

    
      
          
            
  
Genomics Workspace

Genomics workspace is a open-source project created by i5k workspace of NAL [https://i5k.nal.usda.gov/].

In this project, we produced a Django [https://www.djangoproject.com/] website with functionality of common sequence searchs including BLAST [https://www.ncbi.nlm.nih.gov/books/NBK279690/], HMMER [http://hmmer.org/], and Clustal [http://www.clustal.org/].

Leveraging the admin page of Django [https://docs.djangoproject.com/en/1.8/ref/contrib/admin/] and task queue by RabbitMQ [https://www.rabbitmq.com/] and Celery [http://www.celeryproject.org/], it’s much easier to manage the sequence databases and provide services to end-users.

All source codes of genomics workspace are in our github repo [https://github.com/NAL-i5K/genomics-workspace/].


Note

You can try genomics workspace on our live services:


	BLAST: https://i5k.nal.usda.gov/webapp/blast/

	HMMER: https://i5k.nal.usda.gov/webapp/hmmer/

	Clustal: https://i5k.nal.usda.gov/webapp/clustal/



In fact, the live services listed above are implemented by a customized version of genomics workspace.
You can check the source code of it in another github repo: NAL-genomics-workspace [https://github.com/NAL-i5K/NAL-genomics-workspace].




Table of Contents


	1. Pre-requisites

	2. Setup Guide
	2.1. Setup Guide (CentOS)

	2.2. Setup Guide (MacOS)

	2.3. Advanced Setup





	3. User Guide
	3.1. BLAST Database Configuration

	3.2. HMMER Database Configuration





	4. How to Deploy
	4.1. Apache HTTP server and mod_wsgi

	4.2. RabbitMQ

	4.3. Celery and celerybeat





	5. Trouble Shooting

	6. About i5k Workplace at NAL








Indices and tables


	Index

	Module Index

	Search Page







          

      

      

    

  

    
      
          
            
  
1. Pre-requisites


	git

	Python 2.7

	npm

	RabbitMQ

	PostgreSQL

	mod_wsgi (optional, only for production)







          

      

      

    

  

    
      
          
            
  
2. Setup Guide

This is our introduction to this project.



	2.1. Setup Guide (CentOS)

	2.2. Setup Guide (MacOS)

	2.3. Advanced Setup









          

      

      

    

  

    
      
          
            
  
2.1. Setup Guide (CentOS)

This setup guide is for CentOS. It’s tested in CentOS 6.7 and CentOS 7.2, but it should also work on all modern linux distributions.

Note: The following variables may be used in path names; substitute as appropriate:

<user>      :  the name of the user doing a set up.
<user-home> :  the user's home directory, e.g., /home/<user>
<git-home>  :  the directory containing the genomics-workspace, and `.git/` folder for `git` will be there.






2.1.1. Project Applications

Clone or refresh the genomics-workspace:

git clone https://github.com/NAL-i5K/genomics-workspace

# Or if the  repository exists:
cd <git-home>
git fetch








2.1.2. Yum

Generate metadata cache:

yum makecache








2.1.3. Python

Install necessary packages:

sudo yum -y groupinstall "Development tools"
sudo yum -y install zlib-devel bzip2-devel openssl-devel ncurses-devel sqlite-devel
sudo yum -y install readline-devel tk-devel gdbm-devel db4-devel libpcap-devel xz-devel python-devel





Install python 2.7.13 from source:

cd <user-home>
wget http://www.python.org/ftp/python/2.7.13/Python-2.7.13.tar.xz
tar -xf Python-2.7.13.tar.xz

# Configure as a shared library:
cd Python-2.7.13
./configure --prefix=/usr/local --enable-unicode=ucs4 --enable-shared LDFLAGS="-Wl,-rpath /usr/local/lib"

# Compile and install:
make
sudo make altinstall

# Update PATH:
export PATH="/usr/local/bin:$PATH"

# Checking Python version (output should be: Python 2.7.13):
python2.7 -V

# Cleanup if desired:
cd ..
rm -rf Python-2.7.13.tar.xz Python-2.7.13





Install pip and virtualenv:

wget https://bootstrap.pypa.io/ez_setup.py
sudo /usr/local/bin/python2.7 ez_setup.py

wget https://bootstrap.pypa.io/get-pip.py
sudo /usr/local/bin/python2.7 get-pip.py

sudo /usr/local/bin/pip2.7 install virtualenv





Build a separate virtualenv:

cd <git-home>

# Create a virtual environment called py2.7 and activate:
virtualenv -p python2.7 py2.7
source py2.7/bin/activate








2.1.4. RabbitMQ

Install RabbitMQ Server:

cd <user-home>

# Install RHEL/CentOS 6.8 64-Bit Extra Packages for Enterprise Linux (Epel).
# The 6.8 Epel caters for CentOS 6.*:
wget https://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm
sudo rpm -ivh epel-release-6-8.noarch.rpm

# For RHEL/CentOS 7.* :
# wegt http://dl.fedoraproject.org/pub/epel/7/x86_64/e/epel-release-7-10.noarch.rpm
# and change other commands accordingly

# Install Erlang:
sudo yum -y install erlang

# Install RabbitMQ server:
sudo yum -y install rabbitmq-server

# To start the daemon by default when system boots run:
sudo chkconfig rabbitmq-server on

# Start the server:
sudo /sbin/service rabbitmq-server start

# Clean up:
rm epel-release-6-8.noarch.rpm








2.1.5. Memcached

Install and activate memcached:

sudo yum -y install memcached

# Set to start at boot time:
sudo chkconfig memcached on








2.1.6. Database

Install PostgreSQL:

# Add line to yum repository:
echo 'exclude=postgresql*' | sudo tee -a /etc/yum.repos.d/CentOS-Base.repo

# Install the PostgreSQL Global Development Group (PGDG) RPM file:
sudo yum -y install http://yum.postgresql.org/9.5/redhat/rhel-6-x86_64/pgdg-centos95-9.5-2.noarch.rpm

# Install PostgreSQL 9.5:
sudo yum -y install postgresql95-server postgresql95-contrib postgresql95-devel

# Initialize (uses default data directory: /var/lib/pgsql):
sudo service postgresql-9.5 initdb

# Startup at boot:
sudo chkconfig postgresql-9.5 on

# Control:
# sudo service postgresql-9.5 <command>
#
# where <command> can be:
#
#     start   : start the database.
#     stop    : stop the database.
#     restart : stop/start the database; used to read changes to core configuration files.
#     reload  : reload pg_hba.conf file while keeping database running.

# Start:
sudo service postgresql-9.5 start

#
#  (To remove everything: sudo yum erase postgresql95*)
#

# Create django database and user:
sudo su - postgres
psql

# At the prompt 'postgres=#' enter:
create database django;
create user django;
grant all on database django to django;
ALTER USER django CREATEDB;

# Connect to django database:
\c django

# Create extension hstore:
create extension hstore;

# Exit psql and postgres user:
\q
exit

# Config in pg_hba.conf:
cd <git-home>
export PATH=/usr/pgsql-9.5/bin:$PATH

# Restart:
sudo service postgresql-9.5 restart








2.1.7. Python Modules and Packages

Install additional Python packages:

cd <git-home>
pip install -r requirements.txt








2.1.8. Chrome Driver


	Install ChromeDriver from https://sites.google.com/a/chromium.org/chromedriver/downloads

	Add to PATH






2.1.9. Celery

Configure celery:

# Run celery manually
celery -A i5k worker --loglevel=info --concurrency=3
# Run celery beat maually as well
celery -A i5k beat --loglevel=info








2.1.10. Migrate Schema to to PostgreSQL

Run migrate:

cd <git-home>
python manage.py migrate








2.1.11. Install Binary Files and Front-end Scripts

This step will instll binary files (for BLAST, HMMER and Clustal) and front-end scripts (.js, .css files):

npm run build








2.1.12. Start development server

To run developement server:

cd <git-home>
python manage.py runserver











          

      

      

    

  

    
      
          
            
  
2.2. Setup Guide (MacOS)

This setup guide is tested in MacOS Sierra (10.12) and MacOS High Sierra (10.13), but it should also work on all recent MacOS versions.

Note: The following variables may be used in path names; substitute as appropriate:

<user>      :  the name of the user doing a set up.
<user-home> :  the user's home directory, e.g., /home/<user>
<git-home>  :  the directory containing the genomics-workspace, and `.git/` folder for `git` will be there.






2.2.1. Project Applications

Clone or refresh the genomics-workspace:

git clone https://github.com/NAL-i5K/genomics-workspace

# Or if the  repository exists:
cd <git-home>
git fetch








2.2.2. Homebrew

We recommend to use Homebrew [https://brew.sh/] as package manager. Installation steps can be found at https://brew.sh/.




2.2.3. Python

Install virtualenv:

pip install virtualenv





Build a separate virtualenv:

# Make root dir for virtualenv and cd into it:
cd genomics-workspace

# Create a virtual environment called py2.7 and activate:
virtualenv -p python2.7 py2.7
source py2.7/bin/activate








2.2.4. RabbitMQ

Install and run RabbitMQ Server:

brew install rabbitmq
# Make sure /usr/local/sbin is in your $PATH
rabbitmq-server








2.2.5. Memcached

Install and activate memcached:

brew install memcached
memcached








2.2.6. Database

Install PostgreSQL:

brew install postgres
psql postgres

# At the prompt 'postgres=#' enter:
create database django;
create user django;
grant all on database django to django;
ALTER USER django CREATEDB;

# Connect to django database:
\c django

# Create extension hstore:
create extension hstore;

# Exit psql and postgres user:
\q
exit








2.2.7. Python Modules and Packages

Install additional Python packages:

cd <git-home>
pip install -r requirements.txt








2.2.8. Chrome Driver


	Install ChromeDriver from https://sites.google.com/a/chromium.org/chromedriver/downloads

	Add to PATH






2.2.9. Celery

Configure celery:

# Run celery manually
celery -A i5k worker --loglevel=info --concurrency=3
# Run celery beat maually as well
celery -A i5k beat --loglevel=info








2.2.10. Migrate Schema to to PostgreSQL

Run migrate:

cd <git-home>
python manage.py migrate








2.2.11. Install Binary Files and Front-end Scripts

This step will instll binary files (for BLAST, HMMER and Clustal) and front-end scripts (.js, .css files):

npm run build








2.2.12. Start development server

To run developement server:

cd <git-home>
python manage.py runserver











          

      

      

    

  

    
      
          
            
  
2.3. Advanced Setup


2.3.1. JBrowse/Apollo Linkout Integration

In Genomics workspace, we have a linkout integration between BLAST and JBrowse/Apollo.
You can directly go to corresponding sequence location through clicking entries in BLAST result table.
To start using it, make change of ENABLE_JBROWSE_INTEGRATION in i5k/settings.py;

ENABLE_JBROWSE_INTEGRATION = True











          

      

      

    

  

    
      
          
            
  
3. User Guide

BLAST, HMMER, and Clustal are main functionality of genomics-workspace. Each one of this, we implemented it as a single app [https://docs.djangoproject.com/en/1.8/ref/applications/#s-projects-and-applications] under Django.

In this section, we will go through details about how to configure each one of them.

In short, you need to configure database for BLAST and HMMER, but you don’t need to configure anything for Clustal.


Note

The page is for user that wants to set up genomics-workspace by creating new admin user and confuguring in admin page. If you want to know how to use services provided by genomics-workspace, see these tutorials:


	BLAST: https://i5k.nal.usda.gov/content/blast-tutorial

	HMMER: https://i5k.nal.usda.gov/webapp/hmmer/manual/

	CLUSTAL: https://i5k.nal.usda.gov/webapp/clustal/manual/





To get started, you need to setup an admin account:

python manage.py createsuperuser





Follow the instruction shown on your terminal, then browse and login to the admin of genomics-workspace. Usually, the admin page should be at http://127.0.0.1:8000/admin/.


3.1. BLAST Database Configuration

There are five steps to create a BLAST database.


	Add Organism (click the Organism icon at sidebar and click Add organism):
	Display name should be scientific name.

	Short name are used by system as a abbreviation.

	Descriptions and NCBI taxa ID are automatically filled.







[image: _images/add_organism.png]

	Add Sequence types:
	Used to classify BLAST DBs in distinct catagories.

	Provide two kinds of molecule type for choosing, Nucleotide/Peptide.





	Add Sequence

	Add BLAST DB
	Choose Organsim

	Choose Type (Sequence type)

	Type location of fasta file in FASTA file path (It should be in <git-home>/media/blast/db/)

	Type Title name. (showed in HMMER page)

	Type Descriptions.

	Check is shown, if not check, this database would show in HMMER page.

	Save







[image: _images/add_blastdb.png]

	Browse to http://127.0.0.1:8000/blast/, you should able to see the page with dataset shown there.






3.2. HMMER Database Configuration

Like BLAST, HMMER databases must be configured then they could be searched.

Go django admin page and click Hmmer on left-menubar. You need to create HMMER db instance (Hmmer dbs) for each fasta file.


	Choose Organsim

	Type location of peptide fasta file in FASTA file path

	Type Title name. (showed in HMMER page)

	Type Descriptions.

	Check is shown, if not check, this database would show in HMMER page.

	Save



[image: _images/hmmer_add.png]






          

      

      

    

  

    
      
          
            
  
4. How to Deploy

In short, you need to setup following tools and services:


	Apache HTTP server [https://httpd.apache.org/]

	mod_wsgi [http://modwsgi.readthedocs.io/en/develop/]

	RabbitMQ [https://www.rabbitmq.com/]

	Celery and celerybeat [https://github.com/celery/celery] runs in daemon mode.



Because genomics workspace is a standard Django website, there is no large difference to deploy genomics workspace.
We recommed to deploy genomics workspace through Apache and mod_wsgi.

You may want take a look the great documentation of Django project on deploying [https://docs.djangoproject.com/en/1.8/howto/deployment/] as well.


4.1. Apache HTTP server and mod_wsgi

See the document of Django [https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/modwsgi/]. You can also see the example settings file of Apache and mod_wsgi in our github repo [https://github.com/NAL-i5K/genomics-workspace/blob/4ec1f58020d00a38ccb7ffbc6b071bf5abca4390/example/settings/i5k.conf].




4.2. RabbitMQ

Use the rabbitmq-server command [https://www.rabbitmq.com/rabbitmq-server.8.html].




4.3. Celery and celerybeat

Here are example setup steps for linux,


	Copy files:

# when using CentOS 7.*
# copy celeryd.sysconfig and celerybeat.sysconfig to /etc/default instead.
sudo cp celeryd /etc/init.d
sudo cp celerybeat /etc/init.d
sudo cp celeryd.sysconfig /etc/sysconfig/celeryd
sudo cp celerybeat.sysconfig /etc/sysconfig/celerybeat







	edit ‘/etc/sysconfig/celeryd’:

CELERYD_CHDIR="<git-home>"
CELERYD_MULTI="<git-home>/py2.7/bin/celery multi"







	edit ‘/etc/sysconfig/celerybeat’ as follows:

CELERYBEAT_CHDIR="<git-home>"
CELERY_BIN="<git-home>/py2.7/bin/celery"







	set as daemon:

sudo chkconfig celeryd on
sudo chkconfig celerybeat on









For more details or setup on Mac, check the document of Celery [http://docs.celeryproject.org/en/3.1/tutorials/daemonizing.html]. Example files mentioned above are also (celery*) in our github repo [https://github.com/NAL-i5K/genomics-workspace/tree/4ec1f58020d00a38ccb7ffbc6b071bf5abca4390/example/settings].







          

      

      

    

  

    
      
          
            
  
5. Trouble Shooting

Q: I get an error message like: FATAL: Ident authentication failed. How can I fix this ?

A: It’s because the setting of PostgreSQL database.
Try to modify the config file pg_hba.conf.
For example, in PostgreSQL 9.5, the file is at /var/lib/pgsql/9.5/data/pg_hba.conf.
Make sure you change part of the content of it into something like:

local   all             all                               peer
host    all             all             127.0.0.1/32      ident
host    all             all             ::1/128           md5









          

      

      

    

  

    
      
          
            
  
6. About i5k Workplace at NAL

The i5k Workspace at NAL is a platform for communities around ‘orphaned’ arthropod genome projects to access, visualize, curate and disseminate their data.

For more information, please see website of i5k Workspace@NAL [https://i5k.nal.usda.gov/].





          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
Apache (for production server)

Please note:
It is essential that tcp port 80 be open in your system. Sometimes the firewall may deny access to it.
Check if iptables will drop input packets in the output of this command:

sudo iptables -L





If you see “INPUT” and “DROP” on the same line and no specific ACCEPT rule for tcp port 80
chances are web traffic will be blocked. Ask your sysadmin to open tcp ports 80 and 443 for http and https. Alternatively, check this iptables guide [https://www.digitalocean.com/community/tutorials/how-to-set-up-a-basic-iptables-firewall-on-centos-6].

Install Apache and related modules:

sudo yum -y install httpd httpd-devel mod_ssl





Give the system a fully qualified domain name (FQDN) if needed:

# Find out the system IP addres with 'ifconfig'.
# Assuming it is a VM created by Vagrant, this could be 10.0.2.15.
# Sudo edit '/etc/hosts' and add an address and domain name entry.
# For example:
10.0.2.15  virtualCentOS.local virtualCentOS

# Sudo edit the file /etc/httpd/conf/httpd.conf,
# and set the ServerName, for example:
ServerName virtualCentOS.local:80

# Set to start httpd at boot:
sudo chkconfig httpd on

# Check this setting if you wish, with:
sudo chkconfig --list httpd

# Control:
#    sudo apachectl <command>
# Where <command> can be:
#     start         : Start httpd daemon.
#     stop          : Stop httpd daemon.
#     restart       : Restart httpd daemon, start it if not running.
#     status        : Brief status report.
#     graceful      : Restart without aborting open connections.
#     graceful-stop : stop without aborting open connections.
#
# Start httpd daemon:
sudo apachectl start

# Test Apache:
# If all is well. This command should produce copious
# HTML output and in the first few lines you should see:
#   '<title>Apache HTTP Server Test Page powered by CentOS</title>'
curl localhost

# You can also view the formatted Apache test page in your
# browser, e.g., firefox http://<setup-machine-ip-address>









          

      

      

    

  

    
      
          
            
  
Windows

This section documents the procedure to load organisms into the BLAST database.

PRE-REQUISITES:

Storage: At least 32 GB of disk space.
Memory:  At least 10 GB of memory in the system or VM.





To add organism to BLAST you need to download the relevant database files to the
application ‘media’ directory.

If for example you want to copy the BLAST databases from gmod-dev, make sure
you have at least 32 GB of free disk space.

Also, to run the tool that populates the sequence table you need to have at
least 10 GB of system or VM memory.

In your VM:

cd <genomics-workspace-dir>/media

rsync gmod-dev:/usr/local/i5k/media/blast/db/* .





Organisms must be added one at a time using the Django app admin interface.

You need access to a user id with admin privileges.  To do that you must alter
the Postgres database to add such privileges to a normal user.

sudo su postgres
psql django





First clear any entries that prevent login.

delete from  axes_accessattempt where username='<user_name';





Set your id as superuser

update auth_user set is_staff = 't', is_active = 't' where username = '<user_name>';





Now you should be able to login as admin and navigate to

<your_system>/admin/blast





And then to:

Home » App » Organisms » Add organism





For each organism:

Enter the organism name in the field, 'Display Name'.

Click in the 'Short Name' and 'Description' fields to have them populated automatically.

Enter the organism NCBI Taxonomy ID, and click 'SAVE'

Click on:  BLAST databases 'Add'





Now you must add the databases that correspond to each organism, from those located in:

<genomics-workspace-dir>/media/blast/db/*





Navigate to:

Home » BLAST » BLAST databases





On this screen for each organism:

1. From the top three dropdown lists, select the organism, the type of database type being
   loaded, and 'yes' for 'is_shown.'

2. Select the database files being loaded in the tabular list of database files.

3. From the dropdown list next to the 'Go' button, select, 'Populate the sequence table...'
and click go.

4. After a while, the three tick marks on each selected row should turn green.








MacOS

This section documents the procedure to load organisms into the BLAST database.

PRE-REQUISITES.

Storage: At least 32 GB of disk space.
Memory:  At least 10 GB of memory in the system or VM.





To add organism to BLAST you need to download the relevant database files to the
application ‘media’ directory.

If for example you want to copy the BLAST databases from gmod-dev, make sure
you have at least 32 GB of free disk space.

Also, to run the tool that populates the sequence table you need to have at
least 10 GB of system or VM memory.

In your VM:

cd <genomics-workspace-dir>/media

rsync gmod-dev:/usr/local/i5k/media/blast/db/* .





Organisms must be added one at a time using the Django app admin interface.

You need access to a user id with admin privileges.  To do that you must alter
the Postgres database to add such privileges to a normal user.

sudo su postgres
psql django





First clear any entries that prevent login.

delete from  axes_accessattempt where username='<user_name';





Set your id as superuser

update auth_user set is_staff = 't', is_active = 't' where username = '<user_name>';





Now you should be able to login as admin and navigate to

<your_system>/admin/blast





And then to:

Home » App » Organisms » Add organism





For each organism:

Enter the organism name in the field, 'Display Name'.

Click in the 'Short Name' and 'Description' fields to have them populated automatically.

Enter the organism NCBI Taxonomy ID, and click 'SAVE'

Click on:  BLAST databases 'Add'





Now you must add the databases that correspond to each organism, from those located in:

<genomics-workspace-dir>/media/blast/db/*





Navigate to:

Home » BLAST » BLAST databases





On this screen for each organism:

1. From the top three dropdown lists, select the organism, the type of database type being
   loaded, and 'yes' for 'is_shown.'

2. Select the database files being loaded in the tabular list of database files.

3. From the dropdown list next to the 'Go' button, select, 'Populate the sequence table...'
and click go.

4. After a while, the three tick marks on each selected row should turn green.








CentOS

This section documents the procedure to load organisms into the BLAST database.

PRE-REQUISITES:

Storage: At least 32 GB of disk space.
Memory:  At least 10 GB of memory in the system or VM.





To add organism to BLAST you need to download the relevant database files to the
application ‘media’ directory.

If for example you want to copy the BLAST databases from gmod-dev, make sure
you have at least 32 GB of free disk space.

Also, to run the tool that populates the sequence table you need to have at
least 10 GB of system or VM memory.

In your VM:

cd <genomics-workspace-dir>/media

rsync gmod-dev:/usr/local/i5k/media/blast/db/* .





Organisms must be added one at a time using the Django app admin interface.

You need access to a user id with admin privileges.  To do that you must alter
the Postgres database to add such privileges to a normal user.

sudo su postgres
psql django





First clear any entries that prevent login.

delete from  axes_accessattempt where username='<user_name';





Set your id as superuser

update auth_user set is_staff = 't', is_active = 't' where username = '<user_name>';





Now you should be able to login as admin and navigate to

<your_system>/admin/blast





And then to:

Home » App » Organisms » Add organism





For each organism:

Enter the organism name in the field, 'Display Name'.

Click in the 'Short Name' and 'Description' fields to have them populated automatically.

Enter the organism NCBI Taxonomy ID, and click 'SAVE'

Click on:  BLAST databases 'Add'





Now you must add the databases that correspond to each organism, from those located in:

<genomics-workspace-dir>/media/blast/db/*





Navigate to:

Home » BLAST » BLAST databases





On this screen for each organism:

1. From the top three dropdown lists, select the organism, the type of database type being
   loaded, and 'yes' for 'is_shown.'

2. Select the database files being loaded in the tabular list of database files.

3. From the dropdown list next to the 'Go' button, select, 'Populate the sequence table...'
and click go.

4. After a while, the three tick marks on each selected row should turn green.









          

      

      

    

  

    
      
          
            
  
Clustal Query Histroy

Clustal query histories are stored in table Clustal results. Users could review them on dashboard.
All query results (files on disk) will be removed if it’s expired. (default: after seven days)

Query results locate in directory $MEDIA_ROOT/clustal/task/.


Dashboard

Personal query history.




Data

Rest framework. Not finished




Proxy

For providing indirect access to some resources without https. Currently it is used by Web Apollo instances for looking up GO Terms.




Drupal_SSO

Coonection to Drupal summit data function.

DRUPAL_URL = 'https://gmod-dev.nal.usda.gov'

# cookie can be seen in same domain
DRUPAL_COOKIE_DOMAIN=".nal.usda.gov"











          

      

      

    

  

    
      
          
            
  
WebApollo Single Sign On


What is WebApollo SSO?

The basic idea in SSO is to provide handy user interface and make WebApollo user more like a community. In order to accomplish those ideas, we try to transfer management jobs from WebApollo to SSO. SSO gives the coordinators more authority to manage their members who can annotating and grant the priviledges on their own.

In SSO, we seperate users into three different roles.


	First, the ADMIN who actually owns ‘admin priviledge’ in WebApollo, can manage users/groups/eroll event.

	Second, the COORDINATOR who belong to group GROUP_(Organism_short_name(OSN))_ADMIN, can manage membership in specific (Organism).

	Last, the remaining users are in USER. They can make request to join (or leave) different organism team. Once be recuited in, user will pertain to group GROUP_(OSN)_USER.



SSO make a virtual role COORDINATOR by exploiting a conventional group name GROUP_(OSN)_ADMIN and the user in the team
would be in group GROUP_(OSN)_USER.








	Role\
	WebApollo
	Single Sign On (SSO)


	ADMIN
	Global Admin
	Global Admin


	COORDINATOR
	Admin permission
	in GROUP_()_ADMIN


	USER
	RWE permission
	in GROUP_()_USER with RWE permission






Note

Mapping between full organism name and short organism name are stored in django-blast app. Full organism name is the real name in WebApollo and short name is a abbreviation used in django-blast app.






Framework Overview

SSO was implemented in Django and JQuery. Conceptually, SSO is a proxy service for delegating user request to appropriate WebApollo service.
The main advantage here is that SSO could provides more social utilities for the I5K community.

[image: ../_images/framework_sso.png]
Database Schema (UserMapping)










	Apollo_user_id
	Apollo_user_name
	Apollo_user_pwd
	django_user
	last_date


	1
	Chris
	(AES encrpted pwd)
	Christopher
	 


	2
	Monica
	(AES encrpted pwd)
	Monica
	 


	3
	Mei
	(AES encrpted pwd)
	NULL
	 





SSO records the mapping between Apollo_user and django_user in table UserMapping.
Apollo_user_id and django_user are unique attribute and this makes mapping a one to one relationship.
(apollo_user_name could be changed and is not unique)

In above table, record 1 and 2 tell a formal relationship but record 3 describes an Apollo user doesn’t belong to any django user.
User can claim it by re-register process. (mentioned below)




Configuration

SSO uses a pre-assigned admin Apollo account to communiate with Apollo server. The account must be
create on apollo server first. Two URLs address of i5k server and apollo server are used to identify
each others’ locations. In order to secure user password, SSO encrpt it before saving password into database.

WebApollo SSO configuration in django setting.py:

# WebApollo SSO robot account
ROBOT_ID='R2D2'
ROBOT_PWD='demo'

#URL of i5k workspace and webapollo
I5K_URL='http://i5k.nal.gov'
APOLLO_URL='http://i5k.apollo.nal.gov/apollo'

# cookie can be seen in Apollo-prod and Gmod-prod
APOLLO_COOKIE_DOMAIN=".nal.usda.gov"

#Encypt webapollo user password in SSO database.
#AES key must be either 16, 24, or 32 bytes long.
SSO_CIPHER='1234567890123456'








Register WebApollo

There are three ways to make connection between i5k account to apollo account.

[image: ../_images/register_workflow.png]

	When registering an new i5k account, SSO also create an apollo account(same ID).



	When entering SSO, if SSO doesn’t have mapping record of user,



	it asks user to create a new apollo account

	or register his account info into SSO.








	When entering SSO, if SSO has mapping record of user but login failed, it asks user to re-enter his password into SSO.








Utilities

There are six individual tab pages, three of them are general and others are specific for Admin user.


Utilities only for Admin







	Tab\
	Function Descriptions


	User(Admin)
	View/Create/Delete/Update/Disconnect Apollo User


	Group(Admin)
	View/Create/Delete Apollo Group


	PReq(Admin)
	View Pending request








General Utilities







	Tab\
	Function Descriptions


	My Organism
	Manage organism which you joined in / Go WebApollo


	My Request
	Make request to join/leave a organism community


	My Info
	User basic information













          

      

      

    

  _images/add_organism.png
Home ~ App » Organisms » Add organism

Display name: lasioglossum albipes ‘Sclentific or common name
Short name: lasalb “This ks used for fle names and variable names in code
Description: “This page contains a lst of bees of Great Britain. The following species are all within the.

superfamiy Apoidea.

NCBI Taxonomy ID: 88501 This s passed Into makeblast





_images/framework_sso.png
et

y Browser

WebApollo

delegate






_images/add_blastdb.png
Home » BLAST » BLAST databases » Add BLAST database

Organism.

Type:

FASTA file path:
Title:

Description:

Is shown

Lasioglossum abbipes v /4

Pepide - Protein ~ e

JblastidbiLalb_OGS_v5 42 pep fa
Lalb_OGS_v5.42 pep fa

Lasioglossum albipes peptides v5.42

@ Display this database in the BLAST submit form

This is passed into makeblast -tle





_static/ajax-loader.gif





_images/hmmer_add.png
Home Hmmer » Hmmer dbs » Add hmmer db

Organism:

FASTA file path:

Title:

Description:

Is shown

Drosophila biarmipes v O
/media’/hmmer/db/drosophila_biarmipes.fa
drosophila_biarmipes protein sequences.

Descriptions.....

@ Display this database in the HMMER submit form

Save and continue
editing

Save and add another





_images/register_workflow.png
Ent

mapping
tecord

WebApollo
Login test

Login





_static/comment-bright.png





_static/comment-close.png





_static/comment.png





nav.xhtml

    
      Table of Contents


      
        		
          Genomics Workspace
        


        		
          Pre-requisites
        


        		
          Setup Guide
          
            		
              Setup Guide (CentOS)
              
                		
                  Project Applications
                


                		
                  Yum
                


                		
                  Python
                


                		
                  RabbitMQ
                


                		
                  Memcached
                


                		
                  Database
                


                		
                  Python Modules and Packages
                


                		
                  Chrome Driver
                


                		
                  Celery
                


                		
                  Migrate Schema to to PostgreSQL
                


                		
                  Install Binary Files and Front-end Scripts
                


                		
                  Start development server
                


              


            


            		
              Setup Guide (MacOS)
              
                		
                  Project Applications
                


                		
                  Homebrew
                


                		
                  Python
                


                		
                  RabbitMQ
                


                		
                  Memcached
                


                		
                  Database
                


                		
                  Python Modules and Packages
                


                		
                  Chrome Driver
                


                		
                  Celery
                


                		
                  Migrate Schema to to PostgreSQL
                


                		
                  Install Binary Files and Front-end Scripts
                


                		
                  Start development server
                


              


            


            		
              Advanced Setup
              
                		
                  JBrowse/Apollo Linkout Integration
                


              


            


          


        


        		
          User Guide
          
            		
              BLAST Database Configuration
            


            		
              HMMER Database Configuration
            


          


        


        		
          How to Deploy
          
            		
              Apache HTTP server and mod_wsgi
            


            		
              RabbitMQ
            


            		
              Celery and celerybeat
            


          


        


        		
          Trouble Shooting
        


        		
          About i5k Workplace at NAL
        


      


    
  

_static/file.png





_static/down-pressed.png





_static/down.png





_static/up-pressed.png





_static/minus.png





_static/plus.png





_static/up.png





