
gemini Documentation
Release 0.20.1

Quinlan lab @ UVa

Sep 04, 2017

Contents

1 Overview 3

2 Tutorials 5

3 Latest news 7
3.1 New Installation . 7
3.2 Changes to Inheritance Tools . 7
3.3 New GEMINI Workflow . 8

4 Citation 9

5 Table of contents 11
5.1 Installation . 11
5.2 Quick start . 15
5.3 Annotation with snpEff or VEP . 16
5.4 Preprocessing and Loading a VCF file into GEMINI . 22
5.5 Querying the GEMINI database . 25
5.6 Querying the gene tables . 37
5.7 Built-in analysis tools . 40
5.8 The GEMINI browser interface . 71
5.9 The GEMINI database schema . 73
5.10 Using the GEMINI API . 92
5.11 Speeding genotype queries . 93
5.12 Acknowledgements . 96
5.13 Release History . 96
5.14 F.A.Q. 107
5.15 Other information . 108

i

ii

gemini Documentation, Release 0.20.1

Contents 1

gemini Documentation, Release 0.20.1

2 Contents

CHAPTER 1

Overview

GEMINI (GEnome MINIng) is a flexible framework for exploring genetic variation in the context of the wealth of
genome annotations available for the human genome. By placing genetic variants, sample phenotypes and geno-
types, as well as genome annotations into an integrated database framework, GEMINI provides a simple, flexible, and
powerful system for exploring genetic variation for disease and population genetics.

Using the GEMINI framework begins by loading a VCF file (and an optional PED file) into a database. Each variant is
automatically annotated by comparing it to several genome annotations from source such as ENCODE tracks, UCSC
tracks, OMIM, dbSNP, KEGG, and HPRD. All of this information is stored in portable SQLite database that allows
one to explore and interpret both coding and non-coding variation using “off-the-shelf” tools or an enhanced SQL
engine.

Please also see the original manuscript.

Note:

1. GEMINI solely supports human genetic variation mapped to build 37 (aka hg19) of the human genome.

2. GEMINI is very strict about adherence to VCF format 4.1.

3. For best performance, load and query GEMINI databases on the fastest hard drive to which you have access.

3

http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1003153

gemini Documentation, Release 0.20.1

4 Chapter 1. Overview

CHAPTER 2

Tutorials

In addition to the documentation, please review the following tutorials if you are new to GEMINI. We recommend that
you follow these tutorials in order, as they introduce concepts that build upon one another.

• Introduction to GEMINI, basic variant querying and data exploration. html pdf

• Identifying de novo mutations underlying Mendelian disease html pdf

• Identifying autosomal recessive variants underlying Mendelian disease html pdf

• Identifying autosomal dominant variants underlying Mendelian disease html pdf

• Other GEMINI tools html pdf

5

https://speakerdeck.com/arq5x/an-introduction-and-tutorial-for-variant-exploration-with-gemini
https://s3.amazonaws.com/gemini-tutorials/Intro-To-Gemini.pdf
https://speakerdeck.com/arq5x/identifying-de-novo-mutations-with-gemini
https://s3.amazonaws.com/gemini-tutorials/Gemini-DeNovo-Tutorial.pdf
https://speakerdeck.com/arq5x/identifying-recessive-candidates-with-gemini
https://s3.amazonaws.com/gemini-tutorials/Gemini-Recessive-Tutorial.pdf
https://speakerdeck.com/arq5x/identifying-dominant-candidates-with-gemini
https://s3.amazonaws.com/gemini-tutorials/Gemini-Dominant-Tutorial.pdf
https://speakerdeck.com/arq5x/other-gemini-tools
https://s3.amazonaws.com/gemini-tutorials/GEMINI-Other-Tools.pdf

gemini Documentation, Release 0.20.1

6 Chapter 2. Tutorials

CHAPTER 3

Latest news

New Installation

In version 0.18, we have introduced a new installation procedure based on conda that should make the installation
more reliable. For users with an existing installation with any trouble using gemini update –devel, we suggest to do a
fresh install using a command like:

wget https://github.com/arq5x/gemini/raw/master/gemini/scripts/gemini_install.py
python gemini_install.py $tools $data
PATH=$tools/bin:$data/anaconda/bin:$PATH

where $tools and $data are paths writable on your system.

With an existing $tool and $data directory from a previous install, you can use the installer to re-install the Python
code with the new version, but leave the existing data in place. To do this, first remove the old anaconda directory:

rm -rf $data/anaconda

then run the installation commands above.

Changes to Inheritance Tools

As of version 0.16.0, the built-in Mendelian inheritance tools are more stringent by default (they can be relaxed
with the --lenient) option. By default, samples with unknown phenotype will not affect the tools, and strict
requirements are placed on family structure. See the the docs for more info. In addition, the inheritance tools now
support multi-generational pedigrees.

7

http://conda.pydata.org/docs/

gemini Documentation, Release 0.20.1

New GEMINI Workflow

As version 0.12.2 of GEMINI it is required that your input VCF file undergo additional preprocessing such that multi-
allelic variants are decomposed and normalized using the vt toolset from the Abecasis lab. Note that we have also
decomposed and normalized all of the VCF-based annotation files (e.g., ExAC, dbSNP, ClinVar, etc.) so that variants
and alleles are properly annotated and we minimize false negative and false positive annotations. For a great discussion
of why this is necessary, please read this blog post from Eric Minikel in Daniel MacArthur’s lab.

Essentially, VCF preprocessing for GEMINI now boils down to the following steps.

0. If working with GATK VCFs, you need to correct the AD INFO tag definition to play nicely with vt.

1. Decompose the original VCF such that variants with multiple alleles are expanded into distinct variant records;
one record for each REF/ALT combination.

2. Normalize the decomposed VCF so that variants are left aligned and represented using the most parsimonious
alleles.

3. Annotate with VEP or snpEff.

4. bgzip and tabix.

A workflow for the above steps is given below.

setup
VCF=/path/to/my.vcf
NORMVCF=/path/to/my.norm.vcf.gz
REF=/path/to/human.b37.fasta
SNPEFFJAR=/path/to/snpEff.jar

decompose, normalize and annotate VCF with snpEff.
NOTE: can also swap snpEff with VEP
zless $VCF \

| sed 's/ID=AD,Number=./ID=AD,Number=R/' \
| vt decompose -s - \
| vt normalize -r $REF - \
| java -Xmx4G -jar $SNPEFFJAR GRCh37.75 \
| bgzip -c > $NORMVCF

tabix -p vcf $NORMVCF

load the pre-processed VCF into GEMINI
gemini load --cores 3 -t snpEff -v $NORMVCF $db

query away
gemini query -q "select chrom, start, end, ref, alt, (gts).(*) from variants" \

--gt-filter "gt_types.mom == HET and \
gt_types.dad == HET and \
gt_types.kid == HOM_ALT" \

$db

8 Chapter 3. Latest news

http://genome.sph.umich.edu/wiki/Vt
http://genome.sph.umich.edu/wiki/Main_Page
http://www.cureffi.org/2014/04/24/converting-genetic-variants-to-their-minimal-representation/
http://genome.sph.umich.edu/wiki/Vt#Decompose
http://genome.sph.umich.edu/wiki/Vt#Normalization

CHAPTER 4

Citation

If you use GEMINI in your research, please cite the following manuscript:

Paila U, Chapman BA, Kirchner R, Quinlan AR (2013)
GEMINI: Integrative Exploration of Genetic Variation and Genome Annotations.
PLoS Comput Biol 9(7): e1003153. doi:10.1371/journal.pcbi.1003153

9

gemini Documentation, Release 0.20.1

10 Chapter 4. Citation

CHAPTER 5

Table of contents

Installation

Automated installation

GEMINI contains an automated installation script which installs GEMINI along with required Python dependencies,
third party software and data files.

$ wget https://raw.github.com/arq5x/gemini/master/gemini/scripts/gemini_install.py

While other tools (e.g., curl) can be used to download this file, wget is required by the installation script. Please
install wget if it is not already available:

Once you have downloaded the above installation script, you can proceed as follows:

$ python gemini_install.py /usr/local /usr/local/share/gemini
$ export PATH=$PATH:/usr/local/gemini/bin
it would be wise to add the above line to your ``.bashrc`` or ``.bash_profile``

This installs the GEMINI executable as /usr/local/bin/gemini, other required third party dependencies in
/usr/local/bin, and associated data files in /usr/local/share/gemini. Please note that this is merely
an example: one can place the GEMINI executables and annotation files in any directories one wishes.

Note: The automated installtion script typically requires ~30 minutes, primarily owing to the time required to down-
load the GEMINI genome annotation files. Also, please note that the annotation files requires ~15Gb of storage, so
please ensure that the data directory (/usr/local/share/gemini in the example above) has sufficient space.

Tip: Some tips and tricks for installation issues:

1. Some older versions of wget have certificate problems with GitHub files. If you run into this problem, you can
alternatively download the install script using‘‘wget –no-check-certificates‘‘ or curl -O.

11

gemini Documentation, Release 0.20.1

2. The installation script is idempotent and you can re-run it multiple times without any issues. If you experience
internet connectivity or other transient errors during installation, a re-run can often solve the problem (fingers
crossed).

3. If you’re installing behind a proxy you’ll need to set proxy information in a condarc file and also set
all_proxy, http_proxy and https_proxy in your .bashrc file. See this mailing list discussion
for more information.

4. The installer tries to ignore site-wide environmental variables pointing to other Python installations, but if you
have issues with pulling in Python libraries from other locations, you clear these by unsetting/setting these
environmental variables before running: unset PYTHONPATH && unset PYTHONHOME && export
PYTHONNOUSERSITE=1

Dependencies

The installer requires:

• Python 2.7.x

• git

• wget

• a working C / C++ compiler such as gcc

• zlib (including headers)

These dependencies already exist on most UNIX/LINUX/OS X machines. However, on minimalist machines such as
fresh Amazon Cloud instances, one may have to install these dependencies before running the automated installer.
In the case of Amazon instances, the following command should take care of all of the above dependencies:

$ sudo yum -y install python27 git wget gcc gcc-c++ zlib-devel

Installing without root access.

As many users do not have root or sudo access, the automated installer also has options to install in “non-root”
environments:

$ python gemini_install.py ~/gemini ~/gemini --nosudo

Updating your PATH to find the GEMINI executable

At this point, you will have a self-contained installation of GEMINI, including both the software and its associated
genome annotations. However, if you have done a custom install in a “non-root” enviornment, you will first need to
update your PATH environment variable to include the path to the bin directory that you just created by running the
automated installer.

For example, if, as above, you placed you custom install in ~/gemini, you would need to update your PATH as
follows. It would be wise to also add this to your .bashrc or .bash_profile:

$ export PATH=$PATH:~/gemini/bin

Note that this change will only last for the life of your current terminal session. To make this more permanent, update
your .bash_profile so that this change is made each time you login.

If successful, you should be able to run the following command from anywhere on your system:

12 Chapter 5. Table of contents

http://docs.continuum.io/conda/intro.html#configuration
https://groups.google.com/d/msg/gemini-variation/WMQiMDeW6aE/6oa8nS1NorUJ

gemini Documentation, Release 0.20.1

$ gemini -v
gemini 0.3.0b

Running unit tests

gemini only installs the software itself, not the source repository with the tests. To run the tests, do:

$ git clone https://github.com/arq5x/gemini
$ git checkout v0.18.3 # or the current version that you installed
$ cd gemini
$ bash master-test.sh

Updating the GEMINI executables and annotations

Once installed with the automated installer, it is easy to upgrade the GEMINI programs and associated data files to the
latest released version with:

$ gemini update

There are also flags to update to the latest development version of the code or to only update data files without updating
the source:

$ gemini update --devel
$ gemini update --dataonly

To download optional large files associated with specific analyses in GEMINI, like GERP scores per base pair and
CADD scores, pass the --extra flag:

$ gemini update --dataonly --extra cadd_score
$ gemini update --dataonly --extra gerp_bp

Software dependencies

GEMINI depends upon several widely-used genomics command line software as well as multiple Python packages.
We recognize that the dependency stack is quite deep and are working on ways to minimize dependencies in the
interest of the most streamlined installation process possible. Nonetheless, the following are core dependencies:

1. Python 2.7.x

2. grabix

3. tabix (only by annotate tool)

4. bedtools (only by windower tool)

5. pybedtools (only by windower tool)

Manual installation

Once the above dependencies have been installed, one can begin installing GEMINI itself. To install you should
download the latest source code from GitHub, either by going to:

5.1. Installation 13

https://github.com/arq5x/grabix
http://sourceforge.net/projects/samtools/files/
https://code.google.com/p/bedtools/
http://pythonhosted.org/pybedtools/main.html#installing-pybedtools

gemini Documentation, Release 0.20.1

http://github.com/arq5x/gemini

and clicking on “Downloads”, or by cloning the git repository with:

$ git clone https://github.com/arq5x/gemini.git

Once you have the source code, run:

$ cd gemini
$ sudo python setup.py install

to install it. If you don’t have permission to install it in the default directory, you can simply build the source in-place
and use the package from the git repository:

$ python setup.py build_ext --inplace

Installing annotation files

One of the more appealing features in GEMINI is that it automatically annotates variants in a VCF file with several
genome annotations. However, you must first install these data files on your system. It’s easy enough — you just need
to run the following script and tell it in which full path you’d like to install the necessary data files. The recommended
path is /usr/local/share, but you can install the data files wherever you want.

$ python gemini/install-data.py /usr/local/share/

Note: Annotation files like GERP at base pair resolution and CADD scores are not part of this default installation
owing to their large file size. They may however be installed as additional data files using the gemini update
--dataonly option, with the flag --extra for gerp_bp and cadd_score.

Using previously installed annotation files

If you have installed GEMINI with the annotation files on a server and you can NFS mount the annotation files, you
can tell a local install of GEMINI where those annotation files are by making the file ~/.gemini/gemini-config.yaml:

annotation_dir: /path/to/nfs_mounted/gemini/data
versions:

GRCh37-gms-mappability.vcf.gz: 2
hg19.rmsk.bed.gz: 2

Running the testing suite

GEMINI comes with a full test suite to make sure that everything has installed correctly on your system. We strongly
encourage you to run these tests.

$ bash master-test.sh

14 Chapter 5. Table of contents

gemini Documentation, Release 0.20.1

Quick start

gemini is designed to allow researchers to explore genetic variation contained in a VCF file. The basic workflow for
working with gemini is outlined below.

Importing VCF files into gemini.

Note: we now recommend splitting variants with multiple alternates and left-aligning, and trimming all variants
before loading into gemini.

See Step 1. split, left-align, and trim variants for a detailed explanation.

Before we can use GEMINI to explore genetic variation, we must first load our VCF file into the GEMINI database
framework. We expect you to have first annotated the functional consequence of each variant in your VCF using either
VEP or snpEff (Note that v3.0+ of snpEff is required to track the amino acid length of each impacted transcript).
Logically,the loading step is done with the gemini load command. Below are two examples based on a VCF file
that we creatively name my.vcf. The first example assumes that the VCF has been pre-annotated with VEP and the
second assumes snpEff.

VEP-annotated VCF
$ gemini load -v my.vcf -t VEP my.db

snpEff-annotated VCF
$ gemini load -v my.vcf -t snpEff my.db

Assuming you have a valid VCF file produced by standard variation discovery programs (e.g., GATK, FreeBayes,
etc.), one loads the VCF into the gemini framework with the load submodule:

$ gemini load -v my.vcf my.db

In this step, gemini reads and loads the my.vcf file into a SQLite database named my.db, whose structure is described
here. While loading the database, gemini computes many additional population genetics statistics that support down-
stream analyses. It also stores the genotypes for each sample at each variant in an efficient data structure that minimizes
the database size.

Loading is by far the slowest aspect of GEMINI. Using multiple CPUs can greatly speed up this process.

$ gemini load -v my.vcf --cores 8 my.db

Querying the gemini database.

If you are familiar with SQL, gemini allows you to directly query the database in search of interesting variants via
the -q option. For example, here is a query to identify all novel, loss-of-function variants in your database:

$ gemini query -q "select * from variants where is_lof = 1 and in_dbsnp = 0" my.db

Or, we can ask for all variants that substantially deviate from Hardy-Weinberg equilibrium:

$ gemini query -q "select * from variants where hwe < 0.01" my.db

5.2. Quick start 15

http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41
http://gemini.readthedocs.org/en/latest/content/database_schema.html

gemini Documentation, Release 0.20.1

Annotation with snpEff or VEP

GEMINI depends upon external tools to predict the functional consequence of variants in a VCF file. We currently
support annotations produced by either SnpEff or VEP.

Note: Versions tested: VEP versions 73 through 75 and core SnpEff versions 3.0 through 3.6. GEMINI supports
ENSEMBL annotations hence users are expected to download genome databases for these tools as represented in the
examples below.

Note: Version support would be subsequently updated here, as we test along and add or edit changes available with
the latest version of these tools.

Recommended instructions for annotating existing VCF files with these tools are summarized here.

Stepwise installation and usage of VEP

Download the Variant Effect Predictor “standalone perl script” from Ensembl. You can choose a specific version of
VEP to download here

Example:

Download version 74

Untar the tarball into the current directory

$ tar -zxvf variant_effect_predictor.tar.gz

This will create the variant_effect_predictor directory. Now do the following for install:

$ cd variant_effect_predictor
$ perl INSTALL.pl [options]

By default this would install the API’s, bioperl-1.2.3 and the cache files (in the $HOME/.vep directory).

Homebrew or Anaconda VEP installation

If you are a Homebrew, Linuxbrew or Anaconda user, there is an automated recipe to install the main VEP script and
plugins in the CloudBioLinux homebrew repository:

$ brew tap chapmanb/cbl
$ brew update
$ brew install vep

For Anaconda/Miniconda, just make sure you are pointing to the bioconda channel:

$ conda install variant-effect-predictor -c bioconda

16 Chapter 5. Table of contents

http://snpeff.sourceforge.net/
http://www.ensembl.org/info/docs/variation/vep/index.html
http://www.ensembl.org/info/docs/tools/vep/script/vep_download.html
http://brew.sh/
http://brew.sh/linuxbrew/
http://conda.pydata.org/miniconda.html
https://github.com/chapmanb/homebrew-cbl

gemini Documentation, Release 0.20.1

Manual installation of VEP

For those (e.g mac users) who have a problem installing through this install script, try a manual installation of the
API’s, BioPerl-1.2.3 and set all pre-requisites for running VEP (DBI and DBD::mysql modules required). The
appropriate pre-build caches should be downloaded for Human to the $HOME/.vep directory and then untar.

You may follow instructions at http://www.ensembl.org/info/docs/api/api_installation.html which provides alternate
options for the API installation and additional tips for windows/mac users. It also has information for setting up your
environment to run VEP.

Example download of the cache files

$ wget ftp://ftp.ensembl.org/pub/release-73/variation/VEP/homo_sapiens_vep_73.tar.gz

You may change the release date in this example to get the appropriate cache files for your version of VEP that you
have installed.

Example

$ wget ftp://ftp.ensembl.org/pub/release-74/variation/VEP/homo_sapiens_vep_74.tar.gz

Cache requires the gzip and zcat utilities. VEP uses zcat to decompress cached files. For systems where zcat
may not be installed or may not work, the following option needs to be added along with the --cache option:

--compress "gunzip -c"

Running VEP

You may now run VEP as:

$ perl variant_effect_predictor.pl [OPTIONS]

We recommend running VEP with the following options as currently we support VEP fields specified as below:

$ perl variant_effect_predictor.pl -i example.vcf \
--cache \
--sift b \
--polyphen b \
--symbol \
--numbers \
--biotype \
--total_length \
-o output \
--vcf \
--fields Consequence,Codons,Amino_acids,Gene,SYMBOL,Feature,EXON,PolyPhen,SIFT,

→˓Protein_position,BIOTYPE

A documentation for the above specified options may be found at http://www.ensembl.org/info/docs/tools/vep/script/
vep_options.html

As of GEMINI version 0.8.0, you can also run VEP with additional fields, which will be automatically added to the
variants table as columns. As an example, run VEP on your VCF with the dbNSFP and LOFTEE plugins to annotate
potential high impact variations:

$ variant_effect_predictor.pl --sift b --polyphen b --symbol --numbers --biotype \
--total_length --canonical --ccds \
--fields Consequence,Codons,Amino_acids,Gene,SYMBOL,Feature,EXON,PolyPhen,SIFT,
→˓Protein_position,BIOTYPE,CANONICAL,CCDS,RadialSVM_score,RadialSVM_pred,LR_score,LR_
→˓pred,CADD_raw,CADD_phred,Reliability_index,LoF,LoF_filter,LoF_flags \

5.3. Annotation with snpEff or VEP 17

http://www.ensembl.org/info/docs/api/api_installation.html
http://www.ensembl.org/info/docs/tools/vep/script/vep_options.html
http://www.ensembl.org/info/docs/tools/vep/script/vep_options.html
https://github.com/ensembl-variation/VEP_plugins/blob/master/dbNSFP.pm
https://github.com/konradjk/loftee

gemini Documentation, Release 0.20.1

--plugin dbNSFP,/path/to/dbNSFP_v2.5.gz,RadialSVM_score,RadialSVM_pred,LR_score,LR_
→˓pred,CADD_raw,CADD_phred,Reliability_index \
--plugin LoF,human_ancestor_fa:/path/to/human_ancestor.fa

Feeding this into GEMINI produces a variants table with columns for each of the additional VEP metrics. The annota-
tion loader names each column by prefixing vep_ to the origin VEP name, so select on vep_radialsvm_score
or vep_lof_filter in the final database.

Stepwise installation and usage of SnpEff

Note: Basic Requirements: Java v1.7 or later; at least 4GB of memory

Download the supported versions of SnpEff from http://snpeff.sourceforge.net/download.html

Example:

$ wget http://sourceforge.net/projects/snpeff/files/snpEff_v3_6_core.zip

Note: SnpEff should be installed preferably in snpEff directory in your home directory. Else, you must update the
data_dir parameter in your snpEff.config file. For e.g. if the installation of snpEff has been done in ~/src instead
of ~/ then change the data_dir parameter in snpEff.config to data_dir = ~/src/snpEff/data/

Unzip the downloaded package.

$ unzip snpEff_v3_6_core.zip

Change to the snpEff directory and download the genome database.

$ cd snpEff_v3_6_core
$ java -jar snpEff.jar download GRCh37.69

Unzip the downloaded genome database. This will create and place the genome in the ‘data’ directory

$ unzip snpEff_v3_6_GRCh37.69.zip

To annotate a vcf using snpEff, use the default options as below:

Note: Memory options for the run may be specified as -Xmx4G (4GB)

$ java -Xmx4G -jar snpEff.jar -i vcf -o vcf GRCh37.69 example.vcf > example_snpeff.vcf

If running from a directory different from the installation directory, the complete path needs to be specified as, e.g.:

$ java -Xmx4G -jar path/to/snpEff/snpEff.jar -c path/to/snpEff/snpEff.config GRCh37.
→˓69 path/to/example.vcf > example_snpeff.vcf

Note: When using the latest versions of snpEff (e.g. 4.1) annotate your VCF with the additional parameters
-classic and -formatEff. This would ensure proper loading of the gene info columns in the variants table.

18 Chapter 5. Table of contents

http://snpeff.sourceforge.net/download.html

gemini Documentation, Release 0.20.1

Columns populated by snpEff/VEP tools

The following variant consequence columns in the variant/variant_impacts table, are populated with these annotations,
which are otherwise set to null.

• anno_id

• gene

• transcript

• exon

• is_exonic

• is_lof

• is_coding

• codon_change

• aa_change

• aa_length

• biotype

• impact

• impact_so

• impact_severity

• polyphen_pred

• polyphen_score

• sift_pred

• sift_score

Standardizing impact definitions for GEMINI

GEMINI uses slightly modified impact terms (for ease) to describe the functional consequence of a given variant as
provided by snpEff/VEP.

The table below shows the alternate GEMINI terms used for snpEff/VEP.

GEMINI terms snpEff terms VEP terms (uses SO by default)
splice_acceptor SPLICE_SITE_ACCEPTOR splice_acceptor_variant
splice_donor SPLICE_SITE_DONOR splice_donor_variant
stop_gain STOP_GAINED stop_gained
stop_loss STOP_LOST stop_lost
frame_shift FRAME_SHIFT frameshift_variant
start_loss START_LOST null
exon_deleted EXON_DELETED null
non_synonymous_start NON_SYNONYMOUS_START null
transcript_codon_change null initiator_codon_variant
chrom_large_del CHROMOSOME_LARGE_DELETION null
rare_amino_acid RARE_AMINO_ACID null
non_syn_coding NON_SYNONYMOUS_CODING missense_variant

Continued on next page

5.3. Annotation with snpEff or VEP 19

http://sequenceontology.org/browser/current_svn/term/SO:0001574
http://sequenceontology.org/browser/current_svn/term/SO:0001575
http://sequenceontology.org/browser/current_svn/term/SO:0001587
http://sequenceontology.org/browser/current_svn/term/SO:0001578
http://sequenceontology.org/browser/current_svn/term/SO:0001589
http://sequenceontology.org/browser/current_svn/term/SO:0001582
http://sequenceontology.org/browser/current_svn/term/SO:0001583

gemini Documentation, Release 0.20.1

Table 5.1 – continued from previous page
GEMINI terms snpEff terms VEP terms (uses SO by default)
inframe_codon_gain CODON_INSERTION inframe_insertion
inframe_codon_loss CODON_DELETION inframe_deletion
inframe_codon_change CODON_CHANGE null
codon_change_del CODON_CHANGE_PLUS_CODON_DELETION null
codon_change_ins CODON_CHANGE_PLUS_CODON_INSERTION null
UTR_5_del UTR_5_DELETED null
UTR_3_del UTR_3_DELETED null
splice_region SPLICE_SITE_REGION splice_region_variant
mature_miRNA null mature_miRNA_variant
regulatory_region null regulatory_region_variant
TF_binding_site null TF_binding_site_variant
regulatory_region_ablation null regulatory_region_ablation
regulatory_region_amplification null regulatory_region_amplification
TFBS_ablation null TFBS_ablation
TFBS_amplification null TFBS_amplification
synonymous_stop SYNONYMOUS_STOP stop_retained_variant
synonymous_coding SYNONYMOUS_CODING synonymous_variant
UTR_5_prime UTR_5_PRIME 5_prime_UTR_variant
UTR_3_prime UTR_3_PRIME 3_prime_UTR_variant
intron INTRON intron_variant
CDS CDS coding_sequence_variant
upstream UPSTREAM upstream_gene_variant
downstream DOWNSTREAM downstream_gene_variant
intergenic INTERGENIC intergenic_variant
intergenic_conserved INTERGENIC_CONSERVED null
intragenic INTRAGENIC null
gene GENE null
transcript TRANSCRIPT null
exon EXON null
start_gain START_GAINED null
synonymous_start SYNONYMOUS_START null
intron_conserved INTRON_CONSERVED null
nc_transcript null nc_transcript_variant (should have been returned by VEP as: non_coding_transcript_variant)
NMD_transcript null NMD_transcript_variant
incomplete_terminal_codon null incomplete_terminal_codon_variant
nc_exon null non_coding_exon_variant (should have been returned by VEP as: non_coding_transcript_exon_variant)
transcript_ablation null transcript_ablation
transcript_amplification null transcript_amplification
feature elongation null feature_elongation
feature truncation null feature_truncation

Note: “null” refers to the absence of the corresponding term in the alternate database

SO impact definitions in GEMINI

The below table shows the Sequence Ontology (SO) term mappings for the GEMINI impacts, which is otherwise
contained in the impact_so column of the variants/variant_impacts table of the GEMINI database. The last column
shows the severity terms defined in GEMINI for these impacts.

20 Chapter 5. Table of contents

http://sequenceontology.org/browser/current_svn/term/SO:0001821
http://sequenceontology.org/browser/current_svn/term/SO:0001822
http://sequenceontology.org/browser/current_svn/term/SO:0001630
http://sequenceontology.org/browser/current_svn/term/SO:0001620
http://sequenceontology.org/browser/current_svn/term/SO:0001566
http://sequenceontology.org/browser/current_svn/term/SO:0001782
http://sequenceontology.org/browser/current_svn/term/SO:0001894
http://sequenceontology.org/browser/current_svn/term/SO:0001891
http://sequenceontology.org/browser/current_svn/term/SO:0001895
http://sequenceontology.org/browser/current_svn/term/SO:0001892
http://sequenceontology.org/browser/current_svn/term/SO:0001567
http://sequenceontology.org/browser/current_svn/term/SO:0001819
http://sequenceontology.org/browser/current_svn/term/SO:0001623
http://sequenceontology.org/browser/current_svn/term/SO:0001624
http://sequenceontology.org/browser/current_svn/term/SO:0001627
http://sequenceontology.org/browser/current_svn/term/SO:0001580
http://sequenceontology.org/browser/current_svn/term/SO:0001631
http://sequenceontology.org/browser/current_svn/term/SO:0001632
http://sequenceontology.org/browser/current_svn/term/SO:0001628
http://www.sequenceontology.org/browser/current_svn/term/SO:0001619
http://sequenceontology.org/browser/current_svn/term/SO:0001621
http://sequenceontology.org/browser/current_svn/term/SO:0001626
http://sequenceontology.org/browser/current_svn/term/SO:0001792
http://sequenceontology.org/browser/current_svn/term/SO:0001893
http://sequenceontology.org/browser/current_svn/term/SO:0001889
http://sequenceontology.org/browser/current_svn/term/SO:0001907
http://sequenceontology.org/browser/current_svn/term/SO:0001906

gemini Documentation, Release 0.20.1

GEMINI terms (column: impact) Sequence Ontology terms (column: impact_so) Impact severity
splice_acceptor splice_acceptor_variant HIGH
splice_donor splice_donor_variant HIGH
stop_gain stop_gained HIGH
stop_loss stop_lost HIGH
frame_shift frameshift_variant HIGH
start_loss start_lost HIGH
exon_deleted exon_loss_variant HIGH
non_synonymous_start initiator_codon_variant HIGH
transcript_codon_change initiator_codon_variant HIGH
chrom_large_del chromosomal_deletion HIGH
rare_amino_acid rare_amino_acid_variant HIGH
non_syn_coding missense_variant MED
inframe_codon_gain inframe_insertion MED
inframe_codon_loss inframe_deletion MED
inframe_codon_change coding_sequence_variant MED
codon_change_del disruptive_inframe_deletion MED
codon_change_ins disruptive_inframe_insertion MED
UTR_5_del 5_prime_UTR_truncation + exon_loss_variant MED
UTR_3_del 3_prime_UTR_truncation + exon_loss_variant MED
splice_region splice_region_variant MED
mature_miRNA mature_miRNA_variant MED
regulatory_region regulatory_region_variant MED
TF_binding_site TF_binding_site_variant MED
regulatory_region_ablation regulatory_region_ablation MED
regulatory_region_amplification regulatory_region_amplification MED
TFBS_ablation TFBS_ablation MED
TFBS_amplification TFBS_amplification MED
synonymous_stop stop_retained_variant LOW
synonymous_coding synonymous_variant LOW
UTR_5_prime 5_prime_UTR_variant LOW
UTR_3_prime 3_prime_UTR_variant LOW
intron intron_variant LOW
CDS coding_sequence_variant LOW
upstream upstream_gene_variant LOW
downstream downstream_gene_variant LOW
intergenic intergenic_variant LOW
intergenic_conserved conserved_intergenic_variant LOW
intragenic intragenic_variant LOW
gene gene_variant LOW
transcript transcript_variant LOW
exon exon_variant LOW
start_gain 5_prime_UTR_premature_start_codon_gain_variant LOW
synonymous_start start_retained_variant LOW
intron_conserved conserved_intron_variant LOW
nc_transcript nc_transcript_variant LOW
NMD_transcript NMD_transcript_variant LOW
incomplete_terminal_codon incomplete_terminal_codon_variant LOW
nc_exon non_coding_exon_variant LOW
transcript_ablation transcript_ablation LOW
transcript_amplification transcript_amplification LOW

Continued on next page

5.3. Annotation with snpEff or VEP 21

http://sequenceontology.org/browser/current_svn/term/SO:0001574
http://sequenceontology.org/browser/current_svn/term/SO:0001575
http://sequenceontology.org/browser/current_svn/term/SO:0001587
http://sequenceontology.org/browser/current_svn/term/SO:0001578
http://sequenceontology.org/browser/current_svn/term/SO:0001589
http://sequenceontology.org/browser/current_svn/term/SO:0002012
http://sequenceontology.org/browser/current_svn/term/SO:0001572
http://sequenceontology.org/browser/current_svn/term/SO:0001582
http://sequenceontology.org/browser/current_svn/term/SO:0001582
http://sequenceontology.org/browser/current_svn/term/SO:1000029
http://sequenceontology.org/browser/current_svn/term/SO:0002008
http://sequenceontology.org/browser/current_svn/term/SO:0001583
http://sequenceontology.org/browser/current_svn/term/SO:0001821
http://sequenceontology.org/browser/current_svn/term/SO:0001822
http://sequenceontology.org/browser/current_svn/term/SO:0001580
http://sequenceontology.org/browser/current_svn/term/SO:0001826
http://sequenceontology.org/browser/current_svn/term/SO:0001824
http://sequenceontology.org/browser/current_svn/term/SO:0002013
http://sequenceontology.org/browser/current_svn/term/SO:0001572
http://sequenceontology.org/browser/current_svn/term/SO:0002015
http://sequenceontology.org/browser/current_svn/term/SO:0001572
http://sequenceontology.org/browser/current_svn/term/SO:0001630
http://sequenceontology.org/browser/current_svn/term/SO:0001620
http://sequenceontology.org/browser/current_svn/term/SO:0001566
http://sequenceontology.org/browser/current_svn/term/SO:0001782
http://sequenceontology.org/browser/current_svn/term/SO:0001894
http://sequenceontology.org/browser/current_svn/term/SO:0001891
http://sequenceontology.org/browser/current_svn/term/SO:0001895
http://sequenceontology.org/browser/current_svn/term/SO:0001892
http://sequenceontology.org/browser/current_svn/term/SO:0001567
http://sequenceontology.org/browser/current_svn/term/SO:0001819
http://sequenceontology.org/browser/current_svn/term/SO:0001623
http://sequenceontology.org/browser/current_svn/term/SO:0001624
http://sequenceontology.org/browser/current_svn/term/SO:0001627
http://sequenceontology.org/browser/current_svn/term/SO:0001580
http://sequenceontology.org/browser/current_svn/term/SO:0001631
http://sequenceontology.org/browser/current_svn/term/SO:0001632
http://sequenceontology.org/browser/current_svn/term/SO:0001628
http://sequenceontology.org/browser/current_svn/term/SO:0002017
http://sequenceontology.org/browser/current_svn/term/SO:0002011
http://sequenceontology.org/browser/current_svn/term/SO:0001564
http://sequenceontology.org/browser/current_svn/term/SO:0001576
http://sequenceontology.org/browser/current_svn/term/SO:0001791
http://sequenceontology.org/browser/current_svn/term/SO:0001988
http://sequenceontology.org/browser/current_svn/term/SO:0002019
http://sequenceontology.org/browser/current_svn/term/SO:0002018
http://www.sequenceontology.org/browser/current_svn/term/SO:0001619
http://sequenceontology.org/browser/current_svn/term/SO:0001621
http://sequenceontology.org/browser/current_svn/term/SO:0001626
http://sequenceontology.org/browser/current_svn/term/SO:0001792
http://sequenceontology.org/browser/current_svn/term/SO:0001893
http://sequenceontology.org/browser/current_svn/term/SO:0001889

gemini Documentation, Release 0.20.1

Table 5.2 – continued from previous page
GEMINI terms (column: impact) Sequence Ontology terms (column: impact_so) Impact severity
feature elongation feature_elongation LOW
feature truncation feature_truncation LOW

Preprocessing and Loading a VCF file into GEMINI

Step 1. split, left-align, and trim variants

Variants with multiple alternate alleles will not be handled correctly by gemini (or by the tools used to annotate the
variants). As projects get more samples it is likely that a non-negligible percentage of site will have multiple alternate
alleles.

In addition, variants that are not left-aligned and trimmed can be incorrectly (or not) annotated.

To reduce the number of false negatives, we strongly recommend that gemini users split, left-align, and trim their
variants. The tools we recommend for this are either vt:

vt decompose -s $VCF | vt normalize -r $REFERENCE - > $NEW_VCF

gemini uses the allele depths from the AD tag. In order for vt to decompose correctly, users will have to change the
#INFO field for AD in the header from Number=. to Number=R.

Then the $NEW_VCF can be annotated with snpEff or VEP.

Step 2. Annotate with snpEff or VEP

Note: Annotate your VCF with SnpEff/VEP, prior to loading it into GEMINI, otherwise the gene/transcript features
would be set to None.

GEMINI supports gene/transcript level annotations (we do not use pre-computed values here) from snpEff and VEP
and hence we suggest that you first annotate your VCF with either of these tools, prior to loading it into GEMINI. The
related database columns would be populated, which would otherwise be set to None if an unannotated VCF file is
loaded into GEMINI.

Note: Choose the annotator as per your requirement! Some gene/transcript annotations are available with only one
tool (e.g. Polyphen/Sift with VEP). As such these values would be set to None, if an alternate annotator is used
during the load step.

Instructions for installing and running these tools can be found in the following section:

Annotation with snpEff or VEP

The basics

Before we can use GEMINI to explore genetic variation, we must first load our VCF file into the GEMINI database
framework. We expect you to have first annotated the functional consequence of each variant in your VCF using either
VEP or snpEff (Note that v3.0+ of snpEff is required to track the amino acid length of each impacted transcript).
Logically, the loading step is done with the gemini load command. Below are two examples based on a VCF file

22 Chapter 5. Table of contents

http://sequenceontology.org/browser/current_svn/term/SO:0001907
http://sequenceontology.org/browser/current_svn/term/SO:0001906
https://github.com/atks/vt

gemini Documentation, Release 0.20.1

that we creatively name my.vcf. The first example assumes that the VCF has been pre-annotated with VEP and the
second assumes snpEff.

VEP-annotated VCF
$ gemini load -v my.vcf -t VEP my.db

snpEff-annotated VCF
$ gemini load -v my.vcf -t snpEff my.db

As each variant is loaded into the GEMINI database framework, it is being compared against several annotation files
that come installed with the software. We have developed an annotation framework that leverages tabix, bedtools,
and pybedtools to make things easy and fairly performant. The idea is that, by augmenting VCF files with many
informative annotations, and converting the information into a sqlite database framework, GEMINI provides a
flexible database-driven API for data exploration, visualization, population genomics and medical genomics. We feel
that this ability to integrate variation with the growing wealth of genome annotations is the most compelling aspect of
GEMINI. Combining this with the ability to explore data with SQL using a database design that can scale to 1000s of
individuals (genotypes too!) makes for a nice, standardized data exploration system.

Many variant callers set filter flags in the VCF file to flag possible problem variants. By default GEMINI will
leave these variants in the database during loading but they can be filtered out during the loading step by passing
the --passonly flag to load.

You can create a smaller, faster database if you dont need the genotype likelihoods format each sample by passing the
–skip-pls flag.

Using multiple CPUs for loading

Now, the loading step is very computationally intensive and thus can be very slow with just a single core. However, if
you have more CPUs in your arsenal, you can specify more cores. This provides a roughly linear increase in speed as
a function of the number of cores. On our local machine, we are able to load a VCF file derived from the exomes of
60 samples in about 10 minutes. With a single core, it takes a few hours.

Note: Using multiple cores requires that you have both the bgzip tool from tabix and the grabix tool installed in
your PATH.

$ gemini load -v my.vcf -t snpEff --cores 20 my.db

Using LSF, SGE, SLURM and Torque schedulers

One can load VCF files into GEMINI in parallel using many cores on LSF, SGE, SLURM or Torque clusters. One
must simply specify the type of job scheduler your cluster uses and the queue name to which your jobs should be
submitted.

For example, let’s assume you use LSF and a queue named preempt_everyone. Here is all you need to do:

$ gemini load -v my.vcf \
-t snpEff \
--cores 50 \
--queue preempt_everyone \
--scheduler lsf \
my.db

5.4. Preprocessing and Loading a VCF file into GEMINI 23

http://sourceforge.net/projects/samtools/files/tabix/
http://bedtools.googlecode.com
http://pythonhosted.org/pybedtools/
http://sourceforge.net/projects/samtools/files/tabix/
https://github.com/arq5x/grabix

gemini Documentation, Release 0.20.1

Describing samples with a PED file

GEMINI also accepts PED files in order to establish the familial relationships and phenotypic information of the
samples in the VCF file.

$ gemini load -v my.vcf -p my.ped -t snpEff my.db

The PED file format is documented here: PED. An example PED file looks like this:

1 M10475 -9 -9 1 1
1 M10478 M10475 M10500 2 2
1 M10500 -9 -9 2 2
1 M128215 M10475 M10500 1 1

The columns are family_id, name, paternal_id, maternal_id, sex and phenotype. For GEMINI, you
can use either tabs or spaces, but not both.

You can also provide a PED file with a heading starting with #, and include extra fields, like this:

#family_id name paternal_id maternal_id sex phenotype hair_color
1 M10475 -9 -9 1 1 brown
1 M10478 M10475 M10500 2 2 brown
1 M10500 -9 -9 2 2 black
1 M128215 M10475 M10500 1 1 blue

This will add the extra columns to the samples table and allow for you to use those extra columns during queries.

Missing values for family_id, paternal_id and maternal_id can be specified by any of 0, -9 or None and
GEMINI will translate them to 0 in the database.

Load GERP base pair conservation scores

GERP scores at base pair resolution are loaded by default (Note: This requires a prior install of the data file by running
gemini update --dataonly --extra gerp_bp). However, if not required, one may optionally skip the
load process (to save on the loading time) with the --skip-gerp-bp option.

$ gemini load -v my.vcf --skip-gerp-bp -t snpEff my.db

Load CADD scores for deleterious variants

CADD scores (http://cadd.gs.washington.edu/) are loaded by default in GEMINI (Note: This requires a prior install of
the data file by running gemini update --dataonly --extra cadd_score). However, one may option-
ally skip the load process using the --skip-cadd option.

$ gemini load -v my.vcf --skip-cadd my.db

24 Chapter 5. Table of contents

http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml#ped
http://cadd.gs.washington.edu/

gemini Documentation, Release 0.20.1

Updating the samples table in a database

If, after loading a database, you find more information about your samples or want to add a column to the samples
table to query on, you can reload the samples table with a new PED file with gemini amend --sample. This is
also useful if you forgot to load a PED file when initially loading your database. This file must have the standard first
six columns of a PED file, but after that other columns can be added. The top of the PED file also must have a header
starting with # which names all of the columns if there are more than the standard six PED file columns:

$ gemini amend --sample your_new_ped_file your.db

Loading VCFs without genotypes.

To do.

Querying the GEMINI database

The real power in the GEMINI framework lies in the fact that all of your genetic variants have been stored in a con-
venient database in the context of a wealth of genome annotations that facilitate variant interpretation. The expressive
power of SQL allows one to pose intricate questions of one’s variation data.

Note: If you are unfamiliar with SQL, sqlzoo has a decent online tutorial describing the basics. Really all you need
to learn is the SELECT statement, and the examples below will give you a flavor of how to compose base SQL queries
against the GEMINI framework.

Basic queries

GEMINI has a specific tool for querying a gemini database that has been loaded using the gemini load command.
That’s right, the tool is called gemini query. Below are a few basic queries that give you a sense of how to interact
with the gemini database using the query tool.

1. Extract all transitions with a call rate > 95%

$ gemini query -q "select * from variants \
where sub_type = 'ts' \
and call_rate >= 0.95" my.db

2. Extract all loss-of-function variants with an alternate allele frequency < 1%:

$ gemini query -q "select * from variants \
where is_lof = 1 \
and aaf >= 0.01" my.db

3. Extract the nucleotide diversity for each variant:

$ gemini query -q "select chrom, start, end, pi from variants" my.db

4. Combine GEMINI with bedtools to compute nucleotide diversity estimates across 100kb windows:

$ gemini query -q "select chrom, start, end, pi from variants \
order by chrom, start, end" my.db | \

bedtools map -a hg19.windows.bed -b - -c 4 -o mean

5.5. Querying the GEMINI database 25

http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml#ped
http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml#ped
http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml#ped
http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml#ped
http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml#ped
http://sqlzoo.net/

gemini Documentation, Release 0.20.1

Selecting sample genotypes

The above examples illustrate ad hoc queries that do not request or filter upon the genotypes of individual samples.
Since GEMINI stores the genotype information for each variant in compressed arrays that are stored as BLOBs in the
database, standard SQL queries cannot directly access individual genotypes. However, we have enhanced the SQL
syntax to support such queries with C “struct-like” access. For example, to retrieve the alleles for a given sample’s (in
this case, sample 1094PC0009), one would add gts.1094PC0009 to the select statement.

Here is an example of selecting the genotype alleles for four different samples (note the examples below use the
test.snpEff.vcf.db file that is created in the ./test directory when you run the bash master-test.sh command as described
above):

$ gemini query -q "select chrom, start, end, ref, alt, gene, \
gts.1094PC0005, \
gts.1094PC0009, \
gts.1094PC0012, \
gts.1094PC0013 \

from variants" test.snpEff.vcf.db

chr1 30547 30548 T G FAM138A ./. ./. ./. ./.
chr1 30859 30860 G C FAM138A G/G G/G G/G G/G
chr1 30866 30869 CCT C FAM138A CCT/CCT CCT/CCT CCT/C CCT/CCT
chr1 30894 30895 T C FAM138A T/C T/C T/T T/T
chr1 30922 30923 G T FAM138A ./. ./. ./. ./.
chr1 69269 69270 A G OR4F5 ./. ./. G/G G/G
chr1 69427 69428 T G OR4F5 T/T T/T T/T T/T
chr1 69510 69511 A G OR4F5 ./. ./. A/G A/G
chr1 69760 69761 A T OR4F5 A/A A/T A/A A/A
chr1 69870 69871 G A OR4F5 ./. G/G G/G G/G

You can also add a header so that you can keep track of who’s who:

$ gemini query -q "select chrom, start, end, ref, alt, gene, \
gts.1094PC0005, \
gts.1094PC0009, \
gts.1094PC0012, \
gts.1094PC0013 \

from variants" \
--header test.snpEff.vcf.db

chrom start end ref alt gene gts.1094PC0005 gts.1094PC0009
→˓gts.1094PC0012 gts.1094PC0013
chr1 30547 30548 T G FAM138A ./. ./. ./. ./.
chr1 30859 30860 G C FAM138A G/G G/G G/G G/G
chr1 30866 30869 CCT C FAM138A CCT/CCT CCT/CCT CCT/C CCT/CCT
chr1 30894 30895 T C FAM138A T/C T/C T/T T/T
chr1 30922 30923 G T FAM138A ./. ./. ./. ./.
chr1 69269 69270 A G OR4F5 ./. ./. G/G G/G
chr1 69427 69428 T G OR4F5 T/T T/T T/T T/T
chr1 69510 69511 A G OR4F5 ./. ./. A/G A/G
chr1 69760 69761 A T OR4F5 A/A A/T A/A A/A
chr1 69870 69871 G A OR4F5 ./. G/G G/G G/G

Let’s now get the genotype and the depth of aligned sequence observed for a sample so that we can assess the confi-
dence in the genotype:

$ gemini query -q "select chrom, start, end, ref, alt, gene,
gts.1094PC0005, \

26 Chapter 5. Table of contents

gemini Documentation, Release 0.20.1

gt_depths.1094PC0005 \
from variants" test.snpEff.vcf.db

chr1 30547 30548 T G FAM138A ./. -1
chr1 30859 30860 G C FAM138A G/G 7
chr1 30866 30869 CCT C FAM138A CCT/CCT 8
chr1 30894 30895 T C FAM138A T/C 8
chr1 30922 30923 G T FAM138A ./. -1
chr1 69269 69270 A G OR4F5 ./. -1
chr1 69427 69428 T G OR4F5 T/T 2
chr1 69510 69511 A G OR4F5 ./. -1
chr1 69760 69761 A T OR4F5 A/A 1
chr1 69870 69871 G A OR4F5 ./. -1

Selecting sample genotypes based on “wildcards”.

The above examples demonstrate how one can select individual sample genotype information by explicitly listing each
column and sample that one wishes to see. Obviously, this can become tedious when a project involves hundreds or
thousands of samples — if you wanted to see genotype information for the 345 of 1145 affected samples in your study,
you would have to type each and every column.sample name out. Brutal.

The “*” wildcard

To get around this, one can bulk-select sample genotype information using “wildcards”. The column and the wildcard
must each be surrounded with parentheses and separated by a period. The “*” is a shortcut (wildcard) meaning “all
samples”.

Note: The syntax for SELECTing genotype columns using a wildcard is (COLUMN).(WILDCARD).

For example, a shortcut to reporting the genotype for all samples (in this case 4) in the study, one could do the
following:

$ gemini query --header -q "select chrom, start, end, ref, alt, gene, (gts).(*) \
from variants" extended_ped.db

chrom start end ref alt gene gts.M10475 gts.M10478 gts.M10500 gts.M128215
chr10 1142207 1142208 T C WDR37 C/C C/C C/C C/C
chr10 48003991 48003992 C T ASAH2C T/T C/T C/T C/C
chr10 52004314 52004315 T C ASAH2 ./. ./. C/C C/C
chr10 52497528 52497529 G C ASAH2B ./. C/C C/C ./.
chr10 126678091 126678092 G A CTBP2 G/G G/G G/G G/A
chr10 135210790 135210791 T C MTG1.1 T/T C/C C/C T/T
chr10 135336655 135336656 G A SPRN ./. A/A ./. A/A
chr10 135369531 135369532 T C SYCE1 T/T T/C T/C T/T
chr16 72057434 72057435 C T DHODH C/T C/C C/C C/C

Wildcards based on sample attributes

To report the genotypes for solely those samples that are affected (phenotype == 2) with the phenotype in question,
one could do the following:

5.5. Querying the GEMINI database 27

gemini Documentation, Release 0.20.1

$ gemini query --header -q "select chrom, start, end, ref, alt, gene, (gts).
→˓(phenotype==2) \

from variants" extended_ped.db
chrom start end ref alt gene gts.M10478 gts.M10500
chr10 1142207 1142208 T C WDR37 C/C C/C
chr10 48003991 48003992 C T ASAH2C C/T C/T
chr10 52004314 52004315 T C ASAH2 ./. C/C
chr10 52497528 52497529 G C ASAH2B C/C C/C
chr10 126678091 126678092 G A CTBP2 G/G G/G
chr10 135210790 135210791 T C MTG1.1 C/C C/C
chr10 135336655 135336656 G A SPRN A/A ./.
chr10 135369531 135369532 T C SYCE1 T/C T/C
chr16 72057434 72057435 C T DHODH C/C C/C

One can add multiple wildcard criteria as well:

$ gemini query --header -q "select chrom, start, end, ref, alt, gene, (gts).
→˓(phenotype==1 and hair_color=='blue') \

from variants" extended_ped.db
chrom start end ref alt gene gts.M128215
chr10 1142207 1142208 T C WDR37 C/C
chr10 48003991 48003992 C T ASAH2C C/C
chr10 52004314 52004315 T C ASAH2 C/C
chr10 52497528 52497529 G C ASAH2B ./.
chr10 126678091 126678092 G A CTBP2 G/A
chr10 135210790 135210791 T C MTG1.1 T/T
chr10 135336655 135336656 G A SPRN A/A
chr10 135369531 135369532 T C SYCE1 T/T
chr16 72057434 72057435 C T DHODH C/C

--gt-filter Filtering on genotypes

Now, we often want to focus only on variants where a given sample has a specific genotype (e.g., looking for homozy-
gous variants in family trios). Unfortunately, we cannot directly do this in the SQL query, but the gemini query tool
has an option called –gt-filter that allows one to specify filters to apply to the returned rows. The rules followed in the
–gt-filter option follow Python syntax.

Tip: As you will see from the examples below, appropriate use of the –gt-filter option will allow you to compose
queries that return variants meeting inheritance patterns that are relevant to the disease model of interest in your study.

As an example, let’s only return rows where sample 1094PC0012 is heterozygous. In order to do this, we apply a filter
to the gt_types columns for this individual:

$ gemini query -q "select chrom, start, end, ref, alt, gene,
gts.1094PC0005, \
gts.1094PC0009, \
gts.1094PC0012, \
gts.1094PC0013 \

from variants" \
--gt-filter "gt_types.1094PC0012 == HET" \
--header \
test.snpEff.vcf.db

chrom start end ref alt gene gts.1094PC0005 gts.1094PC0009 gts.
→˓1094PC0012 gts.1094PC0013

28 Chapter 5. Table of contents

gemini Documentation, Release 0.20.1

chr1 30866 30869 CCT C FAM138A CCT/CCT CCT/CCT CCT/C CCT/CCT
chr1 69510 69511 A G OR4F5 ./. ./. A/G A/G

Now let’s be a bit less restrictive and return variants where either sample 1094PC0012 is heterozygous or sample
1094PC0005 is homozygous for the reference allele:

$ gemini query -q "select chrom, start, end, ref, alt, gene,
gts.1094PC0005, \
gts.1094PC0009, \
gts.1094PC0012, \
gts.1094PC0013 \

from variants" \
--gt-filter "gt_types.1094PC0012 == HET or \
gt_types.1094PC0005 == HOM_REF" \
--header \
test.snpEff.vcf.db

chrom start end ref alt gene gts.1094PC0005 gts.1094PC0009 gts.
→˓1094PC0012 gts.1094PC0013
chr1 30859 30860 G C FAM138A G/G G/G G/G G/G
chr1 30866 30869 CCT C FAM138A CCT/CCT CCT/CCT CCT/C CCT/CCT
chr1 69427 69428 T G OR4F5 T/T T/T T/T T/T
chr1 69510 69511 A G OR4F5 ./. ./. A/G A/G
chr1 69760 69761 A T OR4F5 A/A A/T A/A A/A

Eh, I changed my mind, let’s restrict the above to those variants where sample 1094PC0012 must also be heterozygous:

$ gemini query -q "select chrom, start, end, ref, alt, gene,
gts.1094PC0005, \
gts.1094PC0009, \
gts.1094PC0012, \
gts.1094PC0013 \

from variants" \
--gt-filter "(gt_types.1094PC0012 == HET or \
gt_types.1094PC0005 == HOM_REF) \
and \
(gt_types.1094PC0013 == HET)" \
--header \
test.snpEff.vcf.db

chrom start end ref alt gene gts.1094PC0005 gts.1094PC0009 gts.
→˓1094PC0012 gts.1094PC0013

--gt-filter Wildcard filtering on genotype columns.

Many times, we want to be able to apply the same rule to multiple samples without having to enter the rule over and
over again for each sample. For example, let’s imaging there are 100 samples in your study and you only want to
report variants where every sample has an observed alignment depth of at least 20 reads. Traditionally, one would
have enter each of the 100 samples from the command line as follows:

$ gemini query -q "select chrom, start, end, ref, alt, gene from variants" \
--gt-filter "gt_depths.sample1 >= 20 and \

gt_depths.sample2 >= 20 and \
gt_depths.sample3 >= 20 and \
...

5.5. Querying the GEMINI database 29

gemini Documentation, Release 0.20.1

gt_depths.sample100 >= 20" \
extended_ped.db

The basics.

Obviously, this is deeply painful. Thankfully, there an option allowing the use of “wildcards” to prevent this.

Note: The syntax of the wildcard --gt-filters is (COLUMN).(SAMPLE_WILDCARD).
(SAMPLE_WILDCARD_RULE).(RULE_ENFORCEMENT).

For example, using wildcards, the above could be converted to:

$ gemini query -q "select chrom, start, end, ref, alt, gene from variants" \
--gt-filter "(gt_depths).(*).(>=20).(all)" \
extended_ped.db

Obviously, this makes things much simpler.

The all operator

One can also apply wildcards that select samples based on the values in specific columns in the samples table. For
example, let’s imagine we wanted to require that variants are returned only in cases where ALL the affected individuals
in the study (i.e., the phenotype column in the samples table is equal to 2) have non-reference genotypes. We
could do the following:

$ gemini query --header \
-q "SELECT chrom, start, end, ref, alt, gene, (gts).(phenotype==2) \

FROM variants" \
--gt-filter "(gt_types).(phenotype==2).(!=HOM_REF).(all)" \
extended_ped.db

chrom start end ref alt gene gts.M10478 gts.M10500
chr10 1142207 1142208 T C WDR37 C/C C/C
chr10 48003991 48003992 C T ASAH2C C/T C/T
chr10 52004314 52004315 T C ASAH2 ./. C/C
chr10 52497528 52497529 G C ASAH2B C/C C/C
chr10 135210790 135210791 T C MTG1.1 C/C C/C
chr10 135336655 135336656 G A SPRN A/A ./.
chr10 135369531 135369532 T C SYCE1 T/C T/C

Or perhaps we wanted to be more restrictive. We could also enforce that the affected individuals also had at least 20
aligned reads at such variant sites:

$ gemini query --header \
-q "SELECT chrom, start, end, ref, alt, gene, \

(gts).(phenotype==2), (gt_depths).(phenotype==2) \
FROM variants" \

--gt-filter "(gt_types).(phenotype==2).(!=HOM_REF).(all) \
and \
(gt_depths).(phenotype==2).(>=20).(all)" \

extended_ped.db
chrom start end ref alt gene gts.M10478 gts.M10500 gt_depths.M10478 gt_depths.
→˓M10500
chr10 1142207 1142208 T C WDR37 C/C C/C 29 24

30 Chapter 5. Table of contents

gemini Documentation, Release 0.20.1

chr10 48003991 48003992 C T ASAH2C C/T C/T 38 44
chr10 135369531 135369532 T C SYCE1 T/C T/C 32 21

The any operator

The examples provided thus far have deomnstrated how to enforce that ALL of the samples meeting specific criteria
meet the same genotype column restrictions. However, clearly there are cases where one would want to be less
restrictive. In order to accomondate such queries, there are three other enforcement operators allowed: any, none,
and count.

For example, perhaps we want to relax the above query a bit and only require that at least one (i.e., any) of the affected
samples has depth > 20:

$ gemini query --header \
-q "SELECT chrom, start, end, ref, alt, gene, \

(gts).(phenotype==2), (gt_depths).(phenotype==2) \
FROM variants" \

--gt-filter "(gt_types).(phenotype==2).(!=HOM_REF).(all) \
and \
(gt_depths).(phenotype==2).(>=20).(any)" \

extended_ped.db

The none operator

Or we enforce that none of the affected samples have depth less than 10:

$ gemini query --header \
-q "SELECT chrom, start, end, ref, alt, gene, \

(gts).(phenotype==2), (gt_depths).(phenotype==2) \
FROM variants" \

--gt-filter "(gt_types).(phenotype==2).(!=HOM_REF).(all) \
and \
(gt_depths).(phenotype==2).(<10).(none)" \

extended_ped.db

The count operator

Finally, we could enforce that at most 2 of all the samples in the study have depths < 10:

$ gemini query --header \
-q "SELECT chrom, start, end, ref, alt, gene, \

(gts).(phenotype==2), (gt_depths).(phenotype==2) \
FROM variants" \

--gt-filter "(gt_types).(phenotype==2).(!=HOM_REF).(all) \
and \
(gt_depths).(phenotype==2).(<10).(count <= 2)" \

extended_ped.db

Note: The count operator allows the following comparisons: >, >=, <, <=, ==, <>, and !=.

5.5. Querying the GEMINI database 31

gemini Documentation, Release 0.20.1

Example scenario.

One usage of the wildcard functionality is screening for variants that are present in affected individuals yet absent
from unaffected individuals (this is obviously an idealized scenario).

$ gemini query --header \
-q "SELECT chrom, start, end, ref, alt, gene, (gts).(*) \

FROM variants" \
--gt-filter "(gt_types).(phenotype==1).(==HOM_REF).(all) \

and \
(gt_depths).(phenotype==2).(==HOM_REF).(none)" \

extended_ped.db

More complexity.

One can also combine wildcard filters with “basic” genotype filters to create more complex logic.

$ gemini query --header \
-q "SELECT chrom, start, end, ref, alt, gene, (gts).(*) \

FROM variants" \
--gt-filter "((gt_types).(phenotype==1).(==HOM_REF).(all) \

and \
(gt_depths).(phenotype==2).(==HOM_REF).(none)) \

or gt.NA12878 == HET" \
extended_ped.db

Other details.

The system is fairly flexible in that it allows one to wildcard-select samples based on custom columns that have been
added to the samples table based upon a custom PED file. For example, let’s imaging our custom PED file had an
extra column defining the hair color of each sample. We coukd use that to restrict interesting variants to those where
samples with blue hair were heterozygous:

$ gemini query -q "SELECT chrom, start, end, ref, alt, gene FROM variants" \
--gt-filter "(gt_types).(hair_color='blue').(==HET).(all)" \
extended_ped.db

Or possibly, you want to stratify based on sub-population:

$ gemini query -q "SELECT chrom, start, end, ref, alt, gene FROM variants" \
--gt-filter "(gt_types).(population='CEU').(==HET).(all) \

and \
(gt_types).(population='YRI').(==HOM_ALT).(any)" \

extended_ped.db

One can also base the wildcard on multiple criteria (in this case, brown hair and affected):

$ gemini query -q "SELECT chrom, start, end, ref, alt, gene FROM variants" \
--gt-filter "(gt_types).(hair_color=='brown' and phenotype==2).(!=

→˓HET).(all)" \
extended_ped.db

There is a special case when we want to select samples based on their genotypes. For example, to show only sites
where HET samples have a genotype quality above 20.

32 Chapter 5. Table of contents

gemini Documentation, Release 0.20.1

$ gemini query -q "SELECT chrom, start, end, ref, alt, gene FROM variants \
where gene == 'SCNN1D' limit 5" \
--gt-filter "(gt_quals).(=HET).(<20).(all)" test/test.query.db

In this case, the 2nd value must be one of =HET, =HOM_REF or =HOM_ALT

Lastly, wildcards can, of course, be combined with non-wildcard criteria:

$ gemini query -q "SELECT chrom, start, end, gene FROM variants" \
--gt-filter "(gt_types).(hair_color=='brown' and phenotype==2).(!=

→˓HET).(all) \
and \

gt_types.M128215 == HOM_REF" \
extended_ped.db

Hopefully this gives you a sense of what you can do with the “wildcard” genotype filter functionality.

--show-samples Finding out which samples have a variant

While exploring your data you might hit on a set of interesting variants and want to know which of your samples have
that variant in them. You can display the samples containing a variant with the –show-sample-variants flag:

$ gemini query --header --show-samples -q "select chrom, start, end, ref, alt \
from variants where is_lof=1 limit 5" test.query.db

chrom start end ref alt variant_samples het_samples hom_alt_
→˓samples
chr1 874815 874816 C CT 1478PC0006B,1478PC0007B,1478PC0010,
→˓1478PC0013B,1478PC0022B,1478PC0023B,1478PC0025,1719PC0007,1719PC0009,1719PC0010,
→˓1719PC0022 1478PC0006B,1478PC0007B,1478PC0010,1478PC0013B,1478PC0022B,1478PC0023B,
→˓1719PC0007,1719PC0009,1719PC0010 1478PC0025,1719PC0022
chr1 1140811 1140813 TC T 1478PC0011 1478PC0011
chr1 1219381 1219382 C G 1719PC0012 1719PC0012
chr1 1221487 1221490 CAA C 1478PC0004 1478PC0004

variant_samples is a list of all of the samples with a variant, het_samples is the subset of those heterozygous for the
variant and hom_alt_samples is the subset homozygous for the variant.

--show-samples --format sampledetail Provide a flattened view of samples

If you’d like to be able to export variants plus associated sample metadata into a downstream tool like R or pandas for
additional exploration, adding the --format sampledetail command flattens all found samples and attached
metadata information:

$ gemini query --header --format sampledetail --show-samples \
-q "select chrom, start, ref from variants where is_lof=1 limit 1" test.query.db

chrom start ref family_id name paternal_id maternal_id
→˓sex phenotype
chr1 30547 T 0 1478PC0016 0 0 -9 -9
chr1 30547 T 0 1719PC0007 0 0 -9 -9
chr1 30547 T 0 1719PC0009 0 0 -9 -9" > exp

The denormalized results contain a row for each sample associated with a variant, along with information from the
sample table. This provides a way to join sample information with a variant query.

5.5. Querying the GEMINI database 33

gemini Documentation, Release 0.20.1

--show-families Finding out which families have a variant

This works exactly like --show-samples except lists all of the families with a variant instead of the individual
samples.

--region Restrict a query to a specified region

If you are only interested in a specific region, you can restrict queries to that region using the --region tool.

$ gemini query --region chr1:30859-30900 -q "select chrom, start, end, ref, alt \
from variants" test1.snpeff.db

chr1 30859 30860 G C

--sample-filter Restrict a query to specified samples

The --sample-filter option allows you to select samples that a variant must be in by doing a SQL query on the
samples table. For example if you wanted to show the set of variants that appear in all samples with a phenotype status
of 2, you could do that query with:

$ gemini query --sample-filter "phenotype=2" -q "select gts, gt_types from variants"
→˓test.family.db
T/T,T/T,T/C,T/T,T/T,T/T,T/T,T/T,C/C 0,0,1,0,0,0,0,0,3 1_kid,3_kid 1_kid
→˓3_kid
T/T,T/T,T/C,T/T,T/T,T/C,T/T,T/T,T/C 0,0,1,0,0,1,0,0,1 1_kid,2_kid,3_kid
→˓1_kid,2_kid,3_kid
T/T,T/T,T/T,T/T,T/T,T/T,T/T,T/T,T/C 0,0,0,0,0,0,0,0,1 3_kid 3_kid

By default –sample-filter will show the variant if at least one sample contains the variant. You can change this behavior
by using the --in option along with --sample-filter. --in all will return a variant if all samples matching
the query have the variant. in nonewill return a variant if the variant does not appear in any of the matching samples.
--in only will return a variant if the variant is only in the matching samples and not in any of the non-matching
samples. --in only all will show all of the variant which are in all of the matching samples and not in any of
the non-matching samples.

The --family-wise flag applies the --sample-filter and --in behavior on a family-wise basis. For exam-
ple to show all variants that are only in samples with a phenotype status of 2 in at least one family:

$ gemini query --family-wise --in only all --sample-filter "phenotype=2" -q "select
→˓gts, gt_types from variants" test.family.db
T/T,T/T,T/C,T/T,T/T,T/T,T/T,T/T,C/C 0,0,1,0,0,0,0,0,3 1_kid,3_kid 1_kid
→˓3_kid
T/T,T/T,T/C,T/T,T/T,T/C,T/T,T/T,T/C 0,0,1,0,0,1,0,0,1 1_kid,2_kid,3_kid
→˓1_kid,2_kid,3_kid
T/T,T/T,T/T,T/T,T/T,T/T,T/T,T/T,T/C 0,0,0,0,0,0,0,0,1 3_kid 3_kid

You can also specify that a variant passes this filter in multiple families with the --min-kindreds option. So if
you want to do the same query above, but restrict it such that at least three families have to pass the filter:

$ gemini query --min-kindreds 3 --family-wise --in only all --sample-filter
→˓"phenotype=2" -q "select gts, gt_types from variants" test.family.db
T/T,T/T,T/C,T/T,T/T,T/C,T/T,T/T,T/C 0,0,1,0,0,1,0,0,1 1_kid,2_kid,3_kid
→˓1_kid,2_kid,3_kid

If the PED file you loaded has extra fields in it, those will also work with the --sample-filter option. For
example if you had a hair_color extended field, you could query on that as well as phenotype:

34 Chapter 5. Table of contents

gemini Documentation, Release 0.20.1

$ gemini query --in only all --sample-filter "phenotype=1 and hair_color='blue'" -q
→˓"select gts, gt_types from variants" extended_ped.db
G/G,G/G,G/G,G/A 0,0,0,1 M128215 M128215

--sample-delim Changing the sample list delimiter

One can modify the default comma delimiter used by the --show-samples option through the use of the
--sample-delim option. For example, to use a semi-colon instead of a comma, one would do the following:

$ gemini query --header --show-samples --sample-delim ";" \
-q "select chrom, start, end, ref, alt \

from variants where is_lof=1 limit 5" test.query.db

chrom start end ref alt variant_samples het_samples hom_alt_samples
chr1 874815 874816 C CT 1478PC0006B;1478PC0007B;1478PC0010,1478PC0013B;
→˓1478PC0022B;1478PC0023B;1478PC0025;1719PC0007;1719PC0009;1719PC0010;1719PC0022
→˓1478PC0006B;1478PC0007B;1478PC0010;1478PC0013B;1478PC0022B;1478PC0023B;1719PC0007;
→˓1719PC0009;1719PC0010 1478PC0025;1719PC0022
chr1 1140811 1140813 TC T 1478PC0011 1478PC0011
chr1 1219381 1219382 C G 1719PC0012 1719PC0012
chr1 1221487 1221490 CAA C 1478PC0004 1478PC0004

--format Reporting query output in an alternate format.

The results of GEMINI queries can automatically be formatted for use with other programs using the –format com-
mand. Supported alternative formats are JSON and TPED (Transposed PED) format.

Reporting query output in JSON format may enable HTML/Javascript apps to query GEMINI and retrieve the output
in a format that is amenable to web development protocols.

Here is a basic query:

$ gemini query -q "select chrom, start, end from variants" my.db | head
chr1 10067 10069
chr1 10230 10231
chr1 12782 12783
chr1 13109 13110
chr1 13115 13116
chr1 13117 13118
chr1 13272 13273
chr1 13301 13302
chr1 13416 13417
chr1 13417 13418

To report in JSON format, use the --format json option. For example:

$ gemini query --format json -q "select chrom, start, end from variants" my.db | head
{"chrom": "chr1", "start": 10067, "end": 10069}
{"chrom": "chr1", "start": 10230, "end": 10231}
{"chrom": "chr1", "start": 12782, "end": 12783}
{"chrom": "chr1", "start": 13109, "end": 13110}
{"chrom": "chr1", "start": 13115, "end": 13116}
{"chrom": "chr1", "start": 13117, "end": 13118}
{"chrom": "chr1", "start": 13272, "end": 13273}
{"chrom": "chr1", "start": 13301, "end": 13302}

5.5. Querying the GEMINI database 35

gemini Documentation, Release 0.20.1

{"chrom": "chr1", "start": 13416, "end": 13417}
{"chrom": "chr1", "start": 13417, "end": 13418}

If you would to use tools such as PLINK that use the PED format, you can dump out a set of variants matching any
query in TPED (Transposed PED) format by adding the --tped flag to your query:

$ gemini query --format tped -q "select * from variants where chrom=10" test4.snpeff.
→˓db
10 rs10794716 0 1142207 C/C C/C C/C C/C
10 rs142685947 0 48003991 T/T C/T C/T C/C
10 rs2842123 0 52004314 ./. ./. C/C C/C
10 rs4935178 0 52497528 ./. C/C C/C ./.
16 rs201947120 0 72057434 C/T C/C C/C C/C
10 rs73373169 0 126678091 G/G G/G G/G G/A
10 rs2265637 0 135210790 T/T C/C C/C T/T
10 rs6537611 0 135336655 ./. A/A ./. A/A
10 rs3747881 0 135369531 T/T T/C T/C T/T

You can pass –header to get a header to see which samples have which variant. To use the TPED format you also need
to generate a corresponing TFAM file from your data as well, which you can get from the GEMINI dump tool:

$ gemini dump --tfam test4.snpeff.db > obs
None M10475 None None None None
None M10478 None None None None
None M10500 None None None None
None M128215 None None None None

--carrier-summary-by-phenotype Summarize carrier status

For prioritizing variants sometimes it is useful to have summary counts of the carrier status for all samples with
a variant stratified across a phenotype. --carrier-summary-by-phenotype takes a column in the samples
table that you want to summarize the carrier status of and adds a set of counts of carrier/non-carrier status for each
phenotype in the given column. For example, to get a summary of how a set of variants segregate with affected status:

$ gemini query --show-samples --carrier-summary-by-phenotype affected --header -q
→˓"select chrom, start, ref, alt, gt_types from variants" extended_ped_test.db
chrom start ref alt gt_types variant_samples het_samples hom_
→˓alt_samples unaffected_carrier affected_carrier unaffected_noncarrier
→˓affected_noncarrier unknown
chr10 1142207 T C 3,3,3,3 M10475,M10478,M10500,M128215
→˓M10475,M10478,M10500,M128215 2 2 0 0 0
chr10 48003991 C T 3,1,1,0 M10475,M10478,M10500 M10478,M10500
→˓ M10475 1 2 1 0 0
chr10 52004314 T C 2,2,3,3 M10500,M128215 M10500,
→˓M128215 1 1 0 0 2
chr10 52497528 G C 2,3,3,2 M10478,M10500 M10478,M10500
→˓ 0 2 0 0 2
chr16 72057434 C T 1,0,0,0 M10475 M10475 1 0
→˓ 1 2 0
chr10 126678091 G A 0,0,0,1 M128215 M128215 1 0
→˓ 1 2 0
chr10 135210790 T C 0,3,3,0 M10478,M10500 M10478,M10500
→˓ 0 2 2 0 0
chr10 135336655 G A 2,3,2,3 M10478,M128215 M10478,
→˓M128215 1 1 0 0 2
chr10 135369531 T C 0,1,1,0 M10478,M10500 M10478,M10500
→˓ 0 2 2 0 0

36 Chapter 5. Table of contents

gemini Documentation, Release 0.20.1

Or if you have another phenotypic feature you are interested in summarizing, like hair color:

$ gemini query --show-samples --carrier-summary-by-phenotype hair_color --header -q
→˓"select chrom, start, ref, alt, gt_types from variants" extended_ped.db
chrom start ref alt gt_types variant_samples het_samples hom_
→˓alt_samples blue_carrier brown_carrier purple_carrier blue_noncarrier brown_
→˓noncarrier purple_noncarrier unknown
chr10 1142207 T C 3,3,3,3 M10475,M10478,M10500,M128215
→˓M10475,M10478,M10500,M128215 1 2 1 0 0 0 0
chr10 48003991 C T 3,1,1,0 M10475,M10478,M10500 M10478,M10500
→˓ M10475 0 2 1 1 0 0 0
chr10 52004314 T C 2,2,3,3 M10500,M128215 M10500,
→˓M128215 1 0 1 0 0 0 2
chr10 52497528 G C 2,3,3,2 M10478,M10500 M10478,M10500
→˓ 0 1 1 0 0 0 2
chr16 72057434 C T 1,0,0,0 M10475 M10475 0 1
→˓ 0 1 1 1 0
chr10 126678091 G A 0,0,0,1 M128215 M128215 1 0
→˓ 0 0 2 1 0
chr10 135210790 T C 0,3,3,0 M10478,M10500 M10478,M10500
→˓ 0 1 1 1 1 0 0
chr10 135336655 G A 2,3,2,3 M10478,M128215 M10478,
→˓M128215 1 1 0 0 0 0 2
chr10 135369531 T C 0,1,1,0 M10478,M10500 M10478,M10500
→˓ 0 1 1 1 1 0 0

Querying the gene tables

The gene tables viz. gene_detailed table and the gene_summary table have been built on version 73 of
the ensembl genes. The column specifications are available at The GEMINI database schema. These tables contain
gene specific information e.g. gene synonyms, RVIS percentile scores(Petrovski et.al 2013), strand specifications,
cancer gene census etc. While the former is more detailed, the later lacks transcript wise information and summarizes
some aspects of the former. For e.g. while the gene_detailed table lists all transcripts of a gene with their start and
end co-ordinates, the gene_summary table reports only the minimum start and maximum end co-ordinates of the gene
transcripts. The chrom, gene and the transcript columns of the gene tables may be used to join on the variants
and the variant_impacts tables.

Using the gene_detailed & gene_summary tables

Query the gene_detailed table with a join on variants table:

E.g. Get additional transcript info for the most severe impact transcript e.g. transcript status, transcript start,end and
the protein length

$ gemini query --header -q "select v.variant_id, v.gene, \
v.impact, g.transcript_status, g.transcript, \

g.transcript_start, g.transcript_end, g.protein_length,
→˓ \

from variants v, gene_detailed g \

WHERE v.chrom = g.chrom AND \
v.gene = g.gene AND \

5.6. Querying the gene tables 37

gemini Documentation, Release 0.20.1

v.transcript = g.transcript AND \
v.impact_severity='HIGH'" test.query.db

variant_id gene impact transcript_status transcript
→˓transcript_start transcript_end protein_length

46 SAMD11 frame_shift KNOWN ENST00000342066 861118 879955 681
578 TNFRSF18 frame_shift PUTATIVE ENST00000486728 1139224

→˓1141060 169
733 SCNN1D stop_gain NOVEL ENST00000470022 1217305 1221548 138

Query the gene_detailed table with a join on the variant_impacts table:

E.g. Get the transcript status for all transcripts of the SCNN1D gene where impact severity is not ‘LOW’.

$ gemini query --header -q "select v.gene, g.transcript_status, g.transcript, \
v.impact from variant_impacts v, gene_detailed g \

WHERE v.transcript = g.transcript AND \
v.gene = g.gene AND \

v.gene = 'SCNN1D' \
v.impact_severity!='LOW'" test.query.db

gene transcript_status transcript impact
SCNN1D NOVEL ENST00000470022 non_syn_coding
SCNN1D NOVEL ENST00000470022 frame_shift
SCNN1D KNOWN ENST00000325425 frame_shift
SCNN1D KNOWN ENST00000379116 non_syn_coding
SCNN1D KNOWN ENST00000338555 non_syn_coding
SCNN1D KNOWN ENST00000400928 non_syn_coding

Query the gene_summary table with a join on the variants table:

E.g. Get the synonym/alternate names, RVIS percentile scores and the min-max start-end of transcripts for genes that
have a severely affected transcript of a ‘HIGH’ order.

$ gemini query --header -q "select v.chrom, v.gene, g.transcript_min_start, \
g.transcript_max_end, g.synonym, g.rvis_pct, v.impact from \

variants v, gene_summary g \

WHERE v.chrom = g.chrom AND \
v.gene = g.gene AND \
v.impact_severity='HIGH'" test.query.db

chrom gene transcript_min_start transcript_max_end synonym rvis_pct
→˓ impact

chr1 SAMD11 860260 879955 MGC45873 None frame_shift
chr1 TNFRSF18 1138888 1142071 AITR,CD357,GITR None frame_shift
chr1 SCNN1D 1215816 1227409 ENaCdelta,dNaCh 96.77990092 stop_gain

Query the gene_summary table with a join on the variant_impacts table:

E.g. Get all variants of a gene, the affected transcripts and impacts, where a mammalian phenotype ID is available for
the mouse phenotype.

38 Chapter 5. Table of contents

gemini Documentation, Release 0.20.1

$ gemini query --header -q "select v.variant_id, v.chrom, v.gene, i.impact, \
i.transcript, g.mam_phenotype_id from variants v, \

variant_impacts i, gene_summary g \

WHERE v.variant_id=i.variant_id \
i.gene=g.gene AND \
v.chrom=g.chrom AND \
g.mam_phenotype_id !='None'" test.query.db

variant_id chrom gene impact transcript mam_phenotype_id
334 chr1 TNFRSF18 non_syn_coding ENST00000328596 MP:0005397,

→˓MP:0005384,MP:0005387
378 chr1 TNFRSF18 frame_shift ENST00000486728 MP:0005397,

→˓MP:0005384,MP:0005387
483 chr1 AGRN synonymous_coding ENST00000379370 MP:0005378,

→˓MP:0005386,MP:0005388,MP:0005367,MP:0005369,MP:0005371,MP:0003631,MP:0002873,
→˓MP:0010768

484 chr1 AGRN exon ENST00000461111 MP:0005378,MP:0005386,MP:0005388,
→˓MP:0005367,MP:0005369,MP:0005371,MP:0003631,MP:0002873,MP:0010768

478 chr1 AGRN intron ENST00000461111 MP:0005378,MP:0005386,MP:0005388,
→˓MP:0005367,MP:0005369,MP:0005371,MP:0003631,MP:0002873,MP:0010768

479 chr1 AGRN downstream ENST00000492947 MP:0005378,MP:0005386,
→˓MP:0005388,MP:0005367,MP:0005369,MP:0005371,MP:0003631,MP:0002873,MP:0010768

Restrict analysis to transcripts with a valid CCDS_ID

Since the current available transcript sets are more than one (e.g. RefSeq, ENSEMBL and UCSC) we support informa-
tion (e.g pathways tool) for the ENSEMBL transcripts but provide a mapping of these transcripts to the consensus set
agreed upon by all the above three mentioned groups viz. transcripts having a valid CCDS_ID. Here we
show, how we can return variants and their impacts for only these restricted set of transcripts using the gene_detailed
table.

$ gemini query --header -q "select i.var_id, i.gene, i.impact, i.transcript, \
g.transcript_status, ccds_id, g.rvis_pct from \

variant_impacts i, gene_detailed g where \
i.transcript=g.transcript and i.gene=g.gene and\
impact_severity='HIGH' and g.ccds_id!='None'" test.

→˓query.db

variant_id gene impact transcript transcript_status ccds_id rvis_
→˓pct
2051 SAMD11 frame_shift ENST00000342066 KNOWN CCDS2 None
3639 CCNL2 splice_acceptor ENST00000408918 KNOWN CCDS30558 53.98089172
3639 CCNL2 splice_acceptor ENST00000400809 KNOWN CCDS30557 53.98089172
13221 SMIM1 frame_shift ENST00000444870 NOVEL CCDS57966 None
21881 NPHP4 splice_acceptor ENST00000378156 KNOWN CCDS44052 81.78815758

What if I don’t see my gene in the database?

Most genes are popular by their common names while the representation of gene names in the GEMINI database is
mostly HGNC. For e.g ARTEMISwould be DCLRE1C in the GEMINI database. As such one may miss out on variants
if looking for specific genes by their common names. While, joining the main tables with the gene tables for synonym
information would be useful (as shown in the previous examples), the gene tables may also serve as a quick look up
for alternate names of a gene, which could then be looked up in the database.

5.6. Querying the gene tables 39

gemini Documentation, Release 0.20.1

$ gemini query -q "select synonym from gene_summary where \
gene='ARTEMIS'" test.query.db

A-SCID,FLJ11360,SNM1C,DCLRE1C,SCIDA

or,

$ gemini query -q "select gene from gene_summary where synonym \
like '%ARTEMIS%' and \
is_HGNC='1'" test.query.db

DCLRE1C

#looking up for DCLRE1C in the database
$ gemini query -q "select variant_id, chrom, start, end, impact \

from variants where \
gene='DCLRE1C'" test.query.db

Built-in analysis tools

As of version 0.14, the tools have a standardized output that is different from previous versions. Requested –columns
will come first followed by a standard set of columns:

• variant_id - unique id from the databse

• family_id - family id for this row

• family_members - which family members were tested

• family_genotypes - genotypes of this family

• samples - samples contributing to this row appearing in the results

• family_count - number of families with this effect

Other tools such as mendel_errors additional columns at the end.

When queries are limited to variants in genes, the output will be in gene, chrom order as opposed to the usual gene,
position order.

Note: As of version 0.16.0, the inheritance tools (autosomal_dominant, autosomal_recessive, comp_het,
mendel_errors, de_novo) are now more strict by default.

A –lenient flag allows, e.g. allows some samples to be of unknown phenotype or to not have both parents of known
phenotype.

The –allow-unaffected flag will result in reporting variants where unaffected samples share the same variants. The
default will only report variants that are unique to affected samples.

The design decisions for this change are described here: https://github.com/arq5x/gemini/issues/388 a visual represen-
tation is here: https://github.com/arq5x/gemini/blob/master/inheritance.ipynb

Note: Candidate variants reported by the built-in inheritance model tools will appear in order by chromosome, then
alphabetically by gene. In other words, they will not be in strict positional order for each chromosome. This is in an
effort to group all candidate variants by gene since the gene is typically the atomic unit of interest.

40 Chapter 5. Table of contents

https://github.com/arq5x/gemini/issues/388
https://github.com/arq5x/gemini/blob/master/inheritance.ipynb

gemini Documentation, Release 0.20.1

Additionally, all current built-in tools (autosomal_dominant, comp_hets, and autosomal_recessive) only analyze auto-
somal (non sex chromosome) variants. Analysis of X- and Y-linked phenotypes must be done manually with –gt-filter

common_args: common arguments

The inheritance tools share a common set of arguments. We will describe them here and refer to them in the corre-
sponding sections:

--columns

This flag is followed by a comma-delimited list of columns the user is requestin in the output.

--min-kindreds 1

This is the number of families required to have a variant in the same gene in order for it to be reported. For example,
we may only be interested in candidates where at least 4 families have a variant in that gene.

--families

By default, candidate variants are reported for all families in the database. One can restrict the analysis to variants in
specific familes with the --families option. Families should be provided as a comma-separated list

--filter

By default, each tool will report all variants regardless of their putative functional impact. In order to apply additional
constraints on the variants returned, one can use the --filter option. Using SQL syntax, conditions applied with
the --filter options become WHERE clauses in the query issued to the GEMINI database.

-d [0] (depth)

Filter variants that do not have at least this depth for all members in a a family. Default is 0.

--min-gq [0]

Filter variants that do not have at least this genotype quality for each sample in a family. Default is 0. Higher values
are more stringent.

--allow-unaffected

By default, candidates that also appear in unaffected samples are not reported if this flag is specified, such variants
will be reported.

--lenient

Loosen the restrictions on family structure. This will allow, for example, finding compound_hets in unaffected sam-
ples.

5.7. Built-in analysis tools 41

gemini Documentation, Release 0.20.1

--gt-pl-max

In order to eliminate less confident genotypes, it is possible to enforce a maximum PL value for each sample. On
this scale, lower values indicate more confidence that the called genotype is correct. 10 is a reasonable value. This is
applied per-family such that all members of a family must meet this level in order to by reported in the final results.

comp_hets: Identifying potential compound heterozygotes

Many autosomal recessive disorders are caused by compound heterozygotes. Unlike canonical recessive sites where
the same recessive allele is inherited from both parents at the _same_ site in the gene, compound heterozygotes occur
when the individual’s phenotype is caused by two heterozygous recessive alleles at _different_ sites in a particular
gene.

We are looking for two (typically loss-of-function (LoF)) heterozygous variants impacting the same gene at different
loci. The complicating factor is that this is _recessive_ and as such, we must also require that the consequential alleles
at each heterozygous site were inherited on different chromosomes (one from each parent). Where possible, comp_hets
will phase by transmission. Once this has been done, the comp_hets tool will provide a report of candidate compound
heterozygotes for each sample/gene.

Non-exonic/non-coding analyses: comp_hets excludes intronic/non-coding variants for which impact_severity ==
‘LOW’ AND is_exonic == FALSE. Therefore, comp_hets will not retrieve most pairs of variants that are downstream
or upstream of a gene or are intronic unless otherwise annotated with medium or high impact_severity.

Note: As of version 0.16.0 the comp_het tool will perform family-based phasing by default in order to provide
better candidates even in the absence of unphased genotypes. Any candidate that could be one element of a comp_het
will also be phaseable as long as the parents and their genotypes are known.

As of version 0.16.1, the –ignore-phasing option is removed and there is no –lenient option.

In 0.16.2, a –pattern-only flag was added to find compound hets by inheritance pattern without regard to affection
status. A priority code was also added where variants with priority 1 are much more informative. See docs below for
further information.

Genotype Requirements

• All affected individuals must be heterozygous at both sites.

• No unaffected can be homozygous alterate at either site.

• Neither parent of an affected sample can be homozygous reference at both sites.

• If any unphased-unaffected is het at both sites, the site will be give lower priority

• No phased-unaffected can be heterozygous at both sites.

1. –allow-unaffected keeps sites where a phased unaffected shares the het-pair

2. unphased, unaffected that share the het pair are counted and reported for each candidate pair.

• Remove candidates where an affected from the same family does NOT share the same het pair.

• Sites are automatically phased by transmission when parents are present in order to remove false positive can-
didates.

1. If data from one or both parents are unavailable and the child’s data was not phased prior to loading into
GEMINI, all comp_het variant pairs will automatically be given at most priority == 2. If there’s only a
single parent and both the parent and the affected are HET at both sites, the candidate will have priority 3.

42 Chapter 5. Table of contents

gemini Documentation, Release 0.20.1

2. –max-priority x can be used to set the maximum allowed priority level at which candidate pairs are included
in the output.

we prioritize with these rules:

mom dad kid phaseable priority notes
R-H H-R H-H both 1 both sites phaseable and alts on opposite chroms
n/a n/a H-H NO 2 singleton (unphaseable) HETs have priority 2.
R-H H-H H-H one 3 should be a rare occurrence
H-H H-H H-H NO 3 should be a rare occurrence
H-H UNK H-H NO 3 missing parent and all hets.
A-R H-H H-H both NA exclude hom-alts from un-affecteds
R-R H-H H-H both NA phaseable, but alts are on the same chroms.

Note: candidates of priority == 3 are very unlikely (< 1%) to be causal for a rare Mendelian condition (see: http://
www.ncbi.nlm.nih.gov/pmc/articles/PMC3734130/); we report them for completeness, but strongly recommend using
priority 1 and 2 only. Priority 2 is useful when there are multiple families, some of which consist of only a single
sequenced, affected sample.

Pattern Only

To find compound heterozygotes by inheritance pattern only, without regard to affections, the following rules are used
(with –pattern-only):

• Kid must be HET at both sites.

• Kid must have alts on different chromosomes.

• Neither parent can be HOM_ALT at either site.

• If either parent is phased at both sites and matches the kid, it’s excluded.

• If either parent is HET at both sites, priority is reduced.

• When the above criteria are met, and both parents and kid are phased or parents are HET at different sites, the
priority is 1.

• If both parents are not phased, the priority is 2.

• For every parent that’s a het at both sites, the priority is incremented by 1.

• The priority in a family is the minimum found among all kids.

Note: Each pair of consecutive lines in the output represent the two variants for a compound heterozygote in a give
sample. The third column, comp_het_id, tracks the distinct compound heterozygote variant pairs.

Example usage with a subset of columns:

$ gemini comp_hets my.db --columns "chrom, start, end" test.comp_het_default.2.db
chrom start end gene alt variant_id family_id family_members family_
→˓genotypes samples family_count comp_het_id
chr1 17362 17366 WASH7P T 1 3 dad_3(dad;unaffected),mom_3(mom;
→˓unaffected),child_3(child;affected) TTCT|T,TTCT|TTCT,TTCT|T child_3 2 1
chr1 17729 17730 WASH7P A 2 3 dad_3(dad;unaffected),mom_3(mom;
→˓unaffected),child_3(child;affected) C|A,C|A,A|C child_3 2 1

5.7. Built-in analysis tools 43

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3734130/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3734130/

gemini Documentation, Release 0.20.1

chr1 17362 17366 WASH7P T 1 4 dad_4(dad;unaffected),mom_4(mom;
→˓unaffected),child_4(child;affected) TTCT|T,TTCT|TTCT,TTCT|T child_4 2 1
chr1 17729 17730 WASH7P A 2 4 dad_4(dad;unaffected),mom_4(mom;
→˓unaffected),child_4(child;affected) C|A,C|A,A|C child_4 2 1

This indicates that samples child_3 and child_4 have a candidate compound heterozygotes in WASH.

the following command would further restrict candidate genes to those genes with a compound heterozygote in at least
two families:

$ gemini comp_hets -d 50 \
--columns "chrom, start, end, ref, alt" \
--filter "impact_severity = 'HIGH'" \
--allow-unaffected \
--min-kindreds 2 \
my.db

Now, this does not require that the family members are necessarily restricted to solely those that are affected. To
impose this restriction, we remove the --allow-unaffected flag

$ gemini comp_hets -d 50 \
--columns "chrom, start, end, ref, alt" \
--filter "impact_severity = 'HIGH'" \
--min-kindreds 2 \
my.db

We may also specify the families of interest:

$ gemini comp_hets --families 1 my.db
$ gemini comp_hets --families 1,7 my.db

gene-where

The default selection of genes is by the clause: “is_exonic = 1 or impact_severity != ‘LOW”’ This can be specified to
limit to a different subset, e.g. “gene != ‘’

mendelian_error: Identify non-mendelian transmission.

Note: This tool requires that you identify familial relationships via a PED file when loading your VCF into gemini
via:

gemini load -v my.vcf -p my.ped my.db

We can query for mendelian errors in trios including:

• loss of heterozygosity

• implausible de-novo mutations

• de-novo mutations

• uniparental disomy

44 Chapter 5. Table of contents

gemini Documentation, Release 0.20.1

Genotype Requirements

• (LOH) kind and one parent are opposite homozygotes; other parent is HET

• (uniparental disomy) parents are opposite homozygotes; kid is homozygote;

• (plausible de novo) kid is het. parents are same homozygotes

• (implausible de novo) kid is homozygoes. parents are same homozygotes and opposite to kid.

If allow –only-affected is used, then the tools will only consider samples that have parents and are affected. The
default is to consider any sample with parents.

This tool will report the probability of a mendelian error in the final column that is derived from the genotype likeli-
hoods if they are available.

Example:

$ gemini mendel_errors --columns "chrom,start,end" test.mendel.db --gt-pl-max 1
chrom start end variant_id family_id family_members family_
→˓genotypes samples family_count violation violation_prob
chr1 10670 10671 1 CEPH1463 NA12889(dad;unknown),NA12890(mom;
→˓unknown),NA12877(child;unknown) G/G,G/G,G/C NA12877 1 plausible de
→˓novo 0.962
chr1 28493 28494 2 CEPH1463 NA12889(dad;unknown),NA12890(mom;
→˓unknown),NA12877(child;unknown) T/C,T/T,C/C NA12877 1 loss of
→˓heterozygosity 0.660
chr1 28627 28628 3 CEPH1463 NA12889(dad;unknown),NA12890(mom;
→˓unknown),NA12877(child;unknown) C/C,C/C,C/T NA12877 1 plausible de
→˓novo 0.989
chr1 267558 267560 5 CEPH1463 NA12889(dad;unknown),NA12890(mom;
→˓unknown),NA12877(child;unknown) C/C,C/C,CT/C NA12877 1 plausible de
→˓novo 0.896
chr1 537969 537970 7 CEPH1463 NA12889(dad;unknown),NA12890(mom;
→˓unknown),NA12877(child;unknown) C/C,C/C,C/T NA12877 1 plausible de
→˓novo 0.928
chr1 547518 547519 11 CEPH1463 NA12889(dad;unknown),NA12890(mom;
→˓unknown),NA12877(child;unknown) G/G,G/G,G/T NA12877 1 plausible de
→˓novo 1.000
chr1 589081 589086 14 CEPH1463 NA12889(dad;unknown),NA12890(mom;
→˓unknown),NA12877(child;unknown) G/G,GAGAA/GAGAA,G/G NA12877 1
→˓uniparental disomy 0.940
chr1 749688 749689 16 CEPH1463 NA12889(dad;unknown),NA12890(mom;
→˓unknown),NA12877(child;unknown) T/T,T/T,G/G NA12877 1 implausible
→˓de novo 0.959
chr1 788944 788945 17 CEPH1463 NA12889(dad;unknown),NA12890(mom;
→˓unknown),NA12877(child;unknown) C/C,G/G,G/G NA12877 1 uniparental
→˓disomy 0.914
chr1 1004248 1004249 22 CEPH1463 NA12889(dad;unknown),NA12890(mom;
→˓unknown),NA12877(child;unknown) G/G,G/G,G/C NA12877 1 plausible de
→˓novo 1.000

Where, here, we have required the called genotype to have at most a PL of 1 (lower is more confident). Note that the
“violation” column indicates the type of mendelian error and the final column can be used for further filtering, with
higher numbers indicating a greater probability of mendelian error. We have found > 0.99 to be a reasonable cutoff.

Arguments are similar to the other tools:

positional arguments:
db The name of the database to be queried.

5.7. Built-in analysis tools 45

gemini Documentation, Release 0.20.1

optional arguments:
-h, --help show this help message and exit
--columns STRING A list of columns that you would like returned. Def. =

"*"
--filter STRING Restrictions to apply to variants (SQL syntax)
--min-kindreds MIN_KINDREDS

The min. number of kindreds that must have a candidate
variant in a gene.

--families FAMILIES Restrict analysis to a specific set of 1 or more
(comma) separated) families

-d MIN_SAMPLE_DEPTH The minimum aligned sequence depth required for
each sample in a family (default = 0)

--gt-pl-max GT_PHRED_LL
The maximum phred-scaled genotype likelihod (PL)
allowed for each sample in a family.

--allow-unaffected consider candidates that also appear in unaffected samples.

de_novo: Identifying potential de novo mutations.

Note: 1. This tool requires that you identify familial relationships via a PED file when loading your VCF into gemini
via:

gemini load -v my.vcf -p my.ped my.db

Genotype Requirements

• all affecteds must be het

• [affected] all unaffected must be homref or homalt

• at least 1 affected kid must have unaffected parents

• [strict] if an affected has affected parents, it’s not de_novo

• [strict] all affected kids must have unaffected (or no) parents

• [strict] warning if none of the affected samples have parents.

The last 3 items, prefixed with [strict] can be turned off with –lenient

If –allow-unaffected is specified, then the item prefixed [affected] is not required.

Example PED file format for GEMINI

#Family_ID Individual_ID Paternal_ID Maternal_ID Sex Phenotype
→˓ Ethnicity
1 S173 S238 S239 1 2 caucasian
1 S238 -9 -9 1 1 caucasian
1 S239 -9 -9 2 1 caucasian
2 S193 S230 S231 1 2 caucasian
2 S230 -9 -9 1 1 caucasian
2 S231 -9 -9 2 1 caucasian
3 S242 S243 S244 1 2 caucasian
3 S243 -9 -9 1 1 caucasian
3 S244 -9 -9 2 1 caucasian
4 S253 S254 S255 1 2 caucasianNEuropean

46 Chapter 5. Table of contents

gemini Documentation, Release 0.20.1

4 S254 -9 -9 1 1 caucasianNEuropean
4 S255 -9 -9 2 1 caucasianNEuropean

Assuming you have defined the familial relationships between samples when loading your VCF into GEMINI, one
can leverage a built-in tool for identifying de novo (a.k.a spontaneous) mutations that arise in offspring.

example

$ gemini de_novo --columns "chrom,start,end" test.de_novo.db
chrom start end variant_id family_id family_members family_
→˓genotypes samples family_count
chr10 1142207 1142208 1 1 1_dad(dad;unaffected),1_mom(mom;
→˓unaffected),1_kid(child;affected) T/T,T/T,T/C 1_kid 1
chr10 48003991 48003992 2 2 2_dad(dad;unaffected),2_
→˓mom(mom;unaffected),2_kid(child;affected) C/C,C/C,C/T 2_kid 1
chr10 48004991 48004992 3 3 3_dad(dad;unaffected),3_
→˓mom(mom;unaffected),3_kid(child;affected) C/C,C/C,C/T 3_kid 1
chr10 135336655 135336656 4 4 1_dad(dad;unaffected),1_
→˓mom(mom;unaffected),1_kid(child;affected) G/G,G/G,G/A 1_kid 2
chr10 135336655 135336656 4 4 2_dad(dad;unaffected),2_
→˓mom(mom;unaffected),2_kid(child;affected) G/G,G/G,G/A 2_kid 2
chr10 135369531 135369532 5 5 1_dad(dad;unaffected),1_
→˓mom(mom;unaffected),1_kid(child;affected) T/T,T/T,T/C 1_kid 3
chr10 135369531 135369532 5 5 2_dad(dad;unaffected),2_
→˓mom(mom;unaffected),2_kid(child;affected) T/T,T/T,T/C 2_kid 3
chr10 135369531 135369532 5 5 3_dad(dad;unaffected),3_
→˓mom(mom;unaffected),3_kid(child;affected) T/T,T/T,T/C 3_kid 3

Note: The output will always start with the the requested columns followed by the 5 columns enumerated at the start
of this document.

$ gemini de_novo -d 50 --columns "chrom,start,end" test.de_novo.db
chrom start end variant_id family_id family_members family_
→˓genotypes samples family_count
chr10 135369531 135369532 5 5 3_dad(dad;unaffected),3_
→˓mom(mom;unaffected),3_kid(child;affected) T/T,T/T,T/C 3_kid 1

example

if we wanted to restrict candidate variants to solely those with a HIGH predicted functional consequence, we could
use the following:

$ gemini de_novo \
--columns "chrom, start, end, ref, alt" \
--filter "impact_severity = 'HIGH'" \
test.de_novo.db

chrom start end ref alt variant_id family_id family_
→˓members family_genotypes samples family_count
chr10 1142207 1142208 T C 1 1 1_dad(dad;unaffected),1_
→˓mom(mom;unaffected),1_kid(child;affected) T/T,T/T,T/C 1_kid 1

5.7. Built-in analysis tools 47

gemini Documentation, Release 0.20.1

example

the following command would further restrict candidate genes to those genes with a de novo variant in at least two
families:

$ gemini de_novo \
--columns "chrom, start, end, ref, alt" \
--filter "impact_severity = 'HIGH'" \
--min-kindreds 2 \
test.de_novo.db

example

By default, candidate de novo variants are reported for families in the database. One can restrict the analysis to variants
in specific familes with the --families option. Families should be provided as a comma-separated list

$ gemini de_novo --families 1 my.db
$ gemini de_novo --families 1,7 my.db

autosomal_recessive: Find variants meeting an autosomal recessive model.

Warning: By default, this tool requires that you identify familial relationships via a PED file when loading your
VCF into GEMINI. For example:

gemini load -v my.vcf -p my.ped my.db

However, in the absence of established parent/child relationships in the PED file, GEMINI will issue a WARNING,
yet will attempt to identify autosomal recessive candidates for all samples marked as “affected”.

Genotype Requirements

• all affecteds must be hom_alt

• [affected] no unaffected can be hom_alt (can be unknown)

• [strict] if parents exist they must be unaffected and het for all affected kids

• [strict] if there are no affecteds that have a parent, a warning is issued.

if –lenient is specified, the 2 points prefixed with “[strict]” are not required.

if –allow-unaffected is specified, the point prefix with “[affected]” is not required.

default behavior

Assuming you have defined the familial relationships between samples when loading your VCF into GEMINI, one
can leverage a built-in tool for identifying variants that meet an autosomal recessive inheritance pattern. The reported
variants will be restricted to those variants having the potential to impact the function of affecting protein coding
transcripts.

For the following examples, let’s assume we have a PED file for 3 different families as follows (the kids are affected
in each family, but the parents are not):

48 Chapter 5. Table of contents

gemini Documentation, Release 0.20.1

$ cat families.ped
1 1_dad 0 0 -1 1
1 1_mom 0 0 -1 1
1 1_kid 1_dad 1_mom -1 2
2 2_dad 0 0 -1 1
2 2_mom 0 0 -1 1
2 2_kid 2_dad 2_mom -1 2
3 3_dad 0 0 -1 1
3 3_mom 0 0 -1 1
3 3_kid 3_dad 3_mom -1 2

$ gemini autosomal_recessive test.auto_rec.db --columns "chrom,start,end,gene"
chrom start end gene variant_id family_id family_members
→˓family_genotypes samples family_count
chr10 48003991 48003992 ASAH2C 2 2 1_dad(dad;
→˓unaffected),1_mom(mom;unaffected),1_kid(child;affected) C/T,C/T,T/T 1_kid
→˓ 1
chr10 48004991 48004992 ASAH2C 3 3 2_dad(dad;
→˓unaffected),2_mom(mom;unaffected),2_kid(child;affected) C/T,C/T,T/T 2_kid
→˓ 1
chr10 135369531 135369532 SYCE1 5 5 3_dad(dad;
→˓unaffected),3_mom(mom;unaffected),3_kid(child;affected) T/C,T/C,C/C 3_kid
→˓ 1
chr10 1142207 1142208 WDR37 1 1 1_dad(dad;unaffected),1_mom(mom;
→˓unaffected),1_kid(child;affected) T/C,T/C,C/C 1_kid 2
chr10 1142207 1142208 WDR37 1 1 2_dad(dad;unaffected),2_mom(mom;
→˓unaffected),2_kid(child;affected) T/C,T/C,C/C 2_kid 2

Note: The output will always start with the requested columns and end with the 5 extra columns enumerated at the
start of this document.

To restrict the report to genes with variants (doesn’t have to be the _same_ variant) observed in at least two kindreds,
use the following:

$ gemini autosomal_recessive \
--columns "gene, chrom, start, end, ref, alt, impact, impact_severity" \
--min-kindreds 2 \
test.auto_rec.db

gene chrom start end ref alt impact impact_severity variant_
→˓id family_id family_members family_genotypes samples family_count
ASAH2C chr10 48003991 48003992 C T non_syn_coding
→˓MED 2 2 1_dad(dad;unaffected),1_mom(mom;unaffected),1_kid(child;
→˓affected) C/T,C/T,T/T 1_kid 1
ASAH2C chr10 48004991 48004992 C T non_syn_coding
→˓MED 3 3 2_dad(dad;unaffected),2_mom(mom;unaffected),2_kid(child;
→˓affected) C/T,C/T,T/T 2_kid 1
WDR37 chr10 1142207 1142208 T C stop_loss HIGH 1 1
→˓ 1_dad(dad;unaffected),1_mom(mom;unaffected),1_kid(child;affected) T/C,T/
→˓C,C/C 1_kid 2
WDR37 chr10 1142207 1142208 T C stop_loss HIGH 1 1
→˓ 2_dad(dad;unaffected),2_mom(mom;unaffected),2_kid(child;affected) T/C,T/
→˓C,C/C 2_kid 2

to report only those with a HIGH predicted functional consequence, we could use the following:

5.7. Built-in analysis tools 49

gemini Documentation, Release 0.20.1

$ gemini autosomal_recessive \
--columns "gene, chrom, start, end, ref, alt, impact, impact_severity" \
--min-kindreds 2 \
--filter "impact_severity = 'HIGH'" \
test.auto_rec.db

gene chrom start end ref alt impact impact_severity variant_
→˓id family_id family_members family_genotypes samples family_count
WDR37 chr10 1142207 1142208 T C stop_loss HIGH 1 1
→˓ 1_dad(dad;unaffected),1_mom(mom;unaffected),1_kid(child;affected) T/C,T/
→˓C,C/C 1_kid 2
WDR37 chr10 1142207 1142208 T C stop_loss HIGH 1 1
→˓ 2_dad(dad;unaffected),2_mom(mom;unaffected),2_kid(child;affected) T/C,T/
→˓C,C/C 2_kid 2

To limit to confidently called genotypes:

$ gemini autosomal_dominant \
--columns "gene, chrom, start, end, ref, alt, impact, impact_severity" \
--filter "impact_severity = 'HIGH'" \
--min-kindreds 1 \
--gt-pl-max 10 \
my.db

autosomal_dominant: Find variants meeting an autosomal dominant model.

Warning: 0. version 0.16.0 changes the behavior of this tool to be more strict. To regain more lenient behavior,
specify –lenient and –allow-unaffected.

By default, this tool requires that you identify familial relationships via a PED file when loading your VCF into
GEMINI. For example:

gemini load -v my.vcf -p my.ped my.db

Genotype Requirements

• All affecteds must be het

• [affected] No unaffected can be het or homalt (can be unknown)

• de_novo mutations are not auto_dom (at least not in the first generation)

• At least 1 affected must have 1 affected parent (or have no parents).

• If no affected has a parent, a warning is issued.

• [strict] All affecteds must have parents with known phenotype.

• [strict] All affected kids must have at least 1 affected parent

If –lenient is specified, the items prefixed with “[strict]” are not required.

If –allow-unaffected is specified, the item prefix with “[affected]” is not required.

Note that for autosomal dominant –lenient allows singleton affecteds to be used to meet the –min-kindreds requirement
if they are HET.

If there is incomplete penetrance in the kindred (unaffected obligate carriers), these individuals currently must be
coded as having unknown phenotype or as being affected.

50 Chapter 5. Table of contents

gemini Documentation, Release 0.20.1

default behavior

For the following examples, let’s assume we have a PED file for 3 different families as follows (the kids are affected
in each family, but the parents are not):

$ cat families.ped
1 1_dad 0 0 -1 1
1 1_mom 0 0 -1 1
1 1_kid 1_dad 1_mom -1 2
2 2_dad 0 0 -1 1
2 2_mom 0 0 -1 2
2 2_kid 2_dad 2_mom -1 2
3 3_dad 0 0 -1 2
3 3_mom 0 0 -1 -9
3 3_kid 3_dad 3_mom -1 2

$ gemini autosomal_dominant test.auto_dom.db --columns "chrom,start,end,gene"
chrom start end gene variant_id family_id family_members
→˓family_genotypes samples family_count
chr10 48003991 48003992 ASAH2C 3 3 2_dad(dad;
→˓unaffected),2_mom(mom;affected),2_kid(child;affected) C/C,C/T,C/T 2_mom,2_kid
→˓ 2
chr10 48004991 48004992 ASAH2C 4 4 2_dad(dad;
→˓unaffected),2_mom(mom;affected),2_kid(child;affected) C/C,C/T,C/T 2_mom,2_kid
→˓ 2
chr10 48003991 48003992 ASAH2C 3 3 3_dad(dad;
→˓affected),3_mom(mom;unknown),3_kid(child;affected) C/T,C/C,C/T 3_dad,3_kid
→˓ 2
chr10 48004991 48004992 ASAH2C 4 4 3_dad(dad;
→˓affected),3_mom(mom;unknown),3_kid(child;affected) C/T,C/C,C/T 3_dad,3_kid
→˓ 2
chr10 135336655 135336656 SPRN 5 5 3_dad(dad;
→˓affected),3_mom(mom;unknown),3_kid(child;affected) G/A,G/G,G/A 3_dad,3_kid
→˓ 1
chr10 1142207 1142208 WDR37 1 1 2_dad(dad;unaffected),2_mom(mom;
→˓affected),2_kid(child;affected) T/T,T/C,T/C 2_mom,2_kid 2
chr10 1142207 1142208 WDR37 1 1 3_dad(dad;affected),3_mom(mom;
→˓unknown),3_kid(child;affected) T/C,T/T,T/C 3_dad,3_kid 2

$ gemini autosomal_dominant \
--columns "gene, chrom, start, end, ref, alt, impact, impact_severity" \
--min-kindreds 2 \
test.auto_dom.db

gene chrom start end ref alt impact impact_severity variant_
→˓id family_id family_members family_genotypes samples family_count
ASAH2C chr10 48003991 48003992 C T non_syn_coding
→˓MED 3 3 2_dad(dad;unaffected),2_mom(mom;affected),2_kid(child;
→˓affected) C/C,C/T,C/T 2_mom,2_kid 2
ASAH2C chr10 48004991 48004992 C T non_syn_coding
→˓MED 4 4 2_dad(dad;unaffected),2_mom(mom;affected),2_kid(child;
→˓affected) C/C,C/T,C/T 2_mom,2_kid 2
ASAH2C chr10 48003991 48003992 C T non_syn_coding
→˓MED 3 3 3_dad(dad;affected),3_mom(mom;unknown),3_kid(child;
→˓affected) C/T,C/C,C/T 3_dad,3_kid 2
ASAH2C chr10 48004991 48004992 C T non_syn_coding
→˓MED 4 4 3_dad(dad;affected),3_mom(mom;unknown),3_kid(child;
→˓affected) C/T,C/C,C/T 3_dad,3_kid 2
WDR37 chr10 1142207 1142208 T C stop_loss HIGH 1 1
→˓ 2_dad(dad;unaffected),2_mom(mom;affected),2_kid(child;affected) T/T,T/C,T/C
→˓ 2_mom,2_kid 2

5.7. Built-in analysis tools 51

gemini Documentation, Release 0.20.1

WDR37 chr10 1142207 1142208 T C stop_loss HIGH 1 1
→˓ 3_dad(dad;affected),3_mom(mom;unknown),3_kid(child;affected) T/C,T/T,T/C
→˓ 3_dad,3_kid 2

x_linked_recessive: x-linked recessive inheritance

Note that as of version 0.19.0, we do not account for the pseudo autosomal regions. The ‘X’ chromosome can be
specifing using –X (defaults to ‘chrX’ and ‘X’)

Genotype Requirements

• Affected females must be HOM_ALT

• Unaffected females are HET or HOM_REF

• Affected males are not HOM_REF

• Unaffected males are HOM_REF

x_linked_dominant: x-linked dominant inheritance

Note that as of version 0.19.0, we do not account for the pseudo autosomal regions. The ‘X’ chromosome can be
specifing using –X (defaults to ‘chrX’ and ‘X’)

Genotype Requirements

• Affected males are HET or HOM_ALT

• Affected females must be HET

• Unaffecteds must be HOM_REF

• girls of affected dad must be affected

• boys of affected dad must be unaffected

• mothers of affected males must be het (and affected) [added in 0.19.1]

• at least 1 parent of affected females must be het (and affected). [added in 0.19.1]

x_linked_de_novo: x-linked de novo

Note that as of version 0.19.0, we do not account for the pseudo autosomal regions. The ‘X’ chromosome can be
specifing using –X (defaults to ‘chrX’ and ‘X’)

Genotype Requirements

• affected female child must be het

• affected male child must be hom_alt (or het)

• parents should be unaffected and hom_ref

52 Chapter 5. Table of contents

gemini Documentation, Release 0.20.1

gene_wise: Custom genotype filtering by gene.

The gemini query tool allows querying by variant and the inheritance tools described above enable querying by gene
for fixed inheritance patterns. The gene_wise tool allows querying by gene with custom genotype filters to bridge the
gap between these tools.

With this tool, multiple –gt-filter s can be specified. Each filter can be any valid filter; often, it will make sense to have
1 filter for each family. For example, given this pedigree:

Where only the orange samples are sequenced, we could devise a query:

gemini gene_wise $db \
--min-filters 3 \
--gt-filter "gt_types.fam1_kid == HET and gt_types.fam1_mom == HOM_REF and gt_

→˓types.fam1_dad == HOM_REF" \
--gt-filter "gt_types.fam2_kid == HET" \
--gt-filter "gt_types.fam3_kid == HET" \
--columns "chrom,start,end,gene,impact,impact_severity" \
--filter "max_aaf_all < 0.005"

The –min-filters option means that we want all 3 of those filters to be met in a gene in order for variants in that gene to
be reported. We can envision a scenario where we have 6 families (and 6 filters) and we want to report genes where 4
of them meet the filters. In that case, the query would have 6 –gt-filter s and –min-filters of 3.

This differs from using gemini query with a single –gt-filter that combines each of those terms with an and because
this allows each filter to be met in a different variant but in the same gene while the gemini query tool applies all
elements of the single filter to each variant.

The output from the above query is:

chrom start end gene impact impact_severity variant_
→˓filters n_gene_variants gene_filters
chr5 60839982 60839983 ZSWIM6 non_syn_coding MED 1,2,3
→˓ 1 1,2,3
chr6 32548031 32548032 HLA-DRB1 non_syn_coding MED 1
→˓ 4 1,2,3
chr6 32552059 32552060 HLA-DRB1 frame_shift HIGH 2
→˓ 4 1,2,3
chr6 32552131 32552132 HLA-DRB1 inframe_codon_gain MED 3
→˓ 4 1,2,3
chr6 32552136 32552137 HLA-DRB1 non_syn_coding MED 3
→˓ 4 1,2,3

5.7. Built-in analysis tools 53

gemini Documentation, Release 0.20.1

Note that the first gene has the same variant for all 3 families, so we could have found this with the gemini query tool.
However, for the HLA gene, each of the 3 filters passed in different variant so this would be missed by the query tool
which only looks at a single variant at a time.

As with the other tools, this tool orders by chromosome and gene and it applies WHERE (is_exonic = 1 AND im-
pact_severity != ‘LOW’)” to the query.

• The variant_filters column shows which filters were passed by the variant.

• The n_gene_variants column shows how many variants in the gene are being reported.

• The gene_filter column shows which filters in the gene passed by any variant.

Multiple –gt-filter-required filters can also be specified. Each filter added to this argument is required to pass for each
variant and it does not contribute to the –min-filters argument. This can be used with, or instead of –gt-filter E.g.

gemini gene_wise \
--columns "gene, chrom, start, end, ref, alt, impact, impact_severity" \
--gt-filter-required "((gt_depths).(*).(>10).(all))" \
--gt-filter "gt_types.fam1_kid == HET and gt_types.fam1_mom == HOM_REF and gt_

→˓types.fam1_dad == HOM_REF" \
--gt-filter "gt_types.fam2_kid == HET" \
--gt-filter "gt_types.fam3_kid == HET" \
--min-filters 2 \
test.db

will required that all samples meet the minimum depth filter and then keep the subset of those that meet 2 out of the 3
–gt-filters.

--where

By default gene_wise limits to variants passing the clause:

is_exonic = 1 AND impact_severity != ‘LOW’

but this can be changed with the –where clause, e.g.:

--where "(is_exonic = 1 or is_splicing = 1) AND impact_severity != 'LOW'"

pathways: Map genes and variants to KEGG pathways.

Mapping genes to biological pathways is useful in understanding the function/role played by a gene. Likewise, genes
involved in common pathways is helpful in understanding heterogeneous diseases. We have integrated the KEGG
pathway mapping for gene variants, to explain/annotate variation. This requires your VCF be annotated with either
snpEff/VEP.

Examples:

$ gemini pathways -v 68 example.db
chrom start end ref alt impact sample genotype gene
→˓transcript pathway
chr10 52004314 52004315 T C intron M128215 C/C ASAH2
→˓ ENST00000395526 hsa00600:Sphingolipid_metabolism,hsa01100:Metabolic_pathways

54 Chapter 5. Table of contents

gemini Documentation, Release 0.20.1

chr10 126678091 126678092 G A stop_gain M128215 G/A
→˓ CTBP2 ENST00000531469 hsa05220:Chronic_myeloid_leukemia,hsa04310:Wnt_signaling_
→˓pathway,hsa04330:Notch_signaling_pathway,hsa05200:Pathways_in_cancer
chr16 72057434 72057435 C T non_syn_coding M10475 C/T
→˓ DHODH ENST00000219240 hsa01100:Metabolic_pathways,hsa00240:Pyrimidine_metabolism

Here, -v specifies the version of the Ensembl genes used to build the KEGG pathway map. Hence, use versions that
match the VEP/snpEff versions of the annotated vcf for correctness. For e.g VEP v2.6 and snpEff v3.1 use Ensembl
68 version of the genomes.

We currently support versions 66 through 71 of the Ensembl genes

--lof

By default, all gene variants that map to pathways are reported. However, one may want to restrict the analysis to LoF
variants using the --lof option.

$ gemini pathways --lof -v 68 example.db
chrom start end ref alt impact sample genotype gene
→˓transcript pathway
chr10 126678091 126678092 G A stop_gain M128215 G/A
→˓ CTBP2 ENST00000531469 hsa05220:Chronic_myeloid_leukemia,hsa04310:Wnt_signaling_
→˓pathway,hsa04330:Notch_signaling_pathway,hsa05200:Pathways_in_cancer

interactions: Find genes among variants that are interacting partners.

Integrating the knowledge of the known protein-protein interactions would be useful in explaining variation data.
Meaning to say that a damaging variant in an interacting partner of a potential protein may be equally interesting as
the protein itself. We have used the HPRD binary interaction data to build a p-p network graph which can be explored
by GEMINI.

Examples:

$ gemini interactions -g CTBP2 -r 3 example.db
sample gene order_of_interaction interacting_gene
M128215 CTBP2 0_order: CTBP2
M128215 CTBP2 1_order: RAI2
M128215 CTBP2 2_order: RB1
M128215 CTBP2 3_order: TGM2,NOTCH2NL

Return CTBP2 (-g) interacting gene variants till the third order (-r)

lof_interactions

Use this option to restrict your analysis to only LoF variants.

$ gemini lof_interactions -r 3 example.db
sample lof_gene order_of_interaction interacting_gene
M128215 TGM2 1_order: RB1
M128215 TGM2 2_order: none
M128215 TGM2 3_order: NOTCH2NL,CTBP2

Meaning to say return all LoF gene TGM2 (in sample M128215) interacting partners to a 3rd order of interaction.

5.7. Built-in analysis tools 55

gemini Documentation, Release 0.20.1

--var

An extended variant information (chrom, start, end etc.) for the interacting gene may be achieved with the –var option
for both the interactions and the lof_interactions

$ gemini interactions -g CTBP2 -r 3 --var example.db
sample gene order_of_interaction interacting_gene var_id chrom start
→˓ end impact biotype in_dbsnp clinvar_sig clinvar_disease_name
→˓aaf_1kg_all aaf_esp_all
M128215 CTBP2 0 CTBP2 5 chr10 126678091 126678092 stop_
→˓gain protein_coding 1 None None None None
M128215 CTBP2 1 RAI2 9 chrX 17819376 17819377 non_
→˓syn_coding protein_coding 1 None None 1 0.000473
M128215 CTBP2 2 RB1 7 chr13 48873834 48873835
→˓upstream protein_coding 1 None None 0.94 None
M128215 CTBP2 3 NOTCH2NL 1 chr1 145273344 145273345
→˓ non_syn_coding protein_coding 1 None None None None
M128215 CTBP2 3 TGM2 8 chr20 36779423 36779424 stop_
→˓gain protein_coding 0 None None None None

$ gemini lof_interactions -r 3 --var example.db
sample lof_gene order_of_interaction interacting_gene var_id chrom
→˓ start end impact biotype in_dbsnp clinvar_sig clinvar_disease_
→˓name aaf_1kg_all aaf_esp_all
M128215 TGM2 1 RB1 7 chr13 48873834 48873835
→˓upstream protein_coding 1 None None 0.94 None
M128215 TGM2 3 NOTCH2NL 1 chr1 145273344 145273345
→˓ non_syn_coding protein_coding 1 None None None None
M128215 TGM2 3 CTBP2 5 chr10 126678091 126678092 stop_
→˓gain protein_coding 1 None None None None

lof_sieve: Filter LoF variants by transcript position and type

Not all candidate LoF variants are created equal. For e.g, a nonsense (stop gain) variant impacting the first 5% of
a polypeptide is far more likely to be deleterious than one affecting the last 5%. Assuming you’ve annotated your
VCF with snpEff v3.0+, the lof_sieve tool reports the fractional position (e.g. 0.05 for the first 5%) of the mutation in
the amino acid sequence. In addition, it also reports the predicted function of the transcript so that one can segregate
candidate LoF variants that affect protein_coding transcripts from processed RNA, etc.

$ gemini lof_sieve chr22.low.exome.snpeff.100samples.vcf.db
chrom start end ref alt highest_impact aa_change var_trans_pos trans_aa_
→˓length var_trans_pct sample genotype gene transcript trans_type
chr22 17072346 17072347 C T stop_gain W365* 365 557 0.655296229803
→˓NA19327 C|T CCT8L2 ENST00000359963 protein_coding
chr22 17072346 17072347 C T stop_gain W365* 365 557 0.655296229803
→˓NA19375 T|C CCT8L2 ENST00000359963 protein_coding
chr22 17129539 17129540 C T splice_donor None None None None
→˓ NA18964 T|C TPTEP1 ENST00000383140 lincRNA
chr22 17129539 17129540 C T splice_donor None None None None
→˓ NA19675 T|C TPTEP1 ENST00000383140 lincRNA

56 Chapter 5. Table of contents

gemini Documentation, Release 0.20.1

amend: updating / changing the sample information

Occassionally one may need to update the sample information stored in the samples table. The amend tool allows
one to provide an updated PED file as input and it will update each sample_id in the PED file that matches a sample_id.

For example, assume you have already loaded a GEMINI database with a samples.ped where mom and dad are
unaffected and kid isaffected:

$ cat samples.ped
1 dad 0 0 1 1
1 mom 0 0 1 1
1 kid dad mom 2 2

$ gemini load -v my.vcf -p samples.ped -t VEP my.db

Now, let’s say you realized that the dad is also affected and you want to correct the samples table accordingly. You
would first edit the PED file and then run the amend tool using the updated PED.

$ cat samples.ped
1 dad 0 0 1 2
1 mom 0 0 1 1
1 kid dad mom 2 2

$ gemini amend --sample samples.ped my.db

annotate: adding your own custom annotations

It is inevitable that researchers will want to enhance the gemini framework with their own, custom annotations.
gemini provides a sub-command called annotate for exactly this purpose. As long as you provide a tabix‘ed
annotation file in BED or VCF format, the annotate tool will, for each variant in the variants table, screen for
overlaps in your annotation file and update a one or more new column in the variants table that you may specify on
the command line. This is best illustrated by example.

Let’s assume you have already created a gemini database of a VCF file using the load module.

$ gemini load -v my.vcf -t snpEff my.db

Now, let’s imagine you have an annotated file in BED format (important.bed) that describes regions of the
genome that are particularly relevant to your lab’s research. You would like to annotate in the gemini database which
variants overlap these crucial regions. We want to store this knowledge in a new column in the variants table called
important_variant that tracks whether a given variant overlapped (1) or did not overlap (0) intervals in your
annotation file.

To do this, you must first TABIX your BED file:

$ bgzip important.bed
$ tabix -p bed important.bed.gz

-a boolean Did a variant overlap a region or not?

Note: Formerly, the -a option was the -t option.

5.7. Built-in analysis tools 57

gemini Documentation, Release 0.20.1

Now, you can use this TABIX’ed file to annotate which variants overlap your important regions. In the example below,
the results will be stored in a new column called “important”. The -t boolean option says that you just want to
track whether (1) or not (0) the variant overlapped one or more of your regions.

$ gemini annotate -f important.bed.gz -c important -a boolean my.db

Since a new columns has been created in the database, we can now directly query the new column. In the example
results below, the first and third variants overlapped a crucial region while the second did not.

$ gemini query \
-q "select chrom, start, end, variant_id, important from variants" \
my.db \
| head -3

chr22 100 101 1 1
chr22 200 201 2 0
chr22 300 500 3 1

-a count How many regions did a variant overlap?

Instead of a simple yes or no, we can use the -t count option to count how many important regions a variant
overlapped. It turns out that the 3rd variant actually overlapped two important regions.

$ gemini annotate -f important.bed.gz -c important -a count my.db

$ gemini query \
-q "select chrom, start, end, variant_id, crucial from variants" \
my.db \
| head -3

chr22 100 101 1 1
chr22 200 201 2 0
chr22 300 500 3 2

-a extract Extract specific values from a BED file

Lastly, we may also extract values from specific fields in a BED file (or from the INFO field in a VCF) and populate
one or more new columns in the database based on overlaps with the annotation file and the values of the fields therein.
To do this, we use the -a extract option.

This is best described with an example. To set this up, let’s imagine that we have a VCF file from a different experiment
and we want to annotate the variants in our GEMINI database with the allele frequency and depth tags from the INFO
fields for the same variants in this other VCF file.

bgzip and tabix the vcf for use with the annotate tool. $ bgzip other.vcf $ tabix other.vcf.gz

Now that we have a proper TABIX’ed VCF file, we can use the -a extract option to populate new columns in the
GEMINI database. In order to do so, we must specify:

1. its type (e.g., text, int, float,) (-t)

2. the field in the INFO column of the VCF file that we should use to extract data with which to populate the new
column (-e)

3. what operation should be used to summarize the data in the event of multiple overlaps in the annotation file (-o)

4. (optionally) the name of the column we want to add (-c), if this is not specified, it will use the value from -e.

58 Chapter 5. Table of contents

gemini Documentation, Release 0.20.1

For example, let’s imagine we want to create a new column called “other_allele_freq” using the AF field in our VCF
file to populate it.

$ gemini annotate -f other.vcf.gz \
-a extract \
-c other_allele_freq \
-t float \
-e AF \
-o mean \
my.db

This create a new column in my.db called other_allele_freq and this new column will be a FLOAT. In the
event of multiple records in the VCF file overlapping a variant in the database, the average (mean) of the allele
frequencies values from the VCF file will be used.

At this point, one can query the database based on the values of the new other_allele_freq column:

$ gemini query -q "select * from variants where other_allele_freq < 0.01" my.db

-t TYPE Specifying the column type(s) when using -a extract

The annotate tool will create three different types of columns via the -t option:

1. Floating point columns for annotations with decimal precision as above (-t float)

2. Integer columns for integral annotations (-t integer)

3. Text columns for string columns such as “valid”, “yes”, etc. (-t text)

Note: The -t option is only valid when using the -a extract option.

-o OPERATION Specifying the summary operations when using -a extract

In the event of multiple overlaps between a variant and records in the annotation file, the annotate tool can summa-
rize the values observed with multiple options:

1. -o mean. Compute the average of the values. They must be numeric.

2. -o median. Compute the median of the values. They must be numeric.

3. -o min. Compute the minimum of the values. They must be numeric.

4. -o max. Compute the maximum of the values. They must be numeric.

5. -o mode. Compute the maximum of the values. They must be numeric.

6. -o first. Use the value from the first record in the annotation file.

7. -o last. Use the value from the last record in the annotation file.

8. -o list. Create a comma-separated list of the observed values. -t must be text

9. -o uniq_list. Create a comma-separated list of the distinct (i.e., non-redundant) observed values. -t must
be text

10. -o sum. Compute the sum of the values. They must be numeric.

5.7. Built-in analysis tools 59

gemini Documentation, Release 0.20.1

Note: The -o option is only valid when using the -a extract option.

Annotating with VCF

Most of the examples to this point have pulled a column from a tabix indexed bed file. It is likewise possible to pull
from the INFO field of a tabix index VCF. The syntax is identical but the -e operation will specify the names of fields
in the INFO column to pull. By default, those names will be used, but that can still be specified with the -c column.
Here are some example uses

put a DP column in the db:
gemini annotate -f anno.vcf.gz -o list -e DP -t integer my.db

... and name it 'depth'
gemini annotate -f anno.vcf.gz -o list -e DP -c depth -t integer my.db

use multiple columns
gemini annotate -f anno.vcf.gz -o list,mean -e DP,Qmeter -c depth,qmeter -t integer
→˓my.db

Missing values are allowed since we expect that in some cases an annotation VCF will not have all INFO fields
specified for all variants.

Note: We recommend decomposing and normalizing variants before annotating. See Step 1. split, left-align, and trim
variants for a detailed explanation of how to do this.

Extracting and populating multiple columns at once.

One can also extract and populate multiple columns at once by providing comma-separated lists (no spaces) of column
names (-c), types (-t), numbers (-e), and summary operations (-o). For example, recall that in the VCF example
above, we created a TABIX’ed BED file containg the allele frequency and depth values from the INFO field as the 4th
and 5th columns in the BED, respectively.

Instead of running the annotate tool twice (once for eaxh column), we can run the tool once and load both columns
in the same run. For example:

$ gemini annotate -f other.bed.gz \
-a extract \
-c other_allele_freq,other_depth \
-t float,integer \
-e 4,5 \
-o mean,max \
my.db

We can then use each of the new columns to filter variants with a GEMINI query:

$ gemini query -q "select * from variants \
where other_allele_freq < 0.01 \
and other_depth > 100" my.db

60 Chapter 5. Table of contents

gemini Documentation, Release 0.20.1

region: Extracting variants from specific regions or genes

One often is concerned with variants found solely in a particular gene or genomic region. gemini allows one to
extract variants that fall within specific genomic coordinates as follows:

--reg

$ gemini region --reg chr1:100-200 my.db

--gene

Or, one can extract variants based on a specific gene name.

$ gemini region --gene PTPN22 my.db

--columns

By default, this tool reports all columns in the variants table. One may choose to report only a subset of the
columns using the --columns option. For example, to report just the gene, chrom, start, end, ref,
alt, impact, and impact_severity columns, one would use the following:

$ gemini region --gene DHODH \
--columns "chrom, start, end, ref, alt, gene, impact" \
my.db

chr16 72057281 72057282 A G DHODH intron
chr16 72057434 72057435 C T DHODH non_syn_coding
chr16 72059268 72059269 T C DHODH downstream

--filter

By default, this tool will report all variants regardless of their putative functional impact. In order to apply additional
constraints on the variants returned, one can use the --filter option. Using SQL syntax, conditions applied with
the ‘‘–filter option become WHERE clauses in the query issued to the GEMINI database. For example, if we wanted to
restrict candidate variants to solely those with a HIGH predicted functional consequence, we could use the following:

$ gemini region --gene DHODH \
--columns "chrom, start, end, ref, alt, gene, impact" \
--filter "alt='G'"
my.db

chr16 72057281 72057282 A G DHODH intron

--json

Reporting query output in JSON format may enable HTML/Javascript apps to query GEMINI and retrieve the output
in a format that is amenable to web development protocols.

To report in JSON format, use the --json option. For example:

5.7. Built-in analysis tools 61

gemini Documentation, Release 0.20.1

$ gemini region --gene DHODH \
--columns "chrom, start, end, ref, alt, gene, impact" \
--filter "alt='G'"
--json
my.db

{"chrom": "chr16", "start": 72057281, "end": 72057282, "ref": "A", "alt": "G", "gene
→˓": "DHODH"}

windower: Conducting analyses on genome “windows”.

gemini includes a convenient tool for computing variation metrics across genomic windows (both fixed and sliding).
Here are a few examples to whet your appetite. If you’re still hungry, contact us.

Compute the average nucleotide diversity for all variants found in non-overlapping, 50Kb windows.

$ gemini windower -w 50000 -s 0 -t nucl_div -o mean my.db

Compute the average nucleotide diversity for all variants found in 50Kb windows that overlap by 10kb.

$ gemini windower -w 50000 -s 10000 -t nucl_div -o mean my.db

Compute the max value for HWE statistic for all variants in a window of size 10kb

$ gemini windower -w 10000 -t hwe -o max my.db

stats: Compute useful variant statistics.

The stats tool computes some useful variant statistics like

Compute the transition and transversion ratios for the snps

$ gemini stats --tstv my.db
ts tv ts/tv
4 5 0.8

--tstv-coding

Compute the transition/transversion ratios for the snps in the coding regions.

--tstv-noncoding

Compute the transition/transversion ratios for the snps in the non-coding regions.

Compute the type and count of the snps.

$ gemini stats --snp-counts my.db
type count
A->G 2
C->T 1
G->A 1

Calculate the site frequency spectrum of the variants.

62 Chapter 5. Table of contents

gemini Documentation, Release 0.20.1

$ gemini stats --sfs my.db
aaf count
0.125 2
0.375 1

Compute the pair-wise genetic distance between each sample

$ gemini stats --mds my.db
sample1 sample2 distance
M10500 M10500 0.0
M10475 M10478 1.25
M10500 M10475 2.0
M10500 M10478 0.5714

Return a count of the types of genotypes per sample

$ gemini stats --gts-by-sample my.db
sample num_hom_ref num_het num_hom_alt num_unknown total
M10475 4 1 3 1 9
M10478 2 2 4 1 9

Return the total variants per sample (sum of homozygous and heterozygous variants)

$ gemini stats --vars-by-sample my.db
sample total
M10475 4
M10478 6

--summarize

If none of these tools are exactly what you want, you can summarize the variants per sample of an arbitrary query using
the –summarize flag. For example, if you wanted to know, for each sample, how many variants are on chromosome 1
that are also in dbSNP:

$ gemini stats --summarize "select * from variants where in_dbsnp=1 and chrom='chr1'"
→˓my.db
sample total num_het num_hom_alt
M10475 1 1 0
M128215 1 1 0
M10478 2 2 0
M10500 2 1 1

burden: perform sample-wise gene-level burden calculations

The burden tool provides a set of utilities to perform burden summaries on a per-gene, per sample basis. By default,
it outputs a table of gene-wise counts of all high impact variants in coding regions for each sample:

$ gemini burden test.burden.db
gene M10475 M10478 M10500 M128215
WDR37 2 2 2 2
CTBP2 0 0 0 1
DHODH 1 0 0 0

5.7. Built-in analysis tools 63

gemini Documentation, Release 0.20.1

--nonsynonymous

If you want to be a little bit less restrictive, you can include all non-synonymous variants instead:

$ gemini burden --nonsynonymous test.burden.db
gene M10475 M10478 M10500 M128215
SYCE1 0 1 1 0
WDR37 2 2 2 2
CTBP2 0 0 0 1
ASAH2C 2 1 1 0
DHODH 1 0 0 0

--calpha

If your database has been loaded with a PED file describing case and control samples, you can calculate the c-alpha
statistic for cases vs. control:

$ gemini burden --calpha test.burden.db
gene T c Z p_value
SYCE1 -0.5 0.25 -1.0 0.841344746069
WDR37 -1.0 1.5 -0.816496580928 0.792891910879
CTBP2 0.0 0.0 nan nan
ASAH2C -0.5 0.75 -0.57735026919 0.718148569175
DHODH 0.0 0.0 nan nan

To calculate the P-value using a permutation test, use the --permutations option, specifying the number of
permutations of the case/control labels you want to use.

--min-aaf and --max-aaf for --calpha

By default, all variants affecting a given gene will be included in the C-alpha computation. However, one may establish
alternate allele frequency boundaries for the variants included using the --min-aaf and --max-aaf options.

$ gemini burden --calpha test.burden.db --min-aaf 0.0 --max-aaf 0.01

--cases and --controls for ``--calpha

If you do not have a PED file loaded, or your PED file does not follow the standard PED phenotype encoding format
you can still perform the c-alpha test, but you have to specify which samples are the control samples and which are
the case samples:

$ gemini burden --controls M10475 M10478 --cases M10500 M128215 --calpha test.burden.
→˓db
gene T c Z p_value
SYCE1 -0.5 0.25 -1.0 0.841344746069
WDR37 -1.0 1.5 -0.816496580928 0.792891910879
CTBP2 0.0 0.0 nan nan
ASAH2C -0.5 0.75 -0.57735026919 0.718148569175
DHODH 0.0 0.0 nan nan

64 Chapter 5. Table of contents

http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1001322
http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml

gemini Documentation, Release 0.20.1

--nonsynonymous --calpha

If you would rather consider all nonsynonymous variants for the C-alpha test rather than just the medium and high
impact variants, add the --nonsynonymous flag.

ROH: Identifying runs of homozygosity

Runs of homozygosity are long stretches of homozygous genotypes that reflect segments shared identically by descent
and are a result of consanguinity or natural selection. Consanguinity elevates the occurrence of rare recessive diseases
(e.g. cystic fibrosis) that represent homozygotes for strongly deleterious mutations. Hence, the identification of these
runs holds medical value.

The ‘roh’ tool in GEMINI returns runs of homozygosity identified in whole genome data. The tool basically looks at
every homozygous position on the chromosome as a possible start site for the run and looks for those that could give
rise to a potentially long stretch of homozygous genotypes.

For e.g. for the given example allowing 1 HET genotype (h) and 2 UKW genotypes (u) the possible roh runs (H)
would be:

genotype_run = H H H H h H H H H u H H H H H u H H H H H H H h H H H H H h H H H H H
roh_run1 = H H H H h H H H H u H H H H H u H H H H H H H
roh_run2 = H H H H u H H H H H u H H H H H H H h H H H H H
roh_run3 = H H H H H u H H H H H H H h H H H H H
roh_run4 = H H H H H H H h H H H H H

roh returned for –min-snps = 20 would be:

roh_run1 = H H H H h H H H H u H H H H H u H H H H H H H
roh_run2 = H H H H u H H H H H u H H H H H H H h H H H H H

As you can see, the immediate homozygous position right of a break (h or u) would be the possible start of a new roh
run and genotypes to the left of a break are pruned since they cannot be part of a longer run than we have seen before.

Return roh with minimum of 50 snps, a minimum run length of 1 mb and a minimum sample depth of 20 for sample
S138 (with default values for allowed number of HETS, UNKS and total depth).

$ gemini roh --min-snps 50 \
--min-gt-depth 20 \

--min-size 1000000 \
-s S138 \
roh_run.db

chrom start end sample num_of_snps density_per_kb run_length_in_bp
chr2 233336080 234631638 S138 2583 1.9953 1295558
chr2 238341281 239522281 S138 2899 2.4555 1181000

set_somatic: Flag somatic variants

Somatic mutations in a tumor-normal pair are variants that are present in the tumor but not in the normal sample.

Note: 1. This tool requires that you specify the sample layout via a PED file when loading your VCF into GEMINI
via:

gemini load -v my.vcf -p my.ped my.db

Example PED file format for GEMINI

5.7. Built-in analysis tools 65

gemini Documentation, Release 0.20.1

#Family_ID Individual_ID Paternal_ID Maternal_ID Sex Phenotype
→˓ Ethnicity
1 Normal -9 -9 0 1 -9
1 Tumor -9 -9 0 2 -9

default behavior

By default, set_somatic simply marks variants that are genotyped as homozygous reference in the normal sample
and non-reference in the tumor. More stringent somatic filtering criteria are available through tunable command line
parameters.

$ gemini set_somatic \
--min-depth 30 \
--min-qual 20 \
--min-somatic-score 18 \
--min-tumor-depth 10 \
--min-norm-depth 10 \
tumor_normal.db

tum_name tum_gt tum_alt_freq tum_alt_depth tum_depth nrm_name
→˓ nrm_gt nrm_alt_freq nrm_alt_depth nrm_depth chrom start end
→˓ref alt gene
tumor GAAAAAAAAAAAAAGGTGAAAATT/GAAAAAAAAAAAAGGTGAAAATT 0.217391304348 5
→˓ 23 normal GAAAAAAAAAAAAAGGTGAAAATT/GAAAAAAAAAAAAAGGTGAAAATT 0.0 0
→˓ 25 chrX 132838304 132838328 GAAAAAAAAAAAAAGGTGAAAATT
→˓ GAAAAAAAAAAAAGGTGAAAATT GPC3
tumor CTGCTATTTTG/CG 0.22 11 50 normal CTGCTATTTTG/CTGCTATTTTG 0.0
→˓ 0 70 chr17 59861630 59861641 CTGCTATTTTG CG
→˓BRIP1
tumor C/A 0.555555555556 10 18 normal C/C 0.0 0 17
→˓ chr17 7578460 7578461 C A TP53
tumor C/T 0.1875 12 64 normal C/C 0.0 0 30 chr2
→˓ 128046288 128046289 C T ERCC3
Identified and set 4 somatic mutations

--min-depth [None]

The minimum required combined depth for tumor and normal samples.

--min-qual [None]

The minimum required variant quality score.

--min-somatic-score [None]

The minimum required somatic score (SSC). This score is produced by various somatic variant detection algorithms
including SpeedSeq, SomaticSniper, and VarScan 2.

--max-norm-alt-freq [None]

The maximum frequency of the alternate allele allowed in the normal sample.

66 Chapter 5. Table of contents

gemini Documentation, Release 0.20.1

--max-norm-alt-count [None]

The maximum count of the alternate allele allowed in the normal sample.

--min-norm-depth [None]

The minimum depth required in the normal sample.

--min-tumor-alt-freq [None]

The minimum frequency of the alternate allele required in the tumor sample.

--min-tumor-alt-count [None]

The minimum count of the alternate allele required in the tumor sample.

--min-tumor-depth [None]

The minimum depth required in the tumor sample.

--chrom [None]

A specific chromosome on which to flag somatic mutations.

--dry-run

Don’t set the is_somatic flag, just report what _would_ be set. For testing purposes.

actionable_mutations: Report actionable somatic mutations and drug-gene in-
teractions

Actionable mutations are somatic variants in COSMIC cancer census genes with medium or high impact severity
predictions. This tool reports actionable mutations as well as their known drug interactions (if any) from DGIdb.
Current functionality is only for SNVs and indels.

Note:

1. This tool requires somatic variants to have been flagged using set_somatic

$ gemini actionable_mutations tumor_normal.db
tum_name chrom start end ref alt gene impact is_somatic
→˓ in_cosmic_census dgidb_info
tumor chr2 128046288 128046289 C T ERCC3 non_syn_
→˓coding 1 1 None
tumor chr17 7578460 7578461 C A TP53 non_syn_coding 1 1
→˓ {'searchTerm': 'TP53', 'geneCategories': ['CLINICALLY ACTIONABLE', 'DRUGGABLE
→˓GENOME', 'TUMOR SUPPRESSOR', 'TRANSCRIPTION FACTOR COMPLEX', 'DRUG RESISTANCE',
→˓'HISTONE MODIFICATION', 'DNA REPAIR', 'TRANSCRIPTION FACTOR BINDING'], 'geneName':
→˓'TP53', 'geneLongName': 'tumor protein p53', 'interactions': [{'source': 'DrugBank',
→˓ 'interactionId': '711cbe42-4930-4b46-963e-79ab35bbbd0f', 'interactionType': 'n/a',
→˓'drugName': '1-(9-ETHYL-9H-CARBAZOL-3-YL)-N-METHYLMETHANAMINE'}, {'source':
→˓'PharmGKB', 'interactionId': '8234d9b9-085d-49b1-aac2-cf5375d91477',
→˓'interactionType': 'n/a', 'drugName': 'FLUOROURACIL'}, {'source': 'PharmGKB',
→˓'interactionId': '605d7bca-7ed9-428e-aa7c-f76aafd66b54', 'interactionType': 'n/a',
→˓'drugName': 'PACLITAXEL'}, {'source': 'TTD', 'interactionId': '1fe9db63-3581-435b-
→˓b22a-12d45c8c9864', 'interactionType': 'activator', 'drugName': 'CURAXIN CBLC102'},
→˓{'source': 'TALC', 'interactionId': '8f8f6822-cb9e-40aa-8360-5532e059f1e7',
→˓'interactionType': 'vaccine', 'drugName': 'EP-2101'}, {'source': 'TALC',
→˓'interactionId': 'd59e14bc-b9a5-4c9f-a5aa-7ba322f0fa0e', 'interactionType': 'vaccine
→˓', 'drugName': 'MUTANT P53 PEPTIDE PULSED DENDRITIC CELL'}, {'source': 'TALC',
→˓'interactionId': '79256b6e-9a16-4fbe-a237-28dbca28bc2a', 'interactionType': 'vaccine
→˓', 'drugName': 'AD.P53-DC'}]}

5.7. Built-in analysis tools 67

gemini Documentation, Release 0.20.1

tumor chr17 59861630 59861641 CTGCTATTTTG CG BRIP1
→˓inframe_codon_loss 1 1 None
tumor chrX 132838304 132838328 GAAAAAAAAAAAAAGGTGAAAATT
→˓GAAAAAAAAAAAAGGTGAAAATT GPC3 splice_region 1 1 None

fusions: Report putative gene fusions

Report putative somatic gene fusions from structural variants in a tumor-normal pair. Putative fusions join two genes
and preserve transcript strand orientation.

Note:

1. This tool requires somatic variants to have been flagged using set_somatic

default behavior

By default, fusions reports structural variants that are flagged as somatic, join two different genes, and preserve
transcript strand orientation. These may be further filtered using tunable command line parameters.

$ gemini fusions \
--min_qual 5 \
--in_cosmic_census \
tumor_normal.db

chromA breakpointA_start breakpointA_end chromB breakpointB_start
→˓breakpointB_end var_id qual strandA strandB sv_type geneA geneB tool
→˓evidence_type is_precise sample
chr3 176909953 176909982 chr3 178906001 178906030
→˓1233 9.58 - + complex TBL1XR1 PIK3CA LUMPY PE 0
→˓tumor

--min_qual [None]

The minimum required variant quality score.

--evidence_type STRING

The required supporting evidence types for the variant from LUMPY (“PE”, “SR”, or “PE,SR”).

--in_cosmic_census

Require at least one of the affected genes to be in the COSMIC cancer gene census.

db_info: List the gemini database tables and columns

Because of the sheer number of annotations that are stored in gemini, there are admittedly too many columns to
remember by rote. If you can’t recall the name of particular column, just use the db_info tool. It will report all of
the tables and all of the columns / types in each table:

68 Chapter 5. Table of contents

gemini Documentation, Release 0.20.1

$ gemini db_info test.db
table_name column_name type
variants chrom text
variants start integer
variants end integer
variants variant_id integer
variants anno_id integer
variants ref text
variants alt text
variants qual float
variants filter text
variants type text
variants sub_type text
variants gts blob
variants gt_types blob
variants gt_phases blob
variants gt_depths blob
variants call_rate float
variants in_dbsnp bool
variants rs_ids text
variants in_omim bool
variants clin_sigs text
variants cyto_band text
variants rmsk text
variants in_cpg_island bool
variants in_segdup bool
variants is_conserved bool
variants num_hom_ref integer
variants num_het integer
variants num_hom_alt integer
variants num_unknown integer
variants aaf float
variants hwe float
variants inbreeding_coeff float
variants pi float
variants recomb_rate float
variants gene text
variants transcript text
variants is_exonic bool
variants is_coding bool
variants is_lof bool
variants exon text
variants codon_change text
variants aa_change text
variants aa_length text
variants biotype text
variants impact text
variants impact_severity text
variants polyphen_pred text
variants polyphen_score float
variants sift_pred text
variants sift_score float
variants anc_allele text
variants rms_bq float
variants cigar text
variants depth integer
variants strand_bias float
variants rms_map_qual float

5.7. Built-in analysis tools 69

gemini Documentation, Release 0.20.1

variants in_hom_run integer
variants num_mapq_zero integer
variants num_alleles integer
variants num_reads_w_dels float
variants haplotype_score float
variants qual_depth float
variants allele_count integer
variants allele_bal float
variants in_hm2 bool
variants in_hm3 bool
variants is_somatic
variants in_esp bool
variants aaf_esp_ea float
variants aaf_esp_aa float
variants aaf_esp_all float
variants exome_chip bool
variants in_1kg bool
variants aaf_1kg_amr float
variants aaf_1kg_asn float
variants aaf_1kg_afr float
variants aaf_1kg_eur float
variants aaf_1kg_all float
variants grc text
variants gms_illumina float
variants gms_solid float
variants gms_iontorrent float
variants encode_tfbs
variants encode_consensus_gm12878 text
variants encode_consensus_h1hesc text
variants encode_consensus_helas3 text
variants encode_consensus_hepg2 text
variants encode_consensus_huvec text
variants encode_consensus_k562 text
variants encode_segway_gm12878 text
variants encode_segway_h1hesc text
variants encode_segway_helas3 text
variants encode_segway_hepg2 text
variants encode_segway_huvec text
variants encode_segway_k562 text
variants encode_chromhmm_gm12878 text
variants encode_chromhmm_h1hesc text
variants encode_chromhmm_helas3 text
variants encode_chromhmm_hepg2 text
variants encode_chromhmm_huvec text
variants encode_chromhmm_k562 text
variant_impacts variant_id integer
variant_impacts anno_id integer
variant_impacts gene text
variant_impacts transcript text
variant_impacts is_exonic bool
variant_impacts is_coding bool
variant_impacts is_lof bool
variant_impacts exon text
variant_impacts codon_change text
variant_impacts aa_change text
variant_impacts aa_length text
variant_impacts biotype text
variant_impacts impact text

70 Chapter 5. Table of contents

gemini Documentation, Release 0.20.1

variant_impacts impact_severity text
variant_impacts polyphen_pred text
variant_impacts polyphen_score float
variant_impacts sift_pred text
variant_impacts sift_score float
samples sample_id integer
samples name text
samples family_id integer
samples paternal_id integer
samples maternal_id integer
samples sex text
samples phenotype text
samples ethnicity text

The GEMINI browser interface

Currently, the majority of GEMINI’s functionality is available via a command-line interface. However, we are de-
veloping a browser-based interface for easier exploration of GEMINI databases created with the gemini load
command.

Ironically, as of now, one must launch said browser from the command line as follows (where my.db should be
replaced with the name of the GEMINI database you would like to explore).

$ gemini browser my.db --use builtin

At this point, the GEMINI browser is running on port 8088 on your local machine. Open a web browser to http:
//localhost:8088/query You should see something like:

5.8. The GEMINI browser interface 71

http://localhost:8088/query
http://localhost:8088/query

gemini Documentation, Release 0.20.1

NOTE: The internal (builtin) browser is in maintenace mode, please look at alternative browser support below for now.

Alternative browser support

GEMINI also allows to third_party genome browsers such as [puzzle](https://github.com/robinandeer/puzzle), the
successor of [SciLifeLab](http://www.scilifelab.se/)’s [scout](https://github.com/robinandeer/scout).

If you want to spawn GEMINI-compatible browsers, you can use the following commandline:

$ gemini browser my.db [--use puzzle]

72 Chapter 5. Table of contents

https://github.com/robinandeer/puzzle
http://www.scilifelab.se/)'s
https://github.com/robinandeer/scout

gemini Documentation, Release 0.20.1

The GEMINI database schema

The variants table

Core VCF fields

col-
umn_name

type notes

chrom STRING The chromosome on which the variant resides (from VCF CHROM field).
start INTE-

GER
The 0-based start position. (from VCF POS field, but converted to 0-based
coordinates)

end INTE-
GER

The 1-based end position. (from VCF POS field, yet inferred based on the size of
the variant)

vcf_id STRING The VCF ID field.
variant_id INTE-

GER
PRIMARY_KEY

anno_id INTE-
GER

Variant transcript number for the most severely affected transcript

ref STRING Reference allele (from VCF REF field)
alt STRING Alternate allele for the variant (from VCF ALT field)
qual INTE-

GER
Quality score for the assertion made in ALT (from VCF QUAL field)

filter STRING A string of filters passed/failed in variant calling (from VCF FILTER field)

5.9. The GEMINI database schema 73

gemini Documentation, Release 0.20.1

Variant and PopGen info

type STRING

The type of variant.
Any of: [snp, indel]

sub_type STRING

The variant sub-type.
If type is snp: [ts, (transition), tv
(transversion)]
If type is indel: [ins, (insertion),
del (deletion)]

call_rate FLOAT The fraction of samples with a valid
genotype

num_hom_ref INTEGER The total number of of homozygotes
for the reference (ref) allele

num_het INTEGER The total number of heterozygotes
observed.

num_hom_alt INTEGER The total number of homozygotes
for the reference (alt) allele

num_unknown INTEGER The total number of of unknown
genotypes

aaf FLOAT The observed allele frequency for
the alternate allele

hwe FLOAT The Chi-square probability of devi-
ation from HWE (assumes random
mating)

inbreeding_coeff FLOAT The inbreeding co-efficient that ex-
presses the likelihood of effects due
to inbreeding

pi FLOAT The computed nucleotide diversity
(pi) for the site

Genotype information

74 Chapter 5. Table of contents

gemini Documentation, Release 0.20.1

Gene information

gene STRING Corresponding gene name of the
highly affected transcript

transcript STRING

The variant transcript that was most
severely affected
(for two equally affected
transcripts, the protein_coding
biotype is prioritized (SnpEff/VEP)

is_exonic BOOL Does the variant affect an exon for
>= 1 transcript?

is_coding BOOL Does the variant fall in a coding re-
gion (excl. 3’ & 5’ UTRs) for >= 1
transcript?

is_lof BOOL Based on the value of the impact col,
is the variant LOF for >= transcript?

is_splicing BOOL Does the variant affect a canonical
or possible splice site? That is, set
to TRUE if the SO term is any of
splice_acceptor_variant,
splice_donor_variant, or
splice_region_variant.

exon STRING Exon information for the severely
affected transcript

codon_change STRING What is the codon change?
aa_change STRING What is the amino acid change (for

a snp)?
aa_length STRING Has the format pos/len when bio-

type=protein_coding, is empty oth-
erwise. len=protein length. pos =
position of the amino acid change
when is_coding=1 and is_exonic=1,
‘-‘ otherwise.

biotype STRING The ‘type’ of the severely affected
transcript (e.g., protein-coding,
pseudogene, rRNA etc.) (only
SnpEff)

impact STRING The consequence of the most
severely affected transcript

impact_so STRING The Sequence ontology term for the
most severe consequence

impact_severity STRING Severity of the highest order ob-
served for the variant

polyphen_pred STRING Polyphen predictions for the snps
for the severely affected transcript
(only VEP)

polyphen_score FLOAT Polyphen scores for the severely af-
fected transcript (only VEP)

sift_pred STRING SIFT predictions for the snp’s for
the most severely affected transcript
(only VEP)

sift_score FLOAT SIFT scores for the predictions
(only VEP)

pfam_domain STRING Pfam protein domain that the variant
affects

5.9. The GEMINI database schema 75

gemini Documentation, Release 0.20.1

Optional VCF INFO fields

anc_allele STRING The reported ancestral allele if there is one.
rms_bq FLOAT The RMS base quality at this position.
cigar STRING CIGAR string describing how to align an alternate allele to the reference

allele.
depth INTE-

GER
The number of aligned sequence reads that led to this variant call

strand_bias FLOAT Strand bias at the variant position. From the “SB” tag.
rms_map_qual FLOAT RMS mapping quality, a measure of variance of quality scores
in_hom_run INTE-

GER
Homopolymer runs for the variant allele

num_mapq_zero INTE-
GER

Total counts of reads with mapping quality equal to zero

num_alleles INTE-
GER

Total number of alleles in called genotypes

num_reads_w_dels FLOAT Fraction of reads with spanning deletions
haplotype_score FLOAT Consistency of the site with two segregating haplotypes
qual_depth FLOAT Variant confidence or quality by depth
allele_count INTE-

GER
Allele counts in genotypes

allele_bal FLOAT Allele balance for hets
info BLOB Stores the INFO field of the VCF

Population information

in_dbsnp BOOL
Is this variant found in dbSNP?
0 : Absence of the variant in dbsnp
1 : Presence of the variant in dbsnp

rs_ids STRING
A comma-separated list of rs ids for
variants present in dbSNP

in_hm2 BOOL Whether the variant was part of
HapMap2.

in_hm3 BOOL Whether the variant was part of
HapMap3.

in_esp BOOL Presence/absence of the variant in
the ESP project data

in_1kg BOOL Presence/absence of the variant in
the 1000 genome project data (phase
3)

aaf_esp_ea FLOAT Minor Allele Frequency of the vari-
ant for European Americans in the
ESP project

Continued on next page

76 Chapter 5. Table of contents

gemini Documentation, Release 0.20.1

Table 5.3 – continued from previous page

aaf_esp_aa FLOAT Minor Allele Frequency of the vari-
ant for African Americans in the
ESP project

aaf_esp_all FLOAT Minor Allele Frequency of the vari-
ant w.r.t both groups in the ESP
project

aaf_1kg_amr FLOAT Allele frequency of the variant in
AMR population based on AC/AN
(1000g project, phase 3)

aaf_1kg_eas FLOAT Allele frequency of the variant in
EAS population based on AC/AN
(1000g project, phase 3)

aaf_1kg_sas FLOAT Allele frequency of the variant in
SAS population based on AC/AN
(1000g project, phase 3)

aaf_1kg_afr FLOAT Allele frequency of the variant in
AFR population based on AC/AN
(1000g project, phase 3)

aaf_1kg_eur FLOAT Allele frequency of the variant in
EUR population based on AC/AN
(1000g project, phase 3)

aaf_1kg_all FLOAT Global allele frequency (based on
AC/AN) (1000g project - phase 3)

in_exac BOOL Presence/absence of the variant in
ExAC (Exome Aggregation Consor-
tium) data (Broad)

aaf_exac_all FLOAT Raw allele frequency (population
independent) of the variant based on
ExAC exomes (AF)

aaf_adj_exac_all FLOAT Adjusted allele frequency (popu-
lation independent) of the variant
based on ExAC (Adj_AC/Adj_AN)

aaf_adj_exac_afr FLOAT Adjusted allele frequency of the
variant for AFR population in ExAC
(AC_AFR/AN_AFR)

aaf_adj_exac_amr FLOAT Adjusted allele frequency of the
variant for AMR population in
ExAC (AC_AMR/AN_AMR)

aaf_adj_exac_eas FLOAT Adjusted allele frequency of the
variant for EAS population in ExAC
(AC_EAS/AN_EAS)

aaf_adj_exac_fin FLOAT Adjusted allele frequency of the
variant for FIN population in ExAC
(AC_FIN/AN_FIN)

aaf_adj_exac_nfe FLOAT Adjusted allele frequency of the
variant for NFE population in ExAC
(AC_NFE/AN_NFE)

aaf_adj_exac_oth FLOAT Adjusted allele frequency of the
variant for OTH population in ExAC
(AC_OTH/AN_OTH)

Continued on next page

5.9. The GEMINI database schema 77

gemini Documentation, Release 0.20.1

Table 5.3 – continued from previous page

aaf_adj_exac_sas FLOAT Adjusted allele frequency of the
variant for SAS population in ExAC
(AC_SAS/AN_SAS)

max_aaf_all FLOAT the maximum of aaf_esp_ea,
aaf_esp_aa, aaf_1kg_amr,
aaf_1kg_eas,aaf_1kg_sas,aaf_1kg_afr,aaf_1kg_eur,aaf_adj_exac_afr,aaf_adj_exac_amr,aaf_adj_exac_eas,aaf_adj_exac_nfe,aaf_adj_exac_sas.
and -1 if none of those
databases/populations contain
the variant.

exac_num_het INTEGER The number of heterozygote geno-
types observed in ExAC. Pulled
from the ExAC AC_Het INFO
field.

exac_num_hom_alt INTEGER The number of homozygous alt.
genotypes observed in ExAC.
Pulled from the ExAC AC_Het
INFO field.

exac_num_chroms INTEGER The number of chromosomes under-
lying the ExAC variant call. Pulled
from the ExAC AN_Adj INFO
field.

aaf_gnomad_all FLOAT Allele frequency (population inde-
pendent) of the variant in gnomad,

aaf_gnomad_afr FLOAT Allele frequency (AFR population)
of the variant in gnomad

aaf_gnomad_amr FLOAT Allele frequency (AMR population)
of the variant in gnomad

aaf_gnomad_asj FLOAT Allele frequency (ASJ population)
of the variant in gnomad

aaf_gnomad_eas FLOAT Allele frequency (EAS population)
of the variant in gnomad

aaf_gnomad_fin FLOAT Allele frequency (FIN population)
of the variant in gnomad

aaf_gnomad_nfe FLOAT Allele frequency (NFE population)
of the variant in gnomad

aaf_gnomad_oth FLOAT Allele frequency (OTH population)
of the variant in gnomad

aaf_gnomad_sas FLOAT Allele frequency (SAS population)
of the variant in gnomad

gnomad_num_het INTEGER Number of het genotypes observed
in gnomad

gnomad_num_hom_alt INTEGER Number of hom_alt genotypes ob-
served in gnomad

gnomad_num_chroms INTEGER Number of chromosomes genotyped
in gnomad

78 Chapter 5. Table of contents

gemini Documentation, Release 0.20.1

Disease phenotype info (from ClinVar).

in_omim BOOL

0 : Absence of the variant in OMIM
database
1 : Presence of the variant in
OMIM database

clinvar_causal_allele STRING The allele(s) that are associated or
causal for the disease.

clinvar_sig STRING

The clinical significance scores for
each
of the variant according to ClinVar:
unknown, untested, non-pathogenic
probable-non-pathogenic,
probable-pathogenic
pathogenic, drug-response,
histocompatibility
other

clinvar_disease_name STRING The name of the disease to which
the variant is relevant

clinvar_dbsource STRING Variant Clinical Channel IDs
clinvar_dbsource_id STRING The record id in the above database
clinvar_origin STRING

The type of variant.
Any of:
unknown, germline, somatic,
inherited, paternal, maternal,
de-novo, biparental, uniparental,
not-tested, tested-inconclusive,
other

clinvar_dsdb STRING Variant disease database name
clinvar_dsdbid STRING Variant disease database ID
clinvar_disease_acc STRING Variant Accession and Versions
clinvar_in_locus_spec_db BOOL Submitted from a locus-specific

database?
clinvar_on_diag_assay BOOL Variation is interrogated in a clinical

diagnostic assay?
clinvar_gene_phenotype STRING ‘|’ delimited list of phenotypes asso-

ciated with this gene (includes any
variant in the same gene in clinvar
not just the current variant).

geno2mp_hpo_ct INTEGER Value from geno2mp indicating
count of HPO profiles. Set to -1 if
missing

5.9. The GEMINI database schema 79

gemini Documentation, Release 0.20.1

Structural variation columns

sv_cipos_start_left INTEGER The leftmost position of the leftmost SV breakpoint confidence interval.
sv_cipos_end_left INTEGER The rightmost position of the leftmost SV breakpoint confidence interval.
sv_cipos_start_right INTEGER The leftmost position of the rightmost SV breakpoint confidence interval.
sv_cipos_end_right INTEGER The rightmost position of the rightmost SV breakpoint confidence interval.
sv_length INTEGER The length of the structural variant in base pairs.
sv_is_precise BOOL Is the structural variant precise (i.e., to 1-bp resolution)?
sv_tool STRING The name of the SV discovery tool used to find the SV.
sv_evidence_type STRING What type of alignment evidence supports the SV?
sv_event_id STRING A unique identifier for the SV.
sv_mate_id STRING The ID for the “other end” of the SV.
sv_strand STRING The orientations of the SV breakpoint(s).

80 Chapter 5. Table of contents

gemini Documentation, Release 0.20.1

Genome annotations

exome_chip BOOL Whether a SNP is on the Illumina
HumanExome Chip

cyto_band STRING Chromosomal cytobands that a vari-
ant overlaps

rmsk STRING

A comma-separated list of
RepeatMasker annotations that the
variant overlaps.
Each hit is of the form:
name_class_family

in_cpg_island BOOL

Does the variant overlap a CpG
island?.
Based on UCSC: Regulation > CpG
Islands > cpgIslandExt

in_segdup BOOL

Does the variant overlap a
segmental duplication?.
Based on UCSC:
Variation&Repeats > Segmental
Dups > genomicSuperDups track

is_conserved BOOL

Does the variant overlap a
conserved region?
Based on the 29-way mammalian
conservation study

gerp_bp_score FLOAT

GERP conservation score.
Only populated if the
--load-gerp-bp option is used
when loading.
Higher scores reflect greater
conservation. At base-pair
resolution.
Details: http://mendel.stanford.edu/
SidowLab/downloads/gerp/

gerp_element_pval FLOAT

GERP elements P-val
Lower P-values scores reflect
greater conservation. Not at
base-pair resolution.
Details: http://mendel.stanford.edu/
SidowLab/downloads/gerp/

recomb_rate FLOAT

Returns the mean recombination
rate at the variant site
Based on HapMapII_GRCh37
genetic map

cadd_raw FLOAT

Raw CADD scores for scoring
deleteriousness of SNV’s in the
human genome
Details: http://www.ncbi.nlm.nih.
gov/pubmed/24487276

cadd_scaled FLOAT

Scaled CADD scores (Phred like) for
scoring deleteriousness of SNV’s
Details: http://www.ncbi.nlm.nih.
gov/pubmed/24487276

fitcons FLOAT

fitCons scores estimating the
probability that a point mutation
at each position in a genome will
influence fitness.
Higher scores have more potential
for interesting genomic function.
Common ranges: 0.05-0.35 for
non-coding and 0.4-0.8 for coding
Provides integerated highly
significant scores (i6-0).
http:
//haldanessieve.org/2014/09/12/
our-paper-probabilities-of-fitness-consequences-for-point-mutations-across-the-human-genome/
http://biorxiv.org/content/early/
2014/09/11/006825
http:
//genome-mirror.bscb.cornell.edu/
cgi-bin/hgTrackUi?hgsid=37121_
t2bCeEgzaA9R4buMtIv5jbR0uLhZ&
g=fc1

5.9. The GEMINI database schema 81

http://mendel.stanford.edu/SidowLab/downloads/gerp/
http://mendel.stanford.edu/SidowLab/downloads/gerp/
http://mendel.stanford.edu/SidowLab/downloads/gerp/
http://mendel.stanford.edu/SidowLab/downloads/gerp/
http://www.ncbi.nlm.nih.gov/pubmed/24487276
http://www.ncbi.nlm.nih.gov/pubmed/24487276
http://www.ncbi.nlm.nih.gov/pubmed/24487276
http://www.ncbi.nlm.nih.gov/pubmed/24487276
http://haldanessieve.org/2014/09/12/our-paper-probabilities-of-fitness-consequences-for-point-mutations-across-the-human-genome/
http://haldanessieve.org/2014/09/12/our-paper-probabilities-of-fitness-consequences-for-point-mutations-across-the-human-genome/
http://haldanessieve.org/2014/09/12/our-paper-probabilities-of-fitness-consequences-for-point-mutations-across-the-human-genome/
http://biorxiv.org/content/early/2014/09/11/006825
http://biorxiv.org/content/early/2014/09/11/006825
http://genome-mirror.bscb.cornell.edu/cgi-bin/hgTrackUi?hgsid=37121_t2bCeEgzaA9R4buMtIv5jbR0uLhZ&g=fc1
http://genome-mirror.bscb.cornell.edu/cgi-bin/hgTrackUi?hgsid=37121_t2bCeEgzaA9R4buMtIv5jbR0uLhZ&g=fc1
http://genome-mirror.bscb.cornell.edu/cgi-bin/hgTrackUi?hgsid=37121_t2bCeEgzaA9R4buMtIv5jbR0uLhZ&g=fc1
http://genome-mirror.bscb.cornell.edu/cgi-bin/hgTrackUi?hgsid=37121_t2bCeEgzaA9R4buMtIv5jbR0uLhZ&g=fc1
http://genome-mirror.bscb.cornell.edu/cgi-bin/hgTrackUi?hgsid=37121_t2bCeEgzaA9R4buMtIv5jbR0uLhZ&g=fc1

gemini Documentation, Release 0.20.1

Note: CADD scores (http://cadd.gs.washington.edu/) are Copyright 2013 University of Washington and Hudson-Alpha
Institute for Biotechnology (all rights reserved) but are freely available for all academic, non-commercial applications.
For commercial licensing information contact Jennifer McCullar (mccullaj@uw.edu).

Variant error assessment

grc STRING

Association with patch and fix
regions from the Genome
Reference Consortium:
http:
//www.ncbi.nlm.nih.gov/projects/
genome/assembly/grc/human/
Identifies potential problem regions
associated with variant calls.
Built with
annotation_provenance/make-ncbi-
grc-patches.py

gms_illumina FLOAT

Genome Mappability Scores
(GMS) for Illumina error models
Provides low GMS scores (< 25.0
in any technology) from:
http://sourceforge.net/apps/
mediawiki/gma-bio/index.php?
title=Download_GMS

#Download_GMS_by_Chromosome_and_Sequencing_Technology
Input VCF for annotations prepared
with:
https://github.com/chapmanb/bcbio.
variation/blob/master/src/bcbio/
variation/utils/gms.clj

gms_solid FLOAT Genome Mappability Scores with
SOLiD error models

gms_iontorrent FLOAT Genome Mappability Scores with
IonTorrent error models

in_cse BOOL

Is a variant in an error prone
genomic position,
using CSE: Context-Specific
Sequencing Errors
https://code.google.com/p/
discovering-cse/
http://www.biomedcentral.com/
1471-2105/14/S5/S1

82 Chapter 5. Table of contents

http://cadd.gs.washington.edu/
mailto:mccullaj@uw.edu
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/
http://sourceforge.net/apps/mediawiki/gma-bio/index.php?title=Download_GMS
http://sourceforge.net/apps/mediawiki/gma-bio/index.php?title=Download_GMS
http://sourceforge.net/apps/mediawiki/gma-bio/index.php?title=Download_GMS
https://github.com/chapmanb/bcbio.variation/blob/master/src/bcbio/variation/utils/gms.clj
https://github.com/chapmanb/bcbio.variation/blob/master/src/bcbio/variation/utils/gms.clj
https://github.com/chapmanb/bcbio.variation/blob/master/src/bcbio/variation/utils/gms.clj
https://code.google.com/p/discovering-cse/
https://code.google.com/p/discovering-cse/
http://www.biomedcentral.com/1471-2105/14/S5/S1
http://www.biomedcentral.com/1471-2105/14/S5/S1

gemini Documentation, Release 0.20.1

5.9. The GEMINI database schema 83

gemini Documentation, Release 0.20.1

ENCODE information

encode_tfbs STRING

Comma-separated list of
transcription factors that were
observed by ENCODE to bind
DNA in this region. Each hit in the
list is constructed
as TF_CELLCOUNT, where:

TF is the transcription factor
name
CELLCOUNT is the number
of cells tested that had
nonzero signals.

Provenance:
wgEncodeRegTfbsClusteredV2
UCSC table

encode_dnaseI_cell_count INTEGER

Count of cell types that were
observed to have DnaseI
hypersensitivity.

encode_dnaseI_cell_list STRING

Comma separated list of cell types
that were observed to have DnaseI
hypersensitivity.
Provenance: Thurman, et al,
Nature, 489, pp. 75-82, 5 Sep. 2012

encode_consensus_gm12878 STRING

ENCODE consensus segmentation
prediction for GM12878.

CTCF: CTCF-enriched element
E: Predicted enhancer
PF: Predicted promoter flanking
region
R: Predicted repressed or
low-activity region
TSS: Predicted promoter region
including TSS
T: Predicted transcribed region
WE: Predicted weak enhancer or
open chromatin cis-regulatory
element | unknown: This region of
the genome had no functional
prediction.

encode_consensus_h1hesc STRING ENCODE consensus segmentation
prediction for h1HESC. See en-
code_consseg_gm12878 for details.

encode_consensus_helas3 STRING ENCODE consensus segmentation
prediction for Helas3. See en-
code_consseg_gm12878 for details.

encode_consensus_hepg2 STRING ENCODE consensus segmentation
prediction for HEPG2. See en-
code_consseg_gm12878 for details.

encode_consensus_huvec STRING ENCODE consensus segmentation
prediction for HuVEC. See en-
code_consseg_gm12878 for details.

encode_consensus_k562 STRING ENCODE consensus segmentation
prediction for k562. See en-
code_consseg_gm12878 for details.

vista_enhancers STRING Experimentally validated hu-
man enhancers from VISTA
(http://enhancer.lbl.gov/frnt_page_
n.shtml)

84 Chapter 5. Table of contents

http://enhancer.lbl.gov/frnt_page_n.shtml
http://enhancer.lbl.gov/frnt_page_n.shtml

gemini Documentation, Release 0.20.1

Cancer related columns

is_somatic BOOL

Whether the variant is somatically
acquired.

cosmic_ids STRING

A list of known COSMIC ids for
this variant.
See: http://cancer.sanger.ac.uk/
cancergenome/projects/cosmic/

5.9. The GEMINI database schema 85

http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/
http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/

gemini Documentation, Release 0.20.1

The variant_impacts table

column_name type notes
variant_id INTEGER PRIMARY_KEY (Foreign key to

variants table)
anno_id INTEGER PRIMARY_KEY (Based on variant

transcripts)
gene STRING The gene affected by the variant.
transcript STRING The transcript affected by the vari-

ant.
is_exonic BOOL Does the variant affect an exon for

this transcript?
is_coding BOOL Does the variant fall in a coding re-

gion (excludes 3’ & 5’ UTR’s of ex-
ons)?

is_lof BOOL Based on the value of the impact col,
is the variant LOF?

exon STRING Exon information for the variants
that are exonic

codon_change STRING What is the codon change?
aa_change STRING What is the amino acid change?
aa_length STRING The length of CDS in terms of

number of amino acids (SnpEff
only)

biotype STRING The type of transcript (e.g., protein-
coding, pseudogene, rRNA etc.)
(SnpEff only)

impact STRING Impacts due to variation (ref.impact
category)

impact_so STRING The sequence ontology term for the
impact

impact_severity STRING Severity of the impact based on
the impact column value (ref.impact
category)

polyphen_pred STRING

Impact of the SNP as given by
PolyPhen (VEP only)
benign, possibly_damaging,
probably_damaging, unknown

polyphen_scores FLOAT Polyphen score reflecting severity
(higher the impact, higher the score)
(VEP only)

sift_pred STRING

Impact of the SNP as given by
SIFT (VEP only)
neutral, deleterious

sift_scores FLOAT SIFT prob. scores reflecting severity
(Higher the impact, lower the score)
(VEP only)

86 Chapter 5. Table of contents

gemini Documentation, Release 0.20.1

5.9. The GEMINI database schema 87

gemini Documentation, Release 0.20.1

88 Chapter 5. Table of contents

gemini Documentation, Release 0.20.1

Details of the impact and impact_severity columns

impact severity impacts SO_impacts
HIGH

• exon_deleted
• frame_shift
• splice_acceptor
• splice_donor
• start_loss
• stop_gain
• stop_loss
• non_synonymous_start
• transcript_codon_change
• rare_amino_acid
• chrom_large_del

• exon_loss_variant
• frameshift_variant
• splice_acceptor_variant
• splice_donor_variant
• start_lost
• stop_gained
• stop_lost
• initiator_codon_variant
• initiator_codon_variant
• rare_amino_acid_variant
• chromosomal_deletion

MED
• non_syn_coding
• inframe_codon_gain
• inframe_codon_loss
• inframe_codon_change
• codon_change_del
• codon_change_ins
• UTR_5_del
• UTR_3_del
• splice_region
• mature_miRNA
• regulatory_region
• TF_binding_site
• regulatory_region_ablation
•

regulatory_region_amplification
• TFBS_ablation
• TFBS_amplification

• missense_variant
• inframe_insertion
• inframe_deletion
• coding_sequence_variant
• disruptive_inframe_deletion
• disruptive_inframe_insertion
• 5_prime_UTR_truncation +

exon_loss_variant
• 3_prime_UTR_truncation +

exon_loss_variant
• splice_region_variant
• mature_miRNA_variant
• regulatory_region_variant
• TF_binding_site_variant
• regulatory_region_ablation
•

regulatory_region_amplification
• TFBS_ablation
• TFBS_amplification

LOW • synonymous_stop
• synonymous_coding
• UTR_5_prime
• UTR_3_prime
• intron
• CDS
• upstream
• downstream
• intergenic
• intragenic
• gene
• transcript
• exon
• start_gain
• synonymous_start
• intron_conserved
• nc_transcript
• NMD_transcript
• incomplete_terminal_codon
• nc_exon
• transcript_ablation
• transcript_amplification
• feature elongation
• feature truncation

• stop_retained_variant
• synonymous_variant
• 5_prime_UTR_variant
• 3_prime_UTR_variant
• intron_variant
• coding_sequence_variant
• upstream_gene_variant
• downstream_gene_variant
• intergenic_variant
• intragenic_variant
• gene_variant
• transcript_variant
• exon_variant
•

5_prime_UTR_premature_start_codon_gain_variant
• start_retained_variant
• conserved_intron_variant
• nc_transcript_variant
• NMD_transcript_variant
•

incomplete_terminal_codon_variant
• non_coding_exon_variant
• transcript_ablation
• transcript_amplification
• feature_elongation
• feature_truncation

5.9. The GEMINI database schema 89

http://sequenceontology.org/browser/current_svn/term/SO:0001572
http://sequenceontology.org/browser/current_svn/term/SO:0001589
http://sequenceontology.org/browser/current_svn/term/SO:0001574
http://sequenceontology.org/browser/current_svn/term/SO:0001575
http://sequenceontology.org/browser/current_svn/term/SO:0002012
http://sequenceontology.org/browser/current_svn/term/SO:0001587
http://sequenceontology.org/browser/current_svn/term/SO:0001578
http://sequenceontology.org/browser/current_svn/term/SO:0001582
http://sequenceontology.org/browser/current_svn/term/SO:0001582
http://sequenceontology.org/browser/current_svn/term/SO:0002008
http://sequenceontology.org/browser/current_svn/term/SO:1000029
http://sequenceontology.org/browser/current_svn/term/SO:0001583
http://sequenceontology.org/browser/current_svn/term/SO:0001821
http://sequenceontology.org/browser/current_svn/term/SO:0001822
http://sequenceontology.org/browser/current_svn/term/SO:0001580
http://sequenceontology.org/browser/current_svn/term/SO:0001826
http://sequenceontology.org/browser/current_svn/term/SO:0001824
http://sequenceontology.org/browser/current_svn/term/SO:0002013
http://sequenceontology.org/browser/current_svn/term/SO:0001572
http://sequenceontology.org/browser/current_svn/term/SO:0002015
http://sequenceontology.org/browser/current_svn/term/SO:0001572
http://sequenceontology.org/browser/current_svn/term/SO:0001630
http://sequenceontology.org/browser/current_svn/term/SO:0001620
http://sequenceontology.org/browser/current_svn/term/SO:0001566
http://sequenceontology.org/browser/current_svn/term/SO:0001782
http://sequenceontology.org/browser/current_svn/term/SO:0001894
http://sequenceontology.org/browser/current_svn/term/SO:0001891
http://sequenceontology.org/browser/current_svn/term/SO:0001895
http://sequenceontology.org/browser/current_svn/term/SO:0001892
http://sequenceontology.org/browser/current_svn/term/SO:0001567
http://sequenceontology.org/browser/current_svn/term/SO:0001819
http://sequenceontology.org/browser/current_svn/term/SO:0001623
http://sequenceontology.org/browser/current_svn/term/SO:0001624
http://sequenceontology.org/browser/current_svn/term/SO:0001627
http://sequenceontology.org/browser/current_svn/term/SO:0001580
http://sequenceontology.org/browser/current_svn/term/SO:0001631
http://sequenceontology.org/browser/current_svn/term/SO:0001632
http://sequenceontology.org/browser/current_svn/term/SO:0001628
http://sequenceontology.org/browser/current_svn/term/SO:0002011
http://sequenceontology.org/browser/current_svn/term/SO:0001564
http://sequenceontology.org/browser/current_svn/term/SO:0001576
http://sequenceontology.org/browser/current_svn/term/SO:0001791
http://sequenceontology.org/browser/current_svn/term/SO:0001988
http://sequenceontology.org/browser/current_svn/term/SO:0002019
http://sequenceontology.org/browser/current_svn/term/SO:0002018
http://www.sequenceontology.org/browser/current_svn/term/SO:0001619
http://sequenceontology.org/browser/current_svn/term/SO:0001621
http://sequenceontology.org/browser/current_svn/term/SO:0001626
http://sequenceontology.org/browser/current_svn/term/SO:0001792
http://sequenceontology.org/browser/current_svn/term/SO:0001893
http://sequenceontology.org/browser/current_svn/term/SO:0001889
http://sequenceontology.org/browser/current_svn/term/SO:0001907
http://sequenceontology.org/browser/current_svn/term/SO:0001906

gemini Documentation, Release 0.20.1

The samples table

column name type notes
sample_id INTEGER PRIMARY_KEY
name STRING Sample names
family_id INTEGER Family ids for the samples [User defined, default: NULL]
paternal_id INTEGER Paternal id for the samples [User defined, default: NULL]
maternal_id INTEGER Maternal id for the samples [User defined, default: NULL]
sex STRING Sex of the sample [User defined, default: NULL]
phenotype STRING The associated sample phenotype [User defined, default: NULL]
ethnicity STRING The ethnic group to which the sample belongs [User defined, default: NULL]

The resources table

Establishes provenance of annotation resources used to create a GEMINI database.

column name type notes
name STRING Name of the annotation type
resource STRING Filename of the resource, with version information

The version table

Establishes which version of gemini was used to create a database.

column name type notes
version STRING What version of gemini was used to create the DB.

The gene_detailed table

Built on version 75 of Ensembl genes

90 Chapter 5. Table of contents

gemini Documentation, Release 0.20.1

column_name type notes
uid INTEGER PRIMARY_KEY (unique identifier

for each entry in the table)
chrom STRING The chromosome on which the gene

resides
gene STRING The gene name
is_hgnc BOOL Flag for gene column: 0 for non

HGNC symbol and 1 for HGNC
symbol = TRUE

ensembl_gene_id STRING The ensembl gene id for the gene
transcript STRING The ensembl transcript id for the

gene
biotype STRING The biotype (e.g., protein coding) of

the transcript
transcript_status STRING The status of the transcript (e.g.

KNOWN, PUTATIVE etc.)
ccds_id STRING The consensus coding sequence

transcript identifier
hgnc_id STRING The HGNC identifier for the gene if

HGNC symbol is TRUE
entrez_id STRING The entrez gene identifier for the

gene
cds_length STRING The length of CDS in bases
protein_length STRING The length of the transcript as the

number of amino acids
transcript_start STRING The start position of the transcript in

bases
transcript_end STRING The end position of the transcript in

bases
strand STRING The strand of DNA where the gene

resides
synonym STRING Other gene names (previous or syn-

onyms) for the gene
rvis_pct FLOAT The RVIS percentile values for the

gene
mam_phenotype_id STRING

High level mammalian phenotype
ID applied to mouse phenotype
descriptions
in the MGI database at
http://www.informatics.jax.org/.
Data taken from ftp://ftp.
informatics.jax.org/pub/reports/
HMD_HumanPhenotype.rpt

The gene_summary table

Built on version 75 of Ensembl genes

5.9. The GEMINI database schema 91

http://www.informatics.jax.org/
ftp://ftp.informatics.jax.org/pub/reports/HMD_HumanPhenotype.rpt
ftp://ftp.informatics.jax.org/pub/reports/HMD_HumanPhenotype.rpt
ftp://ftp.informatics.jax.org/pub/reports/HMD_HumanPhenotype.rpt

gemini Documentation, Release 0.20.1

column_name type notes
uid INTEGER PRIMARY_KEY (unique identifier

for each entry in the table)
chrom STRING The chromosome on which the gene

resides
gene STRING The gene name
is_hgnc BOOL Flag for gene column: 0 for non

HGNC symbol and 1 for HGNC
symbol = TRUE

ensembl_gene_id STRING The ensembl gene id for the gene
hgnc_id STRING The HGNC identifier for the gene if

HGNC symbol is TRUE
transcript_min_start STRING The minimum start position of all

transcripts for the gene
transcript_max_end STRING The maximum end position of all

transcripts for the gene
strand STRING The strand of DNA where the gene

resides
synonym STRING Other gene names (previous or syn-

onyms) for the gene
rvis_pct FLOAT The RVIS percentile values for the

gene
mam_phenotype_id STRING

High level mammalian phenotype
ID applied to mouse phenotype
descriptions
in the MGI database at
http://www.informatics.jax.org/.
Data taken from ftp://ftp.
informatics.jax.org/pub/reports/
HMD_HumanPhenotype.rpt

in_cosmic_census BOOL Are mutations in the gene impli-
cated in cancer by the cancer gene
census?

Using the GEMINI API

The GeminiQuery class

Extracting the VCF INFO tags with GEMINI API

The GEMINI API is useful to extract the individual tags within the INFO field of a VCF (stored as a compressed
dictionary in the variants table). This would be of particular interest to those who want to add custom annotations to
their VCF and still be able to access the individual tags programmatically. Here is an example where we try to extract
the dbNSFP fields from the ‘INFO’ tag of a VCF, using the API.

#!/usr/bin/env python
import sys
from gemini import GeminiQuery

92 Chapter 5. Table of contents

http://www.informatics.jax.org/
ftp://ftp.informatics.jax.org/pub/reports/HMD_HumanPhenotype.rpt
ftp://ftp.informatics.jax.org/pub/reports/HMD_HumanPhenotype.rpt
ftp://ftp.informatics.jax.org/pub/reports/HMD_HumanPhenotype.rpt

gemini Documentation, Release 0.20.1

database = sys.argv[1]
gq = GeminiQuery(database)
query = "SELECT variant_id, chrom, start, end, ref, alt, info \

FROM variants"

gq.run(query)

for row in gq:
try:

print "\t".join([str(row['chrom']), str(row['start']), str(row['end']),
str(row['ref']), str(row['alt']), str(row.info['dbNSFP_SIFT_pred

→˓'])])
except KeyError:

pass

yields
chr1 906272 906273 C T P|D|P
chr1 906273 906274 C A D|D|D
chr1 906276 906277 T C D|D|D
chr1 906297 906298 G T B|B|B
chr1 1959074 1959075 A C D
chr1 1959698 1959699 G A B
chr1 1961452 1961453 C T P
chr1 2337953 2337954 C T D

Speeding genotype queries

Design of Gemini

Gemini stores all genotypes information in a single column. E.g. gt_depths is a single column in the sqlite database
that contains information on all samples in a compressed and serialized array. So, in order to do a query involving
–gt-filter gemini must iterate over each row, decompress and de-serialize the array and then evaluate the genotype
filter. Even if the filter involves only a single sample, we must deserialize the entire array. This design works quite
well and we have improved performance greatly, but for complex queries, it is quite slow.

We provide the means to index genotype fields and optionally use those indexes to perform the genotype filtering.
These are external to gemini in that they do not change the behavior of gemini when used without the engine.

bcolz indexes

We have a implemented indexes using bcolz.

These can be used for existing databases by creating the external indexes:

gemini bcolz_index $db

This is easily parallelized by specifying a column per process, e.g.

gemini bcolz_index $db --cols gt_types
gemini bcolz_index $db --cols gt_depths # in another process

Which can index about 20K variants / second for 17 samples in our testing. Due to a limitation in the string type in
bcolz, indexing the gts column is slower so we recommend not doing those queries with bcolz (e.g. gts.sample1 ==
‘A/C’). See note below.

5.11. Speeding genotype queries 93

http://bcolz.blosc.org/

gemini Documentation, Release 0.20.1

It is recommended to only index the columns you’ll be using in the –gt-filter.

Indexing is done only once; after that, add –use-bcolz to an existing gemini query command. e.g.

gemini query -q "select variant_id, gts.1719PC0016 from variants" \
--gt-filter "gt_types.1094PC0012 == HET and gt_types.1719PC0016 == HET and gts.

→˓1094PC0012 == 'A/C'" \
--use-bcolz \
test/test.query.db

This query will return identical results with or without using bcolz. It is likely only beneficial to use bcolz on complex
queries that are slow with the default gemini apparatus. Queries that are more selective–e.g. return fewer rows are the
best target for speed improvement with bcolz

An example of the types of improvements (usually 20X to 50X) with various queries is here.

limitations

As the number of samples grows, it becomes less beneficial to use –gt-filter s that touch all samples. For example:
(gt_types).(*).(!=HOM_REF).(all) will become slower as samples are added since it must test every sample. However,
a query like: (gt_types.DAD == HOM_REF and gt_types.MOM == HOM_REF and gt_types.KID != HOM_REF) will
be much less affected by the number of samples in the database because they are only touching 3 samples.

The image below shows the time to perform the filters on a database with 1.8 million variants and varying sample size:

1. (gt_types).(*).(!=HOM_REF).(all) which is affected by sample size

2. (gt_types.DAD == HOM_REF and gt_types.MOM == HOM_REF and gt_types.KID != HOM_REF) which is
less affected by sample-size

Note that at 2500 samples, using bcolz is slower than the standard gemini query, however using bcolz is consistently
30 to 50 times faster for the 2nd query. (This is up to 1000 times faster than versions of gemini before 0.12). The
y-axis is log10-scaled.

94 Chapter 5. Table of contents

https://gist.github.com/brentp/e2189dbfee8784ab5f13

gemini Documentation, Release 0.20.1

Note: indexing the ‘gts’ column will be much slower (only about 350 variants per second instead of up to 25K per
second) as it must be stored as an object rather than a fixed-size numeric type. It will be a much larger index. So only
create an index on ‘gts’ if necessary.

Usage

First, make sure you have gemini version 0.15 or greater:

gemini --version

Then, you can index an existing database ($db) with:

5.11. Speeding genotype queries 95

gemini Documentation, Release 0.20.1

gemini bcolz_index $db

Then, wherever you have a slow query that’s using the –gt-filter, you can add –use-bcolz to the query command.

gemini query -q "select chrom, start, end from variants" $db \
--use-bcolz \
--gt-filter "gt_depth.samples1 >= 20 and gt_depth.samples2 >= 20 and gt_depth.

→˓samples3 >= 20 \
and (gt_types.sample1 == HOM_REF and gt_types.sample2 == HOM_REF and gt_

→˓types.sample3 != HOM_REF)"

Note that nothing has changed except that –use-bcolz is added to the query.

Design of Genotype Query Engines

This sections is for those wishing to create their own genotype query engines to plug in to gemini and will not be
needed for most users.

Genotype Query Engines can be plugged in to gemini. They must be exposed with a single function:

filter(db_path, gt_filter, user_dict)

where db_path is the path to the gemini sqlite database, gt_filter is the genotype query string. user_dict will be
pre-filled with things like user_dict contains things like HET, UNKNOWN, etc. used in gemini.

The filter function must return a list of integer variant_ids that meet the specified filter. If it can not perform the query,
it must return None.

gemini will internally use the returned variant_ids to modifiy the sqlite query to select only those rows.

The filter function only needs to worry about which variant_ids to return, not how to integrate with the rest of gemini.

Acknowledgements

GEMINI is developed by Uma Paila and Aaron Quinlan in the Quinlan laboratory at the University of Virginia.
Substantial contributions to the design, functionality, and code base have been made by the following:

• Brad Chapman, HSPH

• Rory Kirchner, HSPH

• Oliver Hofmann, HSPH

• Björn Grüning, University of Freiburg

Release History

0.21.0 (future)

1. Use vcfanno for faster, more generalized variant annotation and database creation.

96 Chapter 5. Table of contents

http://quinlanlab.org/

gemini Documentation, Release 0.20.1

0.20.1

1. Allow –gt-filter to specify the gt_type, e.g. (gt_quals).(=HET).(<20).(all) (thanks Jessica for suggesting)

2. Add –gene-where argument to comp_hets tool to dictate how variants are restricted to genes. (thanks Jessica for
suggesting)

3. genewise: don’t show any variants that don’t meet the required number of optional filters.

4. Fix AF for decomposed gnomad variants (thanks @mbootwalla).

0.20.0

1. Include gnomad exome allele frequencies for all populations and include these in calc of max_aaf_all.

2. Initial support for python 3.

3. Support annotating with bcftools BCSQ (http://biorxiv.org/content/early/2016/12/01/090811) in addition to VEP
and SnpEff.

4. Fix bug that resulted in the message: UnsupportedOperation: IOStream has no fileno. when loading. (Thanks
Andrew O. and Ryan R.)

5. Fix bug where gemini annotate would never finish (see: arq5x/gemini#809 (Thanks @mmoisse)

6. Add extra columns from VEP when -t all is used (previously extra VEP columns were ignored under -t all.
thanks @hoppman #816).

7. Fix gemini annotate (would stop after updating 100K variants)

8. Fix browser query report (thanks @Nmael see #818).

9. Allow specifying a –where clause for gene_wise to filter considered variants. (Thanks Uma for suggestion).

10. Fix bug in propagating vep-extras to variant_impacts table (Thanks Sergey for reporting).

11. Update clinvar annotation.

12. Add new gemini load flag –skip-pls which can give size reductions for the database and speed Improvements
for querying and loading. If you never use gt_phred_ll_homalt/het/homref then you can load with this flag.

13. Add new gt_alt_freqs column which is gt_alt_dephts / (gt_ref_depths + gt_alt_depths).

14. Update CADD to v1.3

0.19.1

1. Fix bug in comp_het where candidates were not removed when either parent was homozygous at both sites
(thanks Jessica Chong). (inheritance v0.1.0)

2. Update x-linked-dominant with the following rules (thanks Jessica Chong): + mothers of affected males
must be het (and affected) + at least 1 parent of affected females must be het (and affected).

3. Store extra vep fields for each transcript in variant_impacts.

4. Update geneimpacts module to handle new snpEff annotations of SVs (Brad Chapman).

5. Update to dbsnp 147.

5.13. Release History 97

http://biorxiv.org/content/early/2016/12/01/090811

gemini Documentation, Release 0.20.1

0.19.0

1. Use SQLAlchemy for table definitions to support different RDBMS back-ends.

2. Several optimizations to loading.

3. X-linked recessive, dominant, and de novo tools.

4. Raise exceptions rather than sys.exit() to facilitate use as library. (thanks @brainstorm).

5. The comp_het tool is as much as 20X faster for large cohorts.

0.18.3

1. handle rare VEP annotation with ‘’ or ”?” as impact

2. fix handling of multiple values for list/uniq_list in gemini_annotate

3. handle snpEff with unknown impact (TODO: bump geneimpacts req to 0.1.0)

4. fix builtin browser and add support for puzzle browser

5. add –gt-filter-required to gemini gene_wise tool that must pass for each variant.

6. fix bug in lof_sieve when transcript pos is not specified. (thanks @mmoisse)

0.18.2

1. Update the Clinvar annotation file to the February 3, 2016 release.

0.18.1

1. Add clinvar_gene_phenotype column which can be used to limit candidates to those that are in the
same gene as a gene with the known phenotype from clinvar. Phenotypes are all lower case. Likely us-
age is: --filter "... and clinvar_gene_phenotype LIKE '%dysplasia%' where the ‘%’
wildcard is needed because the column is a ‘|’ delimited list of all disease for that gene.

2. Add geno2mp_hpo_ct column which will be > 0 if that variant is present in geno2mp (http://geno2mp.gs.
washington.edu/Geno2MP/#/)

3. Fix comp_hets tool when exac_num_hom_alt was requested. (Thanks to @davemcg for reporting).

4. Change splice_region_variant from LOW to MED priority in the interest of reducing false negatives in
the study of rare disease.

5. Set missing AF to -1 (instead of NULL) for unknown for all ESP, 1KG, ExAC allele frequency columns.

6. Don’t user order by when not needed for built in tools. Speeds up queries when min-kindreds is None or 1.

7. Document the --min-gq option

8. Fix gemini load with -t all when only VEP is present.

9. Fix bug in gemini annotate where numeric operations on integers did not work for VCF.

10. Fix bug in comp_hets tool where attempting to phase a ”.” genotype would result in an error. (Thanks to Aparna
and Martina for reporting)

11. Fix bug in mendel_errors tool when specifying --families. Thanks to @davemcg for reporting.

98 Chapter 5. Table of contents

http://geno2mp.gs.washington.edu/Geno2MP/#/
http://geno2mp.gs.washington.edu/Geno2MP/#/

gemini Documentation, Release 0.20.1

0.18.0

0. Improved installation and update via conda (via Brad Chapman!).

1. Update support for SO term variant impact predictions via VEP and SnpEff and support newest snpEff version.
If both snpEff and VEP annotations are present use gemini load -t all to save all annotations and the most
deleterious will be saved in the variants table.

2. Add an is_splicing column.

3. Add exac_num_het, exac_num_hom_alt and exac_num_chroms columns. (See #568).

4. Fix issues with cyvcf2 handling of haploid calls (from X chromosome from GATK; thanks Athina for reporting)

5. Fix handling of VEP extra fields (thanks @jsh58).

6. Remove pygraph dependency (networkx is easier to install). Allow specifying custom edges to interactions
tools.

7. Fix some edge-cases in compound het tool. Thanks to Jamie Kwok for reporting.

8. Allow requring a minimum genotype quality in inheritance tools with –min-gq option.

9. Fix bug in cyvcf2 for parsing hemizyous (0/.) variants from decomposition.

10. comp_het tool now has a priority 2 level for unphased singletons where both sites are HET. Candidates where
both parents and HET, along with the affected are now priority 3.

0.17.2

1. Fix bcolz dependencies owing to issues with bcolz 0.11.0

0.17.1

1. Change handling of missing values in PL/GL (–gt-pl-max) so that missing values are set to int32 max. (Thanks
Karyn for reporting).

2. Fix distributed loading of VEP with extra columns (@chapmanb) [Regression since 0.17.0]

3. Fix comp_het test and improve efficiency (thanks Bianca for reporting)

4. Bug fix: populate eval dictionary with sample_info.

0.17.0

1. switch to cyvcf2 to speed loading

2. per-sample depths are calculated using AD (GATK) or AO+RO (Freebayes). This makes depth filters more
conservative.

3. extra VEP annotations are loaded with loading machinery, not as an extra step as before.

4. add max_aaf_all column (https://github.com/arq5x/gemini/issues/520) as an aggregate of a number of popula-
tion filters.

5. use –families to limit queries before any work is done. Thanks to Bianca for reporting.

6. No longer create bcolz indicies by default. Users can create them with gemini bcolz_index.

7. New genewise tool. See docs.

5.13. Release History 99

https://github.com/arq5x/gemini/issues/520

gemini Documentation, Release 0.20.1

8. gemini load: –skip-info-string has been replaced with –save-info-string and the INFO field is not longer saved
by default.

9. comp_hets: default to only showing confident (priority 1) candidates. Show all candidates with –max-priority
3.

0.16.3

1. Fix bug in comp_het with reporting same pair multiple times.

2. Handle UNKOWN genotypes in comp_het tool

3. Fix cyvcf dependency in requirements

4. Only run tests that require bgzip/tabix/bedtools if they are available on PATH

5. Limit ipython version to 3<version<4

0.16.2

1. Hone rules for unphased and partially-phased compound hets.

2. Remove –lenient argument for comp_hets and add –pattern-only to find compound_hets regardless of affection
status.

3. The –lenient argument to the autosomal_dominant tool has been relaxed to allow parents with unknown pheno-
types.

4. Re (vt) decompose data files for 1000 genomes and ExAC (thanks Julien and Xiaolin for reporting).

0.16.1

1. Fix regression in loading when AAF is None

2. Fix handing in mendelian error tool where all genotype likelihoods are low (thanks Bianca)

3. Don’t phase de-novo’s (caused error in comp_het tool). (thanks Bianca)

4. Fix regression in loading VEP with multicore (thanks Andrew)

0.16.0

1. The built-in inheritance model tools (auto_rec, etc.) have been modified to be more restrictive in order to
remove false positive candidates. The strictness can be reduced by using the --lenient option.

2. Leverage bcolz indexing for the built-in inheritance model tools to dramatically improve speed.

3. Support for multi-generational pedigrees for the built in inheritance model tools. (thanks to Jessica, Andrew,
and jmcelwee for extensive discussion https://github.com/arq5x/gemini/issues/388)

4. Leverage genotype likelihoods in tools other than mendel_errors as a means to filter variants.

5. Automatically phase genotypes by transmission on the fly for the comp_hets tool.

6. Further performance improvements for bcolz queries

7. The --affected-only option has been made the default and it’s opposing replacement named
--allow-unaffected to revert.

100 Chapter 5. Table of contents

https://github.com/arq5x/gemini/issues/388

gemini Documentation, Release 0.20.1

8. Fixed a reporting error for the inheritance tools (i.e., family_id was mis-specified in output).

9. Annotate the variants table with impact even if there is not severe impact. Thanks to @mjsduncan for reporting.

10. Reduce memory requirements when loading. Thanks to @mjsduncan for reporting.

0.15.1

1. Fix regression in grabix. Thanks to Sven-Eric Shelhorn for reporting.

2. Fix handling of samples with “-”. Thanks to Uma Paila for reporting.

0.15.0

1. Use external index to speed genotype queries (this is created by default on load unless –no-bcolz is specified)

2. Match on ref and alternate alleles (not just position) when annotating with VCF. Thanks Jeremy Goecks.

3. Related to matching, we now load extra annotation, e.g. VEP as VCF and require ref and alt matching. Previ-
ously was done with bed overlap.

4. Faster queries due to lazy loading of genotype columns.

5. Read gt* columns from the database for better backward compatibility.

6. Code cleanup. Thanks to Christian Brueffer.

0.14.0

1. Standardized the output from the built-in tools into a common, BED+ format. Thanks to feedback from Jessica
Chong and Daniel Gaston.

2. Release of mendel_errors tool which also outputs the type of error and the probability (based on PL’s)

3. Improvements to the load tool when running on large compute clusters using PBS, SGE, SLURM, etc. Also
provde a workaround for NFS locking issues. Many thanks to Ben Weisburd in Daniel Macarthur’s lab.

4. Improve preprocess script to support varscan, platypus (https://gist.github.com/brentp/4db670df147cbd5a2b32)

5. Performance improvements for many of the built-in tools (pre-compile evals)

6. Bug fix for installation with sudo privileges.

0.13.1 (2015-Apr-09)

1. Major query speed improvements. For example, the following query goes from 43 seconds in version 0.12.2 to
11 seconds in 0.13.0. All queries involving gt_* fields should be substantially faster.

$ gemini query \
-q "select chrom, start, (gts).(*) from variants" data/tmaster.db \
--gt-filter "(gt_depths).(*).(>=20).(all)" > /dev/null

2. Speed improvements to load. The following went from 7 minutes 9 seconds to 6 minutes 21 seconds.

$ gemini load -t VEP -v data/v100K.vcf.gz data/tmaster.db --cores 4

5.13. Release History 101

https://gist.github.com/brentp/4db670df147cbd5a2b32

gemini Documentation, Release 0.20.1

3. We added the gt_phred_ll_homref, gt_phred_ll_het, gt_phred_ll_homalt columns to database. These are the
genotype likelihoods pulled from the GL or PL columns of the VCF if available. They can all be queried and
filtered in the same way as existing gt_* columns. In future releases, we are planning tp use genotype likelihood
to assign likelihoods to de novo mutations, mendelian violations, and variants meeting other inheritance patterns.

4. Fixed bugs related to splitting multiple alts (thanks to @jdh237)

5. We are working to improve development and release testing. This is ongoing, but we now support gem-
ini_install.py –version unstable so that users can try out the latest changes and help with testing before releases.
gemini_update is still limited to master as the most recent version.

6. Update cyvcf so it doesn’t error when AD tag is used for non-list data.

7. Fix regression in cyvcf to handle Flags in info field. (Thanks to Jon for reporting)

8. Improvements to install related to PYTHONHOME and other env variables(@chapmanb & @bw2)

0.12.2

Corrected a stale .c file in the cyvcf library. This is effectively a replacement for the 0.12.1 release.

0.12.1

1. Support for input VCF files containing variants with multiple alternate alleles. Thanks to Brent Pedersen.

2. Updated, decomposed, and normalized the ExAC, Clinvar, Cosmic, dbSNP, and ESP annotation files to properly
support variants with multiple alternate alleles.

3. Updated the logic for the clinvar significance column to retain all documented singificances.

4. Support for VCF annotation files in the annotate tool.

5. Improved the speed of loading by 10-15%. Thanks to Brent Pedersen.

6. Added –only-affected and –min-kindreds options to the compound heterozygotes tool.

7. Added a –format vcf option to the query tool to output query results in VCF format.

8. Added the –families option to the auto_*, de_novo, and comp_hets tools. Thanks to Mark Cowley and Tony
Roscioli.

9. Added the –only-affected option to the de_novo tool.

10. Allow the –sample-filter to work with –format TPED. Thanks to Rory Kirchner.

11. Add –format sampledetail option that provides a melted/tidy/flattened version of samples along with –
showsample and includes information from samples table. Thanks to Brad Chapman.

12. Add ‘not’ option to –in filtering. Thanks to Rory Kirchner.

13. Fixed a bug in the de_novo tool that prevented proper function when families have affected and unaffected
children. Thanks to Andrew Oler.

14. Fixed a bug in cyvcf that falsely treated ‘.|.’ genotypes as homozygous alternate. Thanks to Xiao Xu.

15. GEMINI now checks for and warns of old grabix index files. Thanks to Andrew Oler and Brent Pedersen.

16. Fixed a bug that added newlines at the end of tab delimited PED files. Thanks to Brad Chapman.

102 Chapter 5. Table of contents

gemini Documentation, Release 0.20.1

0.11.0

1. Integration of ExAC annotations (v0.2): http://exac.broadinstitute.org/

2. New tools for cancer genome analysis. Many thanks to fantastic work from Colby Chiang.

• gemini set_somatic

• gemini actionable_mutations

• gemini fusions

3. Improved support for structural variants. New columns include:

• sv_cipos_start_left

• sv_cipos_end_left

• sv_cipos_start_right

• sv_cipos_end_right

• sv_length

• sv_is_precise

• sv_tool

• sv_evidence_type

• sv_event_id

• sv_mate_id

• sv_strand

4. Updated the 1000 Genomes annotations to the Phase variant set.

5. Added clinvar_causal_allele column.

6. Fixed a bug in grabix that caused occasional duplicate and missed variants.

0.10.1

1. Add fitCons <http://biorxiv.org/content/early/2014/09/11/006825> scores as an additional measure of potential
function in variants of interest, supplementing existing CADD and dbNSFP approaches.

2. Updated Clinvar, COSMIC, and dbSNP to their latest versions.

0.10.0

1. Provide an --annotation-dir argument that specifies the path the annotation databases, to overwrite con-
figured data inputs. Thanks to Björn Grüning,

2. Support reproducible versioned installs of GEMINI with Python dependencies. Enables Galaxy integration.
Thanks to Björn Grüning,

0.8.0

1. Support arbitrary annotation supplied to VEP, which translate into queryable columns in the main variant table.

2. Improve the power of the genotype filter wildcard functionality.

5.13. Release History 103

http://exac.broadinstitute.org/

gemini Documentation, Release 0.20.1

0.7.1

1. Suppress openpyxl/pandas warnings (thanks to @chapmanb)

2. Fix unit tests to account for cases where a user has not downloaded the CADD or GERP annotation files. Thanks
to Xialoin Zhu and Daniel Swensson for reporting this and to Uma Paila for correcting it.

0.7.0

1. Added support for CADD scores via new cadd_raw and cadd_scaled columns.

2. Added support for genotype wildcards in query select statements. E.g., SELECT chrom, start,
end (gts).(phenotype==2) FROM variants. See http://gemini.readthedocs.org/en/latest/content/
querying.html#selecting-sample-genotypes-based-on-wildcards.

3. Added support for genotype wildcards in the –gt-filter. E.g., --gt-filter "(gt_types).
(phenotype==2).(==HET). See http://gemini.readthedocs.org/en/latest/content/querying.html#
gt-filter-wildcard-filtering-on-genotype-columns.

4. Added support for the VCF INFO field both in the API and as a column that can be SELECT’ed.

5. Upgraded to the latest version of ClinVar.

6. Standardized impacts to use Sequence Ontology (SO) terms.

7. Automatically add indexes to custom, user-supplied annotation columns.

8. Improvements to the installation script.

9. Fixed bugs in the handling of ClinVar UTF8 encoded strings.

10. Upgraded the gene_summary and gene_detailed tables to version 75 of Ensembl.

11. Added support for the MPI Mouse Phenotype database via the mam_phenotype_id column in the
gene_summary table.

12. Enhanced security.

13. Corrected the ESP allele frequencies to be based report _alternate_ allele frequency instead of _minor_ allele
frequency.

14. VEP version support updated (73-75) Support for aa length and bio type in VEP.

15. The lof_sieve tool support has been extended to VEP annotations.

16. Added the ccds_id and entrez_id columns to the gene_detailed table.

0.6.6

1. Added COSMIC mutation information via new cosmic_ids column.

0.6.4 (2014-Jan-03)

1. New annotation: experimentally validated human enhancers from VISTA.

2. Installation improvements to enable isolated installations inside of virtual machines and containers without data.
Allow data-only upgrades as part of update process.

3. Fix for gemini query error when --header specified (#241).

104 Chapter 5. Table of contents

http://gemini.readthedocs.org/en/latest/content/querying.html#selecting-sample-genotypes-based-on-wildcards
http://gemini.readthedocs.org/en/latest/content/querying.html#selecting-sample-genotypes-based-on-wildcards
http://gemini.readthedocs.org/en/latest/content/querying.html#gt-filter-wildcard-filtering-on-genotype-columns
http://gemini.readthedocs.org/en/latest/content/querying.html#gt-filter-wildcard-filtering-on-genotype-columns

gemini Documentation, Release 0.20.1

0.6.3.2 (2013-Dec-10)

1. Fixed a bug that caused --gt-filter to no be enforced from query tool unless a GT* column was selected.

2. Support for ref and alt allele depths provided by FreeBayes.

0.6.3.1 (2013-Nov-19)

1. Fixed undetected bug preventing the comp_hets tool from functioning.

2. Added unit tests for the comp_hets tool.

0.6.3 (2013-Nov-7)

1. Addition permutation testing to the c-alpha test via the --permutations option.

2. Addition of the --passonly option during loading to filter out all variants with a filter flag set.

3. Fixed bug with parallel loading using the extended sample table format.

4. SLURM support added.

5. Refactor of loading options to remove explosion of xxx-queue options. Now load using --scheduler on
--queue.

6. Refactor of Sample class to handle the expanded samples table.

7. Addition of --carrier-summary-by-phenotype for summarizing the counts of carriers and non-
carriers stratified by the given sample phenotype column.

8. Added a --nonsynonymous option to the C-alpha test.

9. Added gemini amend to edit an existing database. For now only handles updating the samples table.

10. Fixed a bug that prevented variants that overlapped with multiple 1000G variants from having AAF info ex-
tracted from 1000G annotations. This is now corrected such that multiple overlaps with 1000G variants are
tolerated, yet the logic ensures that the AAF info is extracted for the correct variant.

11. Fixed installation issues for the GEMINI browser.

12. Added --show-families option to gemini query.

0.6.2 (2013-Oct-7)

1. Moved –tped and –json options into the more generic –format option.

2. Fixed bug in handling missing phenotypes in the sample table.

3. Fixed –tped output formatting error.

4. API change: GeminiQuery.run takes an optional list of predicates that a row must pass to be returned.

5. –sample-filter option added to allow for restricting variants to samples that pass the given sample query.

6. ethnicity removed as a default PED field.

7. PED file format extended to allow for extra columns to be added to the samples table under the column named
in the header.

8. The autosomal_recessive and autosomal_dominant tools now warn, but allow for variants to be detected in the
absence of known parent/child relationships.

5.13. Release History 105

gemini Documentation, Release 0.20.1

0.6.1 (2013-Sep-09)

1. Corrected bug in de_novo tool that was undetected in 0.6.0. Unit tests have been added to head this off in the
future. Thanks to Jessica Chong

2. Added the -d option (minimum sequence depth allowed for a genotype) to the autosmal_recessive and autos-
mal_dominant tools.

3. New –tped option in the query tool for reporting variants in TPED format. Thanks to Rory Kirchner.

4. New –tfam option in the dump tool for reporting sample infor in TFAM format. Thanks to Rory Kirchner.

0.6.0 (2013-Sep-02)

1. Add the --min-kindreds option to the autosomal_recessive and autosomal_dominant tools to
restrict candidate variants/genes to those affecting at least --min-kindreds. Thanks to Jessica Chong

2. Addition of a new burden tool for gene or region based burden tests. First release supports the C-alpha test.
Thanks to Rory Kirchner.

3. Use of Continuum Analytics Anaconda python package for the automated installer. Thanks to Brad Chapman.

4. Enhancements to the annotate tool allowing one to create new database columns from values in custom
BED+ annotation files. Thanks to Jessica Chong and Graham Ritchie.

5. Addition of the --column, --filter, and --json options to the region tool.

6. Improvements to unit tests.

7. Allow alternate sample delimiters in the query tool via the --sample-delim option. Thanks to Jessica
Chong.

8. Provide a REST-like interface to the gemini browser. In support of future visualization tools.

9. Allow the query tool to report results in JSON format via the --json option.

10. Various minor improvements and bug fixes.

0.5.0b (2013-Jul-23)

1. Tolerate either -9 or 0 for unknown parent or affected status in PED files.

2. Refine the rules for inheritance and parental affected status for autosomal dominant inheritance models.

3. The autosomal_dominant, autosomal_recessive, and de_novo mutation tools have received the
following improvements.

• improved speed (especially when there are multiple families)

• by default, all columns in the variant table are reported and no conditions are placed on the returned
variants. That is, as long as the variant meets the inheritance model, it will be reported.

• the addition of a --columns option allowing one to override the above default behavior and report a
subset of columns.

• the addition of a --filter option allowing one to override the above default behavior and filter reported
variants based on specific criteria.

4. The default minimum aligned sequencing depth for each variant reported by the de_novo tool is 0. Greater
stringency can be applied with the -d option.

106 Chapter 5. Table of contents

gemini Documentation, Release 0.20.1

0.4.0b (2013-Jun-12)

1. Added new gt_ref_depths, gt_alt_depths, and gt_quals columns.

2. Added a new --show-samples option to the query module to display samples with alternate allele geno-
types.

3. Improvements and bug fixes for installation.

0.3.0b

1. Improved speed for adding custom annotations.

2. Added GERP conserved elements.

3. Optionally addition of GERP conservation scores at base pair resolution.

4. Move annotation files to Amazon S3.

F.A.Q.

Does GEMINI work with non-human genomes?

Currently, no. However, we recognize that the GEMINI framework is suitable to genetic research in other organisms.
This may be a focus of future work.

What versions of the human genome does GEMINI support?

Currently, we support solely build 37 of the human genome (a.k.a, hg19). We intend to support forthcoming versions
of the human genome in future releases.

How can I use PLINK files with GEMINI?

Many datasets, especially those derived from GWAS studies, are based on SNP genotyping arrays, and are thus stored
in the standard PLINK formats. While GEMINI only supports VCF input files, it is relatively straightforward to
convert PLINK datasets to VCF with the PLINK/SEQ toolkit.

1. First, load the PLINK BED file into a new PLINK/SEQ project using the instructions found in the “Load a PLINK
binary fileset” section here.

2. Next, use PLINK/SEQ to convert the project to VCF using the instructions found here.

At this point, you should have a VCF file that is compatible with GEMINI.

Alternatively, in his bcbio project, Brad Chapman has written a convenient script for directly converting PLINK files
to VCF. Below is an example of how to use this script.

$ plink_to_vcf.py <ped file> <map file> <UCSC reference file in 2bit format)

5.14. F.A.Q. 107

http://atgu.mgh.harvard.edu/plinkseq/input.shtml#plink
http://atgu.mgh.harvard.edu/plinkseq/output.shtml#vcf
https://github.com/chapmanb/bcbio-nextgen
https://github.com/chapmanb/bcbio-nextgen/blob/master/scripts/plink_to_vcf.py

gemini Documentation, Release 0.20.1

Other information

Besides the GEMINI manuscript itself, see this presentation for a high-level overview of GEMINI.

Additionally, this video provides more details about GEMINI’s aims and utility.

108 Chapter 5. Table of contents

http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1003153
http://quinlanlab.org/pdf/Gemini-Quinlan-Stroke-UVA.pdf
http://www.youtube.com/watch?v=p-UWmDG6yj4&t=0m40s

	Overview
	Tutorials
	Latest news
	New Installation
	Changes to Inheritance Tools
	New GEMINI Workflow

	Citation
	Table of contents
	Installation
	Quick start
	Annotation with snpEff or VEP
	Preprocessing and Loading a VCF file into GEMINI
	Querying the GEMINI database
	Querying the gene tables
	Built-in analysis tools
	The GEMINI browser interface
	The GEMINI database schema
	Using the GEMINI API
	Speeding genotype queries
	Acknowledgements
	Release History
	F.A.Q.
	Other information

