

GENI - Virtual Topology Service

Welcome to the online documentation for the VTS deployment in the
NSF GENI federation [http://www.geni.net].

The Virtual Topology Service (VTS) is a high-level orchestration system for
creating complex network topologies for networking research and classroom
exercises. Despite the name, not all VTS topologies are virtualized - as
covered in detail in the documentation the system will orchestrate your requested
topology on the infrastructure that is available, some of which may be virtualized
while parts may be implemented by giving you direct control of existing infrastructure.

Contents:

	High Level Concepts
	Circuit Planes

	Function Surfaces

	GENI Details
	Images

	How-To Examples
	Associate Your Dropbox Account with a VTS Site

	Create A New Container Image

	Install VTS into an Ubuntu Server 16.04 Xenial Xerus

	Configure dropbox for your private VTS installation

	Install custom images in your private VTS installation

	User Tutorials
	Simple L2 Switching

	Site Administration
	Container Images

	Developer Documentation
	Container Image Specfiles

	FAQ

High Level Concepts

	Circuit Planes

	Function Surfaces

Circuit Planes

Function Surfaces

GENI Details

	Images
	bss.ovs

	bss.quagga

	uh.simple-dhcpd

	uh.cn4421

Images

	bss.ovs

	bss.quagga

	uh.simple-dhcpd

	uh.cn4421

bss.ovs

bss.quagga

uh.simple-dhcpd

uh.cn4421

How-To Examples

	Associate Your Dropbox Account with a VTS Site

	Create A New Container Image

	Install VTS into an Ubuntu Server 16.04 Xenial Xerus

	Configure dropbox for your private VTS installation

	Install custom images in your private VTS installation

Associate Your Dropbox Account with a VTS Site

This quick tutorial will show you how to associate a Dropbox account with a VTS site, which will enable you to
upload data to your Dropbox from within your isolated slivers.

You must associate your account with each site you want to upload to Dropbox from, but you do not need to
subsequently associate slivers created at those sites. The Dropbox account is bound to your GENI user credential,
and other users using your slices cannot upload to your account (although they can upload data to their own
accounts).

This association process requires the use of geni-lib, as no other tools have support for the non-standard
API that VTS uses for this process.

OAuth2 Dropbox Authorization

This is a two-stage process, where you will get a Dropbox authorization URL from a given VTS site, and then
after visiting that web page in your browser (and logging into Dropbox as necessary), you will be given
a code from Dropbox that you will send back to the VTS site:

>> SITE = VTSAM.Illinois

>> SITE.dropboxLink(context)
{'authorize_url': 'https://www.dropbox.com/oauth2/authorize?response_type=code&client_id=poczslfi15gp4l9'}

Take the URL value from authorize_url and paste it into your web browser, where you should get a page that
is similar to the image below (the names will differ based on the VTS site you have chosen):

[image: ../_images/dropbox_auth.png]
After you click the Allow button, you will be presented with a code to send back to VTS to finalize the
authorization process:

[image: ../_images/dropbox_code.png]
Now, copy that code back to geni-lib and finalize your Dropbox authorization for the site you have chosen:

>> SITE.dropboxFinalize(context, "xfcPtSUkJo0AAAAAAAAACka-IarRJxO-w5y_0_ZGMwg")
{}

Note

A successful response is an empty {} - any failure should result in an exception.

This concludes the association and now any resource reservations you make that include Dropbox mounts can
send the contents of those directories to your Dropbox account. You can also upload from any existing
slivers you have access to that have already reserved Dropbox mounts at this site.

Uploaded files will appear in your Dropbox account under the “Apps” directory, indexed by the site, sliver URN,
host client_id, and host mount path. VTS cannot write to other locations in your Dropbox, and you cannot send
files to your slivers from these directories (the functionality is upload-only from VTS).

Create A New Container Image

Most vertices in VTS topologies are implemented as containers on unix-like systems (including hardware forwarding
devices such as Pica8 and Znyx switches). This How-To describes the basic components of these images, and how
to get started in creating new ones.

This How-To does not cover creating the synthetic images used on vendor hardware that does not expose a unix-like
environment.

High Level Pieces

Every VTS container image is composed of a maximum of 3 distinct components:

	A disk image used to launch each instance of the container

	A JSON-based spec file describing the image usage to the VTS orchestrator

	(optional) A python-based handler allowing for fine-grained integration into the orchestrator

Disk Images

VTS Disk Images are typically built using Dockerfiles (although they are not run using Docker). This allows
images to be created very quickly using existing base OS images available from Docker, and merely adding the
software required for the function you are adding. While there is no officially ‘blessed’ directory layout
used for image creation, most image builds use the following layout:

/my-image/
 build/
 Dockerfile
 ...
 runtime/
 spec.json

There is a skeleton image build directory (in skel/) available in the
UH-NetLab Images repository [https://bitbucket.org/uh-netlab/vts-images], which you can copy to get a basic
image build environment. The skeleton image uses Alpine linux as the base, and includes supervisor, ssh,
and rsyslog which enables support for standard orchestrator services. The install.py script in the same repository
will install images built in the same format as the skeleton, using a process well understood by VTS administrators.

Once you have a skeleton layout, edit your Dockerfile and supervisord.conf as necessary (and add any additional
required files) to describe the disk image your container requires.

Note

Since the Docker tools are only used to build images, but not to run them, you can only use features of Dockerfile
that are used during the build process. Features such as EXPOSE and VOLUME are runtime values that will not be
evaluated. As a result, it is generally better to refer to pre-existing image repositories for examples rather
than going to the Docker documentation.

Spec Files

JSON specification files are used to provide important metadata about your image to the orchestrator (how much
memory to allocate, attributes that may be supplied by the user at reservation time, etc.). The spec files are
documented at Container Image Specfiles. You can also review other examples in existing repositories.

Handlers

Image Handlers are Python classes subclassed from foam.vts.images.ImageHandler that are added at runtime to
the orchestrator in order to provide programmatic handling for instances that use your image. This generally
is limited to two entrypoints:

	Callbacks when instances using your image are being built

	PerformOperationalAction (POA) API extensions

Note

The UH-Netlab image repository contains a number of useful handler subclasses in vts_uh.bases that you
may want to subclass from instead of using foam.vts.images.ImageHandler directly.

Each handler can specify a number of callbacks that are invoked at various points during the image instantiation
process. There is currently limited documentation for these callbacks, although there is a wealth of example
handler code. The current callbacks are:

	.prebuild (self, cobj) - Invoked before a container using your image has been built (for each requested instance)

	.postlocaltopo (self, cobj) - Invoked after a container using your image has been instantiated, and has local
networking (all interfaces have been attached).

	.postnettopo (self, cobj) - Invoked after the entire topology graph creation is complete (although you cannot
guarantee that postnettopo has been called for any other instances, as no order is specified)

	.geniSetup (registry) (static method) - Invoked once (per process) for each image spec that references this
handler. Used to set up new POA endpoints and any other one-time initialization items.

While all of these methods take the cobj argument, it should not be used and self.container should be used instead.

POA Extensions

Generally POA extensions should utilize the vts_uh.bases._wrapPOA wrapper function which provides a consistent
interface to tools for new POA endpoints. The vts_uh.bases.AlpineHost handler class has clean examples of how
to use this wrapper.

Install VTS into an Ubuntu Server 16.04 Xenial Xerus

This quick tutorial will show you how to create your own private VTS site, by installing the VTS software
in your own ubuntu box. Note that this procedure below has been verified to work for a fresh installation
of the Ubuntu Server 16.04 LTS Xenial Xerus. Other versions, and operating systems may require some additional
steps.

Installation Procedure

	On a freshly installed Ubuntu Server 16.04 LTS Xenial Xerus, run the command:

sudo apt-get update

	download the vts installation script:

wget https://bitbucket.org/nbastin/vts-install/freshinstall.py

	run the command to install:

./freshinstall.py

	respond to the installation prompts as suits your purpose. However, select yes when prompted, for the
images you’ll need for your experiments

After installation you can use your newly installed VTS from your genilib environment, by set your aggregate
using the command:

am = VTSAM.VTS("servername", "ip_address")

Then you can use the ‘am’ to make calls to the VTS instance. For example:

am.listresources(context)

Recommended next step: configure your VTS installation to support drop box. Configure dropbox for your private VTS installation

Configure dropbox for your private VTS installation

This quick tutorial will show you how to enable dropbox on your own private VTS installation. This will allow
hosts on networks you create to be able to upload files to linked dropbox accounts.

Configuration Procedure

	Ensure that you have successfully installed vts according to the directions at: Install VTS into an Ubuntu Server 16.04 Xenial Xerus

	Create a dropbox app at: https://www.dropbox.com/developers then generate an “access token” and a “secret”
which you will need in order to complete the dropbox configuration within your VTS box

	Within your VTS box, locate the password for your vts in /etc/foam.passwd. you can use the command:

sudo cat /etc/foam.passwd

	Run the commands below in your vts server, remember to replace “your_access_token” and “your_access_secret”
with actual values you generated in step 2 above. In addition, whenever you are prompted for a password, use
the password you obtained from step 3.:

cd /opt/foam/mount
sudo foamctl host:build-mount --name=dropbox-user --size=2000
cd ~
foamctl config:set-value --key=dropbox.user-vols.root --value=/opt/foam/mounts/dropbox-user
foamctl config:set-value --key=dropbox.app-key --value=my_access_token
foamctl config:set-value --key=dropbox.app-secret --value=my_access_secret

	Restart the foam service:

systemctl restart foam

Note that you will need to associate your dropbox account with the VTS installation, using your genilib environment,
by following the directions at Associate Your Dropbox Account with a VTS Site you may need to
replace the first command in that guide with:

am = VTSAM.VTS("servername","ip_address")
am.dropboxLink(context)

Install custom images in your private VTS installation

This quick tutorial will show you how to install VTS images within your own private VTS installation. You can
follow the steps to install existing VTS images, or new images that you have created yourself, by following
the directions at Create A New Container Image

Installation Procedure

	Ensure that you have successfully installed vts according to the directions at: Install VTS into an Ubuntu Server 16.04 Xenial Xerus

	From your VTS box, download the VTS images intaller script:

hg clone https://oadele3@bitbucket.org/UH-netlab/vts-images/install.py

	To install your own custom image, first ensure that your custom image has the directoy structure as described
in Create A New Container Image. That is it must have the ‘build’ and the ‘runtime’ subdirectories within it.

	Copy your custom image’s directory into the same directory to which you downloaded the image installer script
You can use the command below to copy.

cp /path/to/your/image .

	To install the new image, run the command:

./install.py image_dir_name

where image_dir_name is the directory name of the image you want to install

	Restart the foam service:

systemctl restart foam

User Tutorials

	Simple L2 Switching

Simple L2 Switching

This is a brief walk-through of a basic VTS request that will create a topology with several hosts
and a DHCP server. This topology will serve as the foundation for several other tutorials that you
may also execute, walking you through basic VTS workflows as well as a simple illustration of the
power of full control of isolated network topologies.

This tutorial may be executed using the geni-lib suite (see here [http://geni-lib.readthedocs.io/en/latest/intro/install.html]
for installation instructions), either the genish command line tool, or the identically named ipython extension.

For both tools you will need to download your omni.bundle file from the GENI Portal. You can find
instructions for doing so in the geni-lib docs [http://geni-lib.readthedocs.io/en/latest/intro/creds/portal.html].

You can also use VTS with a Cloudlab [https://cloudlab.us] account (without an omni.bundle), and you
can find documentation for acquiring these credentials in the geni-lib docs [http://geni-lib.readthedocs.io/en/latest/intro/creds/cloudlab.html].
If using Cloudlab credentials with geni-lib, please review the geni-lib documentation for using these
credentials [http://geni-lib.readthedocs.io/en/latest/tutorials/cloudlabcontext.html].

Topology

[image: ../_images/simpleovs.png]

Build the Request Object

In order to request this topology, we can create a resource request object for VTS using genish (at the command line or in
ipython notebooks):

r = VTS.Request()

We then add our switch:

br = r.Datapath(VTS.OVSL2Image(), "br0")

There are a limited number of switch images available in GENI - the two most commonly used are the one above, which is a normal MAC-learning
bridge with VLAN support, and an Openflow-supporting image (referenced in geni-lib as VTS.OVSOpenFlowImage, with some required
configuration parameters). The second argument to Datapath is the client_id of the bridge, which you will need to know later in order to
query it for monitoring and state information. We assign the return from r.Datapath(...) to a variable that we will use later in the
request to build links.

Now we add our hosts:

h0 = r.Container(VTS.Image("uh.net-client"), "h0")
h1 = r.Container(VTS.Image("uh.net-client"), "h1")
dhcp = r.Container(VTS.Image("uh.simple-dhcpd"), "dhcp")

Switch images are added using the Datapath constructor, while hosts are added using the Container constructor. As with datapaths there
are two arguments - the image object to be used, and the client_id of the resultant host. In the case of hosts, the client_id is also used
as the hostname, so it’s preferable to not choose characters that would not be valid in a hostname.

In this case we use two images that are available at all GENI VTS sites - the “uh.net-client” image, which is a basic linux host with
networking tools installed (tcpdump, scapy, iperf, etc.), and the “uh.simple-dhcpd” image, which is a trivial DHCP server that supports a
single IPv4 subnet. By default the subnet used for DHCP is 192.168.50.0/24, but you can change that value by setting the image
attribute subnet if you desire:

dhcp.image.setImageAttribute("subnet", "10.70.10.0/23")

Now we need to add links between our nodes:

VTS.connectInternalCircuit(br, h0)
VTS.connectInternalCircuit(br, h1)
VTS.connectInternalCircuit(br, dhcp)

Now our request is complete, and we can send it to the aggregate manager at a site to reserve our resources.

Make the Reservation

Choose a site, and store it in a short-to-type variable name for later:

SITE = VTSAM.StarLight

You may also want to store your slice name in a short variable name for ease of use or changing later:

SLICE = "my-slice-name"

Of course, change that value to the name of a slice that you control.

Now create the sliver for our resource request, and get the manifest back:

manifest = SITE.createsliver(context, SLICE, r)

If there is an exception, note the problem and either resolve it yourself (if you need to delete an existing sliver, etc.), or
send email to geni-users@googlegroups.com to see if someone can help you. Otherwise, proceed with the rest of the tutorial
using the manifest that was returned above.

Visualize Reserved Resources

If you are using the genish ipython notebook extension, you can get a visual topology diagram using the built-in manifest
renderer:

genish.showtopo(manifest)

If you are using the command line genish shell, you can get dot [http://www.graphviz.org/content/dot-language] output,
which you can use in graphviz or any other dot supporting tool:

util.builddot([manifest])

Note

util.builddot takes a list of manifests, so if you only have one manifest you still need to put it into a list.

Connect to Topology Hosts

Now that the hosts in this topology have been provisioned, you can get login information in order to configure SSH to
access your hosts:

genish.printlogininfo(manifest)

If you are using the genish shell, you can access a similar method in the util module:

util.printlogininfo(manifest=manifest)

Note

The core util.printlogininfo function takes a number of arguments that can be used to get a manifest that you
do not already have. Given that you already have a manifest, you can pass it in directly using the manifest
argument.

The output comes in 4 pieces - the client_id you requested in your reservation, the username you should use to access
this resource, the internet-accessible hostname or IP you can use to reach the resource, and the port number to be used
for SSH. It will come in a table in ipython, or in a simple list in the command line output:

[h0][ywauusshw5k] starlight.vts.bsswks.net: 22
[h1][k10172ltax6] starlight.vts.bsswks.net: 22

In this case, if we want to connect to the container representing h0, we have the information that we can give to
an SSH client to connect:

ssh -i ~/.ssh/id_geni_ssh_rsa ywauusshw5k@starlight.vts.bsswks.net

Note

Since the default SSH port is 22, we don’t have to provide the port to the client. Also as with all GENI slivers,
the SSH public key referenced in your context object is the one used for authentication. By default it is the
one used above.

Now that you have a connection to the host, you can run dhclient to get an IP address from the DHCP server that
you provisioned in your topology:

/ # dhclient -v eth1

As we asked for verbose output, you should see something like the output below:

Internet Systems Consortium DHCP Client 4.3.4
Copyright 2004-2016 Internet Systems Consortium.
All rights reserved.
For info, please visit https://www.isc.org/software/dhcp/

Listening on LPF/eth1/f6:5e:13:3c:0f:7c
Sending on LPF/eth1/f6:5e:13:3c:0f:7c
Sending on Socket/fallback
DHCPDISCOVER on eth1 to 255.255.255.255 port 67 interval 3
DHCPREQUEST on eth1 to 255.255.255.255 port 67
DHCPOFFER from 10.70.10.1
DHCPACK from 10.70.10.1
bound to 10.70.10.10 -- renewal in 375 seconds.

Now that you have established that your topology is working, you can walk through the below sections to view internal
network state.

View DHCP Lease State

Many images offer a number of POA (Perform Operational Action) APIs that can be used to gather data about
the current image state. In the case of the uh.simple-dhcpd image we can gather information about the leases that the
DHCP server has currently allocated:

SITE.getLeaseInfo(context, SLICE, "dhcp")

This will give you a table with the current lease state - allocated IP addresses, MAC addresses, when they expire, and
(depending on information offered by the host) the hostname of the requesting host. As long as dhclient continues
to run on each host the client process will renew the leases as necessary.

View Switch MAC Table

Similar to the information offered by the uh.simple-dhcpd image, we can inspect the switch state to view learned
MAC addresses:

SITE.dumpMACs(context, SLICE, "br")

This will give you table with the current MAC table state on the switch (you can also pass it a list of switches, if your
topology has more than one switch). This will include the port number the MAC is learned on, the VLAN if appropriate,
the MAC itself, and the current age. The default aging time for the OVSL2Image is 300 seconds, so a MAC not seen for
5 minutes will expire from the table.

Site Administration

	Container Images

Container Images

The runtime details of Linux container images (regardless of engine) are dictated by
spec files in the _basespecs repository.

A typical GENI VTS installation will have a repository that is similar to below:

/opt/foam/docker-imagespecs/_basespecs/
├── bss.quagga
│ └── spec.json
├── uh.cn4421
│ └── spec.json
├── uh.dnsdhcp
│ └── spec.json
├── uh.dnsroot
│ └── spec.json
├── uh.pynfdev
│ └── spec.json
└── uh.simple-dhcpd
 └── spec.json

A good source of publicly available images is the University of Houston image
repository on bitbucket [https://bitbucket.org/uh-netlab/vts-images].

The specfile format is defined in the developer documentation, and
basic parameters such as memory bounds and custom handlers can be easily modified for
a given site installation.

Developer Documentation

	Container Image Specfiles
	Version 1

	Version 2

	Version 3

	Version 4

	Version 5

	Version 6

	Version 7

Container Image Specfiles

Container runtime parameters are defined by JSON spec files. Parameters are introduced
over time, and the version of the file changes as a result. All versions of the file
are supported at runtime - the version specified outlines the parameters that will be
found in that file.

Note

If you wish to specify a parameter that was introduced in a given version of the
file, you must also specify the required parameters for all previous versions.

Version 1

	Parameter

	name

	Required

	Yes

	Type

	String

	Description

	Image name advertised to clients

	
	

	Parameter

	image-name

	Required

	No

	Type

	String

	Description

	Image name used by instance runtime. Defaults to name if unspecified.

	
	

	Parameter

	max-slots

	Required

	Yes

	Type

	Integer

	Description

	This parameter is ignored, but required.

	
	

	Parameter

	memory

	Required

	Yes

	Type

	Integer

	Description

	The default amount of memory in megabytes allocated to containers using this image

Version 2

	Parameter

	console-shell

	Required

	Yes

	Type

	String

	Description

	The path (internal to the instance) of the shell to run when a user requests a
console. May be empty to disable console access.

Version 3

	Parameter

	capabilities

	Required

	Yes

	Type

	List

	Description

	A list of linux capabilities to set for instances using this image. Pre-version-3 instances
are granted the set of capabilities specified by the list [‘NET_ADMIN’, ‘NET_RAW’].

	
	

	Parameter

	volumes

	Required

	Yes

	Type

	List

	Description

	Non-ephemeral volumes added to instances using this image. May be empty.

	
	

	Parameter

	network-shadow

	Required

	Yes

	Type

	Boolean

	Description

	Set to true if the image MUST have the network set up before the entrypoint is invoked.
This adds significant overhead to the system, and should be avoided if possible.

Version 4

	Parameter

	make-user-image

	Required

	Yes

	Type

	Boolean

	Description

	Build a new image based on this one for each requesting user. This is highly discouraged.

Version 5

	Parameter

	attributes

	Required

	No

	Type

	List of Objects

	Description

	(Review examples in existing images)

	
	

	Parameter

	handler

	Required

	No

	Type

	Object

	Description

	Callback handler class for this image, in the format of:
{“version” : 1, “module” : “<full.module.path>”, “class” : “<classname>”}

	
	

	Parameter

	data-dir

	Required

	Yes

	Type

	String

	Description

	Root directory where volumes are stored for instances using this image. May be empty.

Version 6

	Parameter

	port-attributes

	Required

	No

	Type

	List of Objects

	Description

	(Review examples in existing images)

Version 7

	Parameter

	memory-min

	Required

	No

	Type

	Integer

	Description

	The minimum memory a user may request for instances using this image.

	
	

	Parameter

	memory-max

	Required

	No

	Type

	Integer

	Description

	The maximum memory a user may request for instances using this image.

FAQ

Index

User Documentation

 _static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 GENI - Virtual Topology Service

 		
 High Level Concepts

 		
 Circuit Planes

 		
 Function Surfaces

 		
 GENI Details

 		
 Images

 		
 bss.ovs

 		
 bss.quagga

 		
 uh.simple-dhcpd

 		
 uh.cn4421

 		
 How-To Examples

 		
 Associate Your Dropbox Account with a VTS Site

 		
 OAuth2 Dropbox Authorization

 		
 Create A New Container Image

 		
 High Level Pieces

 		
 Disk Images

 		
 Spec Files

 		
 Handlers

 		
 POA Extensions

 		
 Install VTS into an Ubuntu Server 16.04 Xenial Xerus

 		
 Installation Procedure

 		
 Configure dropbox for your private VTS installation

 		
 Configuration Procedure

 		
 Install custom images in your private VTS installation

 		
 Installation Procedure

 		
 User Tutorials

 		
 Simple L2 Switching

 		
 Topology

 		
 Build the Request Object

 		
 Make the Reservation

 		
 Visualize Reserved Resources

 		
 Connect to Topology Hosts

 		
 View DHCP Lease State

 		
 View Switch MAC Table

 		
 Site Administration

 		
 Container Images

 		
 Developer Documentation

 		
 Container Image Specfiles

 		
 Version 1

 		
 Version 2

 		
 Version 3

 		
 Version 4

 		
 Version 5

 		
 Version 6

 		
 Version 7

 		
 FAQ

_images/dropbox_auth.png
vis-uiuc would like access to its own folder, Apps » vts-
ulu, inside your Dropbox. Learn more

_images/dropbox_code.png
Enter this code into vts-uiuc to finish the process.

XTcPLSUKJOOAAAAAAAAACKa-larRIXO-wSy_0 ZGMwg.

_static/comment-bright.png

_images/simpleovs.png
ho

(host)
‘ dhep
lhasn stncm (host)

_static/ajax-loader.gif

_static/comment-close.png

