

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Bitcoin 0.9.3 BETA

Copyright (c) 2009-2014 Bitcoin Developers

Setup

Bitcoin Core [http://bitcoin.org/en/download] is the original Bitcoin client and it builds the backbone of the network. However, it downloads and stores the entire history of Bitcoin transactions (which is currently several GBs); depending on the speed of your computer and network connection, the synchronization process can take anywhere from a few hours to a day or more. Thankfully you only have to do this once. If you would like the process to go faster you can download the blockchain directly.

Running

The following are some helpful notes on how to run Bitcoin on your native platform.

Unix

You need the Qt4 run-time libraries to run Bitcoin-Qt. On Debian or Ubuntu:

sudo apt-get install libqtgui4

Unpack the files into a directory and run:

	bin/32/bitcoin-qt (GUI, 32-bit) or bin/32/bitcoind (headless, 32-bit)

	bin/64/bitcoin-qt (GUI, 64-bit) or bin/64/bitcoind (headless, 64-bit)

Windows

Unpack the files into a directory, and then run bitcoin-qt.exe.

OSX

Drag Bitcoin-Qt to your applications folder, and then run Bitcoin-Qt.

Need Help?

	See the documentation at the Bitcoin Wiki [https://en.bitcoin.it/wiki/Main_Page]
for help and more information.

	Ask for help on #bitcoin [http://webchat.freenode.net?channels=bitcoin] on Freenode. If you don’t have an IRC client use webchat here [http://webchat.freenode.net?channels=bitcoin].

	Ask for help on the BitcoinTalk [https://bitcointalk.org/] forums, in the Technical Support board [https://bitcointalk.org/index.php?board=4.0].

Building

The following are developer notes on how to build Bitcoin on your native platform. They are not complete guides, but include notes on the necessary libraries, compile flags, etc.

	OSX Build Notes

	Unix Build Notes

	Windows Build Notes

Development

The Bitcoin repo’s root README [https://github.com/bitcoin/bitcoin/blob/master/README.md] contains relevant information on the development process and automated testing.

	Coding Guidelines

	Multiwallet Qt Development

	Release Notes

	Release Process

	Source Code Documentation (External Link) [https://dev.visucore.com/bitcoin/doxygen/]

	Translation Process

	Unit Tests

Resources

	Discuss on the BitcoinTalk [https://bitcointalk.org/] forums, in the Development & Technical Discussion board [https://bitcointalk.org/index.php?board=6.0].

	Discuss on #bitcoin-dev [http://webchat.freenode.net/?channels=bitcoin] on Freenode. If you don’t have an IRC client use webchat here [http://webchat.freenode.net/?channels=bitcoin-dev].

Miscellaneous

	Assets Attribution

	Files

	Tor Support

License

Distributed under the MIT/X11 software license [http://www.opensource.org/licenses/mit-license.php].
This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit [http://www.openssl.org/]. This product includes
cryptographic software written by Eric Young (eay@cryptsoft.com), and UPnP software written by Thomas Bernard.

 The following is a list of assets used in the bitcoin source and their proper attribution.

Wladimir van der Laan [https://github.com/laanwj]

Info

	License: MIT

Assets Used

src/qt/res/icons/clock*.png, src/qt/res/icons/tx*.png,
src/qt/res/src/clock_green.svg, src/qt/res/src/clock1.svg,
src/qt/res/src/clock2.svg, src/qt/res/src/clock3.svg,
src/qt/res/src/clock4.svg, src/qt/res/src/clock5.svg,
src/qt/res/src/inout.svg, src/qt/res/src/questionmark.svg

David Vignoni [http://www.icon-king.com]

Info

	Icon Pack: NUVOLA ICON THEME for KDE 3.x

	Designer: David Vignoni (david@icon-king.com)

	License: LGPL

	Site: http://www.icon-king.com/projects/nuvola

Assets Used

src/qt/res/icons/address-book.png, src/qt/res/icons/export.png,
src/qt/res/icons/history.png, src/qt/res/icons/key.png,
src/qt/res/icons/lock_*.png, src/qt/res/icons/overview.png,
src/qt/res/icons/receive.png, src/qt/res/icons/send.png,
src/qt/res/icons/synced.png, src/qt/res/icons/filesave.png

schollidesign

Info

	Icon Pack: Human-O2

	Designer: schollidesign

	License: GNU/GPL

	Site: http://findicons.com/icon/93743/blocks_gnome_netstatus_0

Assets Used

src/qt/res/icons/connect*.png

md2k7

Info

	Designer: md2k7

	License: You are free to do with these icons as you wish, including selling, copying, modifying etc.

	License: MIT

	Site: https://bitcointalk.org/index.php?topic=15276.0

Assets Used

src/qt/res/icons/transaction*.png

Everaldo.com [http://www.everaldo.com]

Info

	Icon Pack: Crystal SVG

	Designer: http://www.everaldo.com

	License: LGPL

Assets Used

src/qt/res/icons/configure.png, src/qt/res/icons/quit.png,
src/qt/res/icons/editcopy.png, src/qt/res/icons/editpaste.png,
src/qt/res/icons/add.png, src/qt/res/icons/edit.png,
src/qt/res/icons/remove.png (edited)

Everaldo (Everaldo Coelho)

Info

	Icon Pack: Kids

	Designer: Everaldo (Everaldo Coelho)

	License: GNU/GPL

	Site: http://findicons.com/icon/17102/reload?id=17102

Assets Used

scripts/img/reload.xcf (modified), src/qt/res/movies/*.png

Vignoni David [http://techbase.kde.org/Projects/Oxygen]

Info

	Designer: Vignoni David

	License: Oxygen icon theme is dual licensed. You may copy it under the Creative Common Attribution-ShareAlike 3.0 License or the GNU Library General Public License.

	Site: http://techbase.kde.org/Projects/Oxygen

Assets Used

src/qt/res/icons/debugwindow.png

Jonas Schnelli

Info

	Designer: Jonas Schnelli (based on the original bitcoin logo from Bitboy)

	License: MIT

Assets Used

src/qt/res/icons/bitcoin.icns, src/qt/res/src/bitcoin.svg,
src/qt/res/src/bitcoin.ico, src/qt/res/src/bitcoin.png,
src/qt/res/src/bitcoin_testnet.png, docs/bitcoin_logo_doxygen.png,
src/qt/res/icons/toolbar.png, src/qt/res/icons/toolbar_testnet.png,
src/qt/res/images/splash.png, src/qt/res/images/splash_testnet.png

Bootstrap the Blockchain Synchronization

Normally the Bitcoin client will download the transaction and network information, called the blockchain, from the network by syncing with the other clients. This can be a process that can take multiple days as the Bitcoin block chain [https://blockchain.info/charts/blocks-size] has grown to more than 15 gigabytes, and is growing almost a gigabyte every month. Luckily there is a safe and fast way to speed up this process. We’ll show you how to bootstrap your blockchain to bring your client up to speed in just a few simple steps.

Requirements

A fresh install of the Bitcoin client software.

Download the blockchain via Bittorent

Jeff Garzik, Bitcoin core developer, offers an torrent file [https://bitcointalk.org/index.php?topic=145386.0] for bootstrapping purposes that is updated often. Bittorrent is a protocol that speeds up the downloading of large files by using the other clients in the network. Examples of free and safe open-source clients are Deluge [http://deluge-torrent.org/] or QBittorent [http://www.qbittorrent.org/]. A guide to installing and configuring the torrent clients can be found here [http://dev.deluge-torrent.org/wiki/UserGuide] for Deluge and here [http://qbforums.shiki.hu/] for QBittorent. A further in-depth tutorial on Bittorent can be found here [http://www.howtogeek.com/howto/31846/bittorrent-for-beginners-how-get-started-downloading-torrents/].

With the client installed we’ll proceed to download the blockchain torrent file. Use the following magnet link:

magnet:?xt=urn:btih:2d4e6c1f96c5d5fb260dff92aea4e600227f1aea&dn=bootstrap.dat&tr=udp://tracker.openbittorrent.com:80&tr=udp://tracker.publicbt.com:80&tr=udp://tracker.ccc.de:80&tr=udp://tracker.istole.it:80

or go to Jeff Garzik’s topic [https://bitcointalk.org/index.php?topic=145386.0] for a signed magnet link. Alternately you can use the .torrent file [http://sourceforge.net/projects/bitcoin/files/Bitcoin/blockchain/bootstrap.dat.torrent/download] found on Sourceforge.

[image: Fig1]

The download page should look like this, with a countdown to the download. If it does not work click the direct download link.

The torrent client installed will recognize the download of the torrent file. Save the bootstrap.dat file to a folder you use for downloads. The image below shows the torrent download in QBittorent, with current speed and ETA highlighted.

[image: Fig2]

Download the block chain directly from official repositories

The Bittorent version, see above, of the block chain download is refreshed more often than the direct download available. If Bittorent is blocked on your network then you can use the direct download method. Be sure to only use official repositories as the link displayed below. This download will only update the client to March 2013.

Click here [http://sourceforge.net/projects/bitcoin/files/Bitcoin/blockchain/bitcoin_blockchain_170000.zip/download] to download or copy and paste the link below.

http://sourceforge.net/projects/bitcoin/files/Bitcoin/blockchain/bitcoin_blockchain_170000.zip/download

The download page should look like this, with a countdown to the download. If it does not work directly click the download. Save the file to a folder you use for downloads.
[image: Fig3]

Importing the blockchain

Exit the Bitcoin Client software if you have it running. Be sure not to have an actively used wallet in use. We are going to copy the download of the blockchain to the Bitcoin client data directory. You should run the client software at least once so it can generate the data directory. Copy the downloaded bootstrap.dat file into the Bitcoin data folder.

For Windows users:
Open explorer, and type into the address bar:

%APPDATA%\Bitcoin

This will open up the data folder. It should look like the image below. Copy over the bootstrap.dat from your download folder to this directory.
[image: Fig4]

For OSX users:
Open Finder by pressing Press [shift] + [cmd] + [g] and enter:

~/Library/Application Support/Bitcoin/

For Linux users:
The directory is hidden in your User folder. Go to:

~/.bitcoin/

Importing the blockchain

Now start the Bitcoin client software. It should show “Importing blocks from disk” like the image below.
[image: Fig5]

Wait until the import finishes. The client will download the last days not covered by the import. Congratulations you have successfully imported the blockchain!

Is this safe?

Yes, the above method is safe. The download contains only raw block chain data and the client verifies this on import. Do not download the blockchain from unofficial sources, especially if they provide *.rev and *.sst files. These files are not verified and can contain malicious edits.

WINDOWS BUILD NOTES

Compilers Supported

TODO: What works?
Note: releases are cross-compiled using mingw running on Linux.

Dependencies

Libraries you need to download separately and build:

name default path download
--
OpenSSL \openssl-1.0.1c-mgw http://www.openssl.org/source/
Berkeley DB \db-4.8.30.NC-mgw http://www.oracle.com/technology/software/products/berkeley-db/index.html
Boost \boost-1.50.0-mgw http://www.boost.org/users/download/
miniupnpc \miniupnpc-1.6-mgw http://miniupnp.tuxfamily.org/files/

Their licenses:

OpenSSL Old BSD license with the problematic advertising requirement
Berkeley DB New BSD license with additional requirement that linked software must be free open source
Boost MIT-like license
miniupnpc New (3-clause) BSD license

Versions used in this release:

OpenSSL 1.0.1c
Berkeley DB 4.8.30.NC
Boost 1.50.0
miniupnpc 1.6

OpenSSL

MSYS shell:

un-tar sources with MSYS ‘tar xfz’ to avoid issue with symlinks (OpenSSL ticket 2377)
change ‘MAKE’ env. variable from ‘C:\MinGW32\bin\mingw32-make.exe’ to ‘/c/MinGW32/bin/mingw32-make.exe’

cd /c/openssl-1.0.1c-mgw
./config
make

Berkeley DB

MSYS shell:

cd /c/db-4.8.30.NC-mgw/build_unix
sh ../dist/configure --enable-mingw --enable-cxx
make

Boost

MSYS shell:

downloaded boost jam 3.1.18
cd \boost-1.50.0-mgw
bjam toolset=gcc --build-type=complete stage

MiniUPnPc

UPnP support is optional, make with USE_UPNP= to disable it.

MSYS shell:

cd /c/miniupnpc-1.6-mgw
make -f Makefile.mingw
mkdir miniupnpc
cp *.h miniupnpc/

Bitcoin

MSYS shell:

cd \bitcoin
sh autogen.sh
sh configure
mingw32-make
strip bitcoind.exe

Mac OS X Build Instructions and Notes

This guide will show you how to build bitcoind(headless client) for OSX.

Notes

	Tested on OS X 10.6 through 10.9 on 64-bit Intel processors only.
Older OSX releases or 32-bit processors are no longer supported.

	All of the commands should be executed in a Terminal application. The
built-in one is located in /Applications/Utilities.

Preparation

You need to install XCode with all the options checked so that the compiler
and everything is available in /usr not just /Developer. XCode should be
available on your OS X installation media, but if not, you can get the
current version from https://developer.apple.com/xcode/. If you install
Xcode 4.3 or later, you’ll need to install its command line tools. This can
be done in Xcode > Preferences > Downloads > Components and generally must
be re-done or updated every time Xcode is updated.

There’s an assumption that you already have git installed, as well. If
not, it’s the path of least resistance to install Github for Mac [https://mac.github.com/]
(OS X 10.7+) or
Git for OS X [https://code.google.com/p/git-osx-installer/]. It is also
available via Homebrew.

You will also need to install Homebrew [http://brew.sh]
in order to install library dependencies.

The installation of the actual dependencies is covered in the Instructions
sections below.

Instructions: Homebrew

Install dependencies using Homebrew

 brew install autoconf automake libtool boost miniupnpc openssl pkg-config protobuf qt

Note: After you have installed the dependencies, you should check that the Homebrew installed version of OpenSSL is the one available for compilation. You can check this by typing

 openssl version

into Terminal. You should see OpenSSL 1.0.1f 6 Jan 2014.

If not, you can ensure that the Homebrew OpenSSL is correctly linked by running

 brew link openssl --force

Rerunning “openssl version” should now return the correct version. If it
doesn’t, make sure /usr/local/bin comes before /usr/bin in your
PATH.

Installing berkeley-db4 using Homebrew

The homebrew package for berkeley-db4 has been broken for some time. It will install without Java though.

Running this command takes you into brew’s interactive mode, which allows you to configure, make, and install by hand:

$ brew install https://raw.github.com/mxcl/homebrew/master/Library/Formula/berkeley-db4.rb -–without-java

These rest of these commands are run inside brew interactive mode:

/private/tmp/berkeley-db4-UGpd0O/db-4.8.30 $ cd ..
/private/tmp/berkeley-db4-UGpd0O $ db-4.8.30/dist/configure --prefix=/usr/local/Cellar/berkeley-db4/4.8.30 --mandir=/usr/local/Cellar/berkeley-db4/4.8.30/share/man --enable-cxx
/private/tmp/berkeley-db4-UGpd0O $ make
/private/tmp/berkeley-db4-UGpd0O $ make install
/private/tmp/berkeley-db4-UGpd0O $ exit

After exiting, you’ll get a warning that the install is keg-only, which means it wasn’t symlinked to /usr/local. You don’t need it to link it to build bitcoin, but if you want to, here’s how:

$ brew --force link berkeley-db4

Building bitcoind

	Clone the github tree to get the source code and go into the directory.

 git clone https://github.com/bitcoin/bitcoin.git
 cd bitcoin

	Build bitcoind:

./autogen.sh
./configure
make

	It is a good idea to build and run the unit tests, too:

make check

Creating a release build

You can ignore this section if you are building bitcoind for your own use.

bitcoind/bitcoin-cli binaries are not included in the Bitcoin-Qt.app bundle.

If you are building bitcoind or Bitcoin-Qt for others, your build machine should be set up
as follows for maximum compatibility:

All dependencies should be compiled with these flags:

-mmacosx-version-min=10.6
-arch x86_64
-isysroot $(xcode-select –print-path)/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.6.sdk

Once dependencies are compiled, see release-process.md for how the Bitcoin-Qt.app
bundle is packaged and signed to create the .dmg disk image that is distributed.

Running

It’s now available at ./bitcoind, provided that you are still in the src
directory. We have to first create the RPC configuration file, though.

Run ./bitcoind to get the filename where it should be put, or just try these
commands:

echo -e "rpcuser=bitcoinrpc\nrpcpassword=$(xxd -l 16 -p /dev/urandom)" > "/Users/${USER}/Library/Application Support/Bitcoin/bitcoin.conf"
chmod 600 "/Users/${USER}/Library/Application Support/Bitcoin/bitcoin.conf"

When next you run it, it will start downloading the blockchain, but it won’t
output anything while it’s doing this. This process may take several hours;
you can monitor its process by looking at the debug.log file, like this:

tail -f $HOME/Library/Application\ Support/Bitcoin/debug.log

Other commands:

./bitcoind -daemon # to start the bitcoin daemon.
./bitcoin-cli --help # for a list of command-line options.
./bitcoin-cli help # When the daemon is running, to get a list of RPC commands

UNIX BUILD NOTES

Some notes on how to build Bitcoin in Unix.

To Build

./autogen.sh
./configure
make

This will build bitcoin-qt as well if the dependencies are met.

Dependencies

Library | Purpose | Description
————|——————|———————-
libssl | SSL Support | Secure communications
libdb4.8 | Berkeley DB | Wallet storage
libboost | Boost | C++ Library
miniupnpc | UPnP Support | Optional firewall-jumping support
qt | GUI | GUI toolkit
protobuf | Payments in GUI | Data interchange format used for payment protocol
libqrencode | QR codes in GUI | Optional for generating QR codes

miniupnpc [http://miniupnp.free.fr/] may be used for UPnP port mapping. It can be downloaded from here [http://miniupnp.tuxfamily.org/files/]. UPnP support is compiled in and
turned off by default. See the configure options for upnp behavior desired:

--without-miniupnpc No UPnP support miniupnp not required
--disable-upnp-default (the default) UPnP support turned off by default at runtime
--enable-upnp-default UPnP support turned on by default at runtime

Licenses of statically linked libraries:
Berkeley DB New BSD license with additional requirement that linked
software must be free open source
Boost MIT-like license
miniupnpc New (3-clause) BSD license

	For the versions used in the release, see doc/release-process.md under Fetch and build inputs.

System requirements

C++ compilers are memory-hungry. It is recommended to have at least 1 GB of
memory available when compiling Bitcoin Core. With 512MB of memory or less
compilation will take much longer due to swap thrashing.

Dependency Build Instructions: Ubuntu & Debian

Build requirements:

sudo apt-get install build-essential
sudo apt-get install libtool autotools-dev autoconf
sudo apt-get install libssl-dev

for Ubuntu 12.04 and later:

sudo apt-get install libboost-all-dev

db4.8 packages are available here [https://launchpad.net/~bitcoin/+archive/bitcoin].
You can add the repository using the following command:

 sudo add-apt-repository ppa:bitcoin/bitcoin
 sudo apt-get update

Ubuntu 12.04 and later have packages for libdb5.1-dev and libdb5.1++-dev,
but using these will break binary wallet compatibility, and is not recommended.

for Debian 7 (Wheezy) and later:
The oldstable repository contains db4.8 packages.
Add the following line to /etc/apt/sources.list,
replacing [mirror] with any official debian mirror.

deb http://[mirror]/debian/ oldstable main

To enable the change run

sudo apt-get update

for other Ubuntu & Debian:

sudo apt-get install libdb4.8-dev
sudo apt-get install libdb4.8++-dev

Optional:

sudo apt-get install libminiupnpc-dev (see --with-miniupnpc and --enable-upnp-default)

Dependencies for the GUI: Ubuntu & Debian

If you want to build Bitcoin-Qt, make sure that the required packages for Qt development
are installed. Either Qt 4 or Qt 5 are necessary to build the GUI.
If both Qt 4 and Qt 5 are installed, Qt 4 will be used. Pass --with-gui=qt5 to configure to choose Qt5.
To build without GUI pass --without-gui.

To build with Qt 4 you need the following:

sudo apt-get install libqt4-dev libprotobuf-dev protobuf-compiler

For Qt 5 you need the following:

sudo apt-get install libqt5gui5 libqt5core5 libqt5dbus5 qttools5-dev qttools5-dev-tools libprotobuf-dev

libqrencode (optional) can be installed with:

sudo apt-get install libqrencode-dev

Once these are installed, they will be found by configure and a bitcoin-qt executable will be
built by default.

Notes

The release is built with GCC and then “strip bitcoind” to strip the debug
symbols, which reduces the executable size by about 90%.

miniupnpc

tar -xzvf miniupnpc-1.6.tar.gz
cd miniupnpc-1.6
make
sudo su
make install

Berkeley DB

It is recommended to use Berkeley DB 4.8. If you have to build it yourself:

BITCOIN_ROOT=$(pwd)

Pick some path to install BDB to, here we create a directory within the bitcoin directory
BDB_PREFIX="${BITCOIN_ROOT}/db4"
mkdir -p $BDB_PREFIX

Fetch the source and verify that it is not tampered with
wget 'http://download.oracle.com/berkeley-db/db-4.8.30.NC.tar.gz'
echo '12edc0df75bf9abd7f82f821795bcee50f42cb2e5f76a6a281b85732798364ef db-4.8.30.NC.tar.gz' | sha256sum -c
-> db-4.8.30.NC.tar.gz: OK
tar -xzvf db-4.8.30.NC.tar.gz

Build the library and install to our prefix
cd db-4.8.30.NC/build_unix/
Note: Do a static build so that it can be embedded into the exectuable, instead of having to find a .so at runtime
../dist/configure --enable-cxx --disable-shared --with-pic --prefix=$BDB_PREFIX
make install

Configure Bitcoin Core to use our own-built instance of BDB
cd $BITCOIN_ROOT
./configure (other args...) LDFLAGS="-L${BDB_PREFIX}/lib/" CPPFLAGS="-I${BDB_PREFIX}/include/"

Note: You only need Berkeley DB if the wallet is enabled (see the section Disable-Wallet mode below).

Boost

If you need to build Boost yourself:

sudo su
./bootstrap.sh
./bjam install

Security

To help make your bitcoin installation more secure by making certain attacks impossible to
exploit even if a vulnerability is found, binaries are hardened by default.
This can be disabled with:

Hardening Flags:

./configure --enable-hardening
./configure --disable-hardening

Hardening enables the following features:

	Position Independent Executable
Build position independent code to take advantage of Address Space Layout Randomization
offered by some kernels. An attacker who is able to cause execution of code at an arbitrary
memory location is thwarted if he doesn’t know where anything useful is located.
The stack and heap are randomly located by default but this allows the code section to be
randomly located as well.

On an Amd64 processor where a library was not compiled with -fPIC, this will cause an error
such as: “relocation R_X86_64_32 against `……’ can not be used when making a shared object;”

To test that you have built PIE executable, install scanelf, part of paxutils, and use:

 scanelf -e ./bitcoin

The output should contain:
TYPE
ET_DYN

	Non-executable Stack
If the stack is executable then trivial stack based buffer overflow exploits are possible if
vulnerable buffers are found. By default, bitcoin should be built with a non-executable stack
but if one of the libraries it uses asks for an executable stack or someone makes a mistake
and uses a compiler extension which requires an executable stack, it will silently build an
executable without the non-executable stack protection.

To verify that the stack is non-executable after compiling use:
scanelf -e ./bitcoin

the output should contain:
STK/REL/PTL
RW- R– RW-

The STK RW- means that the stack is readable and writeable but not executable.

Disable-wallet mode

When the intention is to run only a P2P node without a wallet, bitcoin may be compiled in
disable-wallet mode with:

./configure --disable-wallet

In this case there is no dependency on Berkeley DB 4.8.

Mining is also possible in disable-wallet mode, but only using the getblocktemplate RPC
call not getwork.

Coding

Please be consistent with the existing coding style.

Block style:

bool Function(char* psz, int n)
{
 // Comment summarising what this section of code does
 for (int i = 0; i < n; i++)
 {
 // When something fails, return early
 if (!Something())
 return false;
 ...
 }

 // Success return is usually at the end
 return true;
}

	ANSI/Allman block style

	4 space indenting, no tabs

	No extra spaces inside parenthesis; please don’t do (this)

	No space after function names, one space after if, for and while

Variable names begin with the type in lowercase, like nSomeVariable.
Please don’t put the first word of the variable name in lowercase like
someVariable.

Common types:

n integer number: short, unsigned short, int, unsigned int, int64, uint64, sometimes char if used as a number
d double, float
f flag
hash uint256
p pointer or array, one p for each level of indirection
psz pointer to null terminated string
str string object
v vector or similar list objects
map map or multimap
set set or multiset
bn CBigNum

Doxygen comments

To facilitate the generation of documentation, use doxygen-compatible comment blocks for functions, methods and fields.

For example, to describe a function use:

/**
 * ... text ...
 * @param[in] arg1 A description
 * @param[in] arg2 Another argument description
 * @pre Precondition for function...
 */
bool function(int arg1, const char *arg2)

A complete list of @xxx commands can be found at http://www.stack.nl/~dimitri/doxygen/manual/commands.html.
As Doxygen recognizes the comments by the delimiters (/** and */ in this case), you don’t
need to provide any commands for a comment to be valid, just a description text is fine.

To describe a class use the same construct above the class definition:

/**
 * Alerts are for notifying old versions if they become too obsolete and
 * need to upgrade. The message is displayed in the status bar.
 * @see GetWarnings()
 */
class CAlert
{

To describe a member or variable use:

int var; //!< Detailed description after the member

Also OK:

///
/// ... text ...
///
bool function2(int arg1, const char *arg2)

Not OK (used plenty in the current source, but not picked up):

//
// ... text ...
//

A full list of comment syntaxes picked up by doxygen can be found at http://www.stack.nl/~dimitri/doxygen/manual/docblocks.html,
but if possible use one of the above styles.

Locking/mutex usage notes

The code is multi-threaded, and uses mutexes and the
LOCK/TRY_LOCK macros to protect data structures.

Deadlocks due to inconsistent lock ordering (thread 1 locks cs_main
and then cs_wallet, while thread 2 locks them in the opposite order:
result, deadlock as each waits for the other to release its lock) are
a problem. Compile with -DDEBUG_LOCKORDER to get lock order
inconsistencies reported in the debug.log file.

Re-architecting the core code so there are better-defined interfaces
between the various components is a goal, with any necessary locking
done by the components (e.g. see the self-contained CKeyStore class
and its cs_KeyStore lock for example).

Threads

	ThreadScriptCheck : Verifies block scripts.

	ThreadImport : Loads blocks from blk*.dat files or bootstrap.dat.

	StartNode : Starts other threads.

	ThreadGetMyExternalIP : Determines outside-the-firewall IP address, sends addr message to connected peers when it determines it.

	ThreadDNSAddressSeed : Loads addresses of peers from the DNS.

	ThreadMapPort : Universal plug-and-play startup/shutdown

	ThreadSocketHandler : Sends/Receives data from peers on port 8333.

	ThreadOpenAddedConnections : Opens network connections to added nodes.

	ThreadOpenConnections : Initiates new connections to peers.

	ThreadMessageHandler : Higher-level message handling (sending and receiving).

	DumpAddresses : Dumps IP addresses of nodes to peers.dat.

	ThreadFlushWalletDB : Close the wallet.dat file if it hasn’t been used in 500ms.

	ThreadRPCServer : Remote procedure call handler, listens on port 8332 for connections and services them.

	BitcoinMiner : Generates bitcoins (if wallet is enabled).

	Shutdown : Does an orderly shutdown of everything.

Used in 0.8.0

	wallet.dat: personal wallet (BDB) with keys and transactions

	peers.dat: peer IP address database (custom format); since 0.7.0

	blocks/blk000??.dat: block data (custom, 128 MiB per file); since 0.8.0

	blocks/rev000??.dat; block undo data (custom); since 0.8.0 (format changed since pre-0.8)

	blocks/index/*; block index (LevelDB); since 0.8.0

	chainstate/*; block chain state database (LevelDB); since 0.8.0

	database/*: BDB database environment; only used for wallet since 0.8.0

Only used in pre-0.8.0

	blktree/; block chain index (LevelDB); since pre-0.8, replaced by blocks/index/ in 0.8.0

	coins/; unspent transaction output database (LevelDB); since pre-0.8, replaced by chainstate/ in 0.8.0

Only used before 0.8.0

	blkindex.dat: block chain index database (BDB); replaced by {chainstate/,blocks/index/,blocks/rev000??.dat} in 0.8.0

	blk000?.dat: block data (custom, 2 GiB per file); replaced by blocks/blk000??.dat in 0.8.0

Only used before 0.7.0

	addr.dat: peer IP address database (BDB); replaced by peers.dat in 0.7.0

Gitian building

Setup instructions for a gitian build of Bitcoin using a Debian VM or physical system.

Gitian is the deterministic build process that is used to build the Bitcoin
Core executables [1]. It provides a way to be reasonably sure that the
executables are really built from source on github. It also makes sure that
the same, tested dependencies are used and statically built into the executable.

Multiple developers build the source code by following a specific descriptor
(“recipe”), cryptographically sign the result, and upload the resulting signature.
These results are compared and only if they match, the build is accepted and uploaded
to bitcoin.org.

More independent gitian builders are needed, which is why I wrote this
guide. It is preferred to follow these steps yourself instead of using someone else’s
VM image to avoid ‘contaminating’ the build.

[1] For all platforms except for MacOSX, at this point. Work for deterministic
builds for Mac is under way here: https://github.com/theuni/osx-cross-depends .

Table of Contents

	Create a new VirtualBox VM

	Connecting to the VM

	Setting up Debian for gitian building

	Installing gitian

	Setting up gitian images

	Getting and building the inputs

	Building Bitcoin

	Building an alternative repository

	Signing externally

	Uploading signatures

Create a new VirtualBox VM

The first step is to create a new Virtual Machine, which will be explained in
this section. This VM will be used to do the Gitian builds. In this guide it
will be explained how to set up the environment, and how to get the builds
started.

Debian Linux was chosen as the host distribution because it has a lightweight install (in
contrast to Ubuntu) and is readily available. We here show the steps for
VirtualBox [1], but any kind of virtualization can be used. You can also install
on actual hardware instead of using a VM, in this case you can skip this section.

In the VirtualBox GUI click “Create” and choose the following parameters in the wizard:

[image:]

	Type: Linux, Debian (64 bit)

[image:]

	Memory Size: at least 1024MB, anything lower will really slow the build down

[image:]

	Hard Drive: Create a virtual hard drive now

[image:]

	Hard Drive file type: Use the default, VDI (VirtualBox Disk Image)

[image:]

	Storage on Physical hard drive: Dynamically Allocated

[image:]

	Disk size: at least 40GB; as low as 20GB may be possible, but better to err on the safe side

	Push the Create button

Get the Debian 7.4 net installer [http://cdimage.debian.org/debian-cd/7.4.0/amd64/iso-cd/debian-7.4.0-amd64-netinst.iso].
This DVD image can be validated using a SHA256 hashing tool, for example on
Unixy OSes by entering the following in a terminal:

echo "b712a141bc60269db217d3b3e456179bd6b181645f90e4aac9c42ed63de492e9 /home/orion/Downloads/debian-7.4.0-amd64-netinst.iso" | sha256sum -c
(must return OK)

After creating the VM, we need to configure it.

	Click the Settings button, then go to the Network tab. Adapter 1 should be attacked to NAT.

[image:]

	Click Advanced, then Port Forwarding. We want to set up a port through where we can reach the VM to get files in and out.

	Create a new rule by clicking the plus icon.

[image:]

	Set up the new rule the following way:

	Name: SSH

	Protocol: TCP

	Leave Host IP empty

	Host Port: 22222

	Leave Guest IP empty

	Guest Port: 22

	Click Ok twice to save.

Then start the VM. On the first launch you will be asked for a CD or DVD image. Choose the downloaded iso.

[image:]

[1] https://www.virtualbox.org/

Installing Debian

In this section it will be explained how to install Debian on the newly created VM.

	Choose the non-graphical installer. We do not need the graphical environment, it will only increase installation time and disk usage.

[image:]

Note: Navigation in the Debian installer: To keep a setting at the default
and proceed, just press Enter. To select a different button, press Tab.

	Choose locale and keyboard settings (doesn’t matter, you can just go with the defaults or select your own information)

[image:]
[image:]
[image:]

	The VM will detect network settings using DHCP, this should all proceed automatically

	Configure the network:

	System name debian.

	Leave domain name empty.

[image:]

	Choose a root password and enter it twice (and remember it for later)

[image:]

	Name the new user debian (the full name doesn’t matter, you can leave it empty)

[image:]
[image:]

	Choose a user password and enter it twice (and remember it for later)

[image:]

	The installer will set up the clock using a time server, this process should be automatic

	Set up the clock: choose a time zone (depends on the locale settings that you picked earlier; specifics don’t matter)

[image:]

	Disk setup

	Partitioning method: Guided - Use the entire disk

[image:]

	Select disk to partition: SCSI1 (0,0,0)

[image:]

	Partitioning scheme: All files in one partition

[image:]

	Finish partitioning and write changes to disk -> Yes (Tab, Enter to select the Yes button)

[image:]
[image:]

	The base system will be installed, this will take a minute or so

	Choose a mirror (any will do)

[image:]

	Enter proxy information (unless you are on an intranet, you can leave this empty)

[image:]

	Wait a bit while ‘Select and install software’ runs

	Participate in popularity contest -> No

	Choose software to install. We need just the base system.

[image:]

	Make sure only ‘SSH server’ and ‘Standard System Utilities’ are checked

	Uncheck ‘Debian Desktop Environment’ and ‘Print Server’

[image:]

	Install the GRUB boot loader to the master boot record? -> Yes

[image:]

	Installation Complete -> Continue

	After installation, the VM will reboot and you will have a working Debian VM. Congratulations!

Connecting to the VM

After the VM has booted you can connect to it using SSH, and files can be copied from and to the VM using a SFTP utility.
Connect to localhost, port 22222 (or the port configured when installing the VM).
On Windows you can use putty[1] and WinSCP[2].

For example to connect as root from a Linux command prompt use

$ ssh root@localhost -p 22222
The authenticity of host '[localhost]:22222 ([127.0.0.1]:22222)' can't be established.
ECDSA key fingerprint is 8e:71:f9:5b:62:46:de:44:01:da:fb:5f:34:b5:f2:18.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '[localhost]:22222' (ECDSA) to the list of known hosts.
root@localhost's password: (enter root password configured during install)
Linux debian 3.2.0-4-amd64 #1 SMP Debian 3.2.54-2 x86_64
root@debian:~#

Replace root with debian to log in as user.

[1] http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
[2] http://winscp.net/eng/index.php

Setting up Debian for gitian building

In this section we will be setting up the Debian installation for Gitian building.

First we need to log in as root to set up dependencies and make sure that our
user can use the sudo command. Type/paste the following in the terminal:

apt-get install git ruby sudo apt-cacher-ng qemu-utils debootstrap lxc python-cheetah parted kpartx bridge-utils
adduser debian sudo

When you get a colorful screen with a question about the ‘LXC directory’, just
go with the default (/var/lib/lxc).

Then set up LXC and the rest with the following is a complex jumble of settings and workarounds:

the version of lxc-start in Debian 7.4 needs to run as root, so make sure
that the build script can exectute it without providing a password
echo "%sudo ALL=NOPASSWD: /usr/bin/lxc-start" > /etc/sudoers.d/gitian-lxc
add cgroup for LXC
echo "cgroup /sys/fs/cgroup cgroup defaults 0 0" >> /etc/fstab
make /etc/rc.local script that sets up bridge between guest and host
echo '#!/bin/sh -e' > /etc/rc.local
echo 'brctl addbr br0' >> /etc/rc.local
echo 'ifconfig br0 10.0.3.2/24 up' >> /etc/rc.local
echo 'exit 0' >> /etc/rc.local
make sure that USE_LXC is always set when logging in as debian,
and configure LXC IP addresses
echo 'export USE_LXC=1' >> /home/debian/.profile
echo 'export GITIAN_HOST_IP=10.0.3.2' >> /home/debian/.profile
echo 'export LXC_GUEST_IP=10.0.3.5' >> /home/debian/.profile
reboot

At the end the VM is rebooted to make sure that the changes take effect. The steps in this
section need only to be performed once.

Installing gitian

Re-login as the user debian that was created during installation.
The rest of the steps in this guide will be performed as that user.

There is no python-vm-builder package in Debian, so we need to install it from source ourselves,

wget http://archive.ubuntu.com/ubuntu/pool/universe/v/vm-builder/vm-builder_0.12.4+bzr489.orig.tar.gz
echo "ec12e0070a007989561bfee5862c89a32c301992dd2771c4d5078ef1b3014f03 vm-builder_0.12.4+bzr489.orig.tar.gz" | sha256sum -c
(verification -- must return OK)
tar -zxvf vm-builder_0.12.4+bzr489.orig.tar.gz
cd vm-builder-0.12.4+bzr489
sudo python setup.py install
cd ..

Note: When sudo asks for a password, enter the password for the user debian not for root.

Clone the git repositories for bitcoin and gitian,

git clone https://github.com/devrandom/gitian-builder.git
git clone https://github.com/bitcoin/bitcoin

Setting up gitian images

Gitian needs virtual images of the operating system to build in.
Currently this is Ubuntu Precise for both x86 architectures.
These images will be copied and used every time that a build is started to
make sure that the build is deterministic.
Creating the images will take a while, but only has to be done once.

Execute the following as user debian:

cd gitian-builder
bin/make-base-vm --lxc --arch i386 --suite precise
bin/make-base-vm --lxc --arch amd64 --suite precise

There will be a lot of warnings printed during build of the images. These can be ignored.

Note: When sudo asks for a password, enter the password for the user debian not for root.

Getting and building the inputs

In doc/release-process.md in the bitcoin repository under ‘Fetch and build inputs’.
you will find a list of wget commands that can be executed to get the dependencies.

I needed to add --no-check-certificate to the OpenSSL wget line to make it work.
Likely this is because the ca-certificates in Debian 7.4 is fairly old. This does not create a
security issue as the gitian descriptors check integrity of the input archives and refuse to work
if any one is corrupted.

After downloading the archives, execute the gbuild commends to build the dependencies.
This can take a long time, but only has to be done when the dependencies change, for example
to upgrade the used version.

Note: Do not forget to copy the result from build/out to inputs after every gbuild command! This will save
you a lot of time.

At any time you can check the package installation and build progress with

tail -f var/install.log
tail -f var/build.log

Building Bitcoin

To build Bitcoin (for Linux and/or Windows) just follow the steps under ‘perform
gitian builds’ in doc/release-process.md in the bitcoin repository.

Output from gbuild will look something like

Initialized empty Git repository in /home/debian/gitian-builder/inputs/bitcoin/.git/
remote: Reusing existing pack: 35606, done.
remote: Total 35606 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (35606/35606), 26.52 MiB | 4.28 MiB/s, done.
Resolving deltas: 100% (25724/25724), done.
From https://github.com/bitcoin/bitcoin
... (new tags, new branch etc)
--- Building for precise i386 ---
Stopping target if it is up
Making a new image copy
stdin: is not a tty
Starting target
Checking if target is up
Preparing build environment
Updating apt-get repository (log in var/install.log)
Installing additional packages (log in var/install.log)
Grabbing package manifest
stdin: is not a tty
Creating build script (var/build-script)
lxc-start: Connection refused - inotify event with no name (mask 32768)
Running build script (log in var/build.log)

As when building the dependencies, the progress of package installation and building
can be inspected in var/install.log and var/build.log.

Building an alternative repository

If you want to do a test build of a pull on github it can be useful to point
the gitian builder at an alternative repository, using the same descriptors
and inputs.

For example:

URL=https://github.com/laanwj/bitcoin.git
COMMIT=2014_03_windows_unicode_path
./bin/gbuild --commit bitcoin=${COMMIT} --url bitcoin=${URL} ../bitcoin/contrib/gitian-descriptors/gitian-linux.yml
./bin/gbuild --commit bitcoin=${COMMIT} --url bitcoin=${URL} ../bitcoin/contrib/gitian-descriptors/gitian-win.yml

Signing externally

If you want to do the PGP signing on another device that’s possible too; just define SIGNER as mentioned
and follow the steps in the build process as normally.

gpg: skipped "laanwj": secret key not available

When you execute gsign you will get an error from GPG, which can be ignored. Copy the resulting .assert files
in gitian.sigs to your signing machine and do

 gpg --detach-sign ${VERSION}/${SIGNER}/bitcoin-build.assert
 gpg --detach-sign ${VERSION}-win/${SIGNER}/bitcoin-build.assert

This will create the .sig files that can be committed together with the .assert files to assert your
gitian build.

Uploading signatures

After building and signing you can push your signatures (both the .assert and
.assert.sig files) to the
bitcoin/gitian.sigs [https://github.com/bitcoin/gitian.sigs/] repository, or
if not possible create a pull request. You can also mail the files to me
(laanwj@gmail.com) and I’ll commit them.

Multiwallet Qt Development and Integration Strategy

In order to support loading of multiple wallets in bitcoin-qt, a few changes in the UI architecture will be needed.
Fortunately, only four of the files in the existing project are affected by this change.

Two new classes have been implemented in two new .h/.cpp file pairs, with much of the functionality that was previously
implemented in the BitcoinGUI class moved over to these new classes.

The two existing files most affected, by far, are bitcoingui.h and bitcoingui.cpp, as the BitcoinGUI class will require
some major retrofitting.

Only requiring some minor changes is bitcoin.cpp.

Finally, two new headers and source files will have to be added to bitcoin-qt.pro.

Changes to class BitcoinGUI

The principal change to the BitcoinGUI class concerns the QStackedWidget instance called centralWidget.
This widget owns five page views: overviewPage, transactionsPage, addressBookPage, receiveCoinsPage, and sendCoinsPage.

A new class called WalletView inheriting from QStackedWidget has been written to handle all renderings and updates of
these page views. In addition to owning these five page views, a WalletView also has a pointer to a WalletModel instance.
This allows the construction of multiple WalletView objects, each rendering a distinct wallet.

A second class called WalletFrame inheriting from QFrame has been written as a container for embedding all wallet-related
controls into BitcoinGUI. At present it contains the WalletView instances for the wallets and does little more than passing on messages
from BitcoinGUI to the currently selected WalletView. It is a WalletFrame instance
that takes the place of what used to be centralWidget in BitcoinGUI. The purpose of this class is to allow future
refinements of the wallet controls with minimal need for further modifications to BitcoinGUI, thus greatly simplifying
merges while reducing the risk of breaking top-level stuff.

Changes to bitcoin.cpp

bitcoin.cpp is the entry point into bitcoin-qt, and as such, will require some minor modifications to provide hooks for
multiple wallet support. Most importantly will be the way it instantiates WalletModels and passes them to the
singleton BitcoinGUI instance called window. Formerly, BitcoinGUI kept a pointer to a single instance of a WalletModel.
The initial change required is very simple: rather than calling window.setWalletModel(&walletModel); we perform the
following two steps:

window.addWallet("~Default", &walletModel);
window.setCurrentWallet("~Default");

The string parameter is just an arbitrary name given to the default wallet. It’s been prepended with a tilde to avoid name collisions in the future with additional wallets.

The shutdown call window.setWalletModel(0) has also been removed. In its place is now:

window.removeAllWallets();

 Bitcoin Core version 0.9.3 is now available from:

https://bitcoin.org/bin/0.9.3/

This is a new minor version release, bringing only bug fixes and updated
translations. Upgrading to this release is recommended.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

Upgrading and downgrading

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you run
0.9.3 your blockchain files will be re-indexed, which will take anywhere from
30 minutes to several hours, depending on the speed of your machine.

Downgrading warnings

The ‘chainstate’ for this release is not always compatible with previous
releases, so if you run 0.9.x and then decide to switch back to a
0.8.x release you might get a blockchain validation error when starting the
old release (due to ‘pruned outputs’ being omitted from the index of
unspent transaction outputs).

Running the old release with the -reindex option will rebuild the chainstate
data structures and correct the problem.

Also, the first time you run a 0.8.x release on a 0.9 wallet it will rescan
the blockchain for missing spent coins, which will take a long time (tens
of minutes on a typical machine).

0.9.3 Release notes

RPC:

	Avoid a segfault on getblock if it can’t read a block from disk

	Add paranoid return value checks in base58

Protocol and network code:

	Don’t poll showmyip.com, it doesn’t exist anymore

	Add a way to limit deserialized string lengths and use it

	Add a new checkpoint at block 295,000

	Increase IsStandard() scriptSig length

	Avoid querying DNS seeds, if we have open connections

	Remove a useless millisleep in socket handler

	Stricter memory limits on CNode

	Better orphan transaction handling

	Add -maxorphantx=<n> and -maxorphanblocks=<n> options for control over the maximum orphan transactions and blocks

Wallet:

	Check redeemScript size does not exceed 520 byte limit

	Ignore (and warn about) too-long redeemScripts while loading wallet

GUI:

	fix ‘opens in testnet mode when presented with a BIP-72 link with no fallback’

	AvailableCoins: acquire cs_main mutex

	Fix unicode character display on MacOSX

Miscellaneous:

	key.cpp: fail with a friendlier message on missing ssl EC support

	Remove bignum dependency for scripts

	Upgrade OpenSSL to 1.0.1i (see https://www.openssl.org/news/secadv_20140806.txt - just to be sure, no critical issues for Bitcoin Core)

	Upgrade miniupnpc to 1.9.20140701

	Fix boost detection in build system on some platforms

Credits

Thanks to everyone who contributed to this release:

	Andrew Poelstra

	Cory Fields

	Gavin Andresen

	Jeff Garzik

	Johnathan Corgan

	Julian Haight

	Michael Ford

	Pavel Vasin

	Peter Todd

	phantomcircuit

	Pieter Wuille

	Rose Toomey

	Ruben Dario Ponticelli

	shshshsh

	Trevin Hofmann

	Warren Togami

	Wladimir J. van der Laan

	Zak Wilcox

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

Release Process

	update translations (ping wumpus, Diapolo or tcatm on IRC)

	see https://github.com/bitcoin/bitcoin/blob/master/doc/translation_process.md#syncing-with-transifex

###update (commit) version in sources

contrib/verifysfbinaries/verify.sh
doc/README*
share/setup.nsi
src/clientversion.h (change CLIENT_VERSION_IS_RELEASE to true)

###tag version in git

git tag -s v(new version, e.g. 0.8.0)

###write release notes. git shortlog helps a lot, for example:

git shortlog --no-merges v(current version, e.g. 0.7.2)..v(new version, e.g. 0.8.0)

##perform gitian builds

From a directory containing the bitcoin source, gitian-builder and gitian.sigs

export SIGNER=(your gitian key, ie bluematt, sipa, etc)
export VERSION=(new version, e.g. 0.8.0)
pushd ./bitcoin
git checkout v${VERSION}
popd
pushd ./gitian-builder
 mkdir -p inputs; cd inputs/

Register and download the Apple SDK (see OSX Readme for details)
visit https://developer.apple.com/downloads/download.action?path=Developer_Tools/xcode_4.6.3/xcode4630916281a.dmg

Using a Mac, create a tarball for the 10.7 SDK
tar -C /Volumes/Xcode/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/ -czf MacOSX10.7.sdk.tar.gz MacOSX10.7.sdk

Fetch and build inputs: (first time, or when dependency versions change)

wget 'http://miniupnp.free.fr/files/download.php?file=miniupnpc-1.9.20140701.tar.gz' -O miniupnpc-1.9.20140701.tar.gz
wget 'https://www.openssl.org/source/openssl-1.0.1i.tar.gz'
wget 'http://download.oracle.com/berkeley-db/db-4.8.30.NC.tar.gz'
wget 'http://zlib.net/zlib-1.2.8.tar.gz'
wget 'ftp://ftp.simplesystems.org/pub/png/src/history/libpng16/libpng-1.6.8.tar.gz'
wget 'https://fukuchi.org/works/qrencode/qrencode-3.4.3.tar.bz2'
wget 'https://downloads.sourceforge.net/project/boost/boost/1.55.0/boost_1_55_0.tar.bz2'
wget 'https://svn.boost.org/trac/boost/raw-attachment/ticket/7262/boost-mingw.patch' -O \
 boost-mingw-gas-cross-compile-2013-03-03.patch
wget 'https://download.qt-project.org/official_releases/qt/5.2/5.2.0/single/qt-everywhere-opensource-src-5.2.0.tar.gz'
wget 'https://download.qt-project.org/archive/qt/4.6/qt-everywhere-opensource-src-4.6.4.tar.gz'
wget 'https://protobuf.googlecode.com/files/protobuf-2.5.0.tar.bz2'
wget 'https://github.com/mingwandroid/toolchain4/archive/10cc648683617cca8bcbeae507888099b41b530c.tar.gz'
wget 'http://www.opensource.apple.com/tarballs/cctools/cctools-809.tar.gz'
wget 'http://www.opensource.apple.com/tarballs/dyld/dyld-195.5.tar.gz'
wget 'http://www.opensource.apple.com/tarballs/ld64/ld64-127.2.tar.gz'
wget 'http://pkgs.fedoraproject.org/repo/pkgs/cdrkit/cdrkit-1.1.11.tar.gz/efe08e2f3ca478486037b053acd512e9/cdrkit-1.1.11.tar.gz'
wget 'https://github.com/theuni/libdmg-hfsplus/archive/libdmg-hfsplus-v0.1.tar.gz'
wget 'http://llvm.org/releases/3.2/clang+llvm-3.2-x86-linux-ubuntu-12.04.tar.gz' -O \
 clang-llvm-3.2-x86-linux-ubuntu-12.04.tar.gz
 wget 'https://raw.githubusercontent.com/theuni/osx-cross-depends/master/patches/cdrtools/genisoimage.diff' -O \
 cdrkit-deterministic.patch
cd ..
./bin/gbuild ../bitcoin/contrib/gitian-descriptors/boost-linux.yml
mv build/out/boost-*.zip inputs/
./bin/gbuild ../bitcoin/contrib/gitian-descriptors/deps-linux.yml
mv build/out/bitcoin-deps-*.zip inputs/
./bin/gbuild ../bitcoin/contrib/gitian-descriptors/qt-linux.yml
mv build/out/qt-*.tar.gz inputs/
./bin/gbuild ../bitcoin/contrib/gitian-descriptors/boost-win.yml
mv build/out/boost-*.zip inputs/
./bin/gbuild ../bitcoin/contrib/gitian-descriptors/deps-win.yml
mv build/out/bitcoin-deps-*.zip inputs/
./bin/gbuild ../bitcoin/contrib/gitian-descriptors/qt-win.yml
mv build/out/qt-*.zip inputs/
./bin/gbuild ../bitcoin/contrib/gitian-descriptors/protobuf-win.yml
mv build/out/protobuf-*.zip inputs/
./bin/gbuild ../bitcoin/contrib/gitian-descriptors/gitian-osx-native.yml
mv build/out/osx-*.tar.gz inputs/
./bin/gbuild ../bitcoin/contrib/gitian-descriptors/gitian-osx-depends.yml
mv build/out/osx-*.tar.gz inputs/
./bin/gbuild ../bitcoin/contrib/gitian-descriptors/gitian-osx-qt.yml
mv build/out/osx-*.tar.gz inputs/

The expected SHA256 hashes of the intermediate inputs are:

b66e8374031adf8d5309c046615fe4f561c3a7e3c1f6885675c13083db0c4d3b bitcoin-deps-linux32-gitian-r8.zip
ec83deb4e81bea5ac1fb5e3f1b88cd02ca665306f0c2290ef4f19b974525005e bitcoin-deps-linux64-gitian-r8.zip
f29b7d9577417333fb56e023c2977f5726a7c297f320b175a4108cf7cd4c2d29 boost-linux32-1.55.0-gitian-r1.zip
88232451c4104f7eb16e469ac6474fd1231bd485687253f7b2bdf46c0781d535 boost-linux64-1.55.0-gitian-r1.zip
57e57dbdadc818cd270e7e00500a5e1085b3bcbdef69a885f0fb7573a8d987e1 qt-linux32-4.6.4-gitian-r1.tar.gz
60eb4b9c5779580b7d66529efa5b2836ba1a70edde2a0f3f696d647906a826be qt-linux64-4.6.4-gitian-r1.tar.gz
60dc2d3b61e9c7d5dbe2f90d5955772ad748a47918ff2d8b74e8db9b1b91c909 boost-win32-1.55.0-gitian-r6.zip
f65fcaf346bc7b73bc8db3a8614f4f6bee2f61fcbe495e9881133a7c2612a167 boost-win64-1.55.0-gitian-r6.zip
9c2572b021b3b50dc9441f2e96d672ac1da4cb6c9f88a1711aa0234882f353cf bitcoin-deps-win32-gitian-r15.zip
94e9f6d861140d9130a15830eba40eba4c8c830440506ac7cc0d1e3217293c25 bitcoin-deps-win64-gitian-r15.zip
963e3e5e85879010a91143c90a711a5d1d5aba992e38672cdf7b54e42c56b2f1 qt-win32-5.2.0-gitian-r3.zip
751c579830d173ef3e6f194e83d18b92ebef6df03289db13ab77a52b6bc86ef0 qt-win64-5.2.0-gitian-r3.zip
e2e403e1a08869c7eed4d4293bce13d51ec6a63592918b90ae215a0eceb44cb4 protobuf-win32-2.5.0-gitian-r4.zip
a0999037e8b0ef9ade13efd88fee261ba401f5ca910068b7e0cd3262ba667db0 protobuf-win64-2.5.0-gitian-r4.zip

Build bitcoind and bitcoin-qt on Linux32, Linux64, and Win32:

./bin/gbuild --commit bitcoin=v${VERSION} ../bitcoin/contrib/gitian-descriptors/gitian-linux.yml
./bin/gsign --signer $SIGNER --release ${VERSION} --destination ../gitian.sigs/ ../bitcoin/contrib/gitian-descriptors/gitian-linux.yml
pushd build/out
zip -r bitcoin-${VERSION}-linux-gitian.zip *
mv bitcoin-${VERSION}-linux-gitian.zip ../../../
popd
./bin/gbuild --commit bitcoin=v${VERSION} ../bitcoin/contrib/gitian-descriptors/gitian-win.yml
./bin/gsign --signer $SIGNER --release ${VERSION}-win --destination ../gitian.sigs/ ../bitcoin/contrib/gitian-descriptors/gitian-win.yml
pushd build/out
zip -r bitcoin-${VERSION}-win-gitian.zip *
mv bitcoin-${VERSION}-win-gitian.zip ../../../
popd
 ./bin/gbuild --commit bitcoin=v${VERSION} ../bitcoin/contrib/gitian-descriptors/gitian-osx-bitcoin.yml
 ./bin/gsign --signer $SIGNER --release ${VERSION}-osx --destination ../gitian.sigs/ ../bitcoin/contrib/gitian-descriptors/gitian-osx-bitcoin.yml
pushd build/out
mv Bitcoin-Qt.dmg ../../../
popd
popd

Build output expected:

	linux 32-bit and 64-bit binaries + source (bitcoin-${VERSION}-linux-gitian.zip)

	windows 32-bit and 64-bit binaries + installer + source (bitcoin-${VERSION}-win-gitian.zip)

	OSX installer (Bitcoin-Qt.dmg)

	Gitian signatures (in gitian.sigs/${VERSION}[-win|-osx]/(your gitian key)/

repackage gitian builds for release as stand-alone zip/tar/installer exe

Linux .tar.gz:

unzip bitcoin-${VERSION}-linux-gitian.zip -d bitcoin-${VERSION}-linux
tar czvf bitcoin-${VERSION}-linux.tar.gz bitcoin-${VERSION}-linux
rm -rf bitcoin-${VERSION}-linux

Windows .zip and setup.exe:

unzip bitcoin-${VERSION}-win-gitian.zip -d bitcoin-${VERSION}-win
mv bitcoin-${VERSION}-win/bitcoin-*-setup.exe .
zip -r bitcoin-${VERSION}-win.zip bitcoin-${VERSION}-win
rm -rf bitcoin-${VERSION}-win

###Next steps:

Commit your signature to gitian.sigs:

pushd gitian.sigs
git add ${VERSION}-linux/${SIGNER}
git add ${VERSION}-win/${SIGNER}
git add ${VERSION}-osx/${SIGNER}
git commit -a
git push # Assuming you can push to the gitian.sigs tree
popd

After 3 or more people have gitian-built and their results match:

	Perform code-signing.

	Code-sign Windows -setup.exe (in a Windows virtual machine using signtool)

	Code-sign MacOSX .dmg

Note: only Gavin has the code-signing keys currently.

	Create SHA256SUMS.asc for builds, and PGP-sign it. This is done manually.
Include all the files to be uploaded. The file has sha256sum format with a
simple header at the top:

Hash: SHA256

0060f7d38b98113ab912d4c184000291d7f026eaf77ca5830deec15059678f54 bitcoin-x.y.z-linux.tar.gz
...

	Upload zips and installers, as well as SHA256SUMS.asc from last step, to the bitcoin.org server

	Update bitcoin.org version

	Make a pull request to add a file named YYYY-MM-DD-vX.Y.Z.md with the release notes
to https://github.com/bitcoin/bitcoin.org/tree/master/_releases
(Example for 0.9.2.1 [https://raw.githubusercontent.com/bitcoin/bitcoin.org/master/_releases/2014-06-19-v0.9.2.1.md]).

	After the pull request is merged, the website will automatically show the newest version, as well
as update the OS download links. Ping Saivann in case anything goes wrong

	Announce the release:

	Release sticky on bitcointalk: https://bitcointalk.org/index.php?board=1.0

	Bitcoin-development mailing list

	Update title of #bitcoin on Freenode IRC

	Optionally reddit /r/Bitcoin, … but this will usually sort out itself

	Notify BlueMatt so that he can start building [https://launchpad.net/~bitcoin/+archive/ubuntu/bitcoin](the PPAs)

	Add release notes for the new version to the directory doc/release-notes in git master

	Celebrate

TOR SUPPORT IN BITCOIN

It is possible to run Bitcoin as a Tor hidden service, and connect to such services.

The following directions assume you have a Tor proxy running on port 9050. Many distributions default to having a SOCKS proxy listening on port 9050, but others may not. In particular, the Tor Browser Bundle defaults to listening on a random port. See Tor Project FAQ:TBBSocksPort [https://www.torproject.org/docs/faq.html.en#TBBSocksPort] for how to properly
configure Tor.

	Run bitcoin behind a Tor proxy

The first step is running Bitcoin behind a Tor proxy. This will already make all
outgoing connections be anonymized, but more is possible.

-socks=5 SOCKS5 supports connecting-to-hostname, which can be used instead
 of doing a (leaking) local DNS lookup. SOCKS5 is the default,
 but SOCKS4 does not support this. (SOCKS4a does, but isn't
 implemented).

-proxy=ip:port Set the proxy server. If SOCKS5 is selected (default), this proxy
 server will be used to try to reach .onion addresses as well.

-onion=ip:port Set the proxy server to use for tor hidden services. You do not
 need to set this if it's the same as -proxy. You can use -noonion
 to explicitly disable access to hidden service.

-listen When using -proxy, listening is disabled by default. If you want
 to run a hidden service (see next section), you'll need to enable
 it explicitly.

-connect=X When behind a Tor proxy, you can specify .onion addresses instead
-addnode=X of IP addresses or hostnames in these parameters. It requires
-seednode=X SOCKS5. In Tor mode, such addresses can also be exchanged with
 other P2P nodes.

In a typical situation, this suffices to run behind a Tor proxy:

./bitcoin -proxy=127.0.0.1:9050

	Run a bitcoin hidden server

If you configure your Tor system accordingly, it is possible to make your node also
reachable from the Tor network. Add these lines to your /etc/tor/torrc (or equivalent
config file):

HiddenServiceDir /var/lib/tor/bitcoin-service/
HiddenServicePort 8333 127.0.0.1:8333
HiddenServicePort 18333 127.0.0.1:18333

The directory can be different of course, but (both) port numbers should be equal to
your bitcoind’s P2P listen port (8333 by default).

-externalip=X You can tell bitcoin about its publicly reachable address using
 this option, and this can be a .onion address. Given the above
 configuration, you can find your onion address in
 /var/lib/tor/bitcoin-service/hostname. Onion addresses are given
 preference for your node to advertize itself with, for connections
 coming from unroutable addresses (such as 127.0.0.1, where the
 Tor proxy typically runs).

-listen You'll need to enable listening for incoming connections, as this
 is off by default behind a proxy.

-discover When -externalip is specified, no attempt is made to discover local
 IPv4 or IPv6 addresses. If you want to run a dual stack, reachable
 from both Tor and IPv4 (or IPv6), you'll need to either pass your
 other addresses using -externalip, or explicitly enable -discover.
 Note that both addresses of a dual-stack system may be easily
 linkable using traffic analysis.

In a typical situation, where you’re only reachable via Tor, this should suffice:

./bitcoind -proxy=127.0.0.1:9050 -externalip=57qr3yd1nyntf5k.onion -listen

(obviously, replace the Onion address with your own). If you don’t care too much
about hiding your node, and want to be reachable on IPv4 as well, additionally
specify:

./bitcoind ... -discover

and open port 8333 on your firewall (or use -upnp).

If you only want to use Tor to reach onion addresses, but not use it as a proxy
for normal IPv4/IPv6 communication, use:

./bitcoin -onion=127.0.0.1:9050 -externalip=57qr3yd1nyntf5k.onion -discover

Translations

The Qt GUI can be easily translated into other languages. Here’s how we
handle those translations.

Files and Folders

bitcoin-qt.pro

This file takes care of generating .qm files from .ts files. It is mostly
automated.

src/qt/bitcoin.qrc

This file must be updated whenever a new translation is added. Please note that
files must end with .qm, not .ts.

<qresource prefix="/translations">
 <file alias="en">locale/bitcoin_en.qm</file>
 ...
</qresource>

src/qt/locale/

This directory contains all translations. Filenames must adhere to this format:

bitcoin_xx_YY.ts or bitcoin_xx.ts

bitcoin_en.ts (Source file)

src/qt/locale/bitcoin_en.ts is treated in a special way. It is used as the
source for all other translations. Whenever a string in the code is changed
this file must be updated to reflect those changes. A custom script is used
to extract strings from the non-Qt parts. This script makes use of gettext,
so make sure that utility is installed (ie, apt-get install gettext on
Ubuntu/Debian). Once this has been updated, lupdate (included in the Qt SDK)
is used to update bitcoin_en.ts. This process has been automated, from src/qt,
simply run:
make translate

Handling of plurals in the source file

When new plurals are added to the source file, it’s important to do the following steps:

	Open bitcoin_en.ts in Qt Linguist (also included in the Qt SDK)

	Search for %n, which will take you to the parts in the translation that use plurals

	Look for empty English Translation (Singular) and English Translation (Plural) fields

	Add the appropriate strings for the singular and plural form of the base string

	Mark the item as done (via the green arrow symbol in the toolbar)

	Repeat from step 2. until all singular and plural forms are in the source file

	Save the source file

Creating the pull-request

An updated source file should be merged to github and Transifex will pick it
up from there (can take some hours). Afterwards the new strings show up as “Remaining”
in Transifex and can be translated.

To create the pull-request you have to do:

git add src/qt/bitcoinstrings.cpp src/qt/locale/bitcoin_en.ts
git commit

Syncing with Transifex

We are using https://transifex.com as a frontend for translating the client.

https://www.transifex.com/projects/p/bitcoin/resource/tx/

The “Transifex client” (see: http://support.transifex.com/customer/portal/topics/440187-transifex-client/articles)
is used to fetch new translations from Transifex. The configuration for this client (.tx/config)
is part of the repository.

Do not directly download translations one by one from the Transifex website, as we do a few
postprocessing steps before committing the translations.

Fetching new translations

	python contrib/devtools/update-translations.py

	update src/qt/bitcoin.qrc manually or via
ls src/qt/locale/*ts|xargs -n1 basename|sed 's/\(bitcoin_\(.*\)\).ts/<file alias="\2">locale\/\1.qm<\/file>/'

	update src/qt/Makefile.am manually or via
ls src/qt/locale/*ts|xargs -n1 basename|sed 's/\(bitcoin_\(.*\)\).ts/ locale\/\1.ts \\/'

	git add new translations from src/qt/locale/

Compiling/running unit tests

Unit tests will be automatically compiled if dependencies were met in configure
and tests weren’t explicitly disabled.

After configuring, they can be run with ‘make check’.

To run the bitcoind tests manually, launch src/test/test_bitcoin .

To add more bitcoind tests, add BOOST_AUTO_TEST_CASE functions to the existing
.cpp files in the test/ directory or add new .cpp files that
implement new BOOST_AUTO_TEST_SUITE sections.

To run the bitcoin-qt tests manually, launch src/qt/test/bitcoin-qt_test

To add more bitcoin-qt tests, add them to the src/qt/test/ directory and
the src/qt/test/test_main.cpp file.

 Version 0.3.12 is now available.

Features:

	json-rpc errors return a more standard error object. (thanks to Gavin Andresen)

	json-rpc command line returns exit codes.

	json-rpc “backupwallet” command.

	Recovers and continues if an exception is caused by a message you received. Other nodes shouldn’t be able to cause an exception, and it hasn’t happened before, but if a way is found to cause an exception, this would keep it from being used to stop network nodes.

If you have json-rpc code that checks the contents of the error string, you need to change it to expect error objects of the form {“code”:,”message”:}, which is the standard. See this thread:
http://www.bitcoin.org/smf/index.php?topic=969.0

 <no title>

 Version 0.3.13 is now available. You should upgrade to prevent potential problems with 0/unconfirmed transactions. Note: 0.3.13 prevents problems if you haven’t already spent a 0/unconfirmed transaction, but if that already happened, you need 0.3.13.2.

Changes:

	Don’t count or spend payments until they have 1 confirmation.

	Internal version number from 312 to 31300.

	Only accept transactions sent by IP address if -allowreceivebyip is specified.

	Dropped DB_PRIVATE Berkeley DB flag.

	Fix problem sending the last cent with sub-cent fractional change.

	Auto-detect whether to use 128-bit 4-way SSE2 on Linux.
Gavin Andresen:

	Option -rpcallowip= to accept json-rpc connections from another machine.

	Clean shutdown on SIGTERM on Linux.

Download:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.3.13/

(Thanks Laszlo for the Mac OSX build!)

Note:
The SSE2 auto-detect in the Linux 64-bit version doesn’t work with AMD in 64-bit mode. Please try this instead and let me know if it gets it right:
http://www.bitcoin.org/download/bitcoin-0.3.13.1-specialbuild-linux64.tar.gz

You can still control the SSE2 use manually with -4way and -4way=0.

Version 0.3.13.2 (SVN rev 161) has improvements for the case where you already had 0/unconfirmed transactions that you might have already spent. Here’s a Windows build of it:
http://www.bitcoin.org/download/bitcoin-0.3.13.2-win32-setup.exe

 <no title>

 Version 0.3.14 is now available
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.3.14/

Changes:

	Key pool feature for safer wallet backup
Gavin Andresen:

	TEST network mode with switch -testnet

	Option to use SSL for JSON-RPC connections on unix/osx

	validateaddress RPC command
eurekafag:

	Russian translation

 <no title>

	paytxfee switch is now per KB, so it adds the correct fee for large transactions

	sending avoids using coins with less than 6 confirmations if it can

	BitcoinMiner processes transactions in priority order based on age of dependencies

	make sure generation doesn’t start before block 74000 downloaded

	bugfixes by Dean Gores

	testnet, keypoololdest and paytxfee added to getinfo

 <no title>

 Never released.

 <no title>

 Version 0.3.17 is now available.

Changes:

	new getwork, thanks m0mchil

	added transaction fee setting in UI options menu

	free transaction limits

	sendtoaddress returns transaction id instead of “sent”

	getaccountaddress

 <no title>

 Changes:

	Fixed a wallet.dat compatibility problem if you downgraded from 0.3.17 and then upgraded again

	IsStandard() check to only include known transaction types in blocks

	Jgarzik’s optimisation to speed up the initial block download a little

The main addition in this release is the Accounts-Based JSON-RPC commands that Gavin’s been working on (more details at http://www.bitcoin.org/smf/index.php?topic=1886.0).

	getaccountaddress

	sendfrom

	move

	getbalance

	listtransactions

 <no title>

 There’s more work to do on DoS, but I’m doing a quick build of what I have so far in case it’s needed, before venturing into more complex ideas. The build for this is version 0.3.19.

	Added some DoS controls
As Gavin and I have said clearly before, the software is not at all resistant to DoS attack. This is one improvement, but there are still more ways to attack than I can count.

I’m leaving the -limitfreerelay part as a switch for now and it’s there if you need it.

	Removed “safe mode” alerts
“safe mode” alerts was a temporary measure after the 0.3.9 overflow bug. We can say all we want that users can just run with “-disablesafemode”, but it’s better just not to have it for the sake of appearances. It was never intended as a long term feature. Safe mode can still be triggered by seeing a longer (greater total PoW) invalid block chain.

 <no title>

 Never released or release notes were lost.

 <no title>

 The maxsendbuffer bug (0.3.20.1 clients not being able to download the block chain from other 0.3.20.1 clients) was only going to get
worse as people upgraded, so I cherry-picked the bug fix and created a minor release yesterday.

The Amazon Machine Images I used to do the builds are available:

ami-38a05251 Bitcoin-v0.3.20.2 Mingw (Windows; Administrator password ‘bitcoin development’)
ami-30a05259 Bitcoin_0.3.20.2 Linux32
ami-8abc4ee3 Bitcoin_0.3.20.2 Linux64

(mac build will be done soon)

If you have already downloaded version 0.3.20.1, please either add this to your bitcoin.conf file:

maxsendbuffer=10000
maxreceivebuffer=10000

… or download the new version.

 <no title>

 Please checkout the git integration branch from:

https://github.com/bitcoin/bitcoin

… and help test. The new features that need testing are:

	-nolisten : https://github.com/bitcoin/bitcoin/pull/11

	-rescan : scan block chain for missing wallet transactions

	-printtoconsole : https://github.com/bitcoin/bitcoin/pull/37

	RPC gettransaction details : https://github.com/bitcoin/bitcoin/pull/24

	listtransactions new features : https://github.com/bitcoin/bitcoin/pull/10

Bug fixes that also need testing:

	-maxconnections= : https://github.com/bitcoin/bitcoin/pull/42

	RPC listaccounts minconf : https://github.com/bitcoin/bitcoin/pull/27

	RPC move, add time to output : https://github.com/bitcoin/bitcoin/pull/21

	…and several improvements to –help output.

This needs more testing on Windows! Please drop me a quick private message, email, or IRC message if you are able to do some testing. If you find bugs, please open an issue at:

https://github.com/bitcoin/bitcoin/issues

 <no title>

 Binaries for Bitcoin version 0.3.21 are available at:
https://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.3.21/

Changes and new features from the 0.3.20 release include:

	Universal Plug and Play support. Enable automatic opening of a port for incoming connections by running bitcoin or bitcoind with the - -upnp=1 command line switch or using the Options dialog box.

	Support for full-precision bitcoin amounts. You can now send, and bitcoin will display, bitcoin amounts smaller than 0.01. However, sending fewer than 0.01 bitcoins still requires a 0.01 bitcoin fee (so you can send 1.0001 bitcoins without a fee, but you will be asked to pay a fee if you try to send 0.0001).

	A new method of finding bitcoin nodes to connect with, via DNS A records. Use the -dnsseed option to enable.

For developers, changes to bitcoin’s remote-procedure-call API:

	New rpc command “sendmany” to send bitcoins to more than one address in a single transaction.

	Several bug fixes, including a serious intermittent bug that would sometimes cause bitcoind to stop accepting rpc requests.

	-logtimestamps option, to add a timestamp to each line in debug.log.

	Immature blocks (newly generated, under 120 confirmations) are now shown in listtransactions.

 <no title>

 Download URL: https://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.3.22/

This is largely a bugfix and TX fee schedule release. We also hope to make 0.3.23 a quick release, to fix problems that the network has seen due to explosive growth in the past week.

Notable changes:

	Client will accept and relay TX’s with 0.0005 BTC fee schedule (users still pay 0.01 BTC per kb, until next version)

	Non-standard transactions accepted on testnet

	Source code tree reorganized (prep for autotools build)

	Remove “Generate Coins” option from GUI, and remove 4way SSE miner. Internal reference CPU miner remains available, but users are directed to external miners for best hash production.

	IRC is overflowing. Client now bootstraps to channels #bitcoin00 - #bitcoin99

	DNS names now may be used with -addnode, -connect (requires -dns to enable)

RPC changes:

	‘listtransactions’ adds ‘from’ param, for range queries

	‘move’ may take account balances negative

	‘settxfee’ added, to manually set TX fee

 <no title>

 Win32, Linux, MacOSX and source releases for bitcoin v0.3.23 have been uploaded to
https://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.3.23/

This is another quick bugfix release, trying to deal with the influx of new bitcoin users.

Main items of note:

	P2P connect-to-node logic changed to reduce timeout a bit. The network saw a huge influx of new users, who do not permit incoming connections. This change is a short-term hack, to more quickly hunt for useful P2P connections. Better “leaf node” logic is in the works, but this should let us limp along until then. One may use -upnp to properly forward ports, and help the network.

	Transaction fee reduced to 0.0005 for new transactions

	Client will relay transactions with fees as low as 0.0001 BTC

 <no title>

 Bitcoin v0.3.24 is now available for download at
https://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.3.24/

This is another bug fix release. We had hoped to have wallet encryption ready for release, but more urgent fixes for existing clients were needed – most notably block download problems were getting severe. Wallet encryption is ready for testing at https://github.com/bitcoin/bitcoin/pull/352 for the git-savvy, and hopefully will follow shortly in the next release, v0.4.

Notable fixes in v0.3.24, and the main reasons for this release:

F1) Block downloads were failing or taking unreasonable amounts of time to complete, because the increased size of the block chain was bumping up against some earlier buffer-size DoS limits.

F2) Fix crash caused by loss/lack of network connection.

Notable changes in v0.3.24:

C1) DNS seeding enabled by default.

C2) UPNP enabled by default in the GUI client. The percentage of bitcoin clients that accept incoming connections is quite small, and that is a problem. This should help. bitcoind, and unofficial builds, are unchanged (though we encourage use of “-upnp” to help the network!)

C3) Initial unit testing framework. Bitcoin sorely needs automated tests, and this is a beginning. Contributions welcome.

C4) Internal wallet code cleanup. While invisible to an end user, this change provides the basis for v0.4’s wallet encryption.

 <no title>

 Bitcoin version 0.4.0 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.4.0/

The main feature in this release is wallet private key encryption;
you can set a passphrase that must be entered before sending coins.
See below for more information; if you decide to encrypt your wallet,
WRITE DOWN YOUR PASSPHRASE AND PUT IT IN A SECURE LOCATION. If you
forget or lose your wallet passphrase, you lose your bitcoins.
Previous versions of bitcoin are unable to read encrypted wallets,
and will crash on startup if the wallet is encrypted.

Also note: bitcoin version 0.4 uses a newer version of Berkeley DB
(bdb version 4.8) than previous versions (bdb 4.7). If you upgrade
to version 0.4 and then revert back to an earlier version of bitcoin
the it may be unable to start because bdb 4.7 cannot read bdb 4.8
“log” files.

Notable bug fixes from version 0.3.24:

Fix several bitcoin-becomes-unresponsive bugs due to multithreading
deadlocks.

Optimize database writes for large (lots of inputs) transactions
(fixes a potential denial-of-service attack)

Wallet Encryption

Bitcoin supports native wallet encryption so that people who steal your
wallet file don’t automatically get access to all of your Bitcoins.
In order to enable this feature, choose “Encrypt Wallet” from the
Options menu. You will be prompted to enter a passphrase, which
will be used as the key to encrypt your wallet and will be needed
every time you wish to send Bitcoins. If you lose this passphrase,
you will lose access to spend all of the bitcoins in your wallet,
no one, not even the Bitcoin developers can recover your Bitcoins.
This means you are responsible for your own security, store your
passphrase in a secure location and do not forget it.

Remember that the encryption built into bitcoin only encrypts the
actual keys which are required to send your bitcoins, not the full
wallet. This means that someone who steals your wallet file will
be able to see all the addresses which belong to you, as well as the
relevant transactions, you are only protected from someone spending
your coins.

It is recommended that you backup your wallet file before you
encrypt your wallet. To do this, close the Bitcoin client and
copy the wallet.dat file from ~/.bitcoin/ on Linux, /Users/(user
name)/Application Support/Bitcoin/ on Mac OSX, and %APPDATA%/Bitcoin/
on Windows (that is /Users/(user name)/AppData/Roaming/Bitcoin on
Windows Vista and 7 and /Documents and Settings/(user name)/Application
Data/Bitcoin on Windows XP). Once you have copied that file to a
safe location, reopen the Bitcoin client and Encrypt your wallet.
If everything goes fine, delete the backup and enjoy your encrypted
wallet. Note that once you encrypt your wallet, you will never be
able to go back to a version of the Bitcoin client older than 0.4.

Keep in mind that you are always responsible for your own security.
All it takes is a slightly more advanced wallet-stealing trojan which
installs a keylogger to steal your wallet passphrase as you enter it
in addition to your wallet file and you have lost all your Bitcoins.
Wallet encryption cannot keep you safe if you do not practice
good security, such as running up-to-date antivirus software, only
entering your wallet passphrase in the Bitcoin client and using the
same passphrase only as your wallet passphrase.

See the doc/README file in the bitcoin source for technical details
of wallet encryption.

 <no title>

 Bitcoin version 0.4.1 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.4.1/

This is a bugfix only release based on 0.4.0.

Please report bugs by replying to this forum thread.

MAJOR BUG FIX (CVE-2011-4447)

The wallet encryption feature introduced in Bitcoin version 0.4.0 did not sufficiently secure the private keys. An attacker who
managed to get a copy of your encrypted wallet.dat file might be able to recover some or all of the unencrypted keys and steal the
associated coins.

If you have a previously encrypted wallet.dat, the first time you run wxbitcoin or bitcoind the wallet will be rewritten, Bitcoin will
shut down, and you will be prompted to restart it to run with the new, properly encrypted file.

If you had a previously encrypted wallet.dat that might have been copied or stolen (for example, you backed it up to a public
location) you should send all of your bitcoins to yourself using a new bitcoin address and stop using any previously generated addresses.

Wallets encrypted with this version of Bitcoin are written properly.

Technical note: the encrypted wallet’s ‘keypool’ will be regenerated the first time you request a new bitcoin address; to be certain that the
new private keys are properly backed up you should:

	Run Bitcoin and let it rewrite the wallet.dat file

	Run it again, then ask it for a new bitcoin address.
wxBitcoin: new address visible on main window
bitcoind: run the ‘walletpassphrase’ RPC command to unlock the wallet, then run the ‘getnewaddress’ RPC command.

	If your encrypted wallet.dat may have been copied or stolen, send all of your bitcoins to the new bitcoin address.

	Shut down Bitcoin, then backup the wallet.dat file.
IMPORTANT: be sure to request a new bitcoin address before backing up, so that the ‘keypool’ is regenerated and backed up.

“Security in depth” is always a good idea, so choosing a secure location for the backup and/or encrypting the backup before uploading it is recommended. And as in previous releases, if your machine is infected by malware there are several ways an attacker might steal your bitcoins.

Thanks to Alan Reiner (etotheipi) for finding and reporting this bug.

 <no title>

 Never released or release notes were lost.

 <no title>

 bitcoind version 0.4.3 is now available for download at:
http://luke.dashjr.org/programs/bitcoin/files/bitcoind-0.4.3/ (until Gavin uploads to SourceForge)

This is a bugfix-only release based on 0.4.0.

Please note that the wxBitcoin GUI client is no longer maintained nor supported. If someone would like to step up to maintain this, they should contact Luke-Jr.

Please report bugs for the daemon only using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Stable source code is hosted at Gitorious:
http://gitorious.org/bitcoin/bitcoind-stable/archive-tarball/v0.4.3#.tar.gz

BUG FIXES

Cease locking memory used by non-sensitive information (this caused a huge performance hit on some platforms, especially noticable during initial blockchain download).
Fixed some address-handling deadlocks (client freezes).
No longer accept inbound connections over the internet when Bitcoin is being used with Tor (identity leak).
Use the correct base transaction fee of 0.0005 BTC for accepting transactions into mined blocks (since 0.4.0, it was incorrectly accepting 0.0001 BTC which was only meant to be relayed).
Add new DNS seeds (maintained by Pieter Wuille and Luke Dashjr).

 <no title>

 Bitcoin version 0.4.4 is now available for download at:
http://luke.dashjr.org/programs/bitcoin/files/bitcoind-0.4.4/

This is a bugfix-only release based on 0.4.0.

Please note that the wxBitcoin GUI client is no longer maintained nor supported. If someone would like to step up to maintain this, they should contact Luke-Jr.

Please report bugs for the daemon only using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Stable source code is hosted at Gitorious:
http://gitorious.org/bitcoin/bitcoind-stable/archive-tarball/v0.4.4#.tar.gz

BUG FIXES

Limit the number of orphan transactions stored in memory, to prevent a potential denial-of-service attack by flooding orphan transactions. Also never store invalid transactions at all.
Fix possible buffer overflow on systems with very long application data paths. This is not exploitable.
Resolved multiple bugs preventing long-term unlocking of encrypted wallets (issue #922).
Only send local IP in “version” messages if it is globally routable (ie, not private), and try to get such an IP from UPnP if applicable.
Reannounce UPnP port forwards every 20 minutes, to workaround routers expiring old entries, and allow the -upnp option to override any stored setting.
Various memory leaks and potential null pointer deferences have been
fixed.
Several shutdown issues have been fixed.
Check that keys stored in the wallet are valid at startup, and if not,
report corruption.
Various build fixes.
If no password is specified to bitcoind, recommend a secure password.
Update hard-coded fallback seed nodes, choosing recent ones with long uptime and versions at least 0.4.0.
Add checkpoint at block 168,000.

 <no title>

 Never released or release notes were lost.

 <no title>

 bitcoind version 0.4.6 is now available for download at:
Windows: installer | zip (sig)
Source: tar.gz
bitcoind and Bitcoin-Qt version 0.6.0.7 are also tagged in git, but it is recommended to upgrade to 0.6.1.

These are bugfix-only releases.

Please report bugs by replying to this forum thread. Note that the 0.4.x wxBitcoin GUI client is no longer maintained nor supported. If someone would like to step up to maintain this, they should contact Luke-Jr.

BUG FIXES

Version 0.6.0 allowed importing invalid “private keys”, which would be unspendable; 0.6.0.7 will now verify the private key is valid, and refuse to import an invalid one
Verify status of encrypt/decrypt calls to detect failed padding
Check blocks for duplicate transactions earlier. Fixes #1167
Upgrade Windows builds to OpenSSL 1.0.1b
Set label when selecting an address that already has a label. Fixes #1080 (Bitcoin-Qt)
JSON-RPC listtransactions’s from/count handling is now fixed
Optimize and fix multithreaded access, when checking whether we already know about transactions
Fix potential networking deadlock
Proper support for Growl 1.3 notifications
Display an error, rather than crashing, if encoding a QR Code failed (0.6.0.7)
Don’t erroneously set “Display addresses” for users who haven’t explicitly enabled it (Bitcoin-Qt)
Some non-ASCII input in JSON-RPC expecting hexadecimal may have been misinterpreted rather than rejected
Missing error condition checking added
Do not show green tick unless all known blocks are downloaded. Fixes #921 (Bitcoin-Qt)
Increase time ago of last block for “up to date” status from 30 to 90 minutes
Show a message box when runaway exception happens (Bitcoin-Qt)
Use a messagebox to display the error when -server is provided without providing a rpc password
Show error message instead of exception crash when unable to bind RPC port (Bitcoin-Qt)
Correct sign message bitcoin address tooltip. Fixes #1050 (Bitcoin-Qt)
Removed “(no label)” from QR Code dialog titlebar if we have no label (0.6.0.7)
Removed an ugly line break in tooltip for mature transactions (0.6.0.7)
Add missing tooltip and key shortcut in settings dialog (part of #1088) (Bitcoin-Qt)
Work around issue in boost::program_options that prevents from compiling in clang
Fixed bugs occurring only on platforms with unsigned characters (such as ARM).
Rename make_windows_icon.py to .sh as it is a shell script. Fixes #1099 (Bitcoin-Qt)
Various trivial internal corrections to types used for counting/size loops and warnings

 <no title>

 Bitcoin version 0.5.0 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.5.0/

The major change for this release is a completely new graphical interface that uses the Qt user interface toolkit.

This release include German, Spanish, Spanish-Castilian, Norwegian and Dutch translations. More translations are welcome; join the project at Transifex if you can help:
https://www.transifex.net/projects/p/bitcoin/

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

For Ubuntu users, there is a new ppa maintained by Matt Corallo which you can add to your system so that it will automatically keep bitcoin up-to-date. Just type “sudo apt-add-repository ppa:bitcoin/bitcoin” in your terminal, then install the bitcoin-qt package.

MAJOR BUG FIX (CVE-2011-4447)

The wallet encryption feature introduced in Bitcoin version 0.4.0 did not sufficiently secure the private keys. An attacker who
managed to get a copy of your encrypted wallet.dat file might be able to recover some or all of the unencrypted keys and steal the
associated coins.

If you have a previously encrypted wallet.dat, the first time you run bitcoin-qt or bitcoind the wallet will be rewritten, Bitcoin will
shut down, and you will be prompted to restart it to run with the new, properly encrypted file.

If you had a previously encrypted wallet.dat that might have been copied or stolen (for example, you backed it up to a public
location) you should send all of your bitcoins to yourself using a new bitcoin address and stop using any previously generated addresses.

Wallets encrypted with this version of Bitcoin are written properly.

Technical note: the encrypted wallet’s ‘keypool’ will be regenerated the first time you request a new bitcoin address; to be certain that the
new private keys are properly backed up you should:

	Run Bitcoin and let it rewrite the wallet.dat file

	Run it again, then ask it for a new bitcoin address.
Bitcoin-Qt: Address Book, then New Address…
bitcoind: run the ‘walletpassphrase’ RPC command to unlock the wallet, then run the ‘getnewaddress’ RPC command.

	If your encrypted wallet.dat may have been copied or stolen, send all of your bitcoins to the new bitcoin address.

	Shut down Bitcoin, then backup the wallet.dat file.
IMPORTANT: be sure to request a new bitcoin address before backing up, so that the ‘keypool’ is regenerated and backed up.

“Security in depth” is always a good idea, so choosing a secure location for the backup and/or encrypting the backup before uploading it is recommended. And as in previous releases, if your machine is infected by malware there are several ways an attacker might steal your bitcoins.

Thanks to Alan Reiner (etotheipi) for finding and reporting this bug.

MAJOR GUI CHANGES

“Splash” graphics at startup that show address/wallet/blockchain loading progress.

“Synchronizing with network” progress bar to show block-chain download progress.

Icons at the bottom of the window that show how well connected you are to the network, with tooltips to display details.

Drag and drop support for bitcoin: URIs on web pages.

Export transactions as a .csv file.

Many other GUI improvements, large and small.

RPC CHANGES

getmemorypool : new RPC command, provides everything needed to construct a block with a custom generation transaction and submit a solution

listsinceblock : new RPC command, list transactions since given block

signmessage/verifymessage : new RPC commands to sign a message with one of your private keys or verify that a message signed by the private key associated with a bitcoin address.

GENERAL CHANGES

Faster initial block download.

 <no title>

 Bitcoin version 0.5.1 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.5.1/

This is a bugfix-only release.

This release includes 13 translations, including 5 new translations:
Italian, Hungarian, Ukranian, Portuguese (Brazilian) and Simplified Chinese.
More translations are welcome; join the project at Transifex if you can help:
https://www.transifex.net/projects/p/bitcoin/

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Project source code is hosted at github; we are no longer
distributing .tar.gz files here, you can get them
directly from github:
https://github.com/bitcoin/bitcoin/tarball/v0.5.1 # .tar.gz
https://github.com/bitcoin/bitcoin/zipball/v0.5.1 # .zip

For Ubuntu users, there is a new ppa maintained by Matt Corallo which
you can add to your system so that it will automatically keep
bitcoin up-to-date. Just type
sudo apt-add-repository ppa:bitcoin/bitcoin
in your terminal, then install the bitcoin-qt package.

BUG FIXES

Re-enable SSL support for the JSON-RPC interface (it was unintentionally
disabled for the 0.5.0 release binaries).

The code that finds peers via “dns seeds” no longer stops bitcoin startup
if one of the dns seed machines is down.

Tooltips on the transaction list view were rendering incorrectly (as black boxes
or with a transparent background).

Prevent a denial-of-service attack involving flooding a bitcoin node with
orphan blocks.

The wallet passphrase dialog now warns you if the caps lock key was pressed.

Improved searching in addresses and labels in bitcoin-qt.

 <no title>

 Bitcoin version 0.5.2 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.5.2/

This is a bugfix-only release based on 0.5.1.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Stable source code is hosted at Gitorious:
http://gitorious.org/bitcoin/bitcoind-stable/archive-tarball/v0.5.2#.tar.gz

BUG FIXES

Check all transactions in blocks after the last checkpoint (0.5.0 and 0.5.1 skipped checking ECDSA signatures during initial blockchain download).
Cease locking memory used by non-sensitive information (this caused a huge performance hit on some platforms, especially noticable during initial blockchain download; this was
not a security vulnerability).
Fixed some address-handling deadlocks (client freezes).
No longer accept inbound connections over the internet when Bitcoin is being used with Tor (identity leak).
Re-enable SSL support for the JSON-RPC interface (it was unintentionally disabled for the 0.5.0 and 0.5.1 release Linux binaries).
Use the correct base transaction fee of 0.0005 BTC for accepting transactions into mined blocks (since 0.4.0, it was incorrectly accepting 0.0001 BTC which was only meant to be relayed).
Don’t show “IP” for transactions which are not necessarily IP transactions.
Add new DNS seeds (maintained by Pieter Wuille and Luke Dashjr).

 <no title>

 Bitcoin version 0.5.3 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.5.3/

This is a bugfix-only release based on 0.5.1.
It also includes a few protocol updates.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Stable source code is hosted at Gitorious:
http://gitorious.org/bitcoin/bitcoind-stable/archive-tarball/v0.5.3#.tar.gz

PROTOCOL UPDATES

BIP 30: Introduce a new network rule: “a block is not valid if it contains a transaction whose hash already exists in the block chain, unless all that transaction’s outputs were already spent before said block” beginning on March 15, 2012, 00:00 UTC.
On testnet, allow mining of min-difficulty blocks if 20 minutes have gone by without mining a regular-difficulty block. This is to make testing Bitcoin easier, and will not affect normal mode.

BUG FIXES

Limit the number of orphan transactions stored in memory, to prevent a potential denial-of-service attack by flooding orphan transactions. Also never store invalid transactions at all.
Fix possible buffer overflow on systems with very long application data paths. This is not exploitable.
Resolved multiple bugs preventing long-term unlocking of encrypted wallets
(issue #922).
Only send local IP in “version” messages if it is globally routable (ie, not private), and try to get such an IP from UPnP if applicable.
Reannounce UPnP port forwards every 20 minutes, to workaround routers expiring old entries, and allow the -upnp option to override any stored setting.
Skip splash screen when -min is used, and fix Minimize to Tray function.
Do not blank “label” in Bitcoin-Qt “Send” tab, if the user has already entered something.
Correct various labels and messages.
Various memory leaks and potential null pointer deferences have been fixed.
Handle invalid Bitcoin URIs using “bitcoin://” instead of “bitcoin:”.
Several shutdown issues have been fixed.
Revert to “global progress indication”, as starting from zero every time was considered too confusing for many users.
Check that keys stored in the wallet are valid at startup, and if not, report corruption.
Enable accessible widgets on Windows, so that people with screen readers such as NVDA can make sense of it.
Various build fixes.
If no password is specified to bitcoind, recommend a secure password.
Automatically focus and scroll to new “Send coins” entries in Bitcoin-Qt.
Show a message box for –help on Windows, for Bitcoin-Qt.
Add missing “About Qt” menu option to show built-in Qt About dialog.
Don’t show “-daemon” as an option for Bitcoin-Qt, since it isn’t available.
Update hard-coded fallback seed nodes, choosing recent ones with long uptime and versions at least 0.4.0.
Add checkpoint at block 168,000.

 <no title>

 Bitcoin version 0.5.4 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.5.4/
NOTE: 0.5.4rc3 is being renamed to 0.5.4 final with no changes.

This is a bugfix-only release in the 0.5.x series, plus a few protocol updates.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Stable source code is hosted at Gitorious:
http://gitorious.org/bitcoin/bitcoind-stable/archive-tarball/v0.5.4#.tar.gz

PROTOCOL UPDATES

BIP 16: Special-case “pay to script hash” logic to enable minimal validation of new transactions.
Support for validating message signatures produced with compressed public keys.

BUG FIXES

Build with thread-safe MingW libraries for Windows, fixing a dangerous memory corruption scenario when exceptions are thrown.
Fix broken testnet mining.
Stop excess inventory relay during initial block download.
When disconnecting a node, clear the received buffer so that we do not process any already received messages.
Yet another attempt at implementing “minimize to tray” that works on all operating systems.
Fix Bitcoin-Qt notifications under Growl 1.3.
Increase required age of Bitcoin-Qt’s “not up to date” status from 30 to 90 minutes.
Implemented missing verifications that led to crash on entering some wrong passphrases for encrypted wallets.
Fix default filename suffixes in GNOME save dialog.
Make the “Send coins” tab use the configured unit type, even on the first attempt.
Print detailed wallet loading errors to debug.log when it is corrupt.
Allocate exactly the amount of space needed for signing transactions, instead of a fixed 10k buffer.
Workaround for improbable memory access violation.
Check wallet’s minimum version before trying to load it.
Remove wxBitcoin properly when installing Bitcoin-Qt over it. (Windows)
Detail reorganization information better in debug log.
Use a messagebox to display the error when -server is provided without configuring a RPC password.
Testing suite build now honours provided CXXFLAGS.
Removed an extraneous line-break in mature transaction tooltips.
Fix some grammatical errors in translation process documentation.

 <no title>

 bitcoind and Bitcoin-Qt version 0.5.5 are now available for download at:
Windows: installer | zip (sig)
Source: tar.gz
bitcoind and Bitcoin-Qt version 0.6.0.7 are also tagged in git, but it is recommended to upgrade to 0.6.1.

These are bugfix-only releases.

Please report bugs by replying to this forum thread. Note that the 0.4.x wxBitcoin GUI client is no longer maintained nor supported. If someone would like to step up to maintain this, they should contact Luke-Jr.

BUG FIXES

Version 0.6.0 allowed importing invalid “private keys”, which would be unspendable; 0.6.0.7 will now verify the private key is valid, and refuse to import an invalid one
Verify status of encrypt/decrypt calls to detect failed padding
Check blocks for duplicate transactions earlier. Fixes #1167
Upgrade Windows builds to OpenSSL 1.0.1b
Set label when selecting an address that already has a label. Fixes #1080 (Bitcoin-Qt)
JSON-RPC listtransactions’s from/count handling is now fixed
Optimize and fix multithreaded access, when checking whether we already know about transactions
Fix potential networking deadlock
Proper support for Growl 1.3 notifications
Display an error, rather than crashing, if encoding a QR Code failed (0.6.0.7)
Don’t erroneously set “Display addresses” for users who haven’t explicitly enabled it (Bitcoin-Qt)
Some non-ASCII input in JSON-RPC expecting hexadecimal may have been misinterpreted rather than rejected
Missing error condition checking added
Do not show green tick unless all known blocks are downloaded. Fixes #921 (Bitcoin-Qt)
Increase time ago of last block for “up to date” status from 30 to 90 minutes
Show a message box when runaway exception happens (Bitcoin-Qt)
Use a messagebox to display the error when -server is provided without providing a rpc password
Show error message instead of exception crash when unable to bind RPC port (Bitcoin-Qt)
Correct sign message bitcoin address tooltip. Fixes #1050 (Bitcoin-Qt)
Removed “(no label)” from QR Code dialog titlebar if we have no label (0.6.0.7)
Removed an ugly line break in tooltip for mature transactions (0.6.0.7)
Add missing tooltip and key shortcut in settings dialog (part of #1088) (Bitcoin-Qt)
Work around issue in boost::program_options that prevents from compiling in clang
Fixed bugs occurring only on platforms with unsigned characters (such as ARM).
Rename make_windows_icon.py to .sh as it is a shell script. Fixes #1099 (Bitcoin-Qt)
Various trivial internal corrections to types used for counting/size loops and warnings

 <no title>

 Bitcoin version 0.6.0 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.6.0/test/

This release includes more than 20 language localizations.
More translations are welcome; join the
project at Transifex to help:
https://www.transifex.net/projects/p/bitcoin/

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Project source code is hosted at github; we are no longer
distributing .tar.gz files here, you can get them
directly from github:
https://github.com/bitcoin/bitcoin/tarball/v0.6.0 # .tar.gz
https://github.com/bitcoin/bitcoin/zipball/v0.6.0 # .zip

For Ubuntu users, there is a ppa maintained by Matt Corallo which
you can add to your system so that it will automatically keep
bitcoin up-to-date. Just type
sudo apt-add-repository ppa:bitcoin/bitcoin
in your terminal, then install the bitcoin-qt package.

KNOWN ISSUES

Shutting down while synchronizing with the network
(downloading the blockchain) can take more than a minute,
because database writes are queued to speed up download
time.

NEW FEATURES SINCE BITCOIN VERSION 0.5

Initial network synchronization should be much faster
(one or two hours on a typical machine instead of ten or more
hours).

Backup Wallet menu option.

Bitcoin-Qt can display and save QR codes for sending
and receiving addresses.

New context menu on addresses to copy/edit/delete them.

New Sign Message dialog that allows you to prove that you
own a bitcoin address by creating a digital
signature.

New wallets created with this version will
use 33-byte ‘compressed’ public keys instead of
65-byte public keys, resulting in smaller
transactions and less traffic on the bitcoin
network. The shorter keys are already supported
by the network but wallet.dat files containing
short keys are not compatible with earlier
versions of Bitcoin-Qt/bitcoind.

New command-line argument -blocknotify=
that will spawn a shell process to run
when a new block is accepted.

 <no title>

 Never released

 <no title>

 Bitcoin version 0.6.2 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.6.2/

This is a bug-fix and code-cleanup release, with no major new features.

Please report bugs using the github issue tracker at:
https://github.com/bitcoin/bitcoin/issues

NOTABLE CHANGES

Much faster shutdowns. However, the blkindex.dat file is no longer
portable to different data directories by default. If you need a
portable blkindex.dat file then run with the new -detachdb=1 option
or the “Detach databases at shutdown” GUI preference.

Fixed https://github.com/bitcoin/bitcoin/issues/1065, a bug that
could cause long-running nodes to crash.

Mac and Windows binaries are compiled against OpenSSL 1.0.1b (Linux
binaries are dynamically linked to the version of OpenSSL on the system).

CHANGE SUMMARY

Use ‘git shortlog –no-merges v0.6.0..’ for a summary of this release.

Source codebase changes:

	Many source code cleanups and warnings fixes. Close to building with -Wall

	Locking overhaul, and several minor locking fixes

	Several source code portability fixes, e.g. FreeBSD

JSON-RPC interface changes:

	addmultisigaddress enabled for mainnet (previously only enabled for testnet)

Network protocol changes:

	protocol version 60001

	added nonce value to “ping” message (BIP 31)

	added new “pong” message (BIP 31)

Backend storage changes:

	Less redundant database flushing, especially during initial block download

	Shutdown improvements (see above)

Qt user interface:

	minor URI handling improvements

	progressbar improvements

	error handling improvements (show message box rather than console exception,
etc.)

	by popular request, make 4th bar of connection icon green

 <no title>

 Bitcoin version 0.6.3 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.6.3/

This is a bug-fix release, with no new features.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

CHANGE SUMMARY

Fixed a serious denial-of-service attack that could cause the
bitcoin process to become unresponsive. Thanks to Sergio Lerner
for finding and responsibly reporting the problem. (CVE-2012-3789)

Optimized the process of checking transaction signatures, to
speed up processing of new block messages and make propagating
blocks across the network faster.

Fixed an obscure bug that could cause the bitcoin process to get
stuck on an invalid block-chain, if the invalid chain was
hundreds of blocks long.

Bitcoin-Qt no longer automatically selects the first address
in the address book (Issue #1384).

Fixed minimize-to-dock behavior of Bitcon-Qt on the Mac.

Added a block checkpoint at block 185,333 to speed up initial
blockchain download.

 <no title>

 Bitcoin version 0.7.0 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.7.0/

We recommend that everybody running prior versions of bitcoind/Bitcoin-Qt
upgrade to this release, except for users running Mac OSX 10.5.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Project source code is hosted at github; you can get
source-only tarballs/zipballs directly from there:
https://github.com/bitcoin/bitcoin/tarball/v0.7.0 # .tar.gz
https://github.com/bitcoin/bitcoin/zipball/v0.7.0 # .zip

Ubuntu Linux users can use the “Personal Package Archive” (PPA)
maintained by Matt Corallo to automatically keep
bitcoin up-to-date. Just type
sudo apt-add-repository ppa:bitcoin/bitcoin
sudo apt-get update
in your terminal, then install the bitcoin-qt package:
sudo apt-get install bitcoin-qt

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
Code:
/Applications/Bitcoin-Qt
(on Mac) or
Code:
bitcoind/bitcoin-qt
(on Linux).

If you were running on Linux with a version that might have been compiled
with a different version of Berkeley DB (for example, if you were using the
PPA and are switching to the binary release), then run the old version again
with the -detachdb argument and shut it down; if you do not, then the new
version will not be able to read the database files and will exit with an error.

Incompatible Changes

	Replaced the ‘getmemorypool’ RPC command with ‘getblocktemplate/submitblock’
and ‘getrawmempool’ commands.

	Remove deprecated RPC ‘getblocknumber’

Bitcoin Improvement Proposals implemented

BIP 22 - ‘getblocktemplate’, ‘submitblock’ RPCs
BIP 34 - block version 2, height in coinbase
BIP 35 - ‘mempool’ message, extended ‘getdata’ message behavior

Core bitcoin handling and blockchain database

	Reduced CPU usage, by eliminating some redundant hash calculations

	Cache signature verifications, to eliminate redundant signature checks

	Transactions with zero-value outputs are considered non-standard

	Mining: when creating new blocks, sort ‘paid’ area by fee-per-kb

	Database: better validation of on-disk stored data

	Database: minor optimizations and reliability improvements

	-loadblock=FILE will import an external block file

	Additional DoS (denial-of-service) prevention measures

	New blockchain checkpoint at block 193,000

JSON-RPC API

	Internal HTTP server is now thread-per-connection, rather than
a single-threaded queue that would stall on network I/O.

	Internal HTTP server supports HTTP/1.1, pipelined requests and
connection keep-alive.

	Support JSON-RPC 2.0 batches, to encapsulate multiple JSON-RPC requests
within a single HTTP request.

	IPv6 support

	Added raw transaction API. See https://gist.github.com/2839617

	Added ‘getrawmempool’, to list contents of TX memory pool

	Added ‘getpeerinfo’, to list data about each connected network peer

	Added ‘listaddressgroupings’ for better coin control

	Rework getblock call.

	Remove deprecated RPC ‘getblocknumber’

	Remove superceded RPC ‘getmemorypool’ (see BIP 22, above)

	listtransactions output now displays “smart” times for transactions,
and ‘blocktime’ and ‘timereceived’ fields were added

P2P networking

	IPv6 support

	Tor hidden service support (see doc/Tor.txt)

	Attempts to fix “stuck blockchain download” problems

	Replace BDB database “addr.dat” with internally-managed “peers.dat”
file containing peer address data.

	Lower default send buffer from 10MB to 1MB

	proxy: SOCKS5 by default

	Support connecting by hostnames passed to proxy

	Add -seednode connections, and use this instead of DNS seeds when proxied

	Added -externalip and -discover

	Add -onlynet to connect only to a given network (IPv4, IPv6, or Tor)

	Separate listening sockets, -bind=

 KNOWN ISSUES

 Bitcoin version 0.7.1 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.7.1/

This is a bug-fix minor release.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Project source code is hosted at github; you can get
source-only tarballs/zipballs directly from there:
https://github.com/bitcoin/bitcoin/tarball/v0.7.1 # .tar.gz
https://github.com/bitcoin/bitcoin/zipball/v0.7.1 # .zip

Ubuntu Linux users can use the “Personal Package Archive” (PPA)
maintained by Matt Corallo to automatically keep
up-to-date. Just type:
sudo apt-add-repository ppa:bitcoin/bitcoin
sudo apt-get update
in your terminal, then install the bitcoin-qt package:
sudo apt-get install bitcoin-qt

KNOWN ISSUES

Mac OSX 10.5 is no longer supported.

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you were running on Linux with a version that might have been compiled
with a different version of Berkeley DB (for example, if you were using an
Ubuntu PPA version), then run the old version again with the -detachdb
argument and shut it down; if you do not, then the new version will not
be able to read the database files and will exit with an error.

Explanation of -detachdb (and the new “stop true” RPC command):
The Berkeley DB database library stores data in both “.dat” and
“log” files, so the database is always in a consistent state,
even in case of power failure or other sudden shutdown. The
format of the “.dat” files is portable between different
versions of Berkeley DB, but the “log” files are not– even minor
version differences may have incompatible “log” files. The
-detachdb option moves any pending changes from the “log” files
to the “blkindex.dat” file for maximum compatibility, but makes
shutdown much slower. Note that the “wallet.dat” file is always
detached, and versions prior to 0.6.0 detached all databases
at shutdown.

New features

	Added a boolean argument to the RPC ‘stop’ command, if true sets
-detachdb to create standalone database .dat files before shutting down.

	-salvagewallet command-line option, which moves any existing wallet.dat
to wallet.{timestamp}.dat and then attempts to salvage public/private
keys and master encryption keys (if the wallet is encrypted) into
a new wallet.dat. This should only be used if your wallet becomes
corrupted, and is not intended to replace regular wallet backups.

	Import $DataDir/bootstrap.dat automatically, if it exists.

Dependency changes

	Qt 4.8.2 for Windows builds

	openssl 1.0.1c

Bug fixes

	Clicking on a bitcoin: URI on Windows should now launch Bitcoin-Qt properly.

	When running -testnet, use RPC port 18332 by default.

	Better detection and handling of corrupt wallet.dat and blkindex.dat files.
Previous versions would crash with a DB_RUNRECOVERY exception, this
version detects most problems and tells you how to recover if it
cannot recover itself.

	Fixed an uninitialized variable bug that could cause transactions to
be reported out of order.

	Fixed a bug that could cause occasional crashes on exit.

	Warn the user that they need to create fresh wallet backups after they
encrypt their wallet.

Thanks to everybody who contributed to this release:

Gavin Andresen
Jeff Garzik
Luke Dashjr
Mark Friedenbach
Matt Corallo
Philip Kaufmann
Pieter Wuille
Rune K. Svendsen
Virgil Dupras
Wladimir J. van der Laan
fanquake
kjj2
xanatos

 How to Upgrade

 Bitcoin version 0.7.2 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.7.2

This is a bug-fix minor release.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you were running on Linux with a version that might have been compiled
with a different version of Berkeley DB (for example, if you were using an
Ubuntu PPA version), then run the old version again with the -detachdb
argument and shut it down; if you do not, then the new version will not
be able to read the database files and will exit with an error.

Explanation of -detachdb (and the new “stop true” RPC command):
The Berkeley DB database library stores data in both “.dat” and
“log” files, so the database is always in a consistent state,
even in case of power failure or other sudden shutdown. The
format of the “.dat” files is portable between different
versions of Berkeley DB, but the “log” files are not– even minor
version differences may have incompatible “log” files. The
-detachdb option moves any pending changes from the “log” files
to the “blkindex.dat” file for maximum compatibility, but makes
shutdown much slower. Note that the “wallet.dat” file is always
detached, and versions prior to 0.6.0 detached all databases
at shutdown.

Bug fixes

	Prevent RPC ‘move’ from deadlocking. This was caused by trying to lock the
database twice.

	Fix use-after-free problems in initialization and shutdown, the latter of
which caused Bitcoin-Qt to crash on Windows when exiting.

	Correct library linking so building on Windows natively works.

	Avoid a race condition and out-of-bounds read in block creation/mining code.

	Improve platform compatibility quirks, including fix for 100% CPU utilization
on FreeBSD 9.

	A few minor corrections to error handling, and updated translations.

	OSX 10.5 supported again

Thanks to everybody who contributed to this release:

Alex
dansmith
Gavin Andresen
Gregory Maxwell
Jeff Garzik
Luke Dashjr
Philip Kaufmann
Pieter Wuille
Wladimir J. van der Laan
grimd34th

 How to Upgrade

 Bitcoin-Qt version 0.8.0 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.0/

This is a major release designed to improve performance and handle the
increasing volume of transactions on the network.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

The first time you run after the upgrade a re-indexing process will be
started that will take anywhere from 30 minutes to several hours,
depending on the speed of your machine.

Incompatible Changes

This release no longer maintains a full index of historical transaction ids
by default, so looking up an arbitrary transaction using the getrawtransaction
RPC call will not work. If you need that functionality, you must run once
with -txindex=1 -reindex=1 to rebuild block-chain indices (see below for more
details).

Improvements

Mac and Windows binaries are signed with certificates owned by the Bitcoin
Foundation, to be compatible with the new security features in OSX 10.8 and
Windows 8.

LevelDB, a fast, open-source, non-relational database from Google, is
now used to store transaction and block indices. LevelDB works much better
on machines with slow I/O and is faster in general. Berkeley DB is now only
used for the wallet.dat file (public and private wallet keys and transactions
relevant to you).

Pieter Wuille implemented many optimizations to the way transactions are
verified, so a running, synchronized node uses less working memory and does
much less I/O. He also implemented parallel signature checking, so if you
have a multi-CPU machine all CPUs will be used to verify transactions.

New Features

“Bloom filter” support in the network protocol for sending only relevant transactions to
lightweight clients.

contrib/verifysfbinaries is a shell-script to verify that the binary downloads
at sourceforge have not been tampered with. If you are able, you can help make
everybody’s downloads more secure by running this occasionally to check PGP
signatures against download file checksums.

contrib/spendfrom is a python-language command-line utility that demonstrates
how to use the “raw transactions” JSON-RPC api to send coins received from particular
addresses (also known as “coin control”).

New/changed settings (command-line or bitcoin.conf file)

dbcache : controls LevelDB memory usage.

par : controls how many threads to use to validate transactions. Defaults to the number
of CPUs on your machine, use -par=1 to limit to a single CPU.

txindex : maintains an extra index of old, spent transaction ids so they will be found
by the getrawtransaction JSON-RPC method.

reindex : rebuild block and transaction indices from the downloaded block data.

New JSON-RPC API Features

lockunspent / listlockunspent allow locking transaction outputs for a period of time so
they will not be spent by other processes that might be accessing the same wallet.

addnode / getaddednodeinfo methods, to connect to specific peers without restarting.

importprivkey now takes an optional boolean parameter (default true) to control whether
or not to rescan the blockchain for transactions after importing a new private key.

Important Bug Fixes

Privacy leak: the position of the “change” output in most transactions was not being
properly randomized, making network analysis of the transaction graph to identify
users’ wallets easier.

Zero-confirmation transaction vulnerability: accepting zero-confirmation transactions
(transactions that have not yet been included in a block) from somebody you do not
trust is still not recommended, because there will always be ways for attackers to
double-spend zero-confirmation transactions. However, this release includes a bug
fix that makes it a little bit more difficult for attackers to double-spend a
certain type (“lockTime in the future”) of zero-confirmation transaction.

Dependency Changes

Qt 4.8.3 (compiling against older versions of Qt 4 should continue to work)

Thanks to everybody who contributed to this release:

Alexander Kjeldaas
Andrey Alekseenko
Arnav Singh
Christian von Roques
Eric Lombrozo
Forrest Voight
Gavin Andresen
Gregory Maxwell
Jeff Garzik
Luke Dashjr
Matt Corallo
Mike Cassano
Mike Hearn
Peter Todd
Philip Kaufmann
Pieter Wuille
Richard Schwab
Robert Backhaus
Rune K. Svendsen
Sergio Demian Lerner
Wladimir J. van der Laan
burger2
default
fanquake
grimd34th
justmoon
redshark1802
tucenaber
xanatos

 How to Upgrade

 Bitcoin-Qt/bitcoind version 0.8.1 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.1/

This is a maintenance release that adds a new network rule to avoid
a chain-forking incompatibility with versions 0.7.2 and earlier.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you
run 0.8.1 your blockchain files will be re-indexed, which will take
anywhere from 30 minutes to several hours, depending on the speed of
your machine.

 <no title>

 Bitcoin-Qt version 0.8.2 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.2/

This is a maintenance release that fixes many bugs and includes
a few small new features.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you
run 0.8.2 your blockchain files will be re-indexed, which will take
anywhere from 30 minutes to several hours, depending on the speed of
your machine.

0.8.2 Release notes

Fee Policy changes

The default fee for low-priority transactions is lowered from 0.0005 BTC
(for each 1,000 bytes in the transaction; an average transaction is
about 500 bytes) to 0.0001 BTC.

Payments (transaction outputs) of 0.543 times the minimum relay fee
(0.00005430 BTC) are now considered ‘non-standard’, because storing them
costs the network more than they are worth and spending them will usually
cost their owner more in transaction fees than they are worth.

Non-standard transactions are not relayed across the network, are not included
in blocks by most miners, and will not show up in your wallet until they are
included in a block.

The default fee policy can be overridden using the -mintxfee and -minrelaytxfee
command-line options, but note that we intend to replace the hard-coded fees
with code that automatically calculates and suggests appropriate fees in the
0.9 release and note that if you set a fee policy significantly different from
the rest of the network your transactions may never confirm.

Bitcoin-Qt changes

	New icon and splash screen

	Improve reporting of synchronization process

	Remove hardcoded fee recommendations

	Improve metadata of executable on MacOSX and Windows

	Move export button to individual tabs instead of toolbar

	Add “send coins” command to context menu in address book

	Add “copy txid” command to copy transaction IDs from transaction overview

	Save & restore window size and position when showing & hiding window

	New translations: Arabic (ar), Bosnian (bs), Catalan (ca), Welsh (cy),
Esperanto (eo), Interlingua (la), Latvian (lv) and many improvements
to current translations

MacOSX:

	OSX support for click-to-pay (bitcoin:) links

	Fix GUI disappearing problem on MacOSX (issue #1522)

Linux/Unix:

	Copy addresses to middle-mouse-button clipboard

Command-line options

	-walletnotify will call a command on receiving transactions that affect the wallet.

	-alertnotify will call a command on receiving an alert from the network.

	-par now takes a negative number, to leave a certain amount of cores free.

JSON-RPC API changes

	fixed a getblocktemplate bug that caused excessive CPU creating blocks.

	listunspent now lists account and address information.

	getinfo now also returns the time adjustment estimated from your peers.

	getpeerinfo now returns bytessent, bytesrecv and syncnode.

	gettxoutsetinfo returns statistics about the unspent transaction output database.

	gettxout returns information about a specific unspent transaction output.

Networking changes

	Significant changes to the networking code, reducing latency and memory consumption.

	Avoid initial block download stalling.

	Remove IRC seeding support.

	Performance tweaks.

	Added testnet DNS seeds.

Wallet compatibility/rescuing

	Cases where wallets cannot be opened in another version/installation should be reduced.

	-salvagewallet now works for encrypted wallets.

Known Bugs

	Entering the ‘getblocktemplate’ or ‘getwork’ RPC commands into the Bitcoin-Qt debug
console will cause Bitcoin-Qt to crash. Run Bitcoin-Qt with the -server command-line
option to workaround.

Thanks to everybody who contributed to the 0.8.2 release!

APerson241
Andrew Poelstra
Calvin Owens
Chuck LeDuc Díaz
Colin Dean
David Griffith
David Serrano
Eric Lombrozo
Gavin Andresen
Gregory Maxwell
Jeff Garzik
Jonas Schnelli
Larry Gilbert
Luke Dashjr
Matt Corallo
Michael Ford
Mike Hearn
Patrick Brown
Peter Todd
Philip Kaufmann
Pieter Wuille
Richard Schwab
Roman Mindalev
Scott Howard
Tariq Bashir
Warren Togami
Wladimir J. van der Laan
freewil
gladoscc
kjj2
mb300sd
super3

 <no title>

 Bitcoin-Qt version 0.8.3 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.3/

This is a maintenance release to fix a denial-of-service attack that
can cause nodes to crash.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

0.8.3 Release notes

Truncate over-size messages to prevent a memory exhaustion attack.

Fix a regression that causes excessive re-writing of the ‘peers.dat’ file.

Thanks to Peter Todd for responsibly disclosing the vulnerability
(CVE-2013-4627) and creating a fix.

 How to Upgrade

 Bitcoin-Qt version 0.8.4 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.4/

This is a maintenance release to fix a critical bug and three
security issues; we urge all users to upgrade.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you
run 0.8.4 your blockchain files will be re-indexed, which will take
anywhere from 30 minutes to several hours, depending on the speed of
your machine.

0.8.4 Release notes

Security issues

An attacker could send a series of messages that resulted in
an integer division-by-zero error in the Bloom Filter handling
code, causing the Bitcoin-Qt or bitcoind process to crash.
Bloom filters were introduced with version 0.8, so versions 0.8.0
through 0.8.3 are vulnerable to this critical denial-of-service attack.

A constant-time algorithm is now used to check RPC password
guess attempts; fixes https://github.com/bitcoin/bitcoin/issues/2838
(CVE-2013-4165)

Implement a better fix for the fill-memory-with-orphan-transactions
attack that was fixed in 0.8.3. See
https://bitslog.wordpress.com/2013/07/18/buggy-cve-2013-4627-patch-open-new-vectors-of-attack/
for a description of the weaknesses of the previous fix.
(CVE-2013-4627)

Bugs fixed

Fix multi-block reorg transaction resurrection.

Fix non-standard disconnected transactions causing mempool orphans.
This bug could cause nodes running with the -debug flag to crash.

OSX: use ‘FD_FULLSYNC’ with LevelDB, which will (hopefully!)
prevent the database corruption issues many people have
experienced on OSX.

Linux: clicking on bitcoin: links was broken if you were using
a Gnome-based desktop.

Fix a hang-at-shutdown bug that only affects users that compile
their own version of Bitcoin against Boost versions 1.50-1.52.

Other changes

Checkpoint at block 250,000 to speed up initial block downloads
and make the progress indicator when downloading more accurate.

Thanks to everybody who contributed to the 0.8.4 releases!

Pieter Wuille
Warren Togami
Patrick Strateman
pakt
Gregory Maxwell
Sergio Demian Lerner
grayleonard
Cory Fields
Matt Corallo
Gavin Andresen

 How to Upgrade

 Bitcoin-Qt version 0.8.5 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.5/

This is a maintenance release to fix a critical bug;
we urge all users to upgrade.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you
run 0.8.5 your blockchain files will be re-indexed, which will take
anywhere from 30 minutes to several hours, depending on the speed of
your machine.

0.8.5 Release notes

Bugs fixed

Transactions with version numbers larger than 0x7fffffff were
incorrectly being relayed and included in blocks.

Blocks containing transactions with version numbers larger
than 0x7fffffff caused the code that checks for LevelDB database
inconsistencies at startup to erroneously report database
corruption and suggest that you reindex your database.

This release also contains a non-critical fix to the code that
enforces BIP 34 (block height in the coinbase transaction).

–

Thanks to Gregory Maxwell and Pieter Wuille for quickly
identifying and fixing the transaction version number bug.

 How to Upgrade

 Bitcoin-Qt version 0.8.6 final is now available from:

http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.6/

This is a maintenance release to fix a critical bug; we urge all users to upgrade.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you already downloaded 0.8.6rc1 you do not need to re-download. This release is exactly the same.

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you
run 0.8.6 your blockchain files will be re-indexed, which will take
anywhere from 30 minutes to several hours, depending on the speed of
your machine.

0.8.6 Release notes

	Default block size increase for miners.
(see https://gist.github.com/gavinandresen/7670433#086-accept-into-block)

	Remove the all-outputs-must-be-greater-than-CENT-to-qualify-as-free rule for relaying
(see https://gist.github.com/gavinandresen/7670433#086-relaying)

	Lower maximum size for free transaction creation
(see https://gist.github.com/gavinandresen/7670433#086-wallet)

	OSX block chain database corruption fixes

	Update leveldb to 1.13

	Use fcntl with F_FULLSYNC instead of fsync on OSX

	Use native Darwin memory barriers

	Replace use of mmap in leveldb for improved reliability (only on OSX)

	Fix nodes forwarding transactions with empty vins and getting banned

	Network code performance and robustness improvements

	Additional debug.log logging for diagnosis of network problems, log timestamps by default

	Fix Bitcoin-Qt startup crash when clicking dock icon on OSX

	Fix memory leaks in CKey::SetCompactSignature() and Key::SignCompact()

	Fix rare GUI crash on send

	Various small GUI, documentation and build fixes

Warning

	There have been frequent reports of users running out of virtual memory on 32-bit systems
during the initial sync.
Hence it is recommended to use a 64-bit executable if possible.
A 64-bit executable for Windows is planned for 0.9.

Note: Gavin Andresen’s GPG signing key for SHA256SUMS.asc has been changed from key id 1FC730C1 to sub key 7BF6E212 (see https://github.com/bitcoin/bitcoin.org/pull/279).

 How to Upgrade

 Bitcoin Core version 0.9.0 is now available from:

https://bitcoin.org/bin/0.9.0/

This is a new major version release, bringing both new features and
bug fixes.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), uninstall all
earlier versions of Bitcoin, then run the installer (on Windows) or just copy
over /Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you run
0.9.0 your blockchain files will be re-indexed, which will take anywhere from
30 minutes to several hours, depending on the speed of your machine.

On Windows, do not forget to uninstall all earlier versions of the Bitcoin
client first, especially if you are switching to the 64-bit version.

Windows 64-bit installer

New in 0.9.0 is the Windows 64-bit version of the client. There have been
frequent reports of users running out of virtual memory on 32-bit systems
during the initial sync. Because of this it is recommended to install the
64-bit version if your system supports it.

NOTE: Release candidate 2 Windows binaries are not code-signed; use PGP
and the SHA256SUMS.asc file to make sure your binaries are correct.
In the final 0.9.0 release, Windows setup.exe binaries will be code-signed.

OSX 10.5 / 32-bit no longer supported

0.9.0 drops support for older Macs. The minimum requirements are now:

	A 64-bit-capable CPU (see http://support.apple.com/kb/ht3696);

	Mac OS 10.6 or later (see https://support.apple.com/kb/ht1633).

Downgrading warnings

The ‘chainstate’ for this release is not always compatible with previous
releases, so if you run 0.9 and then decide to switch back to a
0.8.x release you might get a blockchain validation error when starting the
old release (due to ‘pruned outputs’ being omitted from the index of
unspent transaction outputs).

Running the old release with the -reindex option will rebuild the chainstate
data structures and correct the problem.

Also, the first time you run a 0.8.x release on a 0.9 wallet it will rescan
the blockchain for missing spent coins, which will take a long time (tens
of minutes on a typical machine).

Rebranding to Bitcoin Core

To reduce confusion between Bitcoin-the-network and Bitcoin-the-software we
have renamed the reference client to Bitcoin Core.

OP_RETURN and data in the block chain

On OP_RETURN: There was been some confusion and misunderstanding in
the community, regarding the OP_RETURN feature in 0.9 and data in the
blockchain. This change is not an endorsement of storing data in the
blockchain. The OP_RETURN change creates a provably-prunable output,
to avoid data storage schemes – some of which were already deployed –
that were storing arbitrary data such as images as forever-unspendable
TX outputs, bloating bitcoin’s UTXO database.

Storing arbitrary data in the blockchain is still a bad idea; it is less
costly and far more efficient to store non-currency data elsewhere.

Autotools build system

For 0.9.0 we switched to an autotools-based build system instead of individual
(q)makefiles.

Using the standard “./autogen.sh; ./configure; make” to build Bitcoin-Qt and
bitcoind makes it easier for experienced open source developers to contribute
to the project.

Be sure to check doc/build-*.md for your platform before building from source.

Bitcoin-cli

Another change in the 0.9 release is moving away from the bitcoind executable
functioning both as a server and as a RPC client. The RPC client functionality
(“tell the running bitcoin daemon to do THIS”) was split into a separate
executable, ‘bitcoin-cli’. The RPC client code will eventually be removed from
bitcoind, but will be kept for backwards compatibility for a release or two.

walletpassphrase RPC

The behavior of the walletpassphrase RPC when the wallet is already unlocked
has changed between 0.8 and 0.9.

The 0.8 behavior of walletpassphrase is to fail when the wallet is already unlocked:

> walletpassphrase 1000
walletunlocktime = now + 1000
> walletpassphrase 10
Error: Wallet is already unlocked (old unlock time stays)

The new behavior of walletpassphrase is to set a new unlock time overriding
the old one:

> walletpassphrase 1000
walletunlocktime = now + 1000
> walletpassphrase 10
walletunlocktime = now + 10 (overriding the old unlock time)

Transaction malleability-related fixes

This release contains a few fixes for transaction ID (TXID) malleability
issues:

	-nospendzeroconfchange command-line option, to avoid spending
zero-confirmation change

	IsStandard() transaction rules tightened to prevent relaying and mining of
mutated transactions

	Additional information in listtransactions/gettransaction output to
report wallet transactions that conflict with each other because
they spend the same outputs.

	Bug fixes to the getbalance/listaccounts RPC commands, which would report
incorrect balances for double-spent (or mutated) transactions.

	New option: -zapwallettxes to rebuild the wallet’s transaction information

Transaction Fees

This release drops the default fee required to relay transactions across the
network and for miners to consider the transaction in their blocks to
0.01mBTC per kilobyte.

Note that getting a transaction relayed across the network does NOT guarantee
that the transaction will be accepted by a miner; by default, miners fill
their blocks with 50 kilobytes of high-priority transactions, and then with
700 kilobytes of the highest-fee-per-kilobyte transactions.

The minimum relay/mining fee-per-kilobyte may be changed with the
minrelaytxfee option. Note that previous releases incorrectly used
the mintxfee setting to determine which low-priority transactions should
be considered for inclusion in blocks.

The wallet code still uses a default fee for low-priority transactions of
0.1mBTC per kilobyte. During periods of heavy transaction volume, even this
fee may not be enough to get transactions confirmed quickly; the mintxfee
option may be used to override the default.

0.9.0 Release notes

RPC:

	New notion of ‘conflicted’ transactions, reported as confirmations: -1

	‘listreceivedbyaddress’ now provides tx ids

	Add raw transaction hex to ‘gettransaction’ output

	Updated help and tests for ‘getreceivedby(account|address)’

	In ‘getblock’, accept 2nd ‘verbose’ parameter, similar to getrawtransaction,
but defaulting to 1 for backward compatibility

	Add ‘verifychain’, to verify chain database at runtime

	Add ‘dumpwallet’ and ‘importwallet’ RPCs

	‘keypoolrefill’ gains optional size parameter

	Add ‘getbestblockhash’, to return tip of best chain

	Add ‘chainwork’ (the total work done by all blocks since the genesis block)
to ‘getblock’ output

	Make RPC password resistant to timing attacks

	Clarify help messages and add examples

	Add ‘getrawchangeaddress’ call for raw transaction change destinations

	Reject insanely high fees by default in ‘sendrawtransaction’

	Add RPC call ‘decodescript’ to decode a hex-encoded transaction script

	Make ‘validateaddress’ provide redeemScript

	Add ‘getnetworkhashps’ to get the calculated network hashrate

	New RPC ‘ping’ command to request ping, new ‘pingtime’ and ‘pingwait’ fields
in ‘getpeerinfo’ output

	Adding new ‘addrlocal’ field to ‘getpeerinfo’ output

	Add verbose boolean to ‘getrawmempool’

	Add rpc command ‘getunconfirmedbalance’ to obtain total unconfirmed balance

	Explicitly ensure that wallet is unlocked in importprivkey

	Add check for valid keys in importprivkey

Command-line options:

	New option: -nospendzeroconfchange to never spend unconfirmed change outputs

	New option: -zapwallettxes to rebuild the wallet’s transaction information

	Rename option ‘-tor’ to ‘-onion’ to better reflect what it does

	Add ‘-disablewallet’ mode to let bitcoind run entirely without wallet (when
built with wallet)

	Update default ‘-rpcsslciphers’ to include TLSv1.2

	make ‘-logtimestamps’ default on and rework help-message

	RPC client option: ‘-rpcwait’, to wait for server start

	Remove ‘-logtodebugger’

	Allow -noserver with bitcoind

Block-chain handling and storage:

	Update leveldb to 1.15

	Check for correct genesis (prevent cases where a datadir from the wrong
network is accidentally loaded)

	Allow txindex to be removed and add a reindex dialog

	Log aborted block database rebuilds

	Store orphan blocks in serialized form, to save memory

	Limit the number of orphan blocks in memory to 750

	Fix non-standard disconnected transactions causing mempool orphans

	Add a new checkpoint at block 279,000

Wallet:

	Bug fixes and new regression tests to correctly compute
the balance of wallets containing double-spent (or mutated) transactions

	Store key creation time. Calculate whole-wallet birthday.

	Optimize rescan to skip blocks prior to birthday

	Let user select wallet file with -wallet=foo.dat

	Consider generated coins mature at 101 instead of 120 blocks

	Improve wallet load time

	Don’t count txins for priority to encourage sweeping

	Don’t create empty transactions when reading a corrupted wallet

	Fix rescan to start from beginning after importprivkey

	Only create signatures with low S values

Mining:

	Increase default -blockmaxsize/prioritysize to 750K/50K

	‘getblocktemplate’ does not require a key to create a block template

	Mining code fee policy now matches relay fee policy

Protocol and network:

	Drop the fee required to relay a transaction to 0.01mBTC per kilobyte

	Send tx relay flag with version

	New ‘reject’ P2P message (BIP 0061, see
https://gist.github.com/gavinandresen/7079034 for draft)

	Dump addresses every 15 minutes instead of 10 seconds

	Relay OP_RETURN data TxOut as standard transaction type

	Remove CENT-output free transaction rule when relaying

	Lower maximum size for free transaction creation

	Send multiple inv messages if mempool.size > MAX_INV_SZ

	Split MIN_PROTO_VERSION into INIT_PROTO_VERSION and MIN_PEER_PROTO_VERSION

	Do not treat fFromMe transaction differently when broadcasting

	Process received messages one at a time without sleeping between messages

	Improve logging of failed connections

	Bump protocol version to 70002

	Add some additional logging to give extra network insight

	Added new DNS seed from bitcoinstats.com

Validation:

	Log reason for non-standard transaction rejection

	Prune provably-unspendable outputs, and adapt consistency check for it.

	Detect any sufficiently long fork and add a warning

	Call the -alertnotify script when we see a long or invalid fork

	Fix multi-block reorg transaction resurrection

	Reject non-canonically-encoded serialization sizes

	Reject dust amounts during validation

	Accept nLockTime transactions that finalize in the next block

Build system:

	Switch to autotools-based build system

	Build without wallet by passing --disable-wallet to configure, this
removes the BerkeleyDB dependency

	Upgrade gitian dependencies (libpng, libz, libupnpc, boost, openssl) to more
recent versions

	Windows 64-bit build support

	Solaris compatibility fixes

	Check integrity of gitian input source tarballs

	Enable full GCC Stack-smashing protection for all OSes

GUI:

	Switch to Qt 5.2.0 for Windows build

	Add payment request (BIP 0070) support

	Improve options dialog

	Show transaction fee in new send confirmation dialog

	Add total balance in overview page

	Allow user to choose data directory on first start, when data directory is
missing, or when the -choosedatadir option is passed

	Save and restore window positions

	Add vout index to transaction id in transactions details dialog

	Add network traffic graph in debug window

	Add open URI dialog

	Add Coin Control Features

	Improve receive coins workflow: make the ‘Receive’ tab into a form to request
payments, and move historical address list functionality to File menu.

	Rebrand to Bitcoin Core

	Move initialization/shutdown to a thread. This prevents “Not responding”
messages during startup. Also show a window during shutdown.

	Don’t regenerate autostart link on every client startup

	Show and store message of normal bitcoin:URI

	Fix richtext detection hang issue on very old Qt versions

	OS X: Make use of the 10.8+ user notification center to display Growl-like
notifications

	OS X: Added NSHighResolutionCapable flag to Info.plist for better font
rendering on Retina displays.

	OS X: Fix bitcoin-qt startup crash when clicking dock icon

	Linux: Fix Gnome bitcoin: URI handler

Miscellaneous:

	Add Linux script (contrib/qos/tc.sh) to limit outgoing bandwidth

	Add ‘-regtest’ mode, similar to testnet but private with instant block
generation with ‘setgenerate’ RPC.

	Add ‘linearize.py’ script to contrib, for creating bootstrap.dat

	Add separate bitcoin-cli client

Credits

Thanks to everyone who contributed to this release:

	Andrey

	Ashley Holman

	b6393ce9-d324-4fe1-996b-acf82dbc3d53

	bitsofproof

	Brandon Dahler

	Calvin Tam

	Christian Decker

	Christian von Roques

	Christopher Latham

	Chuck

	coblee

	constantined

	Cory Fields

	Cozz Lovan

	daniel

	Daniel Larimer

	David Hill

	Dmitry Smirnov

	Drak

	Eric Lombrozo

	fanquake

	fcicq

	Florin

	frewil

	Gavin Andresen

	Gregory Maxwell

	gubatron

	Guillermo Céspedes Tabárez

	Haakon Nilsen

	HaltingState

	Han Lin Yap

	harry

	Ian Kelling

	Jeff Garzik

	Johnathan Corgan

	Jonas Schnelli

	Josh Lehan

	Josh Triplett

	Julian Langschaedel

	Kangmo

	Lake Denman

	Luke Dashjr

	Mark Friedenbach

	Matt Corallo

	Michael Bauer

	Michael Ford

	Michagogo

	Midnight Magic

	Mike Hearn

	Nils Schneider

	Noel Tiernan

	Olivier Langlois

	patrick s

	Patrick Strateman

	paveljanik

	Peter Todd

	phantomcircuit

	phelixbtc

	Philip Kaufmann

	Pieter Wuille

	Rav3nPL

	R E Broadley

	regergregregerrge

	Robert Backhaus

	Roman Mindalev

	Rune K. Svendsen

	Ryan Niebur

	Scott Ellis

	Scott Willeke

	Sergey Kazenyuk

	Shawn Wilkinson

	Sined

	sje

	Subo1978

	super3

	Tamas Blummer

	theuni

	Thomas Holenstein

	Timon Rapp

	Timothy Stranex

	Tom Geller

	Torstein Husebø

	Vaclav Vobornik

	vhf / victor felder

	Vinnie Falco

	Warren Togami

	Wil Bown

	Wladimir J. van der Laan

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_images/port_forwarding_rules.png
Protocol

Host IP

Host Port

Guest IP

Guest Port.

TcP

22222

22

foa 2

_images/select_startup_disk.png
Please select a virtual optical disk file or a physical optical
drive containing a disk to start your new virtual machine
from.

The disk should be suitable for starting a computer from
and should contain the operating system you wish to
install on the virtual machine i you want to do that now.
The disk will be ejected from the virtual drive
automatically next time you switch the virtual machine
off, but you can also do this yourself if needed using the
Devices menu.

debian-7.4.0-amd64-netinst.iso (222.00 MB) Ja

Back (Stag] | cancel

_images/debian_install_9_user_password.png
1 [!!] Set up users and passwords ———————————————

A good password will contain a mixture of letters, numbers and punctuation and should be
changed at regular intervals.

Choose a passuord for the new user:

<Go Back> <continue>

_images/network_settings.png
B General
System
Display
Storage
B Audio

& Network
& serial Ports

& uss
Shared Folders

Network

Adapter 1 | Adapter 2 | Adapter 3 | Adapter 4

& Enable Network Adapter
Attached to: | NAT 3
Name:

@ Advanced

Adapter Type: | Intel PRO/1000 MT Desktop (82540EM)

Promiscuous Mode: | Deny

MAC Address: |08002784491C e
& Cable Connected
| Port Forwarding
{concel (@)

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/plus.png

_static/up.png

_static/up-pressed.png

_images/bootstrap4.png
GO v |

Organize v Includeinlibrary v Share with +

HEm Name
i blocks
Glib) chainstate
[dock
W Ho | bootstrap.dat
|| dblog
M Co | debuglog
s [Jpeersdat
cat L) walletdat
at

G Ne

l 8 items

New folder
Date modified

28-12-201317:56
26-1-2014 14142
281220131756
26-1-2014 1546
2812-201317:56
26-1-2014 1442
26-1-2014 1442
26-1-2014 14:42

Type
Filefolder

File folder
LOCKFile

DAT File

Text Document
Text Document
DAT File

DAT File

2 Minutes and 30 Seconds remaining

o—

from Downloads (0:\Downloads) to Bitcoin (C:\Users\J..\Bitcoin)
About 2 Minutes and 30 Seconds remaining

(©More details

x

_images/bootstrap5.png
D st G Receve [Taractions) Adesses

Wallet (out of sync) Recent transactions (out of sync)
Balance: 0.00BTC

Unconfimed: 0,00 BTC

_images/bootstrap2.png
+=Q@ X

1§ Tansfers () | @4 search | G s |

Size

[/ General | Il Trodkers ||y Peers |l HTTP Sources| | £ Content |

& 1aMefs (69.1M8) N) 8428/ (34.4KB)

_images/bootstrap3.png
SOUFCeFOrge | [sco Browse Enterprise Blog Help

Bitcoin

Your download will start in 0 seconds.

‘Opening bitcoin blockchain_170000zip

Vou have chosen to open:
o i 17000021
B cpuminer e -
which is: WinRAR ZIP archive (1,0 GB)
from: http//heanet dl sourceforge net

What should Firefox do with this file?

@ RPCMiner 2013
penwith | WinRAR archiver default)

Do this automatically for file like this from now on.

SourceForge Find and Develop
About Create a Project

Site Status ‘Software Directory T
@sfret_ops ‘Top Downloaded Prc_

_images/create_vm_hard_drive_file_type.png
Hard drive File type

Please choose the type of ile that you would like to use For the new virtual
hard drive. If you do not need to use it with other virtualization software
you can leave this setting unchanged.

@ VDI (VirtualBox Disk Image)

*) VMDK (Virtual Machine Disk)

) VHD (virtual Hard Disk)
HDD (Parallels Hard Disk)
QED (QEMU enhanced disk)
QCOW (QEMU Copy-On-Wirite)

Hide Description | | < Back u cancel

_images/create_vm_memsize.png
Memory size

Select the amount of memory (RAM) in megabytes to be
allocated to the virtual machine.

The recommended memory size is 512 MB.

—(} 1024 || MB

amB 8192 MB.

<Back | [Nexta) | cancel

_images/create_vm_file_location_size.png
File location and size

Please type the name of the new virtual hard drive file into the box below
or click on the folder icon to select a different folder to create the file in.

gitianbuild 7]
Select the size of the virtual hard drive in megabytes. This size is the limit

on the amount of file data that a virtual machine will be able to store on
the hard drive.

—_—) 40.00 GB

4.00MB 2.00TB

<Back Cancel

_images/create_vm_hard_drive.png
Hard drive

IFyou wish you can add a virtual hard drive to the new
machine. You can either create a new hard drive file or select
one from the list or from another location using the folder
icon.

IF you need a more complex storage set-up you can skip this.
step and make the changes to the machine settings once the
machineis created.

The recommended size of the hard drive is 8.00 GB.
© Do not add a virtual hard drive

@ Create a virtual hard drive now

Use an existing virtual hard drive file

B @

<Back | | Create| | Cancel

_images/create_vm_page1.png
& % @ v @ Details
New Settings Show Discard
9 _

Name and operating system

Snapshots

Please choose a descriptive name for the new virtual machine
and select the type of operating system you intend to install

A& on it. The name you choose will be used throughout:
VirtualBox to identify this machine.
i 2 Name: [gitianbuild
=~ Type: | Linux
{ Version: | Debian &

Hide Description

Host Driver: PulseAudio
Controller: ICHAC97 b

_static/down.png

_static/minus.png

_static/file.png

_images/bootstrap1.png
SOUrCeFOrge | (s [

Bitcoin

Your download will start in 0 seconds.
Problems wih the download? Please use this direct ik, or try another miror.

Recommended Projects You have chosen to open:
“ bootstrap.dat.torrent

B couminer
2] whihis: TORRENT e 133K
from: http://heanetdLsourceforge net

4 PPCoin
What should Firefox do with this ile?
i RPCMiner 2013
Openvith | qBittorrent (defaut)
O saveFile
Do this automaticallyfor files like this from now on.
SourceForge Find and Develop
About Create a Project
Site Status ‘Software Directory

@shet_ops. Top Downloaded

_images/debian_install_13_partition_scheme.png
1 [Partition disks ———————————————————————
selected for partitioning:
SCSIL (0,0,0) (sda) - ATA VBOX HARDDISK: 42.9 GB

The disk can be partitioned using one of several different schemes. If you are unsure,
choose the first one.

Partitioning scheme:

Separate /home partition
Separate /home, /usr, /var, and /tmp partitions

<Go Back>

_images/debian_install_14_finish.png
—————————————————————— [!1] Partition disks ———

This is an overview of your currently configured partitions and mount points. Select a
partition to modify its settings (file system, mount point, etc.), a free space to create
partitions, or a device to initialize its partition table.

Guided partitioning

Conf igure softuare RAID

Configure the Logical Volume Manager
Configure encrypted volumes

SCST1 (0,0,0) (sda) - 42.9 GB ATA VDX HARDDISK
#1 primary 41.2 68 f extd /
#5 logical 1.8 6B f swap suap

<Go Back>

_images/debian_install_11_partition_disks.png
1 [l Partition disks ——————————————————————
The installer can guide you through partitioning a disk (using different standard
schemes) or, if you prefer, you can do it menually. With guided partitioning you will
still have a chance later to review and customise the results.

If you choose guided partitioning for an entire disk, you will next be asked which disk
should be used.

Partitioning method:

Guided - use entire disk and set up LV
Guided - use entire disk and set up encrypted LVK
Manual

<Go Back>

_images/debian_install_12_choose_disk.png
1 [11] Partition disks ———

Note that all data on the disk you select will be erased, but not before you have
confirmed that you really want to make the changes.

Select disk to partitio

<Go Back>

_images/debian_install_18_proxy_settings.png
1 [!] Configure the package manager ——————————————————

If you need to use a HTTP proxy to access the outside world, enter the proxy information
here. Otherwise, leave this blank.

The proxy information should be given in the standard form of
"http:/s[luser] [:pass]@lhost [:port] /"',

HTTP proxy information (blank for none):

<Go Back> <continue>

_images/debian_install_19_software_selection.png
1 [! Softuare selection ———————————————————
At the moment, only the core of the system is installed. To tune the system to your
needs, you can choose to install one or more of the following predefined collections of
softuare.

Choose softuare to install:

<Go Back> <continue>

_images/debian_install_15_write_changes.png
1 (1] Partition disks ———————

If you continue, the changes listed below will he written to the disks. Otherwise, you
will be able to make further changes manually.

The partition tables of the following devices are changed:
SCST1 (0,0,0) (sda)

The following partitions are going to be formatted:
partition #1 of SCSIL (0,0,0) (sda) as extd
partition #5 of SCSIL (0,0,0) (sda) as swap

Hrite the changes to disks?
<No>

_images/debian_install_16_choose_a_mirror.png
[1] Configure the package manager

The goal is to find a mirror of the Debian archive that is close to you on the network —-
be auare that nearby countries, or even your own, may not be the best choice

Debian archive mirror country:

Japan
Kazakhstan

Kenya

Korea, Republic of
Latvia

Lithuania

Luxembourg

Macedonia, Republic of
Madagascar

Malaysia

Halta

Mexico

Moldova

New Caledania

New Zealand
Nicaragua

Noruay

Fhilippines

Foland

Portugal

Romania

Russian Federation

<Go Back>

ctivates buttons

_images/create_vm_storage_physical_hard_drive.png
Storage on physical hard drive

Please choose whether the new virtual hard drive file should grow as it is
used (dynamically allocated) or if it should be created at its maximum size

(fixed size).

Adynamically allocated hard drive file will only use space on your physical
hard drive asit fills up (up to a maximum fixed size), although it will not
shrink again automatically when space on it s freed.

AFixed size hard drive file may take longer to create on some systems but
is often Faster to use.

@ Dynamically allocated

) Fixedsize

<Back | [Nexta) | cancel

_images/debian_install_10_configure_clock.png
1 [Configure the clock —————————————————————

If the desired time zone is not listed, then please go back to the step 'Choose language'
and select a country that uses the desired time zone (the country where you live or are
located) .

Select your time zone:

Central
Mountain
Pacific
Alaska
Hawaii
Arizana

East Indiana
Samoa

<Go Back>

_images/debian_install_4_configure_keyboard.png
1 [11] Configure the keyboard F—

Keunap to use:

'

Asturian

Bangladesh

Belarusian

Bengall

Belgian

Bosnian

Brazilian

British English

Bulgarian
Bulgarian (phonetic layout)
Canadian French

Canadian Multilingual
Catalan

Chinese

Croatian

Czech

Danish

Dutch

Dvarak

Dzongkha

Esperanto

Estonian

Ethiopian

<Go Back>

_images/debian_install_5_configure_the_network.png
1 [! Configure the netuork ———————————————————
Please enter the hostname for this system.
The hostname is a single word that identifies your system to the netuork. If you don't
know what your hostname should be, consult your network administrator. If you are setting
up your oun home netuork, you can make something up here.

Hostname:

<Go Back> <continue>

_images/debian_install_2_select_a_language.png
[11] Select a language

Choose the language to be used for the installation process. The selected language will
also be the default language for the installed sustem

Language:

c No localization
Albanian shaip
frabic e
Asturian Asturianu
Basgue Euskara
Belarusian Benapyckas
Bosnian Bosanski
Bulgarian Brarapcku
Catalan Catald
Chinese (Simplified) ()
Chinese (Traditional) ()

Croatian Hrvatski
czech CeStina
Danish Dansk.
Dutch Nederlands

Esperanto Esperanto
Estonian Eesti
Finnish Suomi
French Francais
Galician Galego
Gernan Deutsch
Greek EAAY LKE:

<Go Back>

b:

_images/debian_install_3_select_location.png
[11] select your location

The selected location will be used to set your time zone and also for example to help
select the system locale. Normally this should be the country where you live.

This is a shortlist of locations based on the language you selected. Choose "other' if
your location is not listed.

Country, territory or area:

Antigua and Barbuda
Australia
Botsuana
Canada

Hong Kong
India
Ireland

New Zealand
Nigeria
Fhilippines
Singapore
South Africa

United Klnﬁdnm

zambia
2imbabue
ather

<Go Back>

b: - c buttans

_images/debian_install_8_set_up_username.png
1 [!!] Set up users and passwords ———————————————

Select a username for the new account. Your first name is a reasonable choice. The
username should start with a lower-case letter, which can be followed by any combination
of numbers and more louer-case letters.

Username for your account:

<Go Back> <continue>

_images/debian_install_6a_set_up_root_password.png
