHMPACKAGENAME
ALGORITHMPACKAGEVERSION
ASSOCIATEDINSTRUMENTSHORTNAME.1
ASSOCIATEDINSTRUMENTSHORTNAME.2
ASSOCIATEDPLATFORMSHORTNAME.1
ASSOCIATEDPLATFORMSHORTNAME.2
ASSOCIATEDSENSORSHORTNAME.1
ASSOCIATEDSENSORSHORTNAME.2
AUTOMATICQUALITYFLAG.1
AUTOMATICQUALITYFLAGEXPLANATION.1
calibrated_nt
CHARACTERISTICBINANGULARSIZE500M
CHARACTERISTICBINSIZE500M
DATACOLUMNS500M
DATAROWS500M
DAYNIGHTFLAG
DESCRREVISION
EASTBOUNDINGCOORDINATE
ENGINEERING_DATA
EXCLUSIONGRINGFLAG.1
GEOANYABNORMAL
GEOESTMAXRMSERROR
GLOBALGRIDCOLUMNS500M
GLOBALGRIDROWS500M
GRANULEBEGINNINGDATETIME
GRANULEDAYNIGHTFLAG
GRANULEENDINGDATETIME
GRINGPOINTLATITUDE.1
GRINGPOINTLONGITUDE.1
GRINGPOINTSEQUENCENO.1
HDFEOSVersion
HORIZONTALTILENUMBER
identifier_product_doi
identifier_product_doi_authority
INPUTPOINTER
LOCALGRANULEID
LOCALVERSIONID
LONGNAME
long_name
MAXIMUMOBSERVATIONS500M
MOD15A1_ANC_BUILD_CERT
MOD15A2_FILLVALUE_DOC
MOD15A2_FparExtra_QC_DOC
MOD15A2_FparLai_QC_DOC
MOD15A2_StdDev_QC_DOC
NADIRDATARESOLUTION500M
NDAYS_COMPOSITED
NORTHBOUNDINGCOORDINATE
NUMBEROFGRANULES
PARAMETERNAME.1
PGEVERSION
PROCESSINGCENTER
PROCESSINGENVIRONMENT
PRODUCTIONDATETIME
QAPERCENTCLOUDCOVER.1
QAPERCENTEMPIRICALMODEL
QAPERCENTGOODFPAR
QAPERCENTGOODLAI
QAPERCENTGOODQUALITY
QAPERCENTINTERPOLATEDDATA.1
QAPERCENTMAINMETHOD
QAPERCENTMISSINGDATA.1
QAPERCENTOTHERQUALITY
QAPERCENTOUTOFBOUNDSDATA.1
RANGEBEGINNINGDATE
RANGEBEGINNINGTIME
RANGEENDINGDATE
RANGEENDINGTIME
REPROCESSINGACTUAL
REPROCESSINGPLANNED
scale_factor
scale_factor_err
SCIENCEQUALITYFLAG.1
SCIENCEQUALITYFLAGEXPLANATION.1
SHORTNAME
SOUTHBOUNDINGCOORDINATE
SPSOPARAMETERS
SYSTEMFILENAME
TileID
UM_VERSION
units
valid_range
VERSIONID
VERTICALTILENUMBER
WESTBOUNDINGCOORDINATE
_FillValue

Let’s look at some of these metadata fields:

import gdal
import numpy as np

filename = 'data/MCD15A3H.A2018273.h17v03.006.2018278143630.hdf'
dataset_name = f'HDF4_EOS:EOS_GRID:"{filename:s}":MOD_Grid_MCD15A3H:Lai_500m'
print(f"dataset: {dataset_name}")

g = gdal.Open(dataset_name)
get the metadata dictionary keys
for k in ["LONGNAME","CHARACTERISTICBINSIZE500M",\
 "MOD15A2_FILLVALUE_DOC",\
 "GRINGPOINTLATITUDE.1","GRINGPOINTLONGITUDE.1",\
 'scale_factor']:
 print(k,g.GetMetadata()[k])

dataset: HDF4_EOS:EOS_GRID:"data/MCD15A3H.A2018273.h17v03.006.2018278143630.hdf":MOD_Grid_MCD15A3H:Lai_500m
LONGNAME MODIS/Terra+Aqua Leaf Area Index/FPAR 4-Day L4 Global 500m SIN Grid
CHARACTERISTICBINSIZE500M 463.312716527778
MOD15A2_FILLVALUE_DOC MOD15A2 FILL VALUE LEGEND
255 = _Fillvalue, assigned when:
 * the MOD09GA suf. reflectance for channel VIS, NIR was assigned its _Fillvalue, or
 * land cover pixel itself was assigned _Fillvalus 255 or 254.
254 = land cover assigned as perennial salt or inland fresh water.
253 = land cover assigned as barren, sparse vegetation (rock, tundra, desert.)
252 = land cover assigned as perennial snow, ice.
251 = land cover assigned as "permanent" wetlands/inundated marshlands.
250 = land cover assigned as urban/built-up.
249 = land cover assigned as "unclassified" or not able to determine.

GRINGPOINTLATITUDE.1 49.7394264948349, 59.9999999946118, 60.0089388384779, 49.7424953501575
GRINGPOINTLONGITUDE.1 -15.4860189105775, -19.9999999949462, 0.0325645816155362, 0.0125638874822839
scale_factor 0.1

So we see that the datasets use the MODIS Sinusoidal projection. Also we
see that the pixel spacing is around 463m, there is a scale factor of
0.1 to be applied etc.

Exercise E3.3.3

look at the metadata to discover:

	the number of rows and columns in the dataset

	the range of valid values

do exercise here

3.3.3 Reading and displaying data

3.3.3.1 glob

Let us now suppose that we want to examine an hdf file that we have
previously downloaded and stored in the directiory data.

How can we get a view into this directory to the the names of the files
there?

The answer to this is glob, which we can access from the pathlib
module.

Let’s look in the data directory:

from pathlib import Path

look in this directory
in_directory = Path('data')

filenames = in_directory.glob('*')
print('files in the directory',in_directory,':')
for f in filenames:
 print(f.name)

files in the directory data :
MCD15A3H.A2016005.h17v04.006.2016013011406.hdf
MCD15A3H.A2016001.h18v04.006.2016007073726.hdf
MCD15A3H.A2016021.h18v03.006.2016026124743.hdf
MCD15A3H.A2018273.h17v04.006.2018278143630.hdf
MCD15A3H.A2016021.h17v03.006.2016026124738.hdf
MCD15A3H.A2016013.h17v03.006.2016020015242.hdf
airtravel.csv
MCD15A3H.A2016033.h17v04.006.2016043140634.hdf
MCD15A3H.A2016009.h18v03.006.2016014073048.hdf
test_image.bin
MCD15A3H.A2016033.h18v03.006.2016043140641.hdf
MCD15A3H.A2018273.h18v03.006.2018278143633.hdf
MCD15A3H.A2016021.h18v04.006.2016026124707.hdf
MCD15A3H.A2016005.h17v03.006.2016013012017.hdf
satellites-1957-2019.gz
MCD15A3H.A2016017.h17v04.006.2016027192758.hdf
TM_WORLD_BORDERS-0.3.prj
MCD15A3H.A2016029.h17v03.006.2016043140323.hdf
saved_daymet.csv
TM_WORLD_BORDERS-0.3.zip
MCD15A3H.A2016013.h17v04.006.2016020020246.hdf
MCD15A3H.A2016009.h18v04.006.2016014074158.hdf
MCD15A3H.A2016017.h17v03.006.2016027192752.hdf
MCD15A3H.A2018273.h18v04.006.2018278143638.hdf
MCD15A3H.A2016029.h18v04.006.2016043140353.hdf
MCD15A3H.A2016025.h17v03.006.2016034034334.hdf
MCD15A3H.A2016013.h18v03.006.2016020014424.hdf
MCD15A3H.A2016025.h18v03.006.2016034034341.hdf
MCD15A3H.A2016009.h17v04.006.2016014072006.hdf
daymet_tmax.csv
MCD15A3H.A2016021.h17v04.006.2016026124414.hdf
MCD15A3H.A2016017.h18v03.006.2016027193558.hdf
MCD15A3H.A2016029.h17v04.006.2016043140330.hdf
MCD15A3H.A2016025.h17v04.006.2016034035837.hdf
MCD15A3H.A2016013.h18v04.006.2016020014435.hdf
MCD15A3H.A2016001.h17v03.006.2016007075833.hdf
MCD15A3H.A2016017.h18v04.006.2016027193356.hdf
TM_WORLD_BORDERS-0.3.dbf
MCD15A3H.A2016029.h18v03.006.2016043140341.hdf
Readme.txt
test.bin
TM_WORLD_BORDERS-0.3.shx
NOAA.csv
MCD15A3H.A2016025.h18v04.006.2016034034846.hdf
MCD15A3H.A2016033.h18v04.006.2016043140709.hdf
TM_WORLD_BORDERS-0.3.shp
MCD15A3H.A2016033.h17v03.006.2016043140622.hdf
MCD15A3H.A2016005.h18v03.006.2016013012348.hdf
MCD15A3H.A2016005.h18v04.006.2016013012025.hdf
MCD15A3H.A2016037.h17v03.006.2016043140850.hdf
MCD15A3H.A2016009.h17v03.006.2016014071957.hdf
MCD15A3H.A2018273.h17v03.006.2018278143630.hdf
MCD15A3H.A2016001.h17v04.006.2016007074809.hdf
MCD15A3H.A2016001.h18v03.006.2016007073724.hdf

We use the argument 'data/*' where * is a wildcard. Any
filenames that match this pattern will be returned as a list.

If we want the list sorted, we need to use the sorted() method. This
is similar to the list sort we have seen previously, but returns the
sorted list.

The wildcard * here means a match to zero or more characters, so
this is matching all names in the directory data. The wildcard
** would mean all files here and all
sub-directories [https://docs.python.org/3/library/pathlib.html#pathlib.Path.glob].

We could be more subtle with this, e.g. matching only files ending
hdf:

from pathlib import Path

filenames = sorted(Path('data').glob('*'))

for f in filenames:
 print(f.name)

MCD15A3H.A2016001.h17v03.006.2016007075833.hdf
MCD15A3H.A2016001.h17v04.006.2016007074809.hdf
MCD15A3H.A2016001.h18v03.006.2016007073724.hdf
MCD15A3H.A2016001.h18v04.006.2016007073726.hdf
MCD15A3H.A2016005.h17v03.006.2016013012017.hdf
MCD15A3H.A2016005.h17v04.006.2016013011406.hdf
MCD15A3H.A2016005.h18v03.006.2016013012348.hdf
MCD15A3H.A2016005.h18v04.006.2016013012025.hdf
MCD15A3H.A2016009.h17v03.006.2016014071957.hdf
MCD15A3H.A2016009.h17v04.006.2016014072006.hdf
MCD15A3H.A2016009.h18v03.006.2016014073048.hdf
MCD15A3H.A2016009.h18v04.006.2016014074158.hdf
MCD15A3H.A2016013.h17v03.006.2016020015242.hdf
MCD15A3H.A2016013.h17v04.006.2016020020246.hdf
MCD15A3H.A2016013.h18v03.006.2016020014424.hdf
MCD15A3H.A2016013.h18v04.006.2016020014435.hdf
MCD15A3H.A2016017.h17v03.006.2016027192752.hdf
MCD15A3H.A2016017.h17v04.006.2016027192758.hdf
MCD15A3H.A2016017.h18v03.006.2016027193558.hdf
MCD15A3H.A2016017.h18v04.006.2016027193356.hdf
MCD15A3H.A2016021.h17v03.006.2016026124738.hdf
MCD15A3H.A2016021.h17v04.006.2016026124414.hdf
MCD15A3H.A2016021.h18v03.006.2016026124743.hdf
MCD15A3H.A2016021.h18v04.006.2016026124707.hdf
MCD15A3H.A2016025.h17v03.006.2016034034334.hdf
MCD15A3H.A2016025.h17v04.006.2016034035837.hdf
MCD15A3H.A2016025.h18v03.006.2016034034341.hdf
MCD15A3H.A2016025.h18v04.006.2016034034846.hdf
MCD15A3H.A2016029.h17v03.006.2016043140323.hdf
MCD15A3H.A2016029.h17v04.006.2016043140330.hdf
MCD15A3H.A2016029.h18v03.006.2016043140341.hdf
MCD15A3H.A2016029.h18v04.006.2016043140353.hdf
MCD15A3H.A2016033.h17v03.006.2016043140622.hdf
MCD15A3H.A2016033.h17v04.006.2016043140634.hdf
MCD15A3H.A2016033.h18v03.006.2016043140641.hdf
MCD15A3H.A2016033.h18v04.006.2016043140709.hdf
MCD15A3H.A2016037.h17v03.006.2016043140850.hdf
MCD15A3H.A2018273.h17v03.006.2018278143630.hdf
MCD15A3H.A2018273.h17v04.006.2018278143630.hdf
MCD15A3H.A2018273.h18v03.006.2018278143633.hdf
MCD15A3H.A2018273.h18v04.006.2018278143638.hdf
NOAA.csv
Readme.txt
TM_WORLD_BORDERS-0.3.dbf
TM_WORLD_BORDERS-0.3.prj
TM_WORLD_BORDERS-0.3.shp
TM_WORLD_BORDERS-0.3.shx
TM_WORLD_BORDERS-0.3.zip
airtravel.csv
daymet_tmax.csv
satellites-1957-2019.gz
saved_daymet.csv
test.bin
test_image.bin

Exercise 3.3.4

	adapt the code above to return only hdf filenames for the tile
h18v03

do exercise here

3.3.3.2 reading and displaying image data

Let’s now read some data as above.

we do this with:

g.Open(gdal_fname)
data = g.ReadAsArray()

Originally the data are uint8 (unsigned 8 bit data), but we need to
multiply them by scale_factor (0.1 here) to convert to physical
units. This also casts the data type to float.

We can straightforwardly plot the images using matplotlib. We first
importt the library:

import matplotlib.pylab as plt

Then set up the figure size:

plt.figure(figsize=(10,10))

Plot the image:

plt.imshow(data, vmin=0, vmax=6,cmap=plt.cm.inferno_r)

where here data is a 2-D dataset. We can set limits to the image
scaling (vmin, vmax), so that we emphasise a particular range of
values, and we can apply custom colourmaps (cmap=plt.cm.inferno_r).

Finally here, we set a title, and plot a colour wedge to show the data
scale. The scale=0.8 here allows us to align the size of the scale
with the plotted image size.

plt.title(dataset_name)
plt.colorbar(shrink=0.8)

If we want to save the plotted image to a file, e.g. in the directory
images, we use:

plt.savefig(out_filename)

import gdal
from pathlib import Path
import matplotlib.pylab as plt

get only v03 hdf names
filenames = sorted(Path('data').glob('*2018*v03*.hdf'))

out_directory = Path('images')

for filename in filenames:
 # pull the tile name from the filename
 # to use as plot title
 tile = filename.name.split('.')[2]

 dataset_name = f'HDF4_EOS:EOS_GRID:"{str(filename):s}\":MOD_Grid_MCD15A3H:Lai_500m'
 g = gdal.Open(dataset_name)
 data = g.ReadAsArray()
 scale_factor = float(g.GetMetadata()['scale_factor'])

 print(dataset_name,scale_factor)
 print('*'*len(dataset_name))
 print(type(data),data.dtype,data.shape,'\n')

 data = data * scale_factor
 print(type(data),data.dtype,data.shape,'\n')
 plt.figure(figsize=(10,10))
 plt.imshow(data, vmin=0, vmax=6,cmap=plt.cm.inferno_r)
 plt.title(tile)
 plt.colorbar(shrink=0.8)

 # save figure as png
 plot_name = filename.stem + '.png'
 print(plot_name)
 out_filename = out_directory.joinpath(plot_name)
 plt.savefig(out_filename)

HDF4_EOS:EOS_GRID:"data/MCD15A3H.A2018273.h17v03.006.2018278143630.hdf":MOD_Grid_MCD15A3H:Lai_500m 0.1
**
<class 'numpy.ndarray'> uint8 (2400, 2400)

<class 'numpy.ndarray'> float64 (2400, 2400)

MCD15A3H.A2018273.h17v03.006.2018278143630.png
HDF4_EOS:EOS_GRID:"data/MCD15A3H.A2018273.h18v03.006.2018278143633.hdf":MOD_Grid_MCD15A3H:Lai_500m 0.1
**
<class 'numpy.ndarray'> uint8 (2400, 2400)

<class 'numpy.ndarray'> float64 (2400, 2400)

MCD15A3H.A2018273.h18v03.006.2018278143633.png

[image: _images/Chapter3_3_GDAL_masking_34_1.png]
[image: _images/Chapter3_3_GDAL_masking_34_2.png]
Let's check the images we saved are there!
and access some file info while we are here
using pathlib
from pathlib import Path
from datetime import datetime

for f in Path('images').glob('MCD*2018*v03*.png'):

 # get the file size in bytes
 size_in_B = f.stat().st_size

 # get the file modification time (ns)
 mod_date_ns = f.stat().st_mtime_ns
 mod_date = datetime.fromtimestamp(mod_date_ns // 1000000000)

 print(f'{f} {size_in_B} Bytes {mod_date}')

images/MCD15A3H.A2018273.h18v03.006.2018278143633.png 297318 Bytes 2018-10-19 16:59:20
images/MCD15A3H.A2018273.h17v03.006.2018278143630.png 142654 Bytes 2018-10-19 16:59:19

3.3.3.3 subplot plotting

Often, we want to have several figures on the same plot. We can do this
with plt.subplots():

The way we set the title and other features is slightly diifferent, but
there are many example of different plot types on the web we can follow
as examples.

import gdal
from pathlib import Path
import matplotlib.pylab as plt
import numpy as np

filenames = sorted(Path('data').glob('*2018*v03*.hdf'))

out_directory = Path('images')

'''
Set up subplots of 1 row x 2 columns
'''
fig, axs = plt.subplots(nrows=1, ncols=2, sharex=True, sharey=True,
 figsize=(10,5))
need to force axs collapse to a 2D array
for indexing to be easy T here is transpose
to get row/col the right way around
axs = np.array(axs).T.flatten()

for i,filename in enumerate(filenames):
 # pull the tile name from the filename
 # to use as plot title
 tile = filename.name.split('.')[2]

 dataset_name = f'HDF4_EOS:EOS_GRID:"{str(filename):s}\":MOD_Grid_MCD15A3H:Lai_500m'
 g = gdal.Open(dataset_name)
 data = g.ReadAsArray() * float(g.GetMetadata()['scale_factor'])

 img = axs[i].imshow(data, interpolation="nearest", vmin=0, vmax=4,
 cmap=plt.cm.inferno_r)
 axs[i].set_title(tile)
 plt.colorbar(img,ax=axs[i],shrink=0.7)

save figure as pdf this time
plot_name = 'joinedup.pdf'
print(plot_name)
out_filename = out_directory.joinpath(plot_name)
plt.savefig(out_filename)

joinedup.pdf

[image: _images/Chapter3_3_GDAL_masking_37_1.png]
Exercise 3.3.5

We now want to use the additional files:

MCD15A3H.A2018273.h17v04.006.2018278143630.hdf
MCD15A3H.A2018273.h18v04.006.2018278143638.hdf

	copy and change the code above to use files of the pattern
v0[3,4].hdf

	use subplot as above to plot a 2x2 set of subplots of these data.

Hint

The code should look much like that above, but you need to give the
fiuller list of filenames and set the subplot shape.

The code [3,4] in the pattern *v0[3,4]*.hdf means match either
3 or 4, so the pattern must be *v03*.hdf or *v03*.hdf.

The result should look like:

[image: image0]

do exercise here

3.3.3.3 tile stitching

You may want to generate a single view of the 4 tiles.

We could achieve this by stitching things together “by hand”…

recipe:

	First, lets generate a 3D dataset with all 4 tiles, so we have the
images stored as members of a list
data[0],data[1],data[2] and data[3]:

data = []
for filename in filenames:
 dataname = f'HDF4_EOS:EOS_GRID:"{str(filename):s}":MOD_Grid_MCD15A3H:Lai_500m'
 g = gdal.Open(dataname)
 data.append(g.ReadAsArray() * scale)

	then, we produce vertical stacks of the first two and last two files.
This can be done in various ways, but it is perhaps clearest to use
np.vstack()

top = np.vstack([data[0],data[1]])
bot = np.vstack([data[2],data[3]])

	then, produce a horizontal stack of these stacks:

lai_stich = np.hstack([top,bot])

and plot the dataset

import gdal
from pathlib import Path
import matplotlib.pylab as plt

scale = 0.1

filenames = sorted(Path('data').glob('*2018*v0*.hdf'))

data = []
for filename in filenames:
 dataname = f'HDF4_EOS:EOS_GRID:"{str(filename)}":MOD_Grid_MCD15A3H:Lai_500m'
 g = gdal.Open(dataname)
 # append each image to the data list
 data.append(g.ReadAsArray() * scale)

top = np.vstack([data[0],data[1]])
bot = np.vstack([data[2],data[3]])

lai_stich = np.hstack([top,bot])

plt.figure(figsize=(10,10))
plt.imshow(lai_stich, interpolation="nearest", vmin=0, vmax=4,
 cmap=plt.cm.inferno_r)
plt.colorbar(shrink=0.8)

<matplotlib.colorbar.Colorbar at 0x126b0fac8>

[image: _images/Chapter3_3_GDAL_masking_41_1.png]
Exercise 3.3.6

	examine how the vstack and hstack methods work. Print out the
shape of the array after stacking to appreciate this.

	how big (in pixels) is the whole dataset now?

	If a float is 64 bits, how many bytes is this data array likely
to be?

do exercise here

3.3.3.4 gdal virtual file

However, stitching in this way is problematic if you want to mosaic many
tiles, as you need to read in all the data in memory. Also,some tiles
may be missing. GDAL allows you to create a mosaic as virtual file
format [https://www.gdal.org/gdal_vrttut.html], using gdal.BuildVRT
(check the documentation).

This function takes two inputs: the output filename (stitch_up.vrt)
and a set of GDAL format filenames. It returns the open output dataset,
so that we can check what it looks like with e.g. gdal.Info

import gdal
from pathlib import Path

need to convert filenames to strings
which we can do with p.as_posix() or str(p)
filenames = sorted([p.as_posix() for p in Path('data').glob('*273*v0[3,4]*.hdf')])
datanames = [f'HDF4_EOS:EOS_GRID:"{str(filename)}":MOD_Grid_MCD15A3H:Lai_500m' \
 for filename in filenames]
stitch_vrt = gdal.BuildVRT("stitch_up.vrt", datanames)

print(gdal.Info(stitch_vrt))

Driver: VRT/Virtual Raster
Files: stitch_up.vrt
Size is 4800, 4800
Coordinate System is:
PROJCS["unnamed",
 GEOGCS["Unknown datum based upon the custom spheroid",
 DATUM["Not specified (based on custom spheroid)",
 SPHEROID["Custom spheroid",6371007.181,0]],
 PRIMEM["Greenwich",0],
 UNIT["degree",0.0174532925199433]],
 PROJECTION["Sinusoidal"],
 PARAMETER["longitude_of_center",0],
 PARAMETER["false_easting",0],
 PARAMETER["false_northing",0],
 UNIT["Meter",1]]
Origin = (-1111950.519667000044137,6671703.117999999783933)
Pixel Size = (463.312716527916677,-463.312716527708290)
Corner Coordinates:
Upper Left (-1111950.520, 6671703.118) (20d 0' 0.00"W, 60d 0' 0.00"N)
Lower Left (-1111950.520, 4447802.079) (13d 3'14.66"W, 40d 0' 0.00"N)
Upper Right (1111950.520, 6671703.118) (20d 0' 0.00"E, 60d 0' 0.00"N)
Lower Right (1111950.520, 4447802.079) (13d 3'14.66"E, 40d 0' 0.00"N)
Center (0.000, 5559752.598) (0d 0' 0.01"E, 50d 0' 0.00"N)
Band 1 Block=128x128 Type=Byte, ColorInterp=Gray
 NoData Value=255

So we see that we now have 4800 columns by 4800 rows dataset, centered
around 0 degrees North, 0 degrees W. Let’s plot the data…

stitch_vrt is an already opened GDAL dataset, needs to be read in
plt.figure(figsize=(10,10))
plt.imshow(stitch_vrt.ReadAsArray()*0.1,
 interpolation="nearest", vmin=0, vmax=6,
 cmap=plt.cm.inferno_r)

<matplotlib.image.AxesImage at 0x10a0ecda0>

[image: _images/Chapter3_3_GDAL_masking_47_1.png]

3.3.4 The country borders dataset

A number of vectors with countries and administrative subdivisions are
available. The TM_WORLD_BORDERS
shapefile [http://thematicmapping.org/downloads/TM_WORLD_BORDERS-0.3.zip]
is popular and in the public domain. You can see it, and have a look at
the data
here [https://koordinates.com/layer/7354-tm-world-borders-03/]. We
need to download and unzip this file… We’ll use requests as before, and
we’ll unpack the zip file using
`shutil.unpack_archive <https://docs.python.org/3/library/shutil.html#shutil.unpack_archive>`__

import requests
import shutil

tm_borders_url = "http://thematicmapping.org/downloads/TM_WORLD_BORDERS-0.3.zip"

r = requests.get(tm_borders_url)
with open("data/TM_WORLD_BORDERS-0.3.zip", 'wb') as fp:
 fp.write (r.content)

shutil.unpack_archive("data/TM_WORLD_BORDERS-0.3.zip",
 extract_dir="data/")

Make sure you have the relevant files available in your data folder!
We can then inspect the dataset using the command line tool ogrinfo.
We can call it from the shell by appending the ! symbol, and select
that we want to check only the data for the UK (stored in the FIPS
field with value UK):

It is worth noting that using OGR’s queries trying to match a string,
the string needs to be surrounded by '. You can also use more
complicated SQL queries if you wanted to.

!ogrinfo -nomd -geom=NO -where "FIPS='UK'" data/TM_WORLD_BORDERS-0.3.shp TM_WORLD_BORDERS-0.3

INFO: Open of `data/TM_WORLD_BORDERS-0.3.shp'
 using driver `ESRI Shapefile' successful.

Layer name: TM_WORLD_BORDERS-0.3
Geometry: Polygon
Feature Count: 1
Extent: (-180.000000, -90.000000) - (180.000000, 83.623596)
Layer SRS WKT:
GEOGCS["GCS_WGS_1984",
 DATUM["WGS_1984",
 SPHEROID["WGS_84",6378137.0,298.257223563]],
 PRIMEM["Greenwich",0.0],
 UNIT["Degree",0.0174532925199433],
 AUTHORITY["EPSG","4326"]]
FIPS: String (2.0)
ISO2: String (2.0)
ISO3: String (3.0)
UN: Integer (3.0)
NAME: String (50.0)
AREA: Integer (7.0)
POP2005: Integer64 (10.0)
REGION: Integer (3.0)
SUBREGION: Integer (3.0)
LON: Real (8.3)
LAT: Real (7.3)
OGRFeature(TM_WORLD_BORDERS-0.3):206
 FIPS (String) = UK
 ISO2 (String) = GB
 ISO3 (String) = GBR
 UN (Integer) = 826
 NAME (String) = United Kingdom
 AREA (Integer) = 24193
 POP2005 (Integer64) = 60244834
 REGION (Integer) = 150
 SUBREGION (Integer) = 154
 LON (Real) = -1.600
 LAT (Real) = 53.000

We inmediately see that the coordinates for the UK are in several
polygons, and in WGS84 (Latitude and Longitude in decimal degrees). This
is incompatible with the MODIS data (SIN projection), but fortunately
GDAL understands about coordinate systems.

We can use GDAL to quickly apply the vector feature for the UK as a
mask. There are several ways of doing this, but the simplest is to use
gdal.Warp [https://www.gdal.org/gdalwarp.html] (the link is to the
command line tool). In this case, we just want to create:

	an in-memory (i.e. not saved to a file) dataset. We can use the
format MEM, so no file is written out.

	where the FIPS field is equal to 'UK', we want the LAI to
show, elsewhere, we set it to some value to indicate “no data”
(e.g. -999)

The mosaicked version of the MODIS LAI product is in called
stitch_up.vrt. Since we’re not saving the output to a file (MEM
output option), we can leave the output as an empty string "". The
shapefile comes with the cutline options:

	cutlineDSName that’s the name of the vector file we want to use
as a cutline

	cutlineWhere that’s the selection statement for the attribute
table in the dataset.

To set the no data value to 200, we can use the option
dstNodata=200. This is because very large values in the LAI product
are already indicated to be invalid.

We can then just very quickly perform this and check…

import gdal
import matplotlib.pylab as plt
from pathlib import Path

filenames = sorted([p.as_posix() for p in Path('data').glob('*2018*v0*.hdf')])
datanames = [f'HDF4_EOS:EOS_GRID:"{str(filename)}":MOD_Grid_MCD15A3H:Lai_500m' \
 for filename in filenames]
stitch_vrt = gdal.BuildVRT("stitch_up.vrt", datanames)

g = gdal.Warp("", "stitch_up.vrt",
 format = 'MEM',dstNodata=200,
 cutlineDSName = 'data/TM_WORLD_BORDERS-0.3.shp', cutlineWhere = "FIPS='UK'")

read and plot data
masked_lai = g.ReadAsArray()*0.1
plt.figure(figsize=(10,10))
plt.title('Red white and blue: Brexit UK')
plt.imshow(masked_lai, interpolation="nearest", vmin=1, vmax=3,
 cmap=plt.cm.RdBu)

<matplotlib.image.AxesImage at 0x126942320>

[image: _images/Chapter3_3_GDAL_masking_53_1.png]
So that works as expected, but since we haven’t actually told GDAL
anything about the output (other than apply the mask), we still have a
4800 pixel wide dataset.

You may want to crop it by looking for where the original dataset is
valid (0 to 100 here). This will generally save a lot of computer
memory. You’ll be pleased to know that this is a great slicing
application!

import numpy as np

lai = g.ReadAsArray()

data valid where lai <= 100 here
valid_mask = np.where(lai <= 100)

work out the bounds of valid_mask
min_y = valid_mask[0].min()
max_y = valid_mask[0].max() + 1

min_x = valid_mask[1].min()
max_x = valid_mask[1].max() + 1

now slice, and scale LAI
lai = lai[min_y:max_y,
 min_x:max_x]*0.1

plt.figure(figsize=(10,10))
plt.imshow(lai, vmin=0, vmax=6,
 cmap=plt.cm.inferno_r)
plt.title('UK')
plt.colorbar()

<matplotlib.colorbar.Colorbar at 0x12a6486d8>

[image: _images/Chapter3_3_GDAL_masking_55_