

Welcome to gems’s documentation!

Overview

The gems [http://github.com/bprinty/gems] module provides specialized data structures to augment development. It’s similar to the collections [https://docs.python.org/2/library/collections.html] module, but contains different types of objects. For documentation on using these objects, see the Usage section of the documentation.

Content:

	Installation
	Through pip

	Via GitHub

	Questions/Feedback

	Usage
	composite

	filetree

	API
	Data Management

	Filesystem Management

Indices and tables

	Index

	Module Index

	Search Page

Installation

Through pip

$ pip install gems

Via GitHub

$ git clone http://github.com/bprinty/gems.git
$ cd gems
$ python setup.py install

Questions/Feedback

File an issue in the GitHub issue tracker [https://github.com/bprinty/animation/issues].

Usage

The gems [http://github.com/bprinty/gems] module provides specialized data structures to augment development. It’s similar to the collections [https://docs.python.org/2/library/collections.html] module, but contains different types of objects.

Currently, the following objects are available (this list will grow with time and feedback):

	Name

	Description

	composite

	JSON-like data structure for easy data traversal.

	filetree

	JSON-like data structure for easy filesystem traversal.

composite

The gems.composite object abstracts away the complexity associated with managing heavily nested JSON-based structures, allowing easier access to internal properties, and providing operators that work with the data in an intuitive way. Here is a simple example of how to use the composite type in a project:

>>> from gems import composite
>>>
>>> data = composite({
>>> 'one': 1,
>>> 'two': [1, 2, 3],
>>> 'three': ['one', 2, {'three': 'four'}],
>>> 'four': {'five': [6, 7, 8], 'nine': 10, 'eleven': 'twelve'}
>>> })
>>> data.four.five[1] == 6
True
>>> data.two[0] == 1
True

In the example above, an arbitrary data structure is provided as an argument to the composite object, and is transformed into an object where properties can be traversed more gracefully (syntactically). You can also load a composite object from a json or yaml file like so:

>>> from gems import composite
>>>
>>> with open('data.json', 'r') as fi:
>>> data = composite.load(fi)
>>>
>>> print data.four.five[1]
6
>>>
>>> with open('data.yml', 'r') as fi:
>>> data = composite.load(fi)
>>>
>>> print data.four.five[1]
6

Some of the main features of composite objects that make them particularly useful are operators for interacting with the structure. For instance, if two composite objects or a composite object and another similar type are added, you get a composite object as a result that combines the objects in an intuitive way:

>>> # using the 'data' object from above
>>> obj = data + {'five': 6}
>>> obj.five == 6
True
>>> obj.two === [1, 2, 3]
True

>>> obj = data + [1, 2, 3]
>>> obj[0].one.two[0] == 1
True
>>> obj[1][1] == 2
True

>>> data2 = composite([
 1, 2, 3, {'four': 5}
])
>>> obj = data2 + {'five': 6}
>>> obj[0][0] == 1
True
>>> obj[0][2].four == 5
True
>>> obj = data2 + ['seven', 8, 9]
>>> obj[4:6] == ['seven', 8]
True

Other operations like this also can be used with the composite object. For example:

>>> # using the 'data' object from above
>>> 'three' in data
True
>>> 7 in data.four.five
True
>>> data.four.five == [6, 7, 8]
True
>>> data == data2
False

Along with these operators, composite objects also extend set-based functionality for reducing data. For example:

>>> # initialize some data
>>> c1 = composite({
>>> 'one': 1,
>>> 'two': [1, 2],
>>> 'three': {'four': 5, 'five': 7},
>>> 'eight': 8
>>> })
>>> c2 = composite({
>>> 'one': 1,
>>> 'two': [1, 2, 3],
>>> 'three': {'four': 5, 'six': 7},
>>> 'eight': 9,
>>> 'nine': 10
>>> })
>>>
>>> # take the recursive intersection of the data structures
>>> print c1.intersection(c2)
{
 'one': 1,
 'two': [1, 2],
 'three': {'four': 5},
}
>>>
>>> # take the recursive difference of the data structures
>>> print c2.difference(c1)
{
 'two': [3],
 'three': {'six': 7},
 'eight': 9,
 'nine': 10
}
>>>
>>> # take the recursive union of the data structures
>>> print c1.union(c2)
{
 'one': 1,
 'two': [1, 2, 3],
 'three': {'four': 5, 'five': 7, 'six': 7},
 'eight': [8, 9],
 'nine': 10
}

Finally, you can write composite objects back to JSON files easily:

>>> # change the data in the object
>>> data.four.five = 2
>>>
>>> with open('newdata.json', 'w') as nd:
>>> data.write(nd)

By default, this will sort keys and pretty-print to the file, but if you just want to print the raw json to file, use pretty=False.

filetree

Traversal of a filetree is typically a pain in python. You could use os.path.walk recursively to accomplish it, but there should be an easier way. That’s where the gems.filetree comes in handy. Here is an example of how to use the gems.filetree type in a project:

>>> from gems import filetree
>>>
>>> # mydir is a directory with the structure below
>>> ftree = filetree('mydir')
>>> print ftree
mydir/
 one/
 two.txt
 three.json
 two/
 three/
 four.txt
 five six/
 seven.txt
 eight.config

The gems.filetree structure also allows for traversal of the file data like so:

>>> print data.one['two.txt']
/full/path/to/mydir/one/two.txt
>>>
>>> print data.two.three['four.txt']
/full/path/to/mydir/two/three/four.txt
>>>
>>> print data.two['five six']['eight.config']
/full/path/to/mydir/two/five six/eight.config

As you can see in the example above, using JSON-based access is much easier and cleaner than doing many os.path.join operations to create the full paths to objects on your filesystem. You can also create a json structure from the filetree:

>>> print data.json()
{
 "one": {
 "two.txt": "/path/to/mydir/one/two.txt",
 "three.json": "/path/to/mydir/one/three.json"
 },
 "two": {
 "three": {
 "four.txt": "/path/to/mydir/two/three/four.txt"
 },
 "five six": {
 "seven.txt": "/path/to/mydir/two/five six/seven.txt"
 },
 "eight.config": "/path/to/mydir/two/eight.config"
 }
}

Or, if you just want to see a list of all files in the filetree, you can do the following:

>>> print data.files()
'/path/to/mydir/one/two.txt'
'/path/to/mydir/one/three.json'
'/path/to/mydir/two/three/four.txt'
'/path/to/mydir/two/five six/seven.txt'
'/path/to/mydir/two/eight.config'

Finally, to prune the tree for specific files and create a new filetree object:

>>> newtree = data.prune(regex=".*.txt$")
>>> print newtree.files()
'/path/to/mydir/one/two.txt'
'/path/to/mydir/two/three/four.txt'
'/path/to/mydir/two/five six/seven.txt'

API

Data Management

	
class gems.composite(data)

	Data structure for traversing object relationships via attributes
instead of keys and indices.

	Parameters

	data (tuple, list, dict) – Data to build composite datastructure from.

Example

>>> data = composite({
>>> 'one': 1,
>>> 'two': [1, 2, 3],
>>> 'three': ['one', 2, {'three': 'four'}],
>>> 'four': {'five': [6, 7, 8], 'nine': 10, 'eleven': 'twelve'}
>>> })
>>> data.four.five[1] == 6
True
>>> data.two[0] == 1
True

	
append(item)

	Append to object, if object is list.

	
difference(other, recursive=True)

	Recursively compute difference of data. For dictionaries, items
for specific keys will be reduced to differences. For lists, items
will be reduced to differences. This method is meant to be analogous
to set.difference for composite objects.

	Parameters

	
	other (composite) – Other composite object to difference with.

	recursive (bool) – Whether or not to perform the operation recursively,
for all nested composite objects.

	
extend(item)

	Extend list from object, if object is list.

	
classmethod from_json(fh)

	Load json from file handle.

	Parameters

	fh (file) – File handle to load from.

	Examlple:

	>>> with open('data.json', 'r') as json:
>>> data = composite.load(json)

	
classmethod from_string(string)

	Load data from string.

	Parameters

	string (str) – String to load from.

	Examlple:

	>>> with open('data.json', 'r') as json:
>>> jdat = json.read()
>>> data = composite.from_string(jdat)

	
classmethod from_yaml(fh)

	Load yaml from file handle.

	Parameters

	fh (file) – File handle to load from.

	Examlple:

	>>> with open('data.yml', 'r') as json:
>>> data = composite.load(json)

	
get(*args, **kwargs)

	Return item or None, depending on if item exists. This is
meant to be similar to dict.get() for safe access of a property.

	
index(item)

	Return index containing value.

	
intersection(other, recursive=True)

	Recursively compute intersection of data. For dictionaries, items
for specific keys will be reduced to unique items. For lists, items
will be reduced to unique items. This method is meant to be analogous
to set.intersection for composite objects.

	Parameters

	
	other (composite) – Other composite object to intersect with.

	recursive (bool) – Whether or not to perform the operation recursively,
for all nested composite objects.

	
items()

	Return keys for object, if they are available.

	
json()

	Return JSON representation of object.

	
keys()

	Return keys for object, if they are available.

	
classmethod load(fh)

	Load json or yaml data from file handle.

	Parameters

	fh (file) – File handle to load from.

	Examlple:

	>>> with open('data.json', 'r') as json:
>>> jsdata = composite.load(json)
>>>
>>> with open('data.yml', 'r') as yml:
>>> ymldata = composite.load(yml)

	
pop(*args, **kwargs)

	Return item or None, depending on if item exists. This is
meant to be similar to dict.pop() for safe access of a property.

	
union(other, recursive=True, overwrite=False)

	Recursively compute union of data. For dictionaries, items
for specific keys will be combined into a list, depending on the
status of the overwrite= parameter. For lists, items will be appended
and reduced to unique items. This method is meant to be analogous
to set.union for composite objects.

	Parameters

	
	other (composite) – Other composite object to union with.

	recursive (bool) – Whether or not to perform the operation recursively,
for all nested composite objects.

	overwrite (bool) – Whether or not to overwrite entries with the same
key in a nested dictionary.

	
update(other)

	Update internal dictionary object. This is meant to be an
analog for dict.update().

	
values()

	Return keys for object, if they are available.

	
write(fh, pretty=True)

	API niceness defaulting to composite.write_json().

	
write_json(fh, pretty=True)

	Write composite object to file handle in JSON format.

	Parameters

	
	fh (file) – File handle to write to.

	pretty (bool) – Sort keys and indent in output.

	
write_yaml(fh)

	Write composite object to file handle in YAML format.

	Parameters

	fh (file) – File handle to write to.

Filesystem Management

	
class gems.filetree(directory, ignore='^[._]', regex='.*')

	Data structure for traversing directory structure and creating object for
accessing relative file paths.

	Parameters

	
	directory (str) – Directory to build filetree from.

	ignore (str) – Regular expression with items to ignore. If you wish
to recurse through all directories (including hidden directories),
set ignore=None. By default, this is set to “^[._]” (i.e. any files
beginning with “.” or “_”).

Example

>>> data = filetree('mydir')
>>> print data
mydir/
 one/
 two.txt
 three.json
 two/
 three/
 four.txt
 five six/
 seven.txt
 eight.config
>>> print data.one['two.txt']
/full/path/to/mydir/one/two.txt
>>> print data.two.three['four.txt']
/full/path/to/mydir/two/three/four.txt
>>> print data.two['five six']['eight.config']
/full/path/to/mydir/two/five six/eight.config

	
__str__()

	
Note

This needs to be completed – print filetree

	
filelist()

	Return list of files in filetree.

	
get(item)

	Safe way to get items, similar to __dict__.get().

	Parameters

	item (str) – Item to get in file tree.

	
json()

	Return JSON representation of object.

	
prune(regex='.*')

	Prune leaves of filetree according to specified
regular expression.

	Parameters

	regex (str) – Regular expression to use in pruning tree.

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | K
 | L
 | P
 | U
 | V
 | W

_

 	
 	__str__() (gems.filetree method)

A

 	
 	append() (gems.composite method)

C

 	
 	composite (class in gems)

D

 	
 	difference() (gems.composite method)

E

 	
 	extend() (gems.composite method)

F

 	
 	filelist() (gems.filetree method)

 	filetree (class in gems)

 	
 	from_json() (gems.composite class method)

 	from_string() (gems.composite class method)

 	from_yaml() (gems.composite class method)

G

 	
 	get() (gems.composite method)

 	(gems.filetree method)

I

 	
 	index() (gems.composite method)

 	
 	intersection() (gems.composite method)

 	items() (gems.composite method)

J

 	
 	json() (gems.composite method)

 	(gems.filetree method)

K

 	
 	keys() (gems.composite method)

L

 	
 	load() (gems.composite class method)

P

 	
 	pop() (gems.composite method)

 	
 	prune() (gems.filetree method)

U

 	
 	union() (gems.composite method)

 	
 	update() (gems.composite method)

V

 	
 	values() (gems.composite method)

W

 	
 	write() (gems.composite method)

 	
 	write_json() (gems.composite method)

 	write_yaml() (gems.composite method)

 nav.xhtml

 Table of Contents

 		
 Welcome to gems’s documentation!

 		
 Installation

 		
 Through pip

 		
 Via GitHub

 		
 Questions/Feedback

 		
 Usage

 		
 composite

 		
 filetree

 		
 API

 		
 Data Management

 		
 Filesystem Management

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

