

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/gentlejackbitcoinjs-lib/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/gentlejackbitcoinjs-lib/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

BitcoinJS (bitcoinjs-lib)

[image: Build Status] [https://travis-ci.org/bitcoinjs/bitcoinjs-lib]
[image: NPM] [https://www.npmjs.org/package/bitcoinjs-lib]
[image: tip for next commit] [http://tip4commit.com/projects/735]

[image: js-standard-style] [https://github.com/feross/standard]

The pure JavaScript Bitcoin library for node.js and browsers.
Used by over a million wallet users and the backbone for almost all Bitcoin web wallets in production today.

Features

	Clean: Pure JavaScript, concise code, easy to read.

	Tested: Coverage > 90%, third-party integration tests.

	Careful: Two person approval process for small, focused pull requests.

	Compatible: Works on Node.js and all modern browsers.

	Powerful: Support for advanced features, such as multi-sig, HD Wallets.

	Secure: Strong random number generation, PGP signed releases, trusted developers.

	Principled: No support for browsers with crap RNG (IE < 11)

	Standardized: Node community coding style, Browserify, Node’s stdlib and Buffers.

	Fast: Optimized code, uses typed arrays instead of byte arrays for performance.

	Experiment-friendly: Bitcoin Mainnet and Testnet support.

	Altcoin-ready: Capable of working with bitcoin-derived cryptocurrencies (such as Dogecoin).

Should I use this in production?

If you are thinking of using the master branch of this library in production, stop.
Master is not stable; it is our development branch, and only tagged releases may be classified as stable [https://github.com/bitcoinjs/bitcoinjs-lib/tags].

Installation

npm install bitcoinjs-lib

Setup

Node.js

var bitcoin = require('bitcoinjs-lib')

Browser

If you’re familiar with how to use browserify, ignore this and proceed normally.
These steps are advisory only, and may not be necessary for your application.

Browserify [https://github.com/substack/node-browserify] is assumed to be installed for these steps.

From your repository, create an index.js file

module.exports = {
 base58: require('bs58'),
 bitcoin: require('bitcoinjs-lib'),
 ecurve: require('ecurve'),
 BigInteger: require('bigi'),
 Buffer: require('buffer')
}

Install each of the above packages locally

npm install bs58 bitcoinjs-lib ecurve bigi buffer

After installation, use browserify to compile index.js for use in the browser:

 $ browserify index.js --standalone foo > app.js

You will now be able to use <script src="app.js" /> in your browser, with each of the above exports accessible via the global foo object (or whatever you chose for the --standalone parameter above).

NOTE: See our package.json for the currently supported version of browserify used by this repository.

NOTE: When uglifying the javascript, you must exclude the following variable names from being mangled: Array, BigInteger, Boolean, Buffer, ECPair, Function, Number, Point and Script.
This is because of the function-name-duck-typing used in typeforce [https://github.com/dcousens/typeforce].
Example:

uglifyjs ... --mangle --reserved 'Array,BigInteger,Boolean,Buffer,ECPair,Function,Number,Point'

Flow

Definitions for Flow typechecker [https://flowtype.org/] are available in flow-typed repository.

You can either download them directly [https://github.com/flowtype/flow-typed/blob/master/definitions/npm/bitcoinjs-lib_v2.x.x/flow_%3E%3Dv0.17.x/bitcoinjs-lib_v2.x.x.js] from the repo, or with the flow-typed CLI

npm install -g flow-typed
$ flow-typed install -f 0.27 bitcoinjs-lib@2.2.0 # 0.27 for flow version, 2.2.0 for bitcoinjs-lib version

The definitions are complete and up to date with version 2.2.0. The definitions are maintained by @runn1ng [https://github.com/runn1ng].

Examples

The below examples are implemented as integration tests, they should be very easy to understand. Otherwise, pull requests are appreciated.

	Generate a random address [https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/test/integration/basic.js#L9]

	Generate a address from a SHA256 hash [https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/test/integration/basic.js#L20]

	Generate a address and WIF for Litecoin [https://github.com/bitcoin/bitcoinjs-lib/blob/master/test/integration/basic.js#L29]

	Import an address via WIF [https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/test/integration/basic.js#L43]

	Create a Transaction [https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/test/integration/basic.js#L50]

	Create an OP RETURN transaction [https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/test/integration/advanced.js#L24]

	Create a 2-of-3 multisig P2SH address [https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/test/integration/multisig.js#L9]

	Spend from a 2-of-4 multisig P2SH address [https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/test/integration/multisig.js#L25]

	Generate a single-key stealth address [https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/test/integration/stealth.js#L11]

	Generate a dual-key stealth address [https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/test/integration/stealth.js#L48]

	Recover a BIP32 parent private key from the parent public key and a derived non-hardened child private key [https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/test/integration/crypto.js#L14]

	Recover a Private key from duplicate R values in a signature [https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/test/integration/crypto.js#L60]

	Create a CLTV locked transaction where the expiry is past [https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/test/integration/cltv.js#L36]

	Create a CLTV locked transaction where the parties bypass the expiry [https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/test/integration/cltv.js#L70]

	Create a CLTV locked transaction which fails due to expiry in the future [https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/test/integration/cltv.js#L102]

If you have a use case that you feel could be listed here, please ask for it [https://github.com/bitcoinjs/bitcoinjs-lib/issues/new]!

Projects utilizing BitcoinJS

	BitAddress [https://www.bitaddress.org]

	Blockchain.info [https://blockchain.info/wallet]

	Blocktrail [https://www.blocktrail.com/]

	Dark Wallet [https://www.darkwallet.is/]

	DecentralBank [http://decentralbank.com/]

	Dogechain Wallet [https://dogechain.info]

	EI8HT Wallet [http://ei8.ht/]

	GreenAddress [https://greenaddress.it]

	Robocoin [https://wallet.robocoin.com]

	Skyhook ATM [http://projectskyhook.com]

Contributors

Stefan Thomas is the inventor and creator of this project. His pioneering work made Bitcoin web wallets possible.
Daniel Cousens, Wei Lu, JP Richardson and Kyle Drake lead the major refactor of the library from 0.1.3 to 1.0.0.

Since then, many people have contributed. Click here [https://github.com/bitcoinjs/bitcoinjs-lib/graphs/contributors] to see the comprehensive list.

Contributing

We are always accepting of pull requests, but we do adhere to specific standards in regards to coding style, test driven development and commit messages.

Please make your best effort to adhere to these when contributing to save on trivial corrections.

Running the test suite

$ npm test
$ npm run-script coverage

Complementing Libraries

	BIP21 [https://github.com/bitcoinjs/bip21] - A BIP21 compatible URL encoding utility library

	BIP38 [https://github.com/bitcoinjs/bip38] - Passphrase-protected private keys

	BIP39 [https://github.com/bitcoinjs/bip39] - Mnemonic generation for deterministic keys

	BIP32-Utils [https://github.com/bitcoinjs/bip32-utils] - A set of utilities for working with BIP32

	BIP32-Wallet [https://github.com/bitcoinjs/bip32-wallet] - A BIP32 Wallet backed by bitcoinjs-lib, lite on features but heavily tested

	BIP66 [https://github.com/bitcoinjs/bip66] - Strict DER signature decoding

	BIP69 [https://github.com/bitcoinjs/bip69] - Lexicographical Indexing of Transaction Inputs and Outputs

	Base58 [https://github.com/cryptocoinjs/bs58] - Base58 encoding/decoding

	Base58 Check [https://github.com/bitcoinjs/bs58check] - Base58 check encoding/decoding

	BCoin [https://github.com/indutny/bcoin] - BIP37 / Bloom Filters / SPV client

	insight [https://github.com/bitpay/insight] - A bitcoin blockchain API for web wallets.

Alternatives

	Bitcore [https://github.com/bitpay/bitcore]

	Cryptocoin [https://github.com/cryptocoinjs/cryptocoin]

LICENSE MIT

Copyright

BitcoinJS (c) 2011-2016 bitcoinjs-lib contributors

Released under MIT license

2.3.0

added

	Added HDNode.prototype.isNeutered (#536)

	Added HDNode.prototype.derivePath (#538)

	Added typeforce checking for HDNode.prototype.derive* (#539)

	Added Transaction.prototype.isCoinbase (#578)

	Added Block.prototype.checkMerkleRoot (#580)

	Added Block.calculateMerkleRoot (#580)

	Added TransactionBuilder.prototype.setVersion (#599)

	Added script.isWitnessPubKeyHashOutput (#602)

	Added script.isWitnessScriptHashOutput (#602)

	Added script.witnessPubKeyHashOutput (#602)

	Added script.witnessScriptHashOutput (#602)

	Added script.witnessScriptHashInput (#602)

fixed

	Fixed “BIP32 is undefined” when network list given to HDNode but no compatible version found (#550)

	Fixed writePushDataInt output to adhere to minimal data push policy (#617)

2.2.0

added

	Added Block.calculateTarget for difficulty calculations (#509)

	Added Block.prototype.checkProofOfWork (#509)

	Added opcodes.OP_CHECKLOCKTIMEVERIFY alias for OP_NOP2 (#511)

	Added script.number.[encode/decode] for CScriptNum-encoded Buffers (#516)

	Added TransactionBuilder.prototype.setLockTime (#507)

fixed

	Bumped typeforce version to fix erroneous error message from types.Hash*bit types (#534)

2.1.4

fixed

	script.isPubKeyHashOutput and script.isScriptHashOutput no longer allow for non-minimal data pushes (per bitcoin/bitcoin IsStandard policy) (#499)

	TransactionBuilder.addOutput now allows for SIGHASH_SINGLE, throwing if the contract is violated (#504)

	remove use of const, use ES5 only (#502)

2.1.3

fixed

	Bumped typeforce to 1.5.5 (see #493)

2.1.2

fixed

	Add missing CHANGELOG entry for 2.1.1

2.1.1

changed

	removed use of buffer-reverse, dependency only kept for bufferutils.reverse, to be deprecated (#478)

fixed

	isMultisigOutput no longer allows data chunks for m/n (#482)

	isMultisigOutput‘s n value must now match the number of public keys (as per bitcoin/bitcoin) (#484)

2.1.0

From this release users should use the HDNode directly (compared to accessing .keyPair) when performing ECDSA operations such as sign or verify.
Ideally you shoud not have to directly access HDNode internals for general usage, as it can often be confusing and error prone.

added

	ECPair.prototype.getNetwork

	HDNode.prototype.getNetwork, wraps the underyling keyPair’s getNetwork method

	HDNode.prototype.getPublicKeyBuffer, wraps the underyling keyPair’s getPublicKeyBuffer method

	HDNode.prototype.sign, wraps the underlying keyPair’s sign method

	HDNode.prototype.verify, wraps the underlying keyPair’s verify method

2.0.0

In this release we have strived to simplify the API, using native types [https://github.com/bitcoinjs/bitcoinjs-lib/issues/407] wherevever possible to encourage cross-compatibility with other open source community modules.

The ecdsa module has been removed in lieu of using a new ECDSA module (for performance and safety reasons) during the 2.x.y major release.
Several other cumbersome modules have been removed, with their new independent modules recommended for usage instead for greater modularity in your projects.

Backward incompatible changes:

added

	export address, for address based utility functions [https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/src/address.js], most compatible, just without Address instantiation, see #401, #444

	export script, for script based utility functions [https://github.com/bitcoinjs/bitcoinjs-lib/blob/master/src/script.js], mostly compatible, just without Script instantiation, see #438, #444

	export ECPair, a merged replacement for ECKey/ECPubKey, invalid types will throw via typeforce

changed

	address.toOutputScript, ECPair.prototype.fromWIF and HDNode.prototype.fromBase58 no longer automatically detect the network, networks.bitcoin is always assumed unless given.

	assert was used for type checking, now replaced by typeforce

	BIP66 compliant strict DER signature validation was added to ECSignature.fromDER, changing the exact exception messages slightly, see #448.

	new HDNode(d/Q, chainCode, network) -> new HDNode(keyPair, chainCode), now uses ECPair

	HDNode.prototype.toBase58(false) -> HDNode.prototype.neutered().toBase58() for exporting an extended public key

	HDNode.prototype.toBase58(true) -> HDNode.prototype.toBase58() for exporting an extended private key

	Transaction.prototype.hashForSignature(prevOutScript, inIndex, hashType) -> Transaction.prototype.hashForSignature(inIndex, prevOutScript, hashType)

	Transaction.prototype.addInput(hash, ...): hash could be a string, Transaction or Buffer -> hash can now only be a Buffer.

	Transaction.prototype.addOutput(scriptPubKey, ...): scriptPubKey could be a string, Address or a Buffer -> scriptPubKey can now only be a Buffer.

	TransactionBuilder API unchanged.

removed

	export Address, strings are now used, benchwith no performance loss for most use cases

	export base58check, use bs58check [https://github.com/bitcoinjs/bs58check] instead

	export ecdsa, use ecurve [https://github.com/cryptocoinjs/ecurve] instead

	export ECKey, use new export ECPair instead

	export ECPubKey, use new export ECPair instead

	export Wallet, see README.md#complementing-libraries instead

	export Script, use new utility export script instead (#438 for more information)

	crypto.HmacSHA256, use node crypto [https://nodejs.org/api/crypto.html] instead

	crypto.HmacSHA512, use node crypto [https://nodejs.org/api/crypto.html] instead

	Transaction.prototype.sign, use TransactionBuilder.prototype.sign

	Transaction.prototype.signInput, use TransactionBuilder.prototype.sign

	Transaction.prototype.validateInput, use Transaction.prototype.hashForSignature and ECPair.verify

	HDNode.fromBuffer, use HDNode.fromBase58 instead

	HDNode.fromHex, use HDNode.fromBase58 instead

	HDNode.toBuffer, use HDNode.prototype.toBase58 instead

	HDNode.toHex, use HDNode.prototype.toBase58 instead

	networks.*.magic, see the comment here [https://github.com/bitcoinjs/bitcoinjs-lib/pull/432/files#r36715792]

	networks.[viacoin|viacointestnet|gamerscoin|jumbucks|zetacoin], import these yourself (see #383/a0e6ee7)

	networks.*.estimateFee, out-dated

renamed

	Message -> message

	scripts -> script

	scripts.dataOutput -> script.nullDataOutput (per convention [https://org/en/glossary/null-data-transaction])

Description

This directory contains data-driven tests for various aspects of Bitcoin.

Bitcoinjs-lib notes

This directory does not contain all the Bitcoin core tests.
Missing core test data includes:

	alertTests.raw
Bitcoin-js does not interact with the Bitcoin network directly.

	tx_invalid.json
Bitcoin-js can not evaluate Scripts, making testing this irrelevant.
It can decode valid Transactions, therefore tx_valid.json remains.

	script*.json
Bitcoin-js can not evaluate Scripts, making testing this irrelevant.

License

The data files in this directory are

Copyright (c) 2012-2014 The Bitcoin Core developers
Distributed under the MIT/X11 software license, see the accompanying
file COPYING or http://www.opensource.org/licenses/mit-license.php.

 nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/file.png

_static/plus.png

_static/comment.png

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

