

gdeploy user guide

gdeploy is an Ansible [https://www.ansible.com] based deployment tool.
Initially gdeploy was written to install GlusterFS clusters, eventually it grew
out to do lot of other things. On a given set of hosts, gdeploy can create
physical volumes, volume groups, and logical volumes, install packages,
subscribe to RHN channels, run shell commands, create GlusterFS volumes and
lot more.

Quick links

	Git repositories [https://github.com/gluster/gdeploy]

	Mailing list [https://lists.gluster.org/mailman/listinfo/gluster-users]

Contents

	Installation
	Prerequisites

	Installing Ansible

	Installing gdeploy
	Installing from RPM

	Installing from source

	Getting Started
	Invoking gdeploy

	Writing configuration file for gdeploy

	Invoking gdeploy

	Usage

	Debugging

	Configuration file format

	Features

	Maintainer

	Developer Documentation
	gdeploy - Developer setup

	gdeploy architecture

	Adding your first feature to gdeploy

	Testing your code

	Guidelines for contribution

	Design

	Testsuite

	Frequently Asked Questions
	Why do we need gdeploy, when Ansible is available?

	How does gdeploy help in setting up GlusterFS clusters?

	Does gdeploy help in installing GlusterFS packages?

	Is gdeploy only for installing and deploying GlusterFS?

	Can I run arbitrary scripts using gdeploy?

	My gdeploy run is failing with Module Error, why?

	Examples
	Using gdeploy to create a 1x3 Gluster Volume

	Using gdeploy to create 2x2 gluster volume

	Write a config file to do the backend setup

	How to start and stop services

	Set/unset volume options on an existing volume

	Setting the options on an existing volume

	Resetting the options on the existing volume

	Installing packages from yum repositories

	How to disable repos

	Quota setup on an existing volume

	Enabling and disabling quota

	Create a Gluster volume and set up quota

	Set a 5GB limit on a directory using quota

	Creating a volume and setting a tuning profile on it

	Setting a tuning profile on an existing volume

	NFS Ganesha setup end-to-end

	Unexporting a volume and destroying an NFS-Ganesha HA Cluster

Indices and tables

	Index

	Module Index

	Search Page

Installation

Prerequisites

gdeploy requires the following packages:

	Python 2.x

	Ansible >= 1.9.x

	python-argparse

	PyYAML

	Jinja2

Installing Ansible

Follow instructions in the Ansible documentation on how to install Ansible,
which can be found here [http://docs.ansible.com/ansible/intro_installation.html].

Installing gdeploy

gdeploy can be installed using pre-built RPM or can be installed from source.

Installing from RPM

Latest version of gdeploy RPMs can be downloaded from here [http://download.gluster.org/pub/gluster/gdeploy/LATEST] and installed

Using yum:
$ sudo yum install ./gdeploy-<version>-<release>.rpm

Using dnf:
$ sudo dnf install ./gdeploy-<version>-<release>.rpm

Installing from source

Alternatively gdeploy can be installed from source

$ git clone git@github.com:gluster/gdeploy.git
$ cd gdeploy

Make sure you have gcc and python-devel installed

$ sudo yum install gcc python-devel redhat-rpm-config
$ sudo pip install -r requirements.txt

Setup gdeploy

Run the gdeploy_setup.sh file from the root directory of gdeploy

$ cd gdeploy
$ sudo ./gdeploy_setup.sh

OR Setup manually as follows

	Add ansible modules to ANSIBLE_LIBRARY environment variable

$ echo "export ANSIBLE_LIBRARY=$ANSIBLE_LIBRARY:path/to/gdeploy/modules/" >> ~/.bashrc

‘path/to’ will be replaced by the path on your system on which gdeploy is installed.

	Add ansible playbooks(inside the templates directory) to GDEPLOY_TEMPLATES
environment variable

$ echo "export GDEPLOY_TEMPLATES='path/to/gdeploy'" >> ~/.bashrc

‘path/to’ will be replaced by the path on your system on which gdeploy is installed.

$ source ~/.bashrc

	Install gdeploy using setuptools

$ sudo python setup.py install

Getting Started

gdeploy works by interacting with the remote nodes by communicating via
passwordless ssh connections. Passwordless ssh connections have to be created to
all the nodes on which gdeploy is going to create and configure a Gluster
volume.

To setup passwordless ssh to the nodes, follow the steps below:

	Generate passphrase-less ssh-keys for the nodes which are to be used with
gdeploy, running the following command:

$ ssh-keygen -t rsa -N ''

	Set up passwordless ssh access between the node running gdeploy and servers by
running the following command:

$ ssh-copy-id root@hostname

‘hostname’ refers to the unique IP address of the node.

You would have to run these commands for all the nodes.

Sometimes, you may encounter a “Connection Refused” error. In this case, you
need to check whether the ssh service is running on your system. You may use
this command to check the same:

$ systemctl status sshd.service

If the service is not running, use this command to start the service:

$ systemctl start sshd.service

Once ssh connections to all the nodes are established, we can start writing a
configuration file.

That’s it! Now the machines are ready to be used with gdeploy.

Invoking gdeploy

gdeploy needs a configuration file to run. Write a configuration file, see
Writing configuration file for gdeploy section below for more details.

Invoke gdeploy with configuration file as an argument:

$ gdeploy -c sample.conf

Writing configuration file for gdeploy

gdeploy configuration file is a plain text file comprising multiple sections,
the sections are arranged in an order based on what needs to be achieved.

A very simple configuration file named enable-ntpd.conf which enables and starts
ntpd on all the nodes looks like:

[hosts]
10.0.0.1
10.0.0.2
10.0.0.3

[service1]
action=enable
service=ntpd

[service2]
action=start
service=ntpd

Invoking gdeploy

Invoke gdeploy with configuration file as an argument:

$ gdeploy -c sample.conf

The configuration file given above will enable and start ntpd on three
nodes. 10.0.0.1, 10.0.0.2, and 10.0.0.3 when the following command is invoked:

$ gdeploy -c enable-ntpd.conf

INFO: The ‘ntp’ package has to be installed on both the nodes in order for this
configuration file to run. This can be done using the command “dnf install
ntp”.

For more details on the list of all the features supported by gdeploy, refer
gdeploy features topic.

Usage

gdeploy needs a configuration file to do anything useful. Refer
Configuration file format for an example.

gdeploy -h will list the available options for gdeploy:

$ gdeploy -h
usage: gdeploy [-h] [-v] [-vv] [-c CONFIG_FILE] [-k]

optional arguments:
 -h, --help show this help message and exit
 --version show program's version number and exit
 -c CONFIG_FILE Configuration file
 -k Keep the generated ansible utility files
 --trace Turn on the trace messages in logs
 -vv verbose mode
 --addfeature FEATURE_NAME
 Add new feature to gdeploy

gdeploy –addfeature FEATURE_NAME will create a skeleton to add a new feture to
gdeploy. For more details on how to write a feature refer
Developer Documentation.

Invoke gdeploy with configuration file as an argument:

$ gdeploy -c config-file

More example configuration files can be found here [https://github.com/gluster/gdeploy/tree/master/examples].

Debugging

Configuration file format

This section explains the gdeploy configuration file format. There is no rule to
name the configuration files in gdeploy as long as the file name is mentioned
with -c option for gdeploy. For example gluster.conf, gluster, gluster.txt,
gluster.config are all valid names for a gdeploy configuration file.

gdeploy configuration file is split into two parts.

	Inventory

	Features

1. Inventory

The section is named [hosts], this is a mandatory section, hosts that are to be
configured have to be listed in this section.

Hostnames or ip addresses have to be listed one per line. For example:

[hosts]
10.0.0.1
10.0.0.2
10.0.0.3

2. Features

There can be more than one feature listed in the configuration file, each
separated by a newline. Every feature section has one or more variables which
controls how the feature is configured/deployed. The below example has two
features, firewalld and service that will be configured on all the hosts listed
in the [hosts] section:

[hosts]
10.0.0.1
10.0.0.2
10.0.0.3
10.0.0.4

[firewalld]
action=add
ports=111/tcp,2049/tcp,54321/tcp
permanent=true
zone=public

[service1]
action=enable
service=ntpd

[service2]
action=restart
service=ntpd

If a feature has to be used more than once, then it has to be in different
sections and numbered to make it unique as shown in the above example.

The list of available features and their complete documentation can be found in
Features page.

Features

gdeploy supports a number of features, each feature does a particular task. For
example setting up lvm and creating filesystem, subscribe to Red Hat
Subscription Network, creating GlusterFS volumes, so on.

Each feature provides variables that can be set to fine tune the system.
This document explains the available features and their tunable variables.

	Clients

	firewalld

	LVM

	Configuring NFS Ganesha

	Peer

	quota

	Setting up Samba and CTDB

	script

	Service

	shell

	Snapshot

	Enable SSL on a volume

	Subscription Manager

	systemd

	Updating a file

	Creating GlusterFS Volumes

	yum

Maintainer

Developer Documentation

With gdeploy, the user get to remotely configure a lot of features in
multiple machines, without worrying dealing with the complexities of
writing Ansible Playbooks, modules, etc. It is the duty of the developer
to worry about all these things. Adding a new feature to gdeploy is
relatively easy, but comes with the cost of writing playbooks and
modules(if necessary) for Ansible. So this guide assumes that the
developer is comfortable with Python and has got the basic working
knowledge of Ansible.

gdeploy - Developer setup

To setup the development environment, refer Installing from source.

Proceed further once you are done with the setup.

gdeploy architecture

gdeploy is a very lightweight, simple tool that efficiently make use of
Ansible, hiding the major complexities of it from the user, that does
numerous operations on remote machines sequentially. To do this, gdeploy
divides the logic to 3 parts:

	Ansible module that implements the desired logic to be executed in
the remote machine.

	Ansible playbook that makes use of the already present Ansible module
and specifies how a particular operation is to be performed.

	A section independent from both the above sections that reads the
user configuration file, parses it accordingly, sets default values
for some if not provided by the user, and then populate all these
data in variables that the Ansible playbook will then use. More
about these variable can be found in the Ansible documentation about
them [http://docs.ansible.com/ansible/playbooks_variables.html]

For this, gdeploy provide what we call the sections or
features(Features).
Each feature will have n-number of options for which the user will
specify the value.

Adding your first feature to gdeploy

In order to add a new feature to Ansible, the developer has to make sure
the three above mentioned components or sections are written properly
and works as intended.

The development process can be started in the following order:

1. Write the Ansible module, if needed.
2. Write Ansible playbooks that does the necessary operations in the
 right order.
3. Add a feature with a suitable name matching your requirement to the
 gdeploy framework.

** Add a feature to gdeploy **

Use the gdeploy option –addfeature for this. To add a
feature names “myfeature”:

$ gdeploy –addfeature myfeature

This will create a directory <l>myfeature</l> under <l>features</l>
directory. If you look inside this directory, you will see that gdeploy
has created 3 files for you: an init file, a JSON file and a python
script. You need just edit the JSON file and the python script to make
gdeploy do what you want. The JSON file is used by gdeploy to validate
the user configuration provided for your feature(in this case,
‘myfeature’). The necessary option for every feature in gdeploy is the
option named ‘action’. Specify each one of your feature’s action inside
the action hash in the JSON file. Each of these action keys will have a
list names ‘options’ which will specify the options that is to be
provided corresponding to each of these actions. This [https://github.com/gluster/gdeploy/blob/master/gdeployfeatures/snapshot/snapshot.json]
is the JSON file written to implement the snapshot feature in gdeploy.

Once your JSON is ready, the next big task is to create playbooks to run
for each of these actions. This is where we cannot help you much.
Writing playbooks and modules depends on your feature. So put your
Python and Ansible skills to good use and write some cool playbooks.
Playbooks should go under the directory <l>playbooks</l> under the
working directory and modules should go under the directory
<l>modules</l> under the working directory. Once your playbooks are in,
add these playbook file names to the file defaults.py [https://github.com/gluster/gdeploy/blob/master/gdeploylib/defaults.py],
just because it is cleaner.

Now you just have to let gdeploy know which playbook corresponds to
which feature action. This is where the python script comes into
picture. There should be a function corresponding to each feature action
inside this Python script. The function name should be in the format
‘myfeature_actionname’. You need just edit the dummy method names
provided inside the script. I am sure you will figure it out. It is
pretty straight forward. As you will see inside the scripts, each
function will have a parameter being passed, ‘section_dict’. This
dictionary holds the as keys and values, the options and their
corresponding values provided by the user in her configuration file
under the section ‘myfeature’. Just print it out and see for yourself if
you are happy with the format. You can modify the keys and values in the
dictionary as per your needs. Each function should return 2 parameters:
One is the modified or not modified section_dict and other is the
playbook to be run for that particular section. Just edit the YML_NAME
and let the defaults be.

Testing your code

Guidelines for contribution

Design

Testsuite

Frequently Asked Questions

	Why do we need gdeploy, when Ansible is available?

	How does gdeploy help in setting up GlusterFS clusters?

	Does gdeploy help in installing GlusterFS packages?

	Is gdeploy only for installing and deploying GlusterFS?

	Can I run arbitrary scripts using gdeploy?

	My gdeploy run is failing with Module Error, why?

Why do we need gdeploy, when Ansible is available?

gdeploy enables configuration and provisioning of GlusterFS and the file access protocols using configurations and tunables which are tested and recommended by the maintainers. This enables a system administrator to have an easy way to create consistent and repeatable deployment paths.

How does gdeploy help in setting up GlusterFS clusters?

Installation, configuration and provisioning of a GlusterFS deployment involves a sequence of steps to be executed in the proper order. This would include deployment-specific detail such as:

	Setting up PV, VG, LV (thinpools if necessary).

	Peer probing the nodes.

	Using the CLI based volume creation steps

gdeploy provides a simple way to complete the steps and include specifics such as configuring volume options and such.

Does gdeploy help in installing GlusterFS packages?

gdeploy has a configuration workflow design which enables it to be used for package installation, either from upstream builds or, from a specific vendor provided content distribution mechanism viz. Red Hat’s CDN

Is gdeploy only for installing and deploying GlusterFS?

While gdeploy is intended to streamline the administrator experience during installation and deployment of GlusterFS, it can be used to install other packages, custom scripts and modules for configuration. The hc.conf is an example of how gdeploy can enable the set-up and configuration for a HyperConverged stack using GlusterFS.

Refer hc.conf [https://github.com/gluster-deploy/gdeploy/blob/2.0/examples/hc.conf] for an
example for things gdeploy can achieve.

Can I run arbitrary scripts using gdeploy?

Yes. Scripts which aid and extend the deployment setup can be configured to run from gdeploy.

See the script module. Refer hc.conf [https://github.com/gluster-deploy/gdeploy/blob/2.0/examples/hc.conf] for an
example for script module usage.

My gdeploy run is failing with Module Error, why?

The error is due to the Ansible version installed. This is possibly because you
might be using Ansible 2.0. gdeploy currently supports 1.9.x versions of
Ansible.

Examples

	Using gdeploy to create a 1x3 Gluster Volume

	Using gdeploy to create 2x2 gluster volume

	Write a config file to do the backend setup

	How to start and stop services

	Set/unset volume options on an existing volume

	Setting the options on an existing volume

	Resetting the options on the existing volume

	Installing packages from yum repositories

	How to disable repos

	Quota setup on an existing volume

	Enabling and disabling quota

	Create a Gluster volume and set up quota

	Set a 5GB limit on a directory using quota

	Creating a volume and setting a tuning profile on it

	Setting a tuning profile on an existing volume

	NFS Ganesha setup end-to-end

	Unexporting a volume and destroying an NFS-Ganesha HA Cluster

Using gdeploy to create a 1x3 Gluster Volume

To create 1*3 gluster volume we would need three bricks which may or may not
be on the same machine. It is recommended that these three bricks reside on
different machines.

Step 1:

Create the following configuration file:

[hosts]
10.70.43.127
10.70.42.190
10.70.42.232

[backend-setup]
devices=/dev/vdb
vgs=1_3_gluster
pools=pool1
lvs=lv2
mountpoints=/mnt/data1
brick_dirs=/mnt/data1/1

[peer]
manage=probe

[volume]
action=create
volname=volume1
replica=yes
replica_count=3
force=yes

[clients]
action=mount
volname=volume1
hosts=192.168.122.19
fstype=glusterfs
client_mount_points=/mnt/client_mount

Step 2:

Save the file by giving it some name e.g. ‘1_3_volume.conf’.
Invoke gdeploy and run the file using:

$gdeploy -c 1_3_volume.conf

Step 3:

Check whether a gluster volume has been created by running the below command:

$gluster vol info

[image: _images/volume_info.png]
Step 4:

Now you can start writing to the volume using your client machine (192.168.122.19 in our case) by traversing to the
path you have mentioned under “client_mount” using the following command:

$ sudo touch f1 f2 f3

This command will create three files under the directory /mnt/client_mount

You can also check whether the files have been created and replicated thrice inside the directory /mnt/data1/1 on the remote nodes by running the command:

$ ls

[image: _images/1x3_vol.png]
We can see that the files have been successfully replicated on all the three nodes.

Using gdeploy to create 2x2 gluster volume

To create 2x2 gluster volume, you would need four bricks which may or may not be on the same machine.
It is recommended that that these four bricks reside on different machines.

Step 1:

Create the following configuration file:

[hosts]
10.70.43.127
10.70.42.190
10.70.42.232
10.70.43.67

[backend-setup]
devices=/dev/vdb
mountpoints=/gluster/brick1
brick_dirs=/gluster/brick1/one

[volume]
action=create
volname=sample_volume
replica=yes
replica_count=2
force=yes

[clients]
action=mount
hosts=192.168.122.19
fstype=glusterfs
client_mount_points=/mnt/random_client

Step 2:

Save the file by giving it some name e.g. ‘2x2-gluster-volume.conf’.
Invoke gdeploy and run the file using:

$ gdeploy -c 2x2-gluster-volume.conf

Step 3:

To check whether a gluster volume has been created by running the below command:

$ gluster vol info

[image: _images/2x2_volume.png]
Step 3:

Now you can start writing to the volume using your client machine (192.168.122.19 in our case) by traversing to the
path you have mentioned under “random_client” using the following command:

$ sudo touch 1 2 3 4 5

This command will create five files under the directory /home/poo/random_client.

You can also check whether the files have been created and replicated thrice
inside the directory /gluster/brick1/one on the remote nodes by running the
command:

$ ls

[image: _images/writing_to_gluster.png]
We can see that the files have been successfully replicated on all the four nodes.

Write a config file to do the backend setup

[backend-setup] section is used configure the disks on all the hosts
mentioned in the [hosts] section. If the disks names varies from host to
host then [backend-setup:<hostname>/<ip>] can be used to do setup
backend on the particular host.

Step 1:

Create an empty file and give it any arbitrary name and add the following lines to it:

This is a mandatory section, and hostnames/ip-address are listed one per line.

[hosts]
10.70.43.127
10.70.42.190
10.70.42.232
10.70.43.67

Backend setup for all the hosts listed inside [hosts] section

[backend-setup]
devices=/dev/vdb
mountpoints=/gluster/brick1
brick_dirs=/gluster/brick1/one

Backend setup for 10.70.46.77 with default gdeploy generated names for
Volume Groups and Logical Volumes. Volume names will be GLUSTER_vg1,
GLUSTER_vg2...
#
[backend-setup:10.70.43.127]
devices=vdb

Backend setup for remaining 3 hosts in the `hosts' section with custom names
for Volumes Groups and Logical Volumes.
#
[backend-setup:10.70.46.{130,32,110}]
devices=vdb,vdc,vdd
vgs=vg1,vg2,vg3
pools=pool1,pool2,pool3
lvs=lv1,lv2,lv3
mountpoints=/mnt/data1,/mnt/data2,/mnt/data3
brick_dirs=/mnt/data1/1,/mnt/data2/2,/mnt/data3/3

Step 2:

Invoke gdeploy and run the file using:

$ gdeploy -c backend-setup.conf

Step 3:

To see if the GLUSTER_vg1 (which is the default name for gluster volume group)
has been mounted on the desired directory or not. You can either run mount
or df -h:

$ mount

You’ll see something like this.

[image: _images/backend-setup.png]
To see volume groups a.k.a vgs, run the following command:

$ vgs

[image: _images/vgs.png]
To check physical volume, run the following command:

$ pvs

[image: _images/pvs.png]
And to check logical volume, run the following command:

$ lvs

[image: _images/lvs.png]
We can see that volume groups and logical volumes has been successfully created.

How to start and stop services

‘service’ section lets you start, stop, enable, disable, restart, or
reload services. Multiple service names can be provided as a comma
separated list as shown in configuration file below.

For a hands-on walkthrough of the process, let us take a look at how we can
start services such as glusterd, httpd, ntp through the config file.

Here, we’ll learn how to start services such as glusterd, httpd, ntp through
config file.

Step 1:

Create an empty file and give it any arbitrary name. For the purpose of this demonstration,
let’s call our file starting_services.conf. Add the following lines to your
newly created config file:

This is a mandatory section, and hostnames/ip-address are listed one per line.
IP address for host shown here is for demonstration, don't forget to change it
to a valid IP address in your network.

[hosts]
10.209.69.106

To start services

[service]
action=start
service=glusterd,httpd

To stop services
#
[service]
action=stop
service=glusterd,httpd

To disable services
#
[service]
action=disable
service=glusterd,httpd

To restart services
#
[service]
action=restart
service=glusterd,httpd

To reload services
#
[service]
action=reload
servcie=glusterd,httpd

Step 2:

Invoke gdeploy and run the file using:

gdeploy -c starting_services.conf

Step 3:

To check the status of glusterd service, run the following command:

$ systemctl status glusterd.service

[image: _images/status_glusterd.png]
To check the status of httpd service, run the following command:

$ systemctl status httpd.service

[image: _images/status_httpd.png]
As we can see the gluster and httpd services has been started.

Set/unset volume options on an existing volume

Often, we are required to customize our volume for different use cases. Setting
those options enhances performance and prepares the volume for our desired
task. In order to do so, we set different options on the volume using the ‘key’
parameter in our configuration file.

This tutorial will take you through just that. It’s intended to show you how
you can set different volume options on an existing Gluster volume. (To create
a Gluster volume, please refer to 1x3-gluster-volume
or 2x2-gluster-volume).

Setting the options on an existing volume

Step 1:

Create an empty file and give it any arbitrary name. For the purpose of this
demonstration, let’s call our file set_options_vol.conf. Add the following
lines to your newly created config file:

The config file sets configuration options for the already existing volume.

A volume can be created and its volume options can be set at the time of creation.

The volume section takes key value pairs. The number of keys should match
the number of values.

'action' option specifies what action id to be performed in the volume.
The choices are: [create, delete, add-brick, remove-brick, rebalance,
set].

[volume]
action=set
volname=10.70.42.190:sample_volume
key=cluster.nufa,performance.cache-size,cluster.data-self-heal-algorithm
value=on,256MB,full

Step 2:

Invoke gdeploy and run the file using:

$ gdeploy -c set_options_vol.conf

[image: _images/running_gdeploy.png]
Step 3:

To verify if these options are indeed set on the volume, run the following command:

$ gluster vol info

[image: _images/verify_volume_options.png]
We can see that those options have been set on the volume.

Resetting the options on the existing volume

What if you want to reset or unset some options that you no longer require?
There is no unset option per se, but you can set them back to different
values to unset them.
This configuration will show you how to do it. Change the values in the value
parameter and the rest of it will be taken care of by gdeploy based on the
config file.

Step 1:

Let’s call your reset configuration file reset_options_vol.conf. Add the
following lines to reset _options_vol.conf:

This config resets options for the volume

[volume]
action=set
volname=10.70.42.190:sample_volume
key=cluster.nufa,features.lock-heal
value=off,off

Step 2:

Invoke gdeploy and run the following command:

$ gdeploy -c reset_options_vol.conf

Step 3:

To verify if options have been reset, run the following command:

$ gluster vol info

You’ll see that the desired settings have been applied on the volume.

Installing packages from yum repositories

yum section allows you to install or remove packages using yum package manager.

Note :

Make sure that your system is registered with subscription manager before
trying to install packages otherwise you’ll get an error while following the
steps below.

Step 1:

Create an empty file and give it any arbitrary name. For the purpose of this
demonstration, let’s call our file install_packages.conf. Add the following
lines to your newly created config file:

To install package(s):

Make sure you have the appropriate values in all the placeholders shown in this configuration file.
These values are just for demonstration purposes.

 [yum]
 action=install
 repos=<reponames>
 packages=vi,glusterfs
 gpgcheck=no
 update=no

Explanation of the above parameters

packages

This takes a comma separate list of values that are packages names you
wish to install.

gpgcheck

gpgcheck is set to `yes` by default. You can override it
by setting it to `no` as illustrated above.

update

By default, gdeploy runs `yum update` before installation. To disable
this behaviour, set update=no as shown above. The default value is `yes`.

To remove package(s):
[yum]
action=remove
packages=vi

Step 2:

As always, to invoke gdeploy run the following command:

$ gdeploy -c install_packages.conf

How to disable repos

To disable enabled repos, use the action ‘disable-repos’. The required repos
should be passed as value to repos option.

NOTE : If repos are not provided all the enabled repos will be disabled.

Step 1:

Create an empty file and give it any arbitrary name. For the purpose of this
demonstration, let’s call our file disable.conf. Add the following
lines to your newly created config file:

[RH-subscription]
action=disable-repos
repos=fancy_repo1,fancy,repo2

Step 2:

Invoke gdeploy and run the following command:

$ gdeploy -c disable.conf

Quota setup on an existing volume

Here, we will be setting up quota on an existing volume.

Step 1:

Create an empty ‘.conf’ file e.g. ‘quota.conf’ and add the following to it:

#
Usage:
gdeploy -c quota.conf
#
This config enables and sets up quota limit for the specified volume
#

[quota]
action=enable
volname=10.70.41.236:1x2_vol

#You can skip the above if quota is already enabled on the volume

[quota]
action=limit-usage
volname=10.70.41.236:1x2_vol
path=/
size=20MB

‘1x2_vol’ is the name of our volume and 10.70.41.236 is one of the hosts / nodes in the cluster.

Step 2:

Run this file using the following command:

$gdeploy -c quota.conf

[image: _images/12.png]
Step 3:

You can check whether quota has been set using the command:

$gluster vol quota 1x2_vol list

This command should be run on the machine where the volume exists. ‘1x2_vol’ is the name of our volume.

[image: _images/22.png]

Enabling and disabling quota

This document is intended to demonstrate how one can enable and disable quota on a Gluster volume.

Step 1:

Create a ‘.conf’ file with the following contents:

[quota]
action=enable
volname=10.70.41.236:1x2_vol

Here, ‘1x2_vol’ is the name of our volume and 10.70.41.236 is one of the hosts / nodes in the cluster.

We’ll name this file ‘enable_quota.conf’.

Step 2:

Run this using:

gdeploy -c enable_quota.conf

[image: _images/1.png]
Step 3:

You can check whether quota has been enabled by checking volume info using:

$gluster vol info

This command can be run on any of the machines on which the volume resides.

[image: _images/2.png]
We can see that quota has been enabled on this volume.

One may follow the following steps to disable quota on this volume.

Step 1:

Create a ‘.conf’ file with the following contents:

[quota]
action=disable
volname=10.70.41.236:1x2_vol

Here, ‘1x2_vol’ is the name of our volume and 10.70.41.236 is one of the hosts / nodes in the cluster.

We’ll name this file ‘disable_quota.conf’.

Step 2:

Run this using:

gdeploy -c disable_quota.conf

[image: _images/3.png]
Step 3:

You can check whether quota has been disabled by checking volume info using:

$gluster vol info

This command can be run on any of the machines on which the volume resides.

[image: _images/4.png]

Create a Gluster volume and set up quota

Here, we will see how we can create a 1x2 replica volume and then set a size limit on one of the directories within it. A 1x2 replica volume means that we would need 2 bricks and each file will have 2 replicas, one on each brick.

As a recommended practice, our bricks reside on separate machines. We have used two VMs for our two bricks in our case, and these have IPs 10.70.41.236 and 10.70.42.253.

Step 1:

Create an empty ‘.conf’ file e.g. ‘1x2volume.conf’ on the machine where you have gdeploy installed and add the following lines to it:

This does backend setup first and then creates the volume using the
setup bricks.

[hosts]
10.70.41.236
10.70.42.253

Common backend setup for 2 of the hosts.
[backend-setup]
devices=vda
mountpoints=/mnt/data
brick_dirs=/mnt/data/1

If backend-setup is different for each host
[backend-setup:192.168.122.109]
devices=sdb
brick_dirs=/gluster/brick/brick1
#
[backend-setup:192.168.122.227]
devices=sda,sdb,sdc
brick_dirs=/gluster/brick/brick{1,2,3}
#
[peer]
manage=probe

[volume]
action=create
volname=1x2_vol
replica=yes
replica_count=2
force=yes

[clients]
action=mount
volname=1x2_vol
hosts=10.70.41.236
fstype=glusterfs
client_mount_points=/glusterfs

#Enabling quota for this volume
[quota]
action=enable
volname=10.70.41.236:1x2_vol

This will set up a quota limit for the specified path on the volume
[quota]
action=limit-usage
volname=10.70.41.236:1x2_vol
path=/sample_directory
size=10MB

path refers to a directory on the client mount point i.e. a directory inside /glusterfs in our case. We created a directory named “sample_directory” inside “/glusterfs” on our client machine 10.70.41.236 using the “mkdir” command. We are setting a size limit on this directory.

Step 2:

Invoke gdeploy and run the file using:

$gdeploy -c 1x2volume.conf

‘1x2volume.conf’ is the name of our configuration file.

[image: _images/11.png]

[image: _images/21.png]

[image: _images/31.png]

[image: _images/41.png]

[image: _images/5.png]

[image: _images/6.png]
Step 3:

You can check whether a gluster volume is created by running the following command on any or all of the nodes:

$gluster vol info

[image: _images/7.png]
Here, we can also see that quota has been enabled.

Step 4:

Let’s check whether the size limit for our directory “sample_directory” has been set.
One can check quota attributes on a volume using the command:

$gluster vol quota 1x2_vol list

Here, 1x2_vol is the name of our volume.

[image: _images/8.png]
Step 5:

You can test the volume by creating a file and see whether it is getting replicated. On your client machine (10.70.41.236 in our case), traverse to the path you have mentioned under “client_mount_points” (e.g. ‘cd /glusterfs’) and create a file using the following command:

$touch sample.txt

This command will create a file named as “sample.txt” under the directory “/glusterfs”. You may create this file on any of the directories under “/glusterfs”,we have created it in the topmost one.

You can check whether the file has been replicated twice by traversing to the path “/mnt/data1/1” on both the nodes and running the command:

$ls

You will see two copies of your file in total, on the bricks.

You have successfully setup a 1x2 Gluster volume using gdeploy and set a size limit on one of the directories on it.

Set a 5GB limit on a directory using quota

Here, we will see how to set a 5GB limit on a directory within our volume using quota.

Step 1:

Create the following ‘.conf’ file:

#Enabling quota for this volume
[quota]
action=enable
volname=10.70.41.236:1x2_vol

This will set up a quota limit for the specified path on the volume
[quota]
action=limit-usage
volname=10.70.41.236:1x2_vol
path=/main_dir
size=5GB

Step 2:

Run the file using:

$gdeploy -c 5gbquota.conf

Here, ‘5gbquota.conf’ is the name of our configuration file created in Step 1.

[image: _images/13.png]
Step 3:

You can check whether quota is enabled on your desired volume by checking volume information:

$gluster vol info

This command needs to be run on the any or all of the machines on which the volume resides.

Step 4:

To check whether the size limit of 5GB has been set, we run the command:

$gluster vol quota 1x2_vol list

This command gives us a detailed description of quota settings applied on our volume.

[image: _images/23.png]

Creating a volume and setting a tuning profile on it

This document will walk you through how you can create a Gluster volume and set a profile on it. Profiles are directories of files that contain settings to enhance performance of a volume. There are many profiles that come with Red Hat Gluster Storage and these are tailored for different workloads. One can also define or create a new profile. As profiles aid in performance tuning (improving system performance), they are also called as “tuning profiles”.

Pre-defined profiles can be found here as subdirectories: /etc/tune-profiles.

For instance, /etc/tune-profiles/virtual-guest contains all the files and settings for the virtual-guest profile, which is a profile that sets performance options for virtual machines.

The following steps will illustrate how to create a volume and set a tuning profile on it.

Step 1:

Create the following configuration file:

[hosts]
10.70.41.236
10.70.42.253

Common backend setup for 2 of the hosts.
[backend-setup]
devices=vda
mountpoints=/mnt/data
brick_dirs=/mnt/data/1

If backend-setup is different for each host
[backend-setup:192.168.122.109]
devices=sdb
brick_dirs=/gluster/brick/brick1
#
[backend-setup:192.168.122.227]
devices=sda,sdb,sdc
brick_dirs=/gluster/brick/brick{1,2,3}
#
[peer]
manage=probe

[volume]
action=create
volname=1x2_vol
replica=yes
replica_count=2
force=yes

[clients]
action=mount
volname=1x2_vol
hosts=10.70.41.236
fstype=glusterfs
client_mount_points=/glusterfs

#The above section creates the volume. The below section will apply a profile to it.

[tune-profile]
rhgs-sequential-io

#This will set the profile 'rhgs-sequential-io'.

Step 2:

Invoke gdeploy and run this using:

$gdeploy -c tune_profile.conf

where “tune_profile.conf” is the name of our configuration file created in Step 1.

Step 3:

Check whether this has been applied using:

$tuned-adm list

This command, when run on any of the hosts / cluster nodes, will return you the list of available profiles along with the current active profile. In our case, the current active profile would be ‘rhgs-sequential-io’.

Setting a tuning profile on an existing volume

NFS Ganesha setup end-to-end

Here we’ll see how we can setup NFS Ganesha using gdeploy. We’ll be writing a configuration file for the end-to-end setup, right from creating a volume, subscribing to channels and installing the right packages. This configuration file will also create a high availability cluster and export the volume.

Step 1:

Create an empty .conf file with the following:

[hosts]
dhcp37-102.lab.eng.blr.redhat.com
dhcp37-103.lab.eng.blr.redhat.com

[backend-setup]
devices=/dev/vdb
vgs=vg1
pools=pool1
lvs=lv1
mountpoints=/mnt/brick

Subscribe to necessary channels
[RH-subscription1]
action=register
username=<username>
password=<password>
pool=<pool>

[RH-subscription2]
action=disable-repos
repos=

[RH-subscription3]
action=enable-repos
repos=rhel-7-server-rpms,rh-gluster-3-for-rhel-7-server-rpms,rh-gluster-3-nfs-for-rhel-7-server-rpms,rhel-ha-for-rhel-7-server-rpms

#Installing nfs-ganesha
[yum]
action=install
repolist=
gpgcheck=no
update=no
packages=glusterfs-ganesha

#Enabling the firewall service and configuring necessary ports
[firewalld]
action=add
ports=111/tcp,2049/tcp,54321/tcp,5900/tcp,5900-6923/tcp,5666/tcp,16514/tcp,662/tcp,662/udp
services=glusterfs,nlm,nfs,rpc-bind,high-availability,mountd,rquota

#This will create a volume. Skip this section if your volume already exists
[volume]
action=create
volname=ganesha
transport=tcp
replica_count=2
force=yes

#Creating a high availability cluster and exporting the volume
[nfs-ganesha]
action=create-cluster
ha-name=ganesha-ha-360
cluster-nodes=dhcp37-102.lab.eng.blr.redhat.com,dhcp37-103.lab.eng.blr.redhat.com
vip=10.70.44.121,10.70.44.122
volname=ganesha

Step 2:

Run this file using:

$gdeploy -c nfs_ganesha1.conf

where nfs_ganesha1.conf is the name of our configuration file saved in Step 1.

Step 3:

To see if your volume has been exported, you may run this command on any or all of the nodes:

$showmount -e localhost

Unexporting a volume and destroying an NFS-Ganesha HA Cluster

Here, we’ll see how we can unexport a volume and destroy a high availability cluster.

Step 1:

Create the following configuration file:

[hosts]
dhcp37-102.lab.eng.blr.redhat.com
dhcp37-103.lab.eng.blr.redhat.com

To un-export the volume:

[nfs-ganesha1]
action=unexport-volume
volname=ganesha

To destroy the high availability cluster

[nfs-ganesha2]
action=destroy-cluster
cluster-nodes=dhcp37-102.lab.eng.blr.redhat.com,dhcp37-103.lab.eng.blr.redhat.com

‘ganesha’ is the name of our volume.

Step 2:

Run this file using:

$gdeploy -c ganesha_destroy.conf

Here, “ganesha_destroy.con” is the name of our configuration file created in Step 1.

Step 3:

Now, when you run this command on any or all of the nodes in the cluster, you will not see any mounts for nfs-ganesha:

$showmount -e localhost

You have successfully unexported the volume and destroyed the HA cluster.

Index

Clients

clients module allows user to specify the client hosts and client_mount_points
to mount or unmount the gluster storage volume created.
The ‘action’ option is to be specified for the framework to determine the
action that has to be performed.
‘action’ variable can be any of mount and unmount.

Both mount and unmount option support the following variables:
1. hosts - The clients ‘hosts’ field is mandatory.
2. client_mount_points - Mountpoint directories. Where the logical volumes have

to be mounted, if the mount points are not specified, default will be taken
as /mnt/gluster for all the hosts.

mount option supports a few more variables:
3. fstype - The option fstype specifies how the gluster volume is to be mounted,

default is glusterfs (FUSE mount). the volume can also be mounted as NFS.
Each client can have different types of volume mount, which has to be
specified with a comma seperated.

	volname - This option specifies the volume name. Default name is glustervol.

For example:

Mount the specified hosts to the specified mount-point:

[clients]
action=mount
hosts=10.0.0.10
fstype=nfs
nfs-version=3
client_mount_points=/mnt/rhs

firewalld

firewalld module allows the user to manipulate firewall rules. action variable
supports two values add and delete.
Both add and delete support the following variables:

	ports/services - The ports or services to add to firewall.

	permanent - Whether to make the entry permanent. Allowed values are true/false

	zone - Default zone is public

For example:

[firewalld]
action=add
ports=111/tcp,2049/tcp,54321/tcp,5900/tcp,5900-6923/tcp,5666/tcp,16514/tcp
services=glusterfs

LVM

gdeploy allows to setup backend for GlusterFS in two ways.

	Using the modules: pv, vg, and lv

	Using the backend-setup module.

The backend-setup module sets up a thin-pool by default and applies default
performance recommendations. However, if the user has a different use case which
demands more than one LV, and a combination of thin and thick pools then
backend-setup is of no help. The user can use PV, VG, and LV modules to
achieve this.

Both the methods are explained below:

	[backend-setup]

	PV

	VG

	LV

[backend-setup]

backend-setup module allows the user to create bricks for GlusterFS nodes. If
the user needs more control on creating PV, VG, and LV refer the documentation
on respective sections.

In the below example, the module creates a thinpool LV using devices sdb, sdc on
all the nodes listed in the hosts section. Refer example 2x2-volume-create.conf [https://github.com/gluster-deploy/gdeploy/blob/2.0/examples/2x2-volume-create.conf]
for more complete example.:

[backend-setup]
devices=sdb,sdc
vgs=vg1,vg2
pools=pool1,pool2
lvs=lv1,lv2
mountpoints=/mnt/data1,/mnt/data2
brick_dirs=/mnt/data1/1,/mnt/data2/2

If backend-setup has to be done for particular hosts in the inventory then
the section would be written like:

[backend-setup:10.0.0.100] # Backend would be setup on just 10.0.0.100
devices=sdb,sdc
vgs=vg1,vg2
pools=pool1,pool2
lvs=lv1,lv2
mountpoints=/mnt/data1,/mnt/data2
brick_dirs=/mnt/data1/1,/mnt/data2/2

[backend-setup:10.0.0.{1..10}] # Backend would be setup on hosts 10.0.0.1
 through 10.0.0.10
devices=sdb,sdc
vgs=vg1,vg2
pools=pool1,pool2
lvs=lv1,lv2
mountpoints=/mnt/data1,/mnt/data2
brick_dirs=/mnt/data1/1,/mnt/data2/2

backend-setup section supports the following variables:

	devices - List of comma separated devices to use.

	vgs - Names of the vgs. The number of vg names should match the number of
devices. If name is not mentioned, default names will be generated by gdeploy.

	pools - Name of the thinpools. If name is not mentioned, default names will
be generated by gdeploy.

	lvs - Logical volume names. If name is not mentioned, default names will be
generated by gdeploy.

	size - Size of the logical volume

	mountpoints - Mountpoint directories. Where the logical volumes have to be
mounted.

	brick_dirs - The brick directories to use for creating the volume.

	ssd - This variable is set if caching has to be added.

PV

The [pv] section allows user to create physical volumes on the given disks.

Example 1: Create a few physical volumes:

[pv]
action=create
devices=vdb,vdc,vdd

Example 2: Create a few physical volumes on a certain host:

[pv:10.0.5.2]
action=create
devices=vdb,vdc,vdd

Example 1: Wipe signature from the device and create physical volumes:

[pv]
action=create
devices=vdb,vdc,vdd
wipefs=yes

Note: By default wipefs is set to ‘no’.

Example 3: Expand an already created pv:

[pv]
action=resize
devices=vdb
expand=yes

Example 4: Shrink an already created pv:

[pv]
action=resize
devices=vdb
shrink=100G

VG

VG module currently supports two actions ‘create’ and ‘extend’.

The ‘create’ action supports four variables:

	pvname - The pv to be used.

	vgname - Name of the vg, if variable is ommitted default name GLUSTER_vg will
be used.

	ignore_vg_errors - If set to ‘no’, gdeploy exits if an error is encountered.

Example1: Create a vg named images_vg with two PVs:

[vg]
action=create
vgname=images_vg
pvname=sdb,sdc

Example2: Create two vgs named rhgs_vg1 and rhgs_vg2 with two PVs exit gdeploy
in case of any errors:

[vg]
action=create
vgname=rhgs_vg
pvname=sdb,sdc
ignore_vg_errors=no

The ‘extend’ action is used to extend volume groups. The following variables are
supported if action=extend:

	pvname - The pv to be used, for more than one pv, comma separate them.

	vgname - Name of the vg, if variable is ommitted default name GLUSTER_vg will
be used.

	ignore_vg_errors - If set to ‘no’, gdeploy exits if an error is encountered.

Example1: Extend an existing vg with the given disk:

[vg]
action=extend
vgname=rhgs_images
pvname=sdc

Example2: Extend a vg, exit gdeploy in case of errors:

[vg]
action=extend
vgname=rhgs_images
pvname=sdc
ignore_vg_errors=no

Refer hc.conf [https://github.com/gluster-deploy/gdeploy/blob/2.0/examples/hc.conf] for
complete example.

LV

This module is used to create, setup-cache, and convert logical volumes. The lv
module supports the following variables:

	action - The action variable allows four values create, setup-cache,
convert, and change.

If the action is create, the following options are supported:

	lvname - The name of the logical volume, this is an optional field. Default
is GLUSTER_lv

	poolname - Name of the thinpool volume name, this is an optional
field. Default is GLUSTER_pool

	lvtype - Type of the logical volume to be created, allowed values are
thin and thick. This is an optional field, default is thick.

	size - Size of the logical volume volume. Default is to take all available
space on the vg.

	extent - Extent size, default is 100%FREE

	force - Force lv create, do not ask any questions. Allowed values yes,
no. This is an optional field, default is yes.

	vgname - Name of the volume group to use.

	pvname - Name of the physical volume to use.

	chunksize - Size of chunk for snapshot.

	poolmetadatasize - Sets the size of pool’s metadata logical volume.

	virtualsize - Creates a thinly provisioned device or a sparse device of
the given size.

	mkfs - Creates a filesystem of the given type. Default is to use xfs.

	mkfs-opts - mkfs options.

	mount - Mount the logical volume.

	ignore_lv_errors - If set to no, gdeploy exits if errors are encountered.

If the action is setup-cache, the below options are supported:

	ssd - Name of the ssd device. For example sda/vda/ … to setup cache.

	vgname - Name of the volume group.

	poolname - Name of the pool.

	cache_meta_lv - Due to requirements from dm-cache (the kernel driver), LVM
further splits the cache pool LV into two devices - the cache data LV and
cache metadata LV. Provide the cache_meta_lv name here.

	cache_meta_lvsize - Size of the cache meta lv.

	cache_lv - Name of the cache data lv.

	cache_lvsize - Size of the cache data.

	force - Force

9. cachemode - Provides provision to setup cache while creating lv. Allowed values writeback, writethrough. Default is writethrough.
9. ignore_lv_errors - If set to no, gdeploy exits if errors are encountered.

If the action is convert, the below options are supported:

	lvtype - type of the lv, available options are thin and thick

	force - Force the lvconvert, default is yes.

	vgname - Name of the volume group.

	poolmetadata - Specifies cache or thin pool metadata logical volume.

	cachemode - Allowed values writeback, writethrough. Default is writethrough.

	cachepool - This argument is necessary when converting a logical volume
to a cache LV. Name of the cachepool.

	lvname - Name of the logical volume.

	chunksize - Gives the size of chunk for snapshot, cache pool and thin pool
logical volumes. Default unit is in kilobytes.

	poolmetadataspare - Controls creation and maintanence of pool metadata
spare logical volume that will be used for automated pool recovery.

	thinpool - Specifies or converts logical volume into a thin pool’s data
volume. Volume’s name or path has to be given.

	ignore_lv_errors - If set to no, gdeploy exits if errors are encountered.

If the action is change, the below options are supported:

	lvname - Name of the logical volume.

	vgname - Name of the volume group.

	zero - Set zeroing mode for thin pool.

	ignore_lv_errors - If set to no, gdeploy exits if errors are encountered.

Example 1: Create a thin LV:

[lv]
action=create
vgname=RHGS_vg1
poolname=lvthinpool
lvtype=thinpool
poolmetadatasize=10MB
chunksize=1024k
size=30GB

Example 2: Create a thick LV:

[lv]
action=create
vgname=RHGS_vg1
lvname=engine_lv
lvtype=thick
size=10GB
mount=/rhgs/brick1

If there are more than one LV, the LVs can be created by numbering the LV
sections, like [lv1], [lv2] …

Refer hc.conf [https://github.com/gluster-deploy/gdeploy/blob/2.0/examples/hc.conf] for
complete example.

Configuring NFS Ganesha

New in gdeploy 2.0.1

gdeploy supports the deployment and configuration of NFS Ganesha from version
2.0.1

NFS Ganesha module in gdeploy allows user to perform the following actions:

1. create-cluster
2. destroy-cluster
3. add-node
4. delete-node
5. export-volume
6. unexport-volume
7. refresh-config

This document explains all the above actions with example configuration files.

create-cluster

This action will create a fresh NFS-Ganesha setup on a given volume. For this
action nfs-ganesha section support the following variables:

1. ha-name
2. cluster-nodes
3. vip
4. volname

	ha-name: This is optional variable. By default ganesha-ha-360 will be used.

	
	cluster-nodes: This is a required argument, this variable expects comma

	separated values of cluster node names, which should be used to
form the cluster.

	
	vip: This is a required argument, this variable expects comma separated list

	of ip addresses. These will be the virtual ip addresses.

	
	volname: This is a optional variable if the configuration contains [volume]

	section, else volname has to be mentioned and that volume should be
present.

Example: Create a NFS-Ganesha cluster:

[hosts]
host-1.example.com
host-2.example.com

[backend-setup]
devices=/dev/vdb
vgs=vg1
pools=pool1
lvs=lv1
mountpoints=/mnt/brick

[firewalld]
action=add
ports=111/tcp,2049/tcp,54321/tcp,5900/tcp,5900-6923/tcp,5666/tcp,16514/tcp,662/tcp,662/udp
services=glusterfs,nlm,nfs,rpc-bind,high-availability,mountd,rquota

[volume]
action=create
volname=ganesha
transport=tcp
replica_count=2
force=yes

#Creating a high availability cluster and exporting the volume
[nfs-ganesha]
action=create-cluster
ha-name=ganesha-ha-360
cluster-nodes=host-1.example.com,host-2.example.com
vip=10.70.44.121,10.70.44.122
volname=ganesha

The above configuration file assumes, necessary packages are installed. Creates
a volume and enables NFS-Ganesha on it. If the configuration file is saved in
ganesha.conf, execute the configuration using the command:

	gdeploy -c ganesha.conf

Example on how to subscribe and install necessary Ganesha packages can be found
here. [https://github.com/gluster-deploy/gdeploy/blob/master/examples/nfs_ganesha.conf]

destroy-cluster

Action destroy-cluster cluster will disable NFS Ganesha. It allows one variable
‘cluster-nodes’.

Example: Destroy NFS-Ganesha Cluster:

[hosts]
host-1.example.com
host-2.example.com

To destroy the high availability cluster

[nfs-ganesha]
action=destroy-cluster
cluster-nodes=host-1.example.com,host-2.example.com

add-node

Action add-node allows two variables:

1. nodes
2. vip

Both the variables are mandatory. ‘nodes’ takes a list of comma separated
hostnames that have to be added to the cluster and ‘vip’ takes a list of comma
separated ip addresses.

Example:

[hosts]
host-1.example.com
host-2.example.com

[nfs-ganesha]
action=add-node
nodes=host-3.example.com
vip=10.0.0.33

delete-node

Action delete-node deletes a node from NFS Ganesha cluster. delete-node takes
one variable ‘nodes’.

Example:

[hosts]
host-1.example.com
host-2.example.com

[nfs-ganesha]
action=delete-node
nodes=host-3.example.com

export-volume

Action export-volume exports a volume. export-volume action supports one
variable ‘volname’.

Example:

[hosts]
host-1.example.com
host-2.example.com

[nfs-ganesha]
action=export-volume
volname=ganesha

unexport-volume

Action unexport-volume unexports a volume. unexport-volume action supports one
variable ‘volname’.

Example:

[hosts]
host-1.example.com
host-2.example.com

[nfs-ganesha]
action=unexport-volume
volname=ganesha

refresh-config

Action refresh-config will add/delete or add a config block to the configuration
file and runs –refresh-config on the cluster.

Action refresh-config supports the following variables:

1. add-config-lines
2. del-config-lines
3. update-config-lines
4. block-name
5. volname
6. ha-conf-dir

Example 1 - Add a client block and run-refresh config:

config-block: is the variable containing lines (| separated) which will be
added to the client block.
#
The client block will look something like:
client {
clients = 10.0.0.1;
allow_root_access = true;
access_type = "RO";
Protocols = "3";
anonymous_uid = 1440;
anonymous_gid = 72;
}
#

[hosts]
dhcp37-102.lab.eng.blr.redhat.com
dhcp37-103.lab.eng.blr.redhat.com

[nfs-ganesha]
action=refresh-config
Default block name is `client'
block-name=client
config-block=clients = 10.0.0.1;|allow_root_access = true;|access_type = "RO";|Protocols = "2", "3";|anonymous_uid = 1440;|anonymous_gid = 72;
volname=ganesha

Example 2 - Add a line and run refresh-config:

[hosts]
dhcp37-102.lab.eng.blr.redhat.com
dhcp37-103.lab.eng.blr.redhat.com

[nfs-ganesha]
action=refresh-config
add-config-lines=clients = 10.0.0.1;|anonymous_gid = 72;
volname=ganesha

Example 3 - Delete a line and run refresh-config:

[hosts]
dhcp37-102.lab.eng.blr.redhat.com
dhcp37-103.lab.eng.blr.redhat.com

[nfs-ganesha]
action=refresh-config
del-config-lines=client
volname=ganesha

Example 4 - Update a line and run refresh-config:

[hosts]
dhcp37-102.lab.eng.blr.redhat.com
dhcp37-103.lab.eng.blr.redhat.com

[nfs-ganesha]
action=refresh-config
update-config-lines=access_type = "RW";|anonymous_gid = 72;
volname=ganesha

Example 5 - Run refresh-config on a volume:

[hosts]
dhcp37-102.lab.eng.blr.redhat.com
dhcp37-103.lab.eng.blr.redhat.com

[nfs-ganesha]
action=refresh-config
volname=ganesha

Peer

peer module allows user to add/probe remote machines to a Trusted Storage Pool,
detach/remove a remote machine from a Trusted Storage Pool.
action variable can be any of probe and detach.

When the action variable is set to probe, the remote machines listed in the
hosts sections are added to the Trusted Storage Pool.

When the action variable is set to detach, the remote machines listed in the
hosts sections are removed from the Trusted Storage Pool.
The option detach also supports a force variable that can be set to ‘yes’, the
default value is ‘no’ for the same.

Both probe and detach support ignore_peer_errors variable that can be set to ‘no’,
its default value is ‘yes’.

Example 1: Add the specified hosts to a Trusted Storage Pool

[peer]
action=probe

Example 2: Add the specified hosts to a Trusted Storage Pool, in the below
example the errors will not be ignored. ignore_peer_errors has ‘yes’ as its default value

[peer]
action=probe
ignore_peer_errors=no

Example 3: Detach a host from the Trusted Storage Pool

[peer]
action=detach
force=yes

quota

quota module allows user to set limits on the disk space used by a directory.
Storage admins can control the disk space utilization at the directory and
volume levels.

The ‘action’ option can be any of the following:
1. enable - To enable quota behavior on a volume.
2. disable - To disable quota behavior on a volume.
3. remove - To remove the usage limits, if previously set.
4. remove-objects -To remove the usage limits on a specific directory, if

previously set.

	
	default-soft-limit - The default soft limit is 80%, though it can be altered

	on a per-volume basis.

	limit-usage - To limit the total amount of space to be consumed by a volume.

	limit-objects - To limit the total allowed number of directories/files.

	
	alert-time - To configure how frequently usage information is logged.

	By default alert-time is 1 week(1w).

	
	soft-timeout - To specify how often disk usage is to be checked against the

	disk usage limit when below the soft limit set on the directory
or volume. The default soft timeout frequency is every 60 seconds.

	
	hard-timeout - To specify how often disk usage is to be checked against the

	disk usage limit when above the soft limit set on a directory
or volume. The default hard timeout frequency is every 5 seconds.

All of the above options support the following variables:
* volname - This option specifies the volume name.

	
	path - remove, remove-objects, limit-usage and limit-objects option support

	path variable to specify the path of the directory.

	
	size - limit-usage option supports a size variable to specify the size of

	the disk to be used.

	
	number - limit-objects option supports the number variable to specify the

	maximum number of directories/files.

	
	percent - default-soft-limit supports a percent variable to specify the

	percentage of the disk space supposed to be used.

	
	time - alert-time, soft-timeout, and hard-timeout support the time variable

	to specify the time in weeks,seconds and seconds respectively.

	
	client_hosts - soft-timeout and hard-timeout options support the client_hosts

	variable

For example:

Example 1: Enable quota on a specific volume:

[quota]
action=enable
volname=quotavol

Example 2: Limit the disk-usage for the specific volume:

[quota]
action=limit-usage
volname=quotavol
path=/mnt
size=100GB

Example 3: Limit the number of files for a specific volume:

[quota]
action=limit-objects
volname=quotavol
number=3

Example 4: Set soft-timeout for quotavol volume:

[quota]
action=soft-timeout
time=90

Setting up Samba and CTDB

New in gdeploy 2.0.1

gdeploy supports the deployment of Samba and CTDB from release 2.0.1.

Samba

gdeploy provides provision to setup Samba in two scenarios.

	Enable Samba on an existing volume

	Enable Samba while creating a volume

Below documentation explains both the methods

Enable Samba on an existing volume

If a GlusterFS volume is already present, then user has to mention the
action as ‘smb-setup’ in the volume section. It is necessary to mention all
the hosts that are in the cluster, as gdeploy updates the glusterd
configuration files on each of the hosts.

For example:

[hosts]
10.70.37.192
10.70.37.88

[volume]
action=smb-setup
volname=samba1
force=yes
smb_username=smbuser
smb_mountpoint=/mnt/smb

In the above example ensure that host are not part of CTDB cluster.

Enable Samba while creating a volume

If Samba has be set up while creating a volume, a variable smb has to be
set to yes.

For example:

[hosts]
10.70.37.192
10.70.37.88

[backend-setup]
devices=/dev/vdb
vgs=vg1
pools=pool1
lvs=lv1
mountpoints=/mnt/brick

[volume]
action=create
volname=samba1
smb=yes
force=yes
smb_username=smbuser
smb_mountpoint=/mnt/smb

In both the cases note that, smb_username and smb_mountpoint are necessary if
samba has to be setup with proper acls set.

CTDB

gdeploy configuration files for CTDB setup can be written to setup CTDB while
creating volumes, or to setup CTDB on existing volumes.

gdeploy allows users to setup CTDB using different ip addresses than mentioned
in ‘hosts’ section. For example if a user has internal ip addresses on which to
he decides to setup CTDB cluster, those ip addresses have to be set in
ctdb_nodes variable.

Example 1: Setup CTDB on an existing volume named foo:

[hosts]
10.70.37.192
10.70.37.88

[ctdb]
action=setup
public_address=10.70.37.6/24 eth0,10.70.37.8/24 eth0
volname=foo

Example 2: Create a volume and setup CTDB:

[hosts]
10.70.37.192
10.70.37.88

[volume]
action=create
volname=ctdb
transport=tcp
replica_count=2
force=yes

[ctdb]
action=setup
public_address=10.70.37.6/24 eth0,10.70.37.8/24 eth0

Example 3: Setup CTDB, use separate ip addresses for CTDB cluster:

[hosts]
10.70.37.192
10.70.37.88

[ctdb]
action=setup
public_address=10.70.37.6/24 eth0,10.70.37.8/24 eth0
ctdb_nodes=192.168.1.1,192.168.2.5
volname=samba1

script

script module enables user to execute a script/binary on the remote
machine. action variable is set to execute. Allows user to specify two variables
file and args.

	file - An executable on the local machine.

	args - Arguments to the above program.

Example: Execute script disable-multipath.sh on all the remote nodes listed in hosts section:

[script]
action=execute
file=/usr/share/gdeploy/scripts/disable-multipath.sh

Refer hc.conf [https://github.com/gluster-deploy/gdeploy/blob/2.0/examples/hc.conf] for a
complete example.

Service

service module allows user to start, stop, restart, reload, enable, or disable
a service.
When ‘action’ variable is set to any of start, stop, restart, reload,
enable, disable the variable servicename specifies which service to start,
stop etc.
All of the above options support variables ‘service’ and ‘ignore_service_errors’.
service - Name of the service to start, stop etc.
ignore_service_errors - default value for this variable is ‘yes’.

For example:

Enable and start ntp daemon:

[service1]
action=enable
service=ntpd

[service2]
action=restart
service=ntpd

shell

shell module allows user to run shell commands on the remote nodes.

Currently shell provides a single action variable with value execute. And a
command variable with any valid shell command as value.

The below config will execute vdsm-tool on all the nodes:

[shell]
action=execute
command=vdsm-tool configure --force

Refer hc.conf [https://github.com/gluster-deploy/gdeploy/blob/2.0/examples/hc.conf] for
complete example.

Snapshot

snapshot module enables user to create point-in-time copies of Rhgs volumes.

Snapshot provides the following actions:

	Create

	Delete

	Activate

	Deactivate

	Clone

	Restore

	Config

	action - This variable allows the following values, create, delete,

	activate, deactivate, clone, restore, config.

Create

If the action is create the following variables are supported:
1. snapname - Name of the snapshot that will be created.
2. volname - Name of the volume for which the snapshot will be created.
3. force - Snapshot creation will fail if any brick is down. Quorum is checked

only when the force option is provided.
The default value for this field is ‘no’.

Example 1: Creating a snapshot:

[snapshot]
action=create
snapname=snap_Feb2017
volname=snapvol
force=yes

Delete

If the action is delete the following variables are supported:
1. snapname
2. volname
3. force

Example 2: Deleting a snapshot:

[snapshot]
action=delete
snapname=snap_Dec2016
volname=snapvol

Activate

If the action is activate the following options are supported:
1. snapname
2. force

Example 3: Activate a Snapshot:

[snapshot]
action=activate
snapname=snap_Feb2017
force=yes

Deactivate

If the action is deactivate the following options are supported:
1. snapname
2. force

Example 4: Deactivate a Snapshot:

[snapshot]
action=deactivate
snapname=snap_Jan2017
force=yes

Clone

If the action is clone the following options are supported:
1. snapname
2. force
3. clonename - The name of the clone, ie, the new volume that will be created.

Example 5: Clone a Snapshot:

[snapshot]
action=clone
snapname=snap_Nov2014
clonename=snap_clone

Restore

If the action is restore the following options are supported:
1. snapname

Example 5: Restore a Snapshot:

[snapshot]
action=restore
snapname=snap_Jan2017

Config

If the action is config the following options are supported:
1. snapname - Nmae of the snapshot that will be created.
2. snap_max_soft_limit - This is a percentage value. The default value is 90%.
3. snap_max_hard_limit - If the snapshot count in a volume reaches this limit

then no further snapshot creation is allowed. The range
is from 1 to 256.

	
	auto_delete - By default it is disabled. When enabled, it will delete the

	oldest snapshot when snapshot count crosses snap_max_soft_limit.

	activate_on_create -

Example 5: Configure a Snapshot:

[snapshot]
action=config
snapname=snap_Feb2017
snap_max_hard_limit=200
auto_delete=enable

Enable SSL on a volume

New in gdeploy 2.0.1

User can create volumes with SSL enabled, or enable ssl on exisiting volumes
using gdeploy (v2.0.1 onwards). This section explains how the configuration
files should be written for gdeploy to enable SSL. For documentatoin on SSL
please refer this blog [https://kshlm.in/post/network-encryption-in-glusterfs/] and documentation
available in Admin Guide. [https://gluster.readthedocs.io/en/latest/Administrator%20Guide/SSL/]

	Create a volume and enable SSL on it:

[hosts]
10.70.37.147
10.70.37.47

[backend-setup]
devices=/dev/vdb
vgs=vg1
pools=pool1
lvs=lv1
mountpoints=/mnt/brick

[volume]
action=create
volname=foo
transport=tcp
replica_count=2
force=yes
enable_ssl=yes
ssl_clients=10.70.37.107,10.70.37.173
brick_dirs=/data/1

[clients]
action=mount
hosts=10.70.37.173,10.70.37.107
volname=foo
fstype=glusterfs
client_mount_points=/mnt/data

In the above example, a volume named foo is created and SSL is enabled on
it. gdeploy creates self signed certficates.

	Enable SSL on an existing volume:

[hosts]
10.70.37.147
10.70.37.47

This is important. Clients have to be unmounted before setting up SSL
[clients1]
action=unmount
hosts=10.70.37.173,10.70.37.107
client_mount_points=/mnt/data

[volume]
action=enable-ssl
volname=bar
ssl_clients=10.70.37.107,10.70.37.173

[clients2]
action=mount
hosts=10.70.37.173,10.70.37.107
volname=bar
fstype=glusterfs
client_mount_points=/mnt/data

Note that in the volume section action is set to enable-ssl for an existing
volume. In case of existing the variable ‘enable_ssl’ shouldn’t be used.

Subscription Manager

Red Hat Subscription Manager is a local service which tracks installed products
and subscriptions on a local system to help manage subscription assignments. It
communicates with the backend subscription service (the Customer Portal or an
on-premise server such as Subscription Asset Manager) and works with content
management tools such as yum.

This section explains the gdeploy module `RH-subscription’, which can be used to
configure subscription manager.

RH-subscription provides the following actions:

	Register

	Unregister

	Enable

	Disable

	Attach pools

	action - This variable allows the following values, register, attach-pool,

	enable-repos, disable-repos, unregister.

Register

If the action is register the following variables are supported:

	username/activationkey - Username or activationkey

	password/actiavtionkey - Password or activation key

	auto-attach - true / false, if set to true subscription manager looks for
product certificates in /etc/pki/product/

	pool - Name of the pool to be attached

	repos - Repos to subscribe to

	disable-repos - Repo names to disable. Leaving blank will disable all the
repos

	ignore_register_errors: If set to no, gdeploy will exit if system
registration fails.

Example 1: Register to Red Hat subscription management:

[RH-subscription]
action=register
username=user@user.com
password=<passwd>
pool=<pool>

Unregister

If the action is unregister the systems will be unregistered from RHSM.

	Example: Unregister the system::

	[RH-subscription]
action=unregister

Enable

If the action is enable-repos the following options are supported:

	repos - List of comma separated repos that are to be subscribed to.

	ignore_enable_errors - If set to no, gdeploy fails if enable-repos fail.

Example 2: Enable repositories:

[RH-subscription]
action=enable-repos
repos=rhel-7-server-rpms,rh-gluster-3-for-rhel-7-server-rpms

Disable

If the action is disable-repos the following options are supported:

	repos - List of comma separated repos that are to be subscribed to.

Attach pools

If the action is attach-pool the following options are supported:

	pool - Pool name to be attached.

	ignore_attach_pool_errors - If set to no, gdeploy fails if attach-pool
fails.

attach-pool can be initiated at the time of registration.

Refer hc.conf [https://github.com/gluster-deploy/gdeploy/blob/2.0/examples/hc.conf] for
complete example.

systemd

	Enable Service

	Disable Service

	Start Service

	Stop Service

	Restart Service

[service] module in gdeploy adds systemd support. The service module allows
user to start, stop, restart, reload, enable, or disable a
service. The action variable specifies these values.

Enable Service

When the action variable is set to enable the service variable has to be
set. For example:

[service]
action=enable
service=ntpd

Disable Service

When the action variable is set to enable the service variable has to be
set. For example:

[service]
action=enable
service=ntpd

Start Service

When the action variable is set to start the service variable has to be
set. For example, below configuration starts the ntpd service

[service]
action=start
service=ntpd

Stop Service

When the action variable is set to stop the service variable has to be
set. For example:

[service]
action=stop
service=ntpd

Restart Service

When the action variable is set to restart the service variable has to be
set. For example:

[service]
action=restart
service=ntpd

Updating a file

update-file module allows user to copy a file, edit a line in a file, add new
lines to a file, delete a line in a file, or delete an entire file.
action variable can be any of copy, edit, add, delete-line or delete-file.

When the action variable is set to copy, the following variables are
supported.

	src - The source path of the file to be copied from.

	dest - The destination path on the remote machine to where the file is to be
copied to.

When the action variable is set to edit, the following variables are
supported.

	dest - The destination file name which has to be edited.

	replace - A regular expression, which will match a line that will be replaced.

	line - Text that has to be replaced.

When the action variable is set to add, the following variables are
supported.

	dest - File on the remote machine to which a line has to be added.

	
	line - Line which has to be added to the file. Line will be added towards

	the end of the file.

When the action variable is set to delete-line, the following variables are
supported.

	dest - File on the remote machine whose line is to be deleted.

	line - Line which is to be deleted in the file.

When the action variable is set to delete-file, the following variables are
supported.

	dest - File on the remote machine that is to be deleted.

For Example:

Example 1: Copy a file to a remote machine

[update-file]
action=copy
src=/tmp/foo.cfg
dest=/etc/nagios/nrpe.cfg

Example 2: Edit a line in the remote machine, in the below example lines that
have allowed_hosts will be replaced with allowed_hosts=host.redhat.com

[update-file]
action=edit
dest=/etc/nagios/nrpe.cfg
replace=allowed_hosts
line=allowed_hosts=host.redhat.com

Example 3: Add a line to the end of a file

[update-file]
action=add
dest=/etc/ntp.conf
line=server clock.redhat.com iburst

Example 4: Delete a line in a file

[update-file]
action=delete-line
dest=/etc/tmp.conf
line=volname|size

Example 5: Delete a file on remote machine

[update-file]
action=delete-file
dest=/tmp/test.conf

Creating GlusterFS Volumes

The volume module allows users to create volume using a specified list of
hosts and bricks. Volume section supports the following variables:

	volname - Name of the volume, if no name is provided gdeploy generates a
volume name.

	action - Action supports the following values create, delete,
add-brick, remove-brick, rebalance, and set.

	brick_dirs - This variable specifies the brick directories to use. The
brick_dirs variable can take values in ip:brick_dir format or just brick_dir
format. For example:

brick_dirs=10.0.0.1:/mnt/data1/1,10.0.0.2:/mnt/data2/2

Or

brick_dirs=/mnt/data1/1,/mnt/data2/2

	transport - The transport type. Possible values are tcp,tcp,rdma,rdma

	replica_count - The replication count for replica volumes.

	force - If set to yes, force is used while creating volumes.

	disperse - Identifies if the volume should be disperse. Possible options are
[yes, no].

	disperse_count - Optional argument. If none given, the number of bricks
specified in the commandline is taken as the disperse_count value.

	redundancy_count - If redundancy_count is not specified, and if disperse is
yes, it’s default value is computed so that it generates an optimal
configuration.

Example 1:

[volume]
action=create
volname=foo
transport=tcp
replica_count=2
force=yes

Example 2:

[backend-setup]
devices=sdb,sdc
vgs=vg1,vg2
pools=pool1,pool2
lvs=lv1,lv2
brick_dirs=/gluster/brick/brick{1,2}

If backend-setup is different for each host
[backend-setup:10.70.46.13]
devices=sdb
brick_dirs=/gluster/brick/brick1
#
[backend-setup:10.70.46.17]
devices=sda,sdb,sdc
brick_dirs=/gluster/brick/brick{1,2,3}
#

[volume]
action=create
volname=sample_volname
replica=yes
replica_count=2
force=yes

yum

	Install packages

	Uninstall packages

This module is used to install or remove rpm packages, with the yum module we
can add repos during the install operation.

If a single configuration has more than one yum section, then the sections
have to be numbered like [yum-1], [yum-2], [yum-3] …

	action - This variable allows two values install and remove.

Install packages

If the action is install the following options are supported:

	packages - Comma separated list of packages that are to be installed.

	repos - The repositories that have to be added.

	gpgcheck - yes/no values have to be provided.

	update - yes/no; Whether yum update has to be initiated.

For example:

[yum]
action=install
gpgcheck=no
Repos should be an url; eg: http://repo-pointing-glusterfs-builds
repos=<glusterfs.repo>,<vdsm.repo>
packages=vdsm,vdsm-gluster,ovirt-hosted-engine-setup,screen,gluster-nagios-addons,xauth
update=yes

Install a package on a particular host:

[yum:host1]
action=install
gpgcheck=no
packages=rhevm-appliance

Uninstall packages

If the action is remove then only one option has to be provided:

	remove - The comma separated list of packages to be removed.

Unstall a package on a particular host:

[yum:host1]
action=remove
packages=rhevm-appliance

 _images/status_httpd.png
Lpurnima@ancp35-197 ~]% systemctl status httpd.service
httpd.service - The Apache HTTP Server

Loaded:
Active:
Main PID:
Status:
CGroup:

loaded (/usr/lib/systemd/system/httpd.service; disabled; vendor preset: disabled)

since Mon 2016-07-25 18:39:33 IST; 2min 3s ago

25552 (httpd)

"Total requests: 0; Idle/Busy workers 100/0;Requests/sec
/system.slice/httpd.service

—25552 /usr/sbin/httpd -DFOREGROUND

25555 /usr/sbin/httpd -DFOREGROUND

—25556 /usr/sbin/httpd -DFOREGROUND

[—25558 /usr/sbin/httpd -DFOREGROUND

: 0; Bytes served/sec:

0 B/sec"

_images/verify_volume_options.png
purnima@dhcp35-197 ~]$ ssh root@10.70.42.190
Last login: Sun Jul 24 18:17:41 2016 from vpnl-7-52.sin2.redhat.com
[root@rhgs-test-2 ~]# gluster vol info

Volume Name: sample_volume

Type: Distributed-Replicate

Volume ID: 37d7ea59-e408-4842-b9b7-feedd40fclde5
Status: Started

Number of Bricks: 2 x 2 = 4
Transport-type: tcp

Bricks:

Brickl: 10.70.42.190:/gluster/brickl/one
Brick2: 10.70.42.232:/gluster/brickl/one
Brick3: 10.70.43.127:/gluster/brickl/one
Brick4: 10.70.43.67:/gluster/brickl/one
Options Reconfigured:
cluster.data-self-heal-algorithm: full
performance.cache-size: 256MB
cluster.nufa: on

performance.readdir-ahead: on

_images/running_gdeploy.png
Activities [E] Terminator v Tue 19:03 ¢ ow o~

poo@poo:~/config
poo@pooi~/config v/ poo@pooi~/
[Poo@poo config]$ vi set_options_vol.conf

[poo@poo config]$ vi set_options_vol.conf
[poo@poo config]$ gdeploy -c set_options_vol.conf

INFO: Volume management (action: set) triggered
PLAY [Master] *askkaskkbhkkdhkkhhkkdhkkdhkkd kA kA Ak A A A A A A A A A A A

TASK: [Sets options for volume] ***skkaka*kskkrkkrkdkkakkhk Ak ARk KKRKARKAREAK
changed: [10.70.42.190] => (item=('value': 'on', 'key': 'cluster.nufa'})

changed: [10.70.42.190] => (item=('value': '256MB', 'key': 'performance.cache-size'})

changed: [10.70.42.190] => (item=('value': 'full', 'key': 'cluster.data-self-heal-algorithm'})

N e R ————

10.70.42.190 : ok=1 changed=1 unreachable=0 failed=0

[poo@poo configls [l

_images/status_glusterd.png
[purnima@dhcp35-197 ~]$ systemctl status glusterd.service

glusterd.service - GlusterFS, a clustered file-system server

Loaded: loaded (/usr/lib/systemd/system/glusterd.service; disabled; vendor preset: disabled)

Active: since Mon 2016-07-25 18:39:26 IST; lmin 55s ago

Process: 25340 ExecStart=/usr/local/sbin/glusterd -p /var/run/glusterd.pid --log-level $LOG_LEVEL $GLUSTERD_OPTIONS (cod
e=exited, status=0/SUCCESS)
Main PID: 25347 (glusterd)

CGroup: /system.slice/glusterd.service

L25347 /usr/local/sbin/glusterd -p /var/run/glusterd.pid --log-level INFO

_images/writing_to_gluster.png
[Terminator v Thu 5:37 PM
root@rhgs-test-4:/gluster/brick1/one

purnima@dhcy /Igdeploy/doc: % |purnima@dh ork 3 |purnima@dncp :Ihome purnimz purnima@dhcp3; 1~ purnima@dhcp3;

Status: Started [purnima@dhcp35-197 ~]$ ssh root@l0.70.43.127

Number of Bricks: 2 x 2 = 4 Last login: Tue Jul 19 16:15:06 2016 from vpnl-6-217.sin2.re
Transport-type: tcp dhat.com

Bricks: [root@rhgs-test-1 ~]# cd /gluster/brickl/one

Brickl: 10.70.42.190:/gluster/brickl/one ﬁroit@ihgs-test-l onel# 1s

Brick2: 10.70.42.232:/gluster/brickl/one

Brick3: 10.70.43.127:/gluster/brickl/one [root@rhgs-test-1 one]# D
Brick4: 10.70.43.67:/gluster/brickl/one

Options Reconfigured:

performance.readdir-ahead: on

root@rhgs-test-2 ~1# cd /gluster/brickl/one

root@rhgs-test-2 onel# ls

root@rhgs-test-2 onel# D

purnima@dhcp35-197 ~]$ [purnima@dhcp35-197 ~]$ ssh root@l0.70.43.67
purnima@dhcp35-197 ~]$ Last login: Tue Jul 19 16:13:25 2016 from vpnl-6-217.sin2.re
purnima@dhcp35-197 ~]$ ssh root@l0.70.42.232 dhat.com

Last login: Tue Jul 19 16:14:03 2016 from vpnl-6-217.sin2.re [ll[root@rhgs-test-4 ~]# cd /gluster/brickl/one

dhat.com [root@rhgs-test-4 onel# 1s

root@rhgs-test-3 ~1# cd /gluster/brickl/one 2 3

roit@rhgs-test-3 onel# 1s [root@rhgs-test-4 onel]# D

root@rhgs-test-3 onel# D

_static/ajax-loader.gif

_images/vgs.png
root@rhgs-test-2 ~1# vgs
VG #PV #LV #SN Attr VSize VFree
GLUSTER vgl 1 2 0 wz--n- 50.00g 0
rhgstest2 1 2 0 wz--n- 39.51g]

_images/volume_info.png
Fri 5:15 PM

[purnima@dhcp35-197 images]$ ssh root@10.70.42.232
Last login: Wed Jul 13 16:27:47 2016 from vpnl-6-158.sin2.redhat.com
[root@rhgs-test-3 ~]# gluster vol info

Volume Name: volumel

Type: Replicate

Volume ID: 45785154-eaf6-4efd-b95f- f6c223d7772c
Status: Started

Number of Bricks: 1 x 3 =3
Transport-type: tcp

Bricks:

Brickl: 10.70.42.190:/mnt/datal/l
Brick2: 10.70.42.232:/mnt/datal/l
Brick3: 10.70.43.127:/mnt/datal/l
Options Reconfigured:
performance.readdir-ahead: on
[root@rhgs-test-3 ~]# D

_static/comment-bright.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 gdeploy user guide

 		
 Installation

 		
 Prerequisites

 		
 Installing Ansible

 		
 Installing gdeploy

 		
 Installing from RPM

 		
 Installing from source

 		
 Getting Started

 		
 Invoking gdeploy

 		
 Writing configuration file for gdeploy

 		
 Invoking gdeploy

 		
 Usage

 		
 Debugging

 		
 Configuration file format

 		
 Features

 		
 Maintainer

 		
 Developer Documentation

 		
 gdeploy - Developer setup

 		
 gdeploy architecture

 		
 Adding your first feature to gdeploy

 		
 Testing your code

 		
 Guidelines for contribution

 		
 Design

 		
 Testsuite

 		
 Frequently Asked Questions

 		
 Why do we need gdeploy, when Ansible is available?

 		
 How does gdeploy help in setting up GlusterFS clusters?

 		
 Does gdeploy help in installing GlusterFS packages?

 		
 Is gdeploy only for installing and deploying GlusterFS?

 		
 Can I run arbitrary scripts using gdeploy?

 		
 My gdeploy run is failing with Module Error, why?

 		
 Examples

 		
 Using gdeploy to create a 1x3 Gluster Volume

 		
 Using gdeploy to create 2x2 gluster volume

 		
 Write a config file to do the backend setup

 		
 How to start and stop services

 		
 Set/unset volume options on an existing volume

 		
 Setting the options on an existing volume

 		
 Resetting the options on the existing volume

 		
 Installing packages from yum repositories

 		
 How to disable repos

 		
 Quota setup on an existing volume

 		
 Enabling and disabling quota

 		
 Create a Gluster volume and set up quota

 		
 Set a 5GB limit on a directory using quota

 		
 Creating a volume and setting a tuning profile on it

 		
 Setting a tuning profile on an existing volume

 		
 NFS Ganesha setup end-to-end

 		
 Unexporting a volume and destroying an NFS-Ganesha HA Cluster

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_images/1.png
Activities [Z] Terminator v Fri 19:34¢ T 8 0@~

anubha@dhcp35-167:/home/anubha

=] anubha@dhcp35- 167 /home/anubha 112
[root @hcp35- 167 anubhal# gdepl oy -c enable_quota. conf

PLAY [master] #kwikitriiiitiithioiiobfob bkl koot kool kol ko ok

TASK [Enabling quota for the volump] kit
changed: [10.70. 41.236]

PLAY RECAP ks kok o sk kot o sk kot o sk kot of sk kot o sk kot o s sk kot o s sk kot ok s sk kot o o o
0. 70. 41. 236 ok=1 changed=1 unreachabl e=0 failed=0

[root @hcp35- 167 anubhal # []

_static/comment-close.png

_images/11.png
anubha@dhcp35-167:~

File Edit View Search Terminal Help

[anubha@dhcp35-167 ~1$ 1s

1x2volune.conf Diagraml.dia~ fscreate.retry mountlx2vol Pictures Videos
Desktop Documents gdeploy mount_host Public fwo k]
Diagraml.dia Dowrloads gitwebsite Music Templates
[anubha@dhcp35-167 ~1$ gdeploy -c 1x2volume.conf

PLAY [GLUSTEr_SErvers] 4okttt ook o bt ook Ao bt Aok Ao A AR A AR A A AR A A

TASK [Create PhySIiCal VOLUME] *HHitssinionion tom ok dohdoh Ao Ak Ak Ak Ak A A A A AR IR AR

changed: [10.70.41.236] => (item=/dev/vda)
changed: [10.70.42.253] => (item=/dev/vda)

N T S ————

10.70.41.236 : ok=1 changed: unreachable=0 failed=0
10.70.42.253 : ok=1 change unreachable=0 failed=0

PLAY [GLUSTEr_SErvers] 4okttt ook o bt ook Ao bt Aok Ao A AR A AR A A AR A A

TASK [Create vOLUME Qroup on the diSks] *HHriomiomiomtom itk bt oAk Ak A A AR Aok
changed: [16.70.42.253] (u'brick': u'/dev/vda', u'vg': u'GLUSTER vgl'})
changed: [16.70.41.236] u'brick': u'/dev/vda', u'vg': u'GLUSTER vgl'})

N T S ————

10.70.41.236 : ok=1 changed: unreachable=0 failed=0
10.70.42.253 : ok=1 change unreachable=0 failed=0

PLAY [GLUSTEr_SErvers] 4okttt ook o bt ook Ao bt Aok Ao A AR A AR A A AR A A

THE [Craion Wemiieal el Gramee) @Eiaaiia] o e e e e e
[10.70.41.236] LUSTER vgl)
[10.70.42.253] LUSTER vgl)

TASK [create data LV that has a size which is a multiple of stripe width] ***
[16.70.41.236] (
[16.76.42.253]

u'lv': u'GLUSTER 1vl', u'pool': u'GLUSTER pooll', u'vg':
u'lv': u'GLUSTER lvl', u'pool’: u'GLUSTER pooll', u'vg':

u'GLUSTER vgl'})
u'GLUSTER vgl'})

_images/12.png
[root @hcp35- 167 anubha]# vi quota. conf
root @hcp35- 167 anubha] # gdepl oy - ¢ quota. conf

PLAY [mmster] koo koo ook ko oo ko kot b oo ko koo ok ok
ot A ok

FASK [Q uster volume quota limit size operation] *kkiiiiibidtik
S ————

 DEPRECATI ON WARNI NG| : Using bare variables is deprecated. Update
your

bl aybooks so that the environment value uses the full variable sy
nt ax

({{linits}}').

Thi's feature will be rempved in a future release. Deprecation
sarnings can be disabled by setting deprecation_warnings=False in
ansible. cfg.

changed: [10.70.41.236] => (iten={u' path': u'/', u'size': u'20MB' })

PLAY RECAP 3 kktokhoskfoh ook koo koo ko oo koo koo koo koo koo koo koo o ok
10. 70. 41. 236 : ok=l changed=1 unreachabl e=0 failed=0

root @hcp35- 167 anubha] # []

_images/2.png
[E] Terminator v

Fri 19:34¢ &0 A~

root@gluster-anubha:~

& EE A e =
[anubha@lhcp35- 167 ~| $ ssh root@O0. 70. 41.
Last login: Fri Jul 22 19:33:55 2016 from vpnl-7-75.sin2. redhat.com
[root @l uster-anubha ~]# gluster vol info

Vol ume Name: 1x2_vol

Type: Replicate

Volume ID: dabd5906- 63d4- 40d7- b9
Status: Started

Nunber of Bricks: 1 x 2 =2
Transport-type: tcp

Bri cks:

Brickl: 10.70.41.236:/mt/data/1
Brick2: 10.70.42.253:/ mt/data/1
Options Reconfi gured:

features. quota-deemstatfs: on
features. i node-quota: on
features. quota: on

performnce. readdi r- ahead: on
[root @l uster- anubha ~]# []

193c496cec68

_images/21.png
anubha@dhcp35-167:~

File Edit View Search Terminal Help
PLAY [GLUSTEr_SErvers] 4ok ikt ook o bt ook o bl Aok Ao A AR A A AR A AR A A

THE [Craion Wemiieal el Gramee) @Eiaaiia] o e e e e e
changed: [10.70.41.236] LUSTER vgl)
changed: [10.70.42.253] LUSTER vgl)

TASK [create data LV that has a size which is a multiple of stripe width] ***
changed: [10.70.41.236] (
changed: [10.70.42.253]

TASK [CONVErt the TOGICAL VOLUME] *HHaisioniontomtomtohdok Ao Ao A Ak Ak A A A A A AR AR

changed: [10.70.41.236] (
changed: [10.70.42.253]

TASK [Create Stripe-aligned thin VOLUME] *Hesssssssttstmstmstmssmmssmnsmmsnn
change
changed:

TASK [Change the attributes of the L0gical VOLUME] **FKXAKMKKKKAKMKKKKAAKKKKKAAR

changed: [16.70.42.253] => (item={u'lv': u'GLUSTER lv1', u'pool': u'GLUSTER pooll',
[16.76.41.236] => (item={u'lv': u'GLUSTER_lvl', u'pool’: u'GLUSTER pooll',

change

N T S ————

10.70.41.236 : ok=5 changed=5 unreachable=@ failed=8
10.70.42.253 : ok=5 changed=5 unreachable=@ failed=8

PLAY [GLUSTEr_SErvers] 4okttt ook o bt ook Ao bt Aok Ao A AR A AR A A AR A A

TASK [Create a xfs FLLESYSTEM] HHhttsisioniontoh ikt doh Ao Ak Ak Ak A A A A A AR IR

changed: [16.70.42.253] => (item=/dev/GLUSTER_vgl/GLUSTER lv1)
changed: [16.70.41.236] => (item=/dev/GLUSTER vgl/GLUSTER Lv1)

N T S ————

10.70.41.236 : ok=1 changed: unreachable=0 failed=0
10.70.42.253 : ok=1 change unreachable=0 failed=0

u'lv': u'GLUSTER 1vl', u'pool': u'GLUSTER pooll',
u'lv': u'GLUSTER lvl', u'pool’: u'GLUSTER pooll',

': U'GLUSTER lvl', u'pool': u'GLUSTER pooll’,
': U'GLUSTER_Lvl', u'pool': u'GLUSTER pooll',

[16.76.41.236] => (item={u'lv': u'GLUSTER lvl', u'pool’: u'GLUSTER pooll',
[16.76.42.253] => (item={u'lv': u'GLUSTER_lvl', u'pool: u'GLUSTER pooll',

u'vg':
u'vg':

u'vg':
u'vg':

u'vg':
u'vg':

u'vg':
u'vg':

u'GLUSTER vgl'})
u'GLUSTER vgl'})

u'GLUSTER vgl'})
u'GLUSTER vgl'})

u'GLUSTER vgl'})
u'GLUSTER vgl'})

u'GLUSTER vgl'})
u'GLUSTER vgl'})

_images/13.png
anubha@dhcp35-167:/home/anubha

anubha@dhop3s 167 /home/anubha

root @lhcp35- 167 anubha] # gdepl oy -c 5gbquota. conf

DAY [master] #kkwkkmithiihih bbbkl koot kool otk Rk kR ko ko &

[ASK [uster volume quota limit size operation] ¥¥ikkiiiiihiiiiibihiifiobbbifiok

“hanged: [10.70.41.236] => (item={u' path': u'/min_dir', usize: u 5GB })

DLAY RECAD kst ok skt ot sk sk ot o sk sk ot o sk sk ot o sk ok ot ok sk ok ot ok sk kot ok sk kot ok s sk kot o o o
10. 70. 41. 236 ok=1 changed=1 unreachabl e=0 failed=0

root @hcp35- 167 anubhal # [

_images/1x3_vol.png
Activities Terminator v Tue 15:43

root@rhgs-test-

mnt/datal/1

poo@poo:~/config root@rhgs-test-4:/mnt/datal/1 poo@poo:

roof 2;/mnt/datal/l 49x15
[poo@poo ~1$ ssh root@10.70.42.190
Last login: Sun Jul 10 13:23:50 2016 from vpnl-5-
242 . sin2.redhat . com
[root@rhgs-test-2 ~]# cd /mnt/datal/1
[root@rhgs-test-2 1]# 1s
[root@rhgs-test-2 1]# 1s
£ B2 83
[root@rhgs-test-2 1]# []

[root@rhg: 3;/mnt/datal/l 49
[poo@poo ~]$ ssh root@10.70.42.232

connection closed by 10.70.42.232
[poo@poo ~1§

[poo@poo ~1§

[poo@poo ~1%

[poo@poo ~]§ ssh root@l0.70.42.232

Last login: Sun Jul 10 13:02:12 2016 from vpnl-5-
242 . sin2.redhat . com

[root@rhgs-test-3 ~]# cd /mnt/datal/l
[root@rhgs-test-3 1]# 1s

£ 2 85

[root@rhgs-test-3 1]# []

=] t-1;/mnt/datal/l

[poo@poo ~]§ ssh root@l0.70.43.127

Last login: Sun Jul 10 13:01:32 2016 from vpnl-5-
242 . sin2.redhat . com

[root@rhgs-test-1 ~]# cd /mnt/data/1

-bash: cd: /mnt/data/1: No such file or directory
[root@rhgs-test-1 ~]# cd /mnt/datal/1
[root@rhgs-test-1 1]# 1s

£ B2 83

[root@rhgs-test-1 1]# []

_images/2x2_volume.png
[Terminator v Thu 5:35 PM T 4B~

root@rhgs-test-1:~

purnima@dhcy /Igdeploy/doc: % |purnima@dh ork 3 |purnima@dncp :Ihome purnimz purnima@dhcp3; 1~ purnima@dhcp3;

Volume Name: sample_volume [purnima@dhcp35-197 ~]$ ssh root@l0.70.43.127

Type: Distributed-Replicate Last login: Tue Jul 19 16:15:06 2016 from vpnl-6-217.sin2.re
Volume ID: 37d7ea59-e408-4842-b9b7-feedd0fclde5 dhat.com

Status: Started [root@rhgs-test-1 ~]# D

Number of Bricks: 2 x 2 = 4

Transport-type: tcp

Bricks:

Brickl: 10.70.42.190:/gluster/brickl/one

Brick2: 10.70.42.232:/gluster/brickl/one

Brick3: 10.70.43.127:/gluster/brickl/one

Brick4: 10.70.43.67:/gluster/brickl/one

Options Reconfigured

performance.readdir-ahead: on

[root@rhgs-test-2 ~]# D

[purnima@dhcp35-197 ~]$ [purnima@dhcp35-197 ~]$ ssh root@l0.70.43.67
[purnima@dhcp35-197 ~]$ Last login: Tue Jul 19 16:13:25 2016 from vpnl-6-217.sin2.re
[purnima@dhcp35-197 ~]$ ssh root@l0.70.42.232 dhat.com
Last login: Tue Jul 19 16:14:03 2016 from vpnl-6-217.sin2.re [ll[root@rhgs-test-4 ~]# D
dhat.com

[root@rhgs-test-3 ~]# D

_images/3.png
Activities [E] Terminator v Fri19:36 T A8~

anubha@dhcp35-167:~

anubha@dhop3s 167~ 1

[anubha@lhcp35- 167 ~| $ gdepl oy -c disable_quota. conf

PLAY [master] #kwikitriiiitiithioiiobfob bkl koot kool kol ko ok

TASK [Disabling quota for volume] kit dkdk
changed: [10.70. 41.236]

PLAY RECAP ks kok o sk kot o sk kot o sk kot of sk kot o sk kot o s sk kot o s sk kot ok s sk kot o o o
0. 70. 41. 236 ok=1 changed=1 unreachabl e=0 failed=0

[anubha@lhcp35- 167 14 []

_images/22.png
root@gluster-anubha:~
= EES =
anubha@lhcp35- 167 ~|$ ssh root @O. 70. 41. 236
Last login: Fri Jul 22 18:35:27 2016 from vpnl-7-75.
sin2. redhat . com
root @l uster-anubha ~]# gluster vol quota 1x2_vol list

Path Hard-Tinit Soft-limit Used Available Soft-linit exceeded
? Fard-linit exceeded?

/anu 50Byt es 80% 40Bytes) OBytes 50Bytes N
No

'sanpl e_directory 10. OMB 80%8.0M3) OBytes 10.0MB No
No

/ 20. OMB 80% 16. 0MB) OBytes 20. OMB N
No

[root @l uster-anubha ~]# [

_images/23.png
Toot @l uster- anubha gl usterfs]# gluster volume quota 1x2
Path Fard-limt Soft-limt Used Available Soft-limit exceeded? Fhrd-

int exceeded?

main_dir
No
root @l uster- anubha glusterfs]# []

_static/up.png

_images/4.png
[E] Terminator v

Fri19:36¢ 2 0 B~

root@gluster-anubha:~

& EE A e =
[anubha@lhcp35- 167 ~|$ ssh root@O. 70. 41. 236

Last login: Fri Jul 22 19:36:09 2016 from vpnl-7-75.sin2. redhat.com
[root @l uster-anubha ~]# gluster vol info

Vol ume Name: 1x2_vol

Type: Replicate

Volume ID: dabd5906- 63d4- 40d7- b9
Status: Started

Nunber of Bricks: 1 x 2 =2
Transport-type: tcp

Bri cks:

Brickl: 10.70.41.236:/mt/data/1
Brick2: 10.70.42.253:/ mt/data/1
Options Reconfi gured:

features. i node- quota: off
features. quota: off

performnce. readdi r- ahead: on
[root @l uster- anubha ~]# []

193c496cec68

_images/41.png
anubha@dhcp35-167:~
File Edit View Search Terminal Help

M T ————

10.70.41.236 : ok=1 changed=l unreachable=8 failed=8
10.76.42.253] changed=1 unreachable=8 failed=0

DAY [Mastor] Hrbiis bttt ko bk dok ARk KA AR AR AR KA AR AR AR KA KA AR AR AR A

TASK [Creates a Trusted Storage POOL] *HHitsisiomiomtomtom ik ik ot Ak Ak A A A AR
changed: [10.70.41.236

TASK [PaUse for SOMe SeConds] ittt mi sk ok Ak A KR AR AR H KA A
Pausing for 5 seconds

(ctrl+C then 'C' = continue early, ctrl+C then 'A' = abort
ok : [41.236]

M T ————

10.70.41.236 : ok=2 changed=l unreachable=@ failed=8

DAY [Mastor] Hrbiis bttt ko bk dok ARk KA AR AR AR KA AR AR AR KA KA AR AR AR A

TASK [Creates a vOLUME] *HHH bkt bttt bits iakdoh ok Aok Ak AR AR A KA AR AR AR AR AR A A

changed: [10.70.41.236

M T ————

10.70.41.236 : ok=1 changed=l unreachable=8 failed=8

DAY [Mastor] Hrbiis bttt ko bk dok ARk KA AR AR AR KA AR AR AR KA KA AR AR AR A

TASK [STArts a vOLUME] HHHbits ittt bkt kakdok Ak Aok KA A K AR A K AR AR AR AR AR AR A A

changed: [10.70.41.236

M T ————

10.70.41.236 : ok=1 changed=l unreachable=8 failed=8

_images/31.png
anubha@dhcp35-167:~

File Edit View Search Terminal Help
10.70.42.253 : ok=1 changed=l unreachable=@ failed=8

LAY [GLUSTEr_ SErVErs] 4 hioh ook o bt ok o bk Aok Ao A A A A A AR A AR A

TASK [Create the backend disks, Skips if present] #kkkikiitthkkitthiiiss
changed: [16.70.42.253] (item={u'device': u'/dev/GLUSTER vgl/GLUSTER lvl', u'path': u'/mnt/data'})
ok : [41.236] => (item={u'device': u'/dev/GLUSTER_vgl/GLUSTER lv1', u'path': u'/mnt/data'})

TASK [MOUNT the VOLUMES] *HHHkiibitos bkt sakdok dak Aok AR A K AR A K AR A KA AR A AR AR A A

changed: [16.70.41.236] u'/dev/GLUSTER_ vgl/GLUSTER lv1', u'path’
changed: [16.70.42.253] u'/dev/GLUSTER vgl/GLUSTER_Lv1', u'path

u'/mnt/data’})
u'/mnt/data’})

M T ————

10.70.41.236 changed=1 unreachable=G faile
10.76.42.253 changed=2 unreachable=@ faile

Warning: We could not find the operations corresponding to the action specified for the section peer. Skipping this section.

LAY [GLUSTEr_ SErVErs] 4 hioh ook o bt ok o bk Aok Ao A A A A A AR A AR A

TASK [Start/stop/restart/reload Services] *HHhrstssmmsmms thstmstmsstkstmrsins
ok : 42.253] => (item=gl
41.236] = (item=gl

M T ————

41.236 changed=8 unreachable=@ faile
42.253 changed=6 unreachable=G faile

LAY [GLUSTEr_ SErVErs] 4 hioh ook o bt ok o bk Aok Ao A A A A A AR A AR A

TASK [Create the brick dirs, Skips if presemt] *iorioriomiomioki it imiomoR iR RoRionk
changed: [10.70.41.236] => (nnt/data/1)
-hanged: [10.70.42.253] mnt/data/1)

_images/7.png
root@gluster-anubha:~

@ EE T e =
[anubha@lhcp35- 167 ~1$ ssh root@O0. 70. 41. 236
Last login: Fri Jul 22 17:59:04 2016 from vpnl-
[root @yl uster- anubha ~]# gluster vol info

75.sin2. redhat. com

Vol ume Name: 1x2_vol
Type: Replicate

Vol ume ID: dabd5906- 63d4- 40d7- b944- 193c496¢
Status: Started
Nunber of Bricks:
Iransport-type: tcp
Bri ck:
Brickl: 10.70.41.236:/mt/data/ 1
Bri ck2: 10. 70. 42.253: / mt/ data/ 1
Options Reconfigured:

features. quota-deemstatfs: on
features. i node- quota: on
features. quota: on

perf ormance. readdi r- ahead: on
[root @l uster- anubha ~]# []

68

_images/8.png
root@gluster-anubha:~

root@gluster-anubhai~ 11

[root @yl uster-anubha ~1# gluster vol quota 1x2_vol list

Path Hard-Tinmit Soft-limit Used Available Soft-limit exceeded? Fard-
linit exceeded?
50Bytes 80% 40Bytes) OBytes 50Bytes No
/ sanpl e_di rectory 10. 0MB 80%8.0M3) OBytes 10.0MB No
N

[root @l uster- anubha ~]# []

_images/5.png
anubha@dhcp35-167:~

File Edit View Search Terminal Help

PLAY [CLIBNES] HHHbkabtoh s db doh A Ak A AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AN

TASK [Create the dir to mount the volume, skips if present] ***rararararsrsrstss
changed: [10.76.41.236] => (item={u’'mountpoint': u'/glusterfs', u'fstype': u'fuse'})

N T S ————

10.70.41.236 : ok=1 changed=l unreachable=8 failed=8

PLAY [CLIBNES] HHHbkabtoh s db doh A Ak A AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AN

TASK [Mount the volumes, if fstype is gLUSTErfs] *HreRIRIIIIIIRIIKIKIIIIIRIRE
changed: [10.76.41.236] => (item={u’'mountpoint': u'/glusterfs', u'fstype': u'fuse'})

N T S ————

10.70.41.236 : ok=1 changed=l unreachable=8 failed=8

PLAY [CLIBNES] HHHbkabtoh s db doh A Ak A AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AN

TASK [MOUNt the vOLUMeS 1f FStype is NES] HHsksssssttssmsstmstissmmssinssisnn
skipping: [41.236] => (item={u'mountpoint': u'/glusterfs', u'fstype': u'f

N T S ————

41.236 : ok=0 changed=0 unreachable=8 failed=8

PLAY [CLIBNES] HHHbkabtoh s db doh A Ak A AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AN

TASK [Mount th
kipping: [10.70

VOLUMES, if fStype 1S CIFS] HHmiomiomioh i bbb oAk Ak A A ARk
ype': u'fuse'})

41.236] => (item={u'mountpoint': u'/glusterfs', u'f:

N T S ————

16 41.236 : ok=0 changed=0 unreachable=8 failed=8

[anubha@dhcp35-167 ~1% []

_images/6.png
anubha@dhcp35-167:/home/anubha

anubha@dhcp3s 167 /home/anubha 11:

[PLAY REC
10. 70. 41. 236 : ok=0 changed=0 unreachabl e=0 failed=0

SAP sk ok ok sk ko o s skt ok o skt ok sk ko sk skt o sk skt sk sk ko skt sk ok ok o

PLAY [clients] #ktktktktktktitititittktkkof koo kbbb kbbb ok o ok

TASK [Munt the volumes, if fstype is CIFS] *#kkktitititititititititititititits

ski pping: [10.70. 41.236] => (item={u' nountpoint': u'/glusterfs', u fstype': u'fuse'})

[PLAY REC
10. 70. 41. 236 : ok=0 changed=0 unreachabl e=0 failed=0

SAP sk ok ok sk ko o s skt ok o skt ok sk ko sk skt o sk skt sk sk ko skt sk ok ok o

PLAY [master] *tkksismitmithihikiotkfopko kool koot kol ok

TASK [uster volume quota limit size operation] ¥¥ikkiiiiihiiiiohiiiitiobihbifiok

changed: [10.70.41.236] => (itene{u' path': u'/sanple_directory', u'size': u' 10M3 })

[PLAY RECAD kst ok ks ot sk ot o sk sk ot o sk sk ot ok sk sk ot ok sk kot o sk ok ot ok sk ok ok s ks kot o o o
10. 70. 41. 236 : ok=1 changed=1 unreachabl e=0 failed=0

[root @hcp35- 167 anubha]# [

_images/pvs.png
[root@rhgs-test-2 ~]# pvs
PV VG Fmt Attr PSize PFree
/dev/vda2 vg_rhgstest2 lvm2 a-- 39.51g]
/dev/vdb GLUSTER_VEI lvm2 a-- 50.00g [¢]

_images/backend-setup.png
[purnima@dhcp35-197 ~]$ ssh root@l0.70.42.190
Last login: Wed Jul 20 14:09:48 2016 from vpnl-7-2.sin2.redhat.com
[root@rhgs-test-2 ~]# mount
/dev/mapper/vg_rhgstest2-1v_root on / type ext4 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (rw,gid=5,mod
tmpfs on /dev/shm type tmpfs (rw,rootcontext:
/dev/vdal on /boot type ext4 (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
/dev/mapper/GLUSTER_vgl-GLUSTER vl on /gluster/brickl type xfs (rw,noatime,nodiratime,inode64)
[root@rhgs-test-2 ~]# df -h
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/vg_rhgstest2-1lv_root

356 2.4G 316G 8% /
tmpfs 1004M 0 1004M 0% /dev/shm
/dev/vdal 477M 36M 416M 8% /boot
/dev/mapper/GLUSTER _vgl-GLUSTER_lvl

506 34M 506G 1% /gluster/brickl
[root@rhgs-test-2 ~]# D

20)
"system_u:object_r:tmpfs_t:s0")

_images/lvs.png
[root@rhgs-test-2 ~]# lvs
VG

Lv Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
GLUSTER_lvl GLUSTER_vgl Vwi-aot--- 49.75g GLUSTER pooll 0.06

GLUSTER pooll GLUSTER vgl twi-aot--- 49.75g 0.06 0.04

1v_root vg_rhgstest2 35.57g

1v_swa vg_rhgatestZ -wi-ao- 3.94g

