
GeanyPy Documentation
Release 1.0

Matthew Brush <mbrush@codebrainz.ca>

February 17, 2017

Contents

1 Introduction 3

2 Installation 5
2.1 Getting the Source . 5
2.2 Dependencies and where to get them . 5
2.3 And finally ... installing GeanyPy . 7

3 Getting Started 9
3.1 What the heck is GeanyPy, really? . 9
3.2 Python Console . 9
3.3 Future Plans . 10

4 Writing a Plugin - Quick Start Guide 11
4.1 The Plugin Interface . 11
4.2 Real-world Example . 12
4.3 Logging . 13

5 API Documentation 15
5.1 The app module . 15
5.2 The dialogs module . 16
5.3 The document module . 17
5.4 The geany package and module . 19

6 Indices and tables 21

Python Module Index 23

i

ii

GeanyPy Documentation, Release 1.0

Contents:

Contents 1

GeanyPy Documentation, Release 1.0

2 Contents

CHAPTER 1

Introduction

GeanyPy allows people to write their Geany plugins in Python making authoring a plugin much more accessible to
non C programmers. What follows is a description of installing and using the GeanyPy plugin, paving the way for the
rest of the documentation to covert the details of programming with the GeanyPy bindings of the Geany API.

3

GeanyPy Documentation, Release 1.0

4 Chapter 1. Introduction

CHAPTER 2

Installation

Currently there are no binary packages available for installing GeanyPy so it must be installed from source. The
following instructions will describe how to do this.

Getting the Source

The best way currently to get GeanyPy is to check it out from it’s repository on GitHub.com. You can clone GeanyPy’s
master branch by issuing the following command in a directory where you want to store its source code:

$ git clone git://github.com/codebrainz/geanypy.git
$ cd geanypy

Alternatively, you can download the master branch compressed into a tarball or zip file. Then extract it where you
want to store GeanyPy’s source, for example:

$ cd ~/src
$ wget -O geanypy.tar.gz https://github.com/codebrainz/geanypy/tarball/master
$ tar xf geanypy.tar.gz
$ cd codebrainz-geanypy-*

The first method using Git is the best, since it allows you to update your copy of GeanyPy quite easily and also makes
it easier to contribute back to the GeanyPy project if you want to.

Dependencies and where to get them

Of course depending on what operating system and distribution you’re using, getting setup for this process may vary
wildly. At present, the following dependencies are required to compile GeanyPy:

GCC, Autotools, and all the usual build tools

For example on Debian (Ubuntu, Mint, etc.) do:

$ apt-get install build-essential

Or on Fedora, something like this should do:

$ yum groupinstall "Development Tools" "Legacy Software Development"

5

https://github.com/codebrainz/geanypy
https://github.com/codebrainz/geanypy/tarball/master
https://github.com/codebrainz/geanypy/zipball/master
http://git-scm.com/

GeanyPy Documentation, Release 1.0

The latest development version of Geany (0.21+)

Since GeanyPy is wrapping the current development version of Geany, to use it you are required to use that version of
Geany. Until the next Geany release, you must either checkout the source code from Geany’s Subversion repository
or Git mirror or you can get one of the Nightly builds if you’d rather not compile it yourself.

For more information on installing Geany, please refer to Geany’s excellent manual

Grabbing the dependencies for Geany on a Debian-based disto could be similar to this:

$ apt-get install libgtk2.0-0 libgtk2.0-0-dev

Or you might even have better luck with:

$ apt-get build-dep geany

A quick session for installing Geany on a Debian-based distro might look something like this:

$ cd ~/src
$ git clone http://git.geany.org/git/geany
$ cd geany
$./autogen.sh
$./configure
$ make
$ make install # possibly as root

By default, Geany will install into /usr/local so if you want to install it somewhere else, for example /opt/geany, then
you would run the configure command above with the prefix argument, like:

$./configure --prefix=/opt/geany

It’s important when installing GeanyPy later that you configure it with the same prefix where Geany is installed,
otherwise Geany won’t find the GeanyPy plugin.

Python 2.X and development files

As GeanPy makes use of Python’s C API to gain access to Geany’s C plugin API, both Python and the development
files are required to compile GeanyPy. In theory, any Python version >= 2.6 and < 3.0 should be compatible with
GeanyPy. You can download Python from its website or you can install the required packages using your distro’s
package manager, for example with Debian-based distros, run this:

$ apt-get install python python-dev

Note: Python 3.0+ is not supported yet, although at some point in the future, there are plans support it.

PyGTK and development files

Since Geany uses GTK+ as it’s UI toolkit, GeanyPy uses PyGTK to interact with Geany’s UI. You can either download
PyGTK from it’s website or you can install it with your system’s pacakge manager, for example in Debian distros:

$ apt-get install python-gtk2 python-gtk2-dev

Note: Although PyGTK is all but deprecated (or is completely deprecated?) in favour of the newer and shinier
PyGobject/GObject-introspection, it is still used in new code in GeanyPy due to lack of documentation and pacakge
support for the newer stuff.

6 Chapter 2. Installation

http://www.geany.org/Download/SVN
http://git.geany.org
http://nightly.geany.org
http://www.geany.org/manual/current/index.html#installation
http://www.python.org/download
http://www.pygtk.org/downloads.html
http://www.pygtk.org/downloads.html

GeanyPy Documentation, Release 1.0

One fell swoop

If you’re running a Debian-based distro, you should be able to install all the required dependencies, not including
Geany itself, with the following command (as root):

$ apt-get install build-essential libgtk2.0-0 libgtk2.0-dev \
python python-dev python-gtk2 python-gtk2-dev

And finally ... installing GeanyPy

Once all the dependencies are satisfied, installing GeanyPy should be pretty straight-forward, continuing on from
Getting the Source above:

$./autogen.sh
$./configure --prefix=/the/same/prefix/used/for/geany
$ make
$ make install # possibly as root

2.3. And finally ... installing GeanyPy 7

GeanyPy Documentation, Release 1.0

8 Chapter 2. Installation

CHAPTER 3

Getting Started

Before diving into the details and API docs for programming plugins with GeanyPy, it’s important to note how it works
and some features it provides.

What the heck is GeanyPy, really?

GeanyPy is a proxy plugin. Geany initially sees GeanyPy as any other plugin, but GeanyPy registers some additional
stuff that enables Geany to load python plugins through GeanyPy. So to activate, use Geany’s Plugin Manager under
the Tools menu as you would for any other plugin.

Once the GeanyPy plugin has been activated, Geany should rescan the plugin directories and pick those up that are
supported through GeanyPy. It’ll integrate the python plugins into the Plugin Manager in an additional hierarchy level
below GeanyPy.

• [] Geany plugin 1

• [x] GeanyPy

• [] Python plugin 1

• [x] Python plugin 2

• [] Python plugin 3

• [] Geany plugin 3

Remember that Geany looks in three places for plugins:

1. For system-wide plugins, it will search in (usually) /usr/share/geany or /usr/local/share/geany.

2. In Geany’s config directory under your home directory, typically ~/.config/geany/plugins.

3. A user-configurable plugin directory (useful during plugin development).

Python Console

Another pretty cool feature of GeanyPy is the Python Console, which similar to the regular Python interactive inter-
preter console, but it’s found in the Message Window area (bottom) in Geany. The geany Python module used to
interact with Geany will be pre-imported for you, so you can mess around with Geany using the console, without ever
having to even write a plugin.

Credits: The Python Console was taken, almost in its entirety, from the medit text editor. Props to the author(s) for
such a nice piece of source code

9

http://www.geany.org/manual/current/index.html#plugins
http://www.geany.org/manual/current/index.html#plugin-manager
http://mooedit.sourceforge.net
https://bitbucket.org/medit/medit/src/83c24f751493/moo/moopython/plugins/lib/pyconsole.py

GeanyPy Documentation, Release 1.0

Future Plans

Some time in the near future, there should be support for sending text from the active document into the Python
Console. It will also be possible to have the Python Console either in a separate window, in the sidebar notebook or in
the message window notebook.

Also, either integration with Geany’s keybindings UI under the preferences dialog or a separate but similar UI just
for Python plugins will be added. Currently using keybindings requires a certain amount of hackery, due to Geany
expecting all plugins to be shared libraries written in C.

10 Chapter 3. Getting Started

CHAPTER 4

Writing a Plugin - Quick Start Guide

This is just a quick tutorial to describe writing a GeanyPy compatible plugin in Python. Writing a plugin should be
pretty straightforward for any Python programmers, especially those familiar with writing regular C plugins for Geany.

To illustrate the similarities to the C API, the example at the end of this section will create the same plugin as in
Geany’s Plugin Howto, except obviously written in Python.

The Plugin Interface

The first thing any plugin will want to do is to import the geany module:

import geany

Note: Due to the way the Geany plugin framework works, importing the geany module will certain fail if you just try
running it standalone, outside of Geany/GeanyPy.

After that, you create a regular Python class which inherits from the geany.Plugin class:

import geany

class HelloWorld(geany.Plugin):
pass

This will allow GeanyPy’s Python Plugin Manager to locate the plugin as a GeanyPy plugin. If it doesn’t inherit from
geany.Plugin it will not be detected.

There are a few more parts of the interface that must be implemented in order for the plugin to be detected by GeanyPy:

import geany

class HelloWorld(geany.Plugin):

__plugin_name__ = "HelloWorld" # required
__plugin_version__ = "version of your plugin"
__plugin_description__ = "description of your plugin"
__plugin_author__ = "Your Name <your email address>"

These allow the Python Plugin Manager to glean information about your plugin which will be shown in the managers
plugin list. All but the __plugin_name__ attributes are optional, though recommended.

The next thing that’s needed is an entry-point to the plugin. Since Python classes have a initialization method already,
this seems like a logical entry-point:

11

http://www.geany.org/manual/reference/howto.html

GeanyPy Documentation, Release 1.0

import geany

class HelloWorld(geany.Plugin):

__plugin_name__ = "HelloWorld" # required
__plugin_version__ = "version of your plugin"
__plugin_description__ = "description of your plugin"
__plugin_author__ = "Your Name <your email address>"

def __init__(self):
do_stuff_when_loaded()

If you have some de-initialization code that needs to be run, you can add a cleanup method to the class that is guaran-
teed to be called when your plugin is unloaded, however it’s optional:

import geany

class HelloWorld(geany.Plugin):

__plugin_name__ = "HelloWorld" # required
__plugin_version__ = "version of your plugin"
__plugin_description__ = "description of your plugin"
__plugin_author__ = "Your Name <your email address>"

def __init__(self):
do_stuff_when_loaded()

def cleanup(self):
do_stuff_when_unloaded()

And there you have it! That’s the minimum requirements for writing a plugin that will be detected by GeanyPy. Ok, it
doesn’t do anything yet, but it will be shown in the Python Plugin Manager and can be loaded and unloaded.

Real-world Example

To put it into context, here’s a plugin that mimics the plugin in Geany’s Plugin Howto:

import gtk
import geany

class HelloWorld(geany.Plugin):

__plugin_name__ = "HelloWorld"
__plugin_version__ = "1.0"
__plugin_description__ = "Just another tool to say hello world"
__plugin_author__ = "John Doe <john.doe@example.org>"

def __init__(self):
self.menu_item = gtk.MenuItem("Hello World")
self.menu_item.show()
geany.main_widgets.tools_menu.append(self.menu_item)
self.menu_item.connect("activate", self.on_hello_item_clicked)

def cleanup(self):
self.menu_item.destroy()

12 Chapter 4. Writing a Plugin - Quick Start Guide

http://www.geany.org/manual/reference/howto.html

GeanyPy Documentation, Release 1.0

def on_hello_item_clicked(widget, data):
geany.dialogs.show_msgbox("Hello World")

Hopefully this makes it clear how to write a Python plugin using GeanyPy. This sample plugin is provided with
GeanyPy if you want to try it out.

Logging

GeanyPy provides a logging adapter to log from Python to GLib’s logging system which enables plugins to log
messages to Geany’s Help->Debug Messages window. To use it, simply call the base class’ constructor in your
__init__() method and use the new self.logger attribute. The logger attribute of geany.Plugin emulates a Python
logging.Logger object and provides its logging functions:

• log (lvl, msg, *args, **kwargs)

• debug (msg, *args, **kwargs)

• info (msg, *args, **kwargs)

• message (msg, *args, **kwargs)

• warning (msg, *args, **kwargs)

• error (msg, *args, **kwargs)

• exception (msg, *args, **kwargs)

• critical (msg, *args, **kwargs)

The function message maps to the GLib log level G_LOG_LEVEL_MESSAGE‘which does not exist in Python but
still can be used. The keyword argument ‘exc_info is supported for all logger methods with the same semantics as in
Python (see Python logging documentation for details). However, the keyword argument extra is not supported and
will be ignored. Since you cannot define your own formatter for the GLib logging system, passing the extra keyword
argument does not make any sense.

Here is an example:

import geany

class HelloWorldLogger(geany.Plugin):

__plugin_name__ = "HelloWorldLogger"
__plugin_version__ = "1.0"
__plugin_description__ = "Just another tool to log hello world"
__plugin_author__ = "John Doe <john.doe@example.org>"

def __init__(self):
geany.Plugin.__init__(self)
self.logger.info(u'Hello World')

def cleanup(self):
self.logger.debug(u'Bye Bye from HelloWorldLogger')

4.3. Logging 13

https://docs.python.org/2/library/logging.html

GeanyPy Documentation, Release 1.0

14 Chapter 4. Writing a Plugin - Quick Start Guide

CHAPTER 5

API Documentation

GeanyPy’s API mimics quite closely Geany’s C plugin API. The following documentation is broken down by
file/module:

The geany modules:

The app module

This modules contains a class to access application settings.

App Objects

class app.App

This class is initialized automatically and by the geany module and shouldn’t be initalized by users. An instance of
it is available through the geany.app attribute of the geany module.

All members of the App are read-only properties.

App.configdir
User configuration directory, usually ~/.config/geany. To store configuration files for your plugin,
it’s a good idea to use something like this:

conf_path = os.path.join(geany.app.configdir, "plugins", "yourplugin",
"yourconfigfile.conf")

App.debug_mode
If True, debug messages should be printed. For example, if you want to make a print() function
that only prints when App.debug_mode is active, you could do something like this:

def debug_print(message):
if geany.app.debug_mode:

print(message)

App.project
If not None, the a project.Project for currently active project.

15

GeanyPy Documentation, Release 1.0

The dialogs module

This module contains some help functions to show file-related dialogs, miscellaneous dialogs, etc. You can of course
just use the gtk module to create your own dialogs as well.

dialogs.show_input([title=None[, parent=None[, label_text=None[, default_text=None]]]])
Shows a gtk.Dialog to ask the user for text input.

Parameters

• title – The window title for the dialog.

• parent – The parent gtk.Window for the dialog, for example
geany.main_widgets.window.

• label_text – Text to put in the label just about the input entry box.

• default_text – Default text to put in the input entry box.

Returns A string containing the text the user entered.

dialogs.show_input_numeric([title=None[, label_text=None[, value=0.0[, minimum=0.0[, maxi-
mum=100.0[, step=1.0]]]]]])

Shows a gtk.Dialog to ask the user to enter a numeric value using a gtk.SpinButton.

Parameters

• title – The window title for the dialog.

• label_text – Text to put in the label just about the numeric entry box.

• value – The initial value in the numeric entry box.

• minimum – The minimum allowed value that can be entered.

• maximum – The maximum allowed value that can be entered.

• step – Amount to increment the numeric entry when it’s value is moved up or down (ex,
using arrows).

Returns The value entered if the dialog was closed with ok, or None if it was cancelled.

dialogs.show_msgbox(text[, msgtype=gtk.MESSAGE_INFO])
Shows a gtk.Dialog to show the user a message.

Parameters

• text – The text to show in the message box.

• msgtype – The message type which is one of the Gtk Message Type Constants.

dialogs.show_question(text)
Shows a gtk.Dialog to ask the user a Yes/No question.

Parameters text – The text to show in the question dialog.

Returns True if the Yes button was pressed, False if the No button was pressed.

dialogs.show_save_as()
Shows Geany’s Save As dialog.

Returns True if the file was saved, False otherwise.

16 Chapter 5. API Documentation

http://www.pygtk.org/docs/pygtk/gtk-constants.html#gtk-message-type-constants

GeanyPy Documentation, Release 1.0

The document module

This module provides functions for working with documents. Most of the module-level functions are used for creating
instances of the Document object.

document.find_by_filename(filename)
Finds a document with the given filename from the open documents.

Parameters filename – Filename of Document to find.

Returns A Document instance for the found document or None.

document.get_current()
Gets the currently active document.

Returns A Document instance for the currently active document or None if no documents are
open.

document.get_from_page(page_num)
Gets a document based on it’s gtk.Notebook page number.

Parameters page_num – The tab number of the document in the documents notebook.

Returns A Document instance for the corresponding document or None if no document matched.

document.index(index)
Gets a document based on its index in Geany’s documents array.

Parameters index – The index of the document in Geany’s documents array.

Returns A Document instance for the corresponding document or None if not document matched,
or the document that matched isn’t valid.

document.new_file([filename=None[, filetype=None[, text=None]]])
Creates a document file.

Parameters

• filename – The documents filename, or None for untitled.

• filetype – The documents filetype or None to auto-detect it from filename (if it’s not
None)

• text – Initial text to put in the new document or None to leave it blank

Returns A Document instance for the new document.

document.open_file(filename[, read_only=False[, filetype=None[, forced_enc=None]]])
Open an existing document file.

Parameters

• filename – Filename of the document to open.

• read_only – Whether to open the document in read-only mode.

• filetype – Filetype to open the document as or None to detect it automatically.

• forced_enc – The file encoding to use or None to auto-detect it.

Returns A Document instance for the opened document or None if it couldn’t be opened.

document.open_files(filenames, read_only=False, filetype=”“, forced_enc=”“)
Open multiple files. This actually calls open_file() once for each filename in filenames.

Parameters

5.3. The document module 17

GeanyPy Documentation, Release 1.0

• filenames – List of filenames to open.

• read_only – Whether to open the document in read-only mode.

• filetype – Filetype to open the document as or None to detect it automatically.

• forced_enc – The file encoding to use or None to auto-detect it.

document.remove_page(page_num)
Remove a document from the documents array based on it’s page number in the documents notebook.

Parameters page_num – The tab number of the document in the documents notebook.

Returns True if the document was actually removed or False otherwise.

document.get_documents_list()
Get a list of open documents.

Returns A list of Document instances, one for each open document.

Document Objects

class document.Document
The main class holding information about a specific document. Unless otherwise noted, the attributes are read-
only properties.

basename_for_display
The last part of the filename for this document, possibly truncated to a maximum length in case the filename
is very long.

notebook_page
The page number in the gtk.Notebook containing documents.

status_color
Gets the status color of the document, or None if the default widget coloring should be used. The color
is red if the document has changes, green if it’s read-only or None if the document is unmodified but
writable. The value is a tuple of the RGB values for red, green, and blue respectively.

encoding
The encoding of this document. Must be a valid string representation of an encoding. This property is
read-write.

file_type
The file type of this document as a Filetype instance. This property is read-write.

text_changed
Whether this document’s text has been changed since it was last saved.

file_name
The file name of this document.

has_bom
Indicates whether the document’s file has a byte-order-mark.

has_tags
Indicates whether this document supports source code symbols (tags) to show in the sidebar.

index
Index of the document in Geany’s documents array.

is_valid
Indicates whether this document is active and all properties are set correctly.

18 Chapter 5. API Documentation

GeanyPy Documentation, Release 1.0

read_only
Whether the document is in read-only mode.

real_path
The link-dereferenced, locale-encoded file name for this document.

editor
The Editor instance associated with this document.

close()
Close this document.

Returns True if the document was closed, False otherwise.

reload([forced_enc=None])
Reloads this document.

Parameters forced_enc – The encoding to use when reloading this document or None to
auto-detect it.

Returns True if the document was actually reloaded or False otherwise.

rename(new_filename)
Rename this document to a new file name. Only the file on disk is actually renamed, you still have to call
save_as() to change the document object. It also stops monitoring for file changes to prevent receiving
too many file change events while renaming. File monitoring is setup again in save_as().

Parameters new_filename – The new filename to rename to.

save([force=False])
Saves this documents file on disk.

Saving may include replacing tabs by spaces, stripping trailing spaces and adding a final new line at the
end of the file, depending on user preferences. Then, the document-before-save signal is emitted, allowing
plugins to modify the document before it’s saved, and the data is actually written to disk. The file type is
set again or auto-detected if it wasn’t set yet. Afterwards, the document-save signal is emitted for plugins.
If the file is not modified, this method does nothing unless force is set to True.

Note: You should ensure that file_name is not None before calling this; otherwise call
dialogs.show_save_as().

Parameters force – Whether to save the document even if it’s not modified.

Returns True if the file was saved or False if the file could not or should not be saved.

save_as(new_filename)
Saves the document with a new filename, detecting the filetype.

Parameters new_filename – The new filename.

Returns True if the file was saved or False if it could not be saved.

The geany package and module

All of GeanyPy’s bindings are inside the geany package which also contains some stuff in it’s __init__ file, acting
like a module itself.

geany.app
An instance of app.App to store application information.

geany.main_widgets
An instance of mainwidgets.MainWidgets to provide access to Geany’s important GTK+ widgets.

5.4. The geany package and module 19

GeanyPy Documentation, Release 1.0

geany.signals
An instance of signalmanager.SignalManager which manages the connection, disconnection, and
emission of Geany’s signals. You can use this as follows:

geany.signals.connect('document-open', some_callback_function)

geany.is_realized()
This function, which is actually in the geany.main module will tell you if Geany’s main window is realized
(shown).

geany.locale_init()
Again, from the geany.main module, this will initialize the gettext translation system.

geany.reload_configuration()
Also from the geany.main module, this function will cause Geany to reload most if it’s configuration files
without restarting.

Currently the following files are reloaded:

•all template files

•new file templates

•the New (with template) menus will be updated

•Snippets (snippets.conf)

•filetype extensions (filetype_extensions.conf)

•settings and build_settings sections of the filetype definition files.

Plugins may call this function if they changed any of these files (e.g. a configuration file editor plugin).

20 Chapter 5. API Documentation

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

21

GeanyPy Documentation, Release 1.0

22 Chapter 6. Indices and tables

Python Module Index

a
app, 15

d
dialogs, 16
document, 17

g
geany, 19

23

GeanyPy Documentation, Release 1.0

24 Python Module Index

Index

A
App (class in app), 15
app (in module geany), 19
app (module), 15

B
basename_for_display (document.Document attribute),

18

C
close() (document.Document method), 19
configdir (app.App attribute), 15

D
debug_mode (app.App attribute), 15
dialogs (module), 16
Document (class in document), 18
document (module), 17

E
editor (document.Document attribute), 19
encoding (document.Document attribute), 18

F
file_name (document.Document attribute), 18
file_type (document.Document attribute), 18
find_by_filename() (in module document), 17

G
geany (module), 19
get_current() (in module document), 17
get_documents_list() (in module document), 18
get_from_page() (in module document), 17

H
has_bom (document.Document attribute), 18
has_tags (document.Document attribute), 18

I
index (document.Document attribute), 18

index() (in module document), 17
is_realized() (in module geany), 20
is_valid (document.Document attribute), 18

L
locale_init() (in module geany), 20

M
main_widgets (in module geany), 19

N
new_file() (in module document), 17
notebook_page (document.Document attribute), 18

O
open_file() (in module document), 17
open_files() (in module document), 17

P
project (app.App attribute), 15

R
read_only (document.Document attribute), 18
real_path (document.Document attribute), 19
reload() (document.Document method), 19
reload_configuration() (in module geany), 20
remove_page() (in module document), 18
rename() (document.Document method), 19

S
save() (document.Document method), 19
save_as() (document.Document method), 19
show_input() (in module dialogs), 16
show_input_numeric() (in module dialogs), 16
show_msgbox() (in module dialogs), 16
show_question() (in module dialogs), 16
show_save_as() (in module dialogs), 16
signals (in module geany), 19
status_color (document.Document attribute), 18

25

GeanyPy Documentation, Release 1.0

T
text_changed (document.Document attribute), 18

26 Index

	Introduction
	Installation
	Getting the Source
	Dependencies and where to get them
	And finally ... installing GeanyPy

	Getting Started
	What the heck is GeanyPy, really?
	Python Console
	Future Plans

	Writing a Plugin - Quick Start Guide
	The Plugin Interface
	Real-world Example
	Logging

	API Documentation
	The app module
	The dialogs module
	The document module
	The geany package and module

	Indices and tables
	Python Module Index

