

Table of Contents

Contents:

	Introduction

	What is this package for?

	Quickstart
	Installation

	Getting started

	gentex package
	gentex.comat

	gentex.sphere

	gentex.template

	gentex.texmeas

Introduction

GenTex stands for General Texture analysis.

This package provides a suite of routines that combines standard texture analysis methods
based on GLCM and entropy/statistical complexity analysis methods.

What is this package for?

GenTex provides a number of the standard algorithms required for generating
complexity/texture measure estimates from multimodal imaging data. These include:

1. Generation of multidimensional feature spaces from multimodal ‘image’ data
(i.e. multiple ‘co-registered’ 1,2,3, or 4 dimensional data sets, e.g.
multiple ‘co-registered’ time series, multimodal image data, space/time data..)
via the use of a set of image templates, including:

	single voxels

	linear sequences in cardinal directions (ref.)

	notches in cardinal directions (ref.)

	light cones in cardinal directions and 45 degree angles (ref.)

2. Clustering methods for generating discrete (‘grey’) levels from the constructed
feature space (the levels are then typically mapped to the original image space at
the anchor points of the templates)

3. Building co-occurrence matrices from a discrete level ‘image’ or a pair of
discrete level ‘images’, where the discrete level ‘images’ are typically generated
via feature space clustering of the original multimodal data sets (time series, images,
space/time data…)

4. Estimation of various complexity/texture measures from the co-occurrence matrices.
(Haralick measures and epsilon machine related quantities) such as:

	CM Entropy

	EM Entropy

	Statistical Complexity

	Energy Uniformity

	Maximum Probability

	Contrast

	Inverse Difference Moment

	Correlation

	Probability of Run Length

	Epsilon Machine Run Length

	Run Length Asymmetry

	Homogeneity

	Cluster Tendency

	Multifractal Spectrum Energy Range

	Multifractal Spectrum Entropy Range

Quickstart

Installation

pip install gentex

Getting started

Here is a dummy example:

First, we create some dummy ndarray (but could be any nd dataset, from
an image for example) and a mask.

import numpy as np
import gentex

C = np.random.randint(3, size=[5, 5, 5])
maskC = np.ones([5, 5, 5])

Then, we compute the GLCM from this array along 2 different offsets

offset3 = [[1, 1, 1], [-1, -1, -1]]
cm = gentex.comat.comat_mult(C, maskC, offset3, levels=3)

GenTex supports many different type of offsets (rect, conic, angle,
distance, etc.). Refer to gentex.template for the one available.

Finally, we get a sample of possible statistics extracted from the GLCM

texm = ['CM Entropy',
 'EM Entropy',
 'Statistical Complexity',
 'Energy Uniformity',
 'Maximum Probability']
mytex = gentex.texmeas.Texmeas(cm)
for meas in texm:
 mytex.calc_measure(meas)
 print(f'{meas} = {mytex.val}')

CM Entropy = 3.129436250609541
EM Entropy = 1.5849625007211563
Statistical Complexity = 1.584962500721156
Energy Uniformity = 0.117431640625
Maximum Probability = 0.1484375

Refer to gentex.texmeas for the measures available.

gentex package

Table of Contents

	gentex package

	gentex.comat

	gentex.sphere

	gentex.template

	gentex.texmeas

gentex.comat

The gentex or general texture analysis package provides a suite
of routines that combine standard texture analysis methods and
entropy/statistical complexity analysis methods to provide a number
of the standard algorithms required for generating complexity/texture
measure estimates from multimodal imaging data. These include:

	Generation of multidimensional feature spaces
from multimodal ‘image’ data (i.e. multiple ‘co-registered’
1,2,3, or 4 dimensional data sets, e.g. multiple
‘co-registered’ time series, multimodal image data,
space/time data..) via the use of a set of image templates,
including:

	single voxels

	linear sequences in cardinal directions
(ref.)

	notches in cardinal directions
(ref.)

	light cones in cardinal directions and
45 degree angles
(ref.)

	Clustering methods for generating disrete (‘grey’) levels
from the constructed feature space (the levels are then
typically mapped to the original image space at the anchor
points of the templates)

	Building co-occurrence matrices from a discrete level ‘image’
or a pair of discrete level ‘images’, where the discrete level
‘images’ are typically generated via feature space clustering
of the original multimodal data sets (time series, images,
space/time data…)

	Estimation of various complexity/texture measures from the
co-occurrence matrices.

	
gentex.comat.cmad(images, masks, distance, angles, levels)

	Uses the comat or comat_2T functions to generate co-occurence
matrices at the specified anlge(s) and distance(s) provided,
which is more in the spirit of the original Haralick papers
on texture analysis. So far this only makes sense for 2 and 3
dimensions (well 4 might make sense but…)

	Parameters

	
	images: 1 or 2 element 1d python array of 1-4 dimensional ndarray(s)
	
of dtype int consisting of an input image(s).

	masks: 1 or 2 element 1d python array of 1-4 dimensional ndarray(s)
	of dtype int consisting of an input mask(s).Determines
which voxels to use for building co-occurence matrix

	distance: float
	distance in image to use as offset for calculating
co-occurrence matrix

	angles: float
	1 or 2 element 1d python array of angle(s) to use for
direction to voxel in calculating co-occurrence matrix.
For 2D images the only angle, angles[0], corresponds
to the standard angle from the x-axis in polar co-ordinates.
For 3D images, angles[0] corresponds to the angle theta in
spherical co-ordinates, i.e. the angle from the z-axis, and
angles[1] corresponds to phi, i.e. the angle in the x-y plane.

	levelsint
	1 or 2 element 1d python array with number of discrete
levels in the image(s) (256 for an 8-bit image but any number
of cluster values for general templated images)

	Returns

	
	2D ndarray
	The grey-level co-occurrence histogram. The value
P[i,j] is the number of times that gray-level j
occurs at the offset specified by distance and thetas,
from gray-level i.

	
gentex.comat.comat(image, mask, coords, levels=255)

	Calculates the co-occurrence histogram of an image given an offset.

	Parameters

	
	image: 1-4 dimensional ndarray of dtype int
	
Input image.

	mask: 1-4 dimensional ndarray of dtype int
	Input mask (same size as image, 0,1 array)
Determines which voxels to use for building
co-occurence matrix

	coords1D ndarray
	coordinate offset array with the appropriate number of
dimensions (1-4) for building cooccurence matrix.

	levelsint
	The input image should contain integers in [0, levels-1],
where levels indicate the number of discrete image or
grey levels counted (256 for an 8-bit image but any number
of cluster values for general templated images)

	Returns

	
	2D ndarray
	The grey-level co-occurrence histogram. The value
P[i,j] is the number of times that gray-level j
occurs at offset coords from gray-level i.

	
gentex.comat.comat_2T(image1, mask1, image2, mask2, coords, levels1=255, levels2=255)

	Calculate the co-occurrence histogram from 2 images given an offset.

	Parameters

	
	image1: 1-4 dimensional ndarray of dtype int
	
Input image 1.

	mask1: 1-4 dimensional ndarray of dtype int
	Input mask 1 (same size as image, 0,1 array)
Determines which voxels to use for building
co-occurence matrix

	image2: 1-4 dimensional ndarray of dtype int
	Input image 2.

	mask2: 1-4 dimensional ndarray of dtype int
	Input mask 2 (same size as image, 0,1 array)

	coords1D ndarray
	coordinate offset array with the appropriate number of
dimensions (1-4) for building cooccurence matrix.

levels1 : int

	levels2int
	The input images should contain integers in [0, levels(1,2)-1],
where levels indicate the number of discrete image or
grey levels counted (256 for an 8-bit image but any number
of cluster values for general templated images)

	Returns

	
	2D ndarray
	The grey-level co-occurrence histogram. The value
P[i,j] is the number of times that gray-level j
occurs at offset coords from gray-level i.

	
gentex.comat.comat_2T_mult(image1, mask1, image2, mask2, coordset, levels1=255, levels2=255)

	Generates and sums co-occurrence histograms from 2 images given a
set of offsets.

	Parameters

	
	image1: 1-4 dimensional ndarray of dtype int
	
Input image 1.

	mask1: 1-4 dimensional ndarray of dtype int
	Input mask 1 (same size as image, 0,1 array)
Determines which voxels to use for building
co-occurence matrix

	image2: 1-4 dimensional ndarray of dtype int
	Input image 2.

	mask2: 1-4 dimensional ndarray of dtype int
	Input mask 2 (same size as image, 0,1 array)

	coordset1D ndarray of coordinate offset sets
	Array of coordinate offset arrays with the appropriate
number of dimensions (1-4) for building cooccurence matrices.

levels1 : int

	levels2int
	The input images should contain integers in [0, levels(1,2)-1],
where levels indicate the number of discrete image or
grey levels counted (256 for an 8-bit image but any number
of cluster values for general templated images)

	Returns

	
	2D ndarray
	The grey-level co-occurrence histogram. The value
P[i,j] is the number of times that gray-level j
occurs at offset coords from gray-level i.

	
gentex.comat.comat_mult(image, mask, coordset, levels=255)

	Generates and sums co-occurrence histograms of an image given a
set of offsets.

	Parameters

	
	image: 1-4 dimensional ndarray of dtype int
	
Input image.

	mask: 1-4 dimensional ndarray of dtype int
	Input mask (same size as image, 0,1 array)
Determines which voxels to use for building
co-occurence matrix

	coordset1D ndarray of coordinate offset sets
	array of coordinate offset arrays with the appropriate
number of dimensions (1-4) for building cooccurence matrices.

	levelsint
	The input image should contain integers in [0, levels-1],
where levels indicate the number of discrete image or
grey levels counted (256 for an 8-bit image but any number
of cluster values for general templated images)

	Returns

	
	2D ndarray
	The summed grey-level co-occurrence histogram. The value
P[i,j] is the number of times that gray-level j
occurs at offset coords from gray-level i summed over
all offsets passed to comat_mult.

gentex.sphere

gentex.template

	
class gentex.template.Template(type, sizes, dimension, inclusion, handedness=None, axbase=None, anchoff=None, shift=None)

	Class template for generating lists of template voxels

	Parameters

	
	type: string
	Required by constructor. The type of template currently available types are:

	‘RectBox’ - rectangular box (1,2,3,4 dimensions) template origin is center of box

	‘RectShell’ - shell of rectangular box (1,2,3,4 dimensions) template origin is center of shell

	‘Ellipsoid’ - ellispoid (1,2,3,4 dimensions) template origin is center of ellipsoid

	‘EllipsoidShell’ - ellipsoidal shell (1,2,3,4 dimensions) template origin is center of shell

	‘Line’ - linear template template origin is first point of line

	‘Notch’ - notch template template origin is point about which notch is built

	‘Cone’ - cone template template origin is start of half cone

	sizes: 1D int array (can be empty)
	Attributes of sizes required for constructing template

	dimension: int
	Dimension of template

	inclusion: bool
	Whether or not to include anchor point (i.e. [0], [0,0],…)

	handedness: 1D int array
	If there are axial asymetries in the template (e.g. Notch) can pass in a vector with +1 for ‘right’ and -1
for ‘left’ (default is [1], or [1,1], or…)

	axbase: List of ints (each list of length = dimension)
	Basis vector specifying axis, when appropriate, for direction of template (can be empty) - component lengths
will be ignored; only whether the component is zero or nonzero, and the sign will be
considered (i.e. only co-ordinate axes and ‘45 degree’ lines will be considered as template axes), so e.g:

[1,0] ~ [10,0] ~ x-axis in 2D
[0,1,0] ~ [0,33,0] ~ y-axis in 3D
[1,-1] ~ [30,-20] ~ [108,-1] ~ 135 degree axis in 2

if axbase is empty template will pick axes according to following conventions:

	templates requiring single axis specification (e.g. line, notch, cone) will always use positivedirection of first dimension

	templates requiring multiple axis specification, e.g. rectangular parallelipipeds and ellipsoids will choose:

	largest dimension (e.g. semi-major axis) in positive direction of first dimension

	next largest dimension (e.g. semi-minor axis) in positive direction of second dimension

	etc.

	anchoff: list of ints
	Offset of anchor point from template [0,0,0] in template (usually assume [0,0,0])

	shift: List of int
	List of ints to use if you
want to shift all points in offset array - useful, e.g.
if you want to build cooccurence arrays from offset
templates - build one template (set of offsets with no shift
and another with an appropriate shift; those can each be passed
to the feature space cluster algorithm, then those
to the cooccurence matrix builder, and that to the texture
measure generator.

gentex.texmeas

gentex.texmeas package

	
class gentex.texmeas.Texmeas(comat, measure='Statistical Complexity', coordmom=0, probmom=0, rllen=0, clusmom=0, clusp=0.001, samelev=True, betas=[-20, 20, 40])

	Class texmeas for generating texture measures from co-occurrence matrix

	Parameters

	
	comat: ndarray
	Non-normalized co-occurrence matrix - chi-squared conditional distribution
comparisons require the actual number of counts so don’t normalize this before
sending in

	measure: string
	Texture measure (default = ‘Statistical Complexity’). Choice of:

	‘CM Entropy’

	‘EM Entropy’

	‘Statistical Complexity’

	‘Energy Uniformity’

	‘Maximum Probability’

	‘Contrast’

	‘Inverse Difference Moment’

	‘Correlation’

	‘Probability of Run Length’

	‘Epsilon Machine Run Length’

	‘Run Length Asymmetry’

	‘Homogeneity’

	‘Cluster Tendency’

	‘Multifractal Spectrum Energy Range’

	‘Multifractal Spectrum Entropy Range’

	coordmo: int
	Moment of coordinate differences in co-occurrence matrix
needed for calculating ‘Contrast’ and ‘Inverse Difference Moment’ (default=0)

	probmom: int
	Moment of individual cooccurence probabilities
needed for calculating ‘Contrast’ and ‘Inverse Difference Moment’ (default=0)

	rllen: int
	Length of run length used for generating probability
of a run length (the higher this probability the
larger the constant patches on the scale used for generating
the co-occurence matrix) or the epsilon machine run length (default=0)

	clusmom: int
	Moment used for generating cooccurence cluster tendency (default=0)

	samelev: bool
	Whether to treat the rows and columns in the cooccurence
matrix as identical ‘states’ (the methods are very general
so this needn’t be the case, e.g. different template shapes
from different images with different quantization levels
could be used to generate the cooccurence matrix which could
be of arbitrary shape)

default = True assumes the cooccurrence matrix is square
and the rows and columns correspond to the same ‘state’

	betas: array
	An array of 3 values, the lower limit, the upper limit and
the number of steps to use as the ‘inverse temperature’ range
for estimating the multifractal spectrum from an epsilon machine
- getting the range right for an ‘arbitrary’ epsilon machine is
tricky and is expected to be reset over a number of trials before
getting a full spectrum estimate. For details on the rationale
and algorithm see:

K. Young and J. P. Crutchfield, ‘Fluctuation Spectroscopy’,
Chaos, Solitons, and Fractals 4 (1993) 5-39.

	Attributes

	
	emclus: int
	Number of clusters (‘states’) found when estimating an epsilon machine from the co-occurrence matrix.

	emest: bool
	Whether or not an epsilon machine has been estimated yet

	emmat: float
	The estimated epsilon machine as a standard Markov process transition matrix.

	condo: 2d-array
	Co-occurrence matrix renormalized as a rowise matrix of conditional probabilites - built as part of
epsilon machine estimation

	emclasses: list
	List of which of the values in emclus each row in condo (and hence the cooccurence matrix) belongs to

	clusp: float
	Chisquared p value to use for clustering epsilon machine rows

	val: float
	Value of most recently calculated texture measure

	mfsspec: array
	Array containing the multifractal spectral estimates obtained
over the range of ‘inverse temperatures’ provided in betas

	currval: string
	One of the listed measures method which constitutes the current value in val

Methods

	calc_measure(self[, measure, coordmom, …])

	Calculates the appropriate texture measure and puts the value in the class variable val and updates the class variable currval with the passed string

	est_em(self)

	Estimate an epsilon machine from a co-occurrence matrix with #rows = #cols, done implicitly whenever one of the related complexity/entropy measures (EM Entropy, Statistical Complexity, Epsilon Machine Run Length) are calculated.

	est_multi_frac_spec(self)

	TODO

	
calc_measure(self, measure='Statistical Complexity', coordmom=0, probmom=0, rllen=0, clusmom=0, samelev=True)

	Calculates the appropriate texture measure and puts the value in the class variable val and
updates the class variable currval with the passed string

For a discussion of Haralick co-occurrence style texture measures see:
R. M. Haralick, ‘Statistical and structural approaches to texture’. Proceedings of the IEEE May 1979, 67(5).
786-804.

	Parameters

	
	measure: string
	One of the following measure methods (default = ‘Statistical Complexity’):

	‘CM Entropy’

	‘EM Entropy’

	‘Statistical Complexity’

	‘Energy Uniformity’

	‘Maximum Probability’

	‘Contrast’

	‘Inverse Difference Moment’

	‘Correlation’

	‘Probability of Run Length’

	‘Epsilon Machine Run Length’

	‘Run Length Asymmetry’

	‘Homogeneity’

	‘Cluster Tendency’

	‘Multifractal Spectrum Energy Range’

	‘Multifractal Spectrum Entropy Range’

	
est_em(self)

	Estimate an epsilon machine from a co-occurrence matrix with #rows = #cols, done implicitly whenever one
of the related complexity/entropy measures (EM Entropy, Statistical Complexity, Epsilon Machine Run Length)
are calculated.

For info on epsilon machines and the related measures see:

	
	Young, Y. Chen, J. Kornak, G. B. Matson, N. Schuff, ‘Summarizing complexity in high dimensions’, Phys Rev Lett. (2005) Mar 11;94(9):098701.

	
	
	Shalizi and J. P. Crutchfield, ‘Computational Mechanics: Pattern and Prediction, Structure and Simplicity’, Journal of Statistical Physics 104 (2001) 819–881.

	
	Young and J. P. Crutchfield, ‘Fluctuation Spectroscopy’, Chaos, Solitons, and Fractals 4 (1993) 5-39.

	
	
	Crutchfield and K. Young, ‘Computation at the Onset of Chaos’, in Entropy, Complexity, and Physics of Information, W. Zurek, editor, SFI Studies in the Sciences of Complexity, VIII, Addison-Wesley, Reading, Massachusetts (1990) 223-269.

	
	
	Shalizi and J. P. Crutchfield, ‘Computational Mechanics: Pattern and Prediction, Structure and Simplicity’, Journal of Statistical Physics 104 (2001) 819–881.

	
est_multi_frac_spec(self)

	TODO

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 gentex	

 	
 	
 gentex.comat	

 	
 	
 gentex.sphere	

 	
 	
 gentex.template	

 	
 	
 gentex.texmeas	

Index

 C
 | E
 | G
 | T

C

 	
 	calc_measure() (gentex.texmeas.Texmeas method)

 	cmad() (in module gentex.comat)

 	comat() (in module gentex.comat)

 	
 	comat_2T() (in module gentex.comat)

 	comat_2T_mult() (in module gentex.comat)

 	comat_mult() (in module gentex.comat)

E

 	
 	est_em() (gentex.texmeas.Texmeas method)

 	
 	est_multi_frac_spec() (gentex.texmeas.Texmeas method)

G

 	
 	gentex.comat (module)

 	gentex.sphere (module)

 	
 	gentex.template (module)

 	gentex.texmeas (module)

T

 	
 	Template (class in gentex.template)

 	
 	Texmeas (class in gentex.texmeas)

 nav.xhtml

 Table of Contents

 		
 Table of Contents

 		
 Introduction

 		
 What is this package for?

 		
 Quickstart

 		
 Installation

 		
 Getting started

 		
 gentex package

 		
 gentex.comat

 		
 gentex.sphere

 		
 gentex.template

 		
 gentex.texmeas

_static/plus.png

_static/file.png

_static/minus.png

