

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

currentMenu: basic-usage

Basic Usage

Following an example with the local filesystem adapter. To setup other adapters, look up their respective documentation.

<?php

use Gaufrette\Filesystem;
use Gaufrette\Adapter\Local as LocalAdapter;

// First, you need a filesystem adapter
$adapter = new LocalAdapter('/var/media');
$filesystem = new Filesystem($adapter);

// Then, you can access your filesystem directly
var_dump($filesystem->read('myFile')); // bool(false)
$filesystem->write('myFile', 'Hello world!');

// Or use File objects
$file = $filesystem->get('myFile');
echo sprintf('%s (modified %s): %s', $file->getKey(), date('d/m/Y, H:i:s', $file->getMtime()), $file->getContent());
// Will print something like: "myFile (modified 17/01/2016 18:40:36): Hello world!"

// You can also rename your file like this:
$file->rename('my/new/file');

currentMenu: caching

Caching

If you have to deal with a slow filesystem, it is out of question to use it directly.
So, you need a cache! Happily, Gaufrette offers a cache system ready for use.
It consists of an adapter decorator itself composed of two adapters:

	The source adapter that should be cached

	The cache adapter that is used to cache

Here is an example of how to cache an ftp filesystem:

<?php

use Gaufrette\Filesystem;
use Gaufrette\Adapter\Ftp as FtpAdapter;
use Gaufrette\Adapter\Local as LocalAdapter;
use Gaufrette\Adapter\Cache as CacheAdapter;

// Locale Cache-Directory (e.g. '%kernel.root_dir%/cache/%kernel.environment%/filesystem') with create = true
$local = new LocalAdapter($cacheDirectory, true);
// FTP Adapter with a defined root-path
$ftp = new FtpAdapter($path, $host, $username, $password, $port);

// Cached Adapter with 3600 seconds time to live
$cachedFtp = new CacheAdapter($ftp, $local, 3600);

$filesystem = new Filesystem($cachedFtp);

The third parameter of the cache adapter is the time to live of the cache.

currentMenu: extras

Gaufrette Extras

Some extra features built on top of Gaufette live in a package separate from the core. It provides:

	Resolvable filesystem: introduce resolve() method to transform an object path into a URI.

In order to install it:

composer require gaufrette/extras

Resolvable filesystem

Filesystem decorator providing resolve() method to resolve an object path into URI. It uses a resolver
(implementing ResolverInterface) to do the resolution.

<?php

use Gaufrette\Filesystem;
use Gaufrette\Adapter\AwsS3;
use Gaufrette\Extras\Resolvable\ResolvableFilesystem;
use Gaufrette\Extras\Resolvable\Resolver\AwsS3PublicUrlResolver;

$client = // AwsS3 client instantiation
$decorated = new Filesystem(new AwsS3($client, 'my_bucket', ['directory' => 'root/dir']));
$filesystem = new ResolvableFilesystem(
 $decorated,
 new AwsS3PublicUrlResolver($client, 'my_bucket', 'root/dir')
);

// should return something like "https://eu-west-1.blabla.aws.com/my_bucket/root/dir/foo/bar.png?token
var_dump($filesystem->resolve('foo/bar.png'));

Currently, the following resolvers are implemented. All can be found in the Gaufrette\Extras\Resolvable\Resolver namespace:

	AwsS3PublicUrlResolver: Create a URL for an object stored on S3 with public ACL.

	AwsS3PresignedUrlResolver: Create a temporary URL, valid for a given amount of time. Useful when you have to share object(s) with private ACL.

	StaticUrlResolver: Resolves the object into an URL by concatenating a prefix with object pah.

currentMenu: implementing-new-adapter

Implementing new Adapter

Let’s say we want to support new storage system with existing Graufette API.
The way to do it is by implementing a new adapter.

We will illustrate this by implementing example adapter for KnpStorage file system.

Spec BDD

We encourage contributors to start with describing a new adapter:

$./bin/phpspec describe Gaufrette/Adapter/KnpStorage
Specification for Gaufrette\Adapter\KnpStorage created in Gaufrette/spec/Gaufrette/Adapter/KnpStorageSpec.php.

We describe how our adapter is instantated and make sure it implements Gaufrette\Adapter interface:

<?php

class KnpStorageSpec extends ObjectBehavior
{
 function let(KnpStorage $storage)
 {
 $this->beConstructedWith($storage);
 }

 function it_is_adapter()
 {
 $this->shouldImplement('Gaufrette\Adapter');
 }
}

To get the benefits of PHPSpec code generator we run:

$./bin/phpspec run spec/Gaufrette/Adapter/KnpStorageSpec.php

You can continue to play with PHPSpec, read more on PHPSpec website [http://phpspec.readthedocs.org/en/latest/].

Implementing adapter interface

Now all we need to do is to make sure KnpStorage implements all Gaufrette Adapterinterface methods.

Contibute it

Once you are sure your adapter is ready, share it with awesome Gaufrette community by submitting a pull request.

Thank you for doing this, you are awesome!

currentMenu: installation

Installation

You can install it through Composer:

$ composer require knplabs/gaufrette

currentMenu: introduction

Gaufrette

Gaufrette provides a filesystem abstraction layer.

Why use Gaufrette?

Imagine you have to manage a lot of medias in a PHP project. Lets see how to
take this situation in your advantage using Gaufrette.

The filesystem abstraction layer permits you to develop your application without
the need to know were all those medias will be stored and how.

Another advantage of this is the possibility to update the files location
without any impact on the code apart from the definition of your filesystem.
In example, if your project grows up very fast and if your server reaches its
limits, you can easily move your medias in an Amazon S3 server or any other
solution.

currentMenu: streaming

Streaming

Sometimes, you don’t have the choice, you must get a streamable file URL (i.e to use native file functions).
Let’s take a look at the following example:

$adapter = new InMemoryAdapter(array('hello.txt' => 'Hello World!'));
$filesystem = new Filesystem($adapter);

$map = StreamWrapper::getFilesystemMap();
$map->set('foo', $filesystem);

StreamWrapper::register();

copy('gaufrette://foo/hello.txt', 'gaufrette://foo/world.txt');
unlink('gaufrette://foo/hello.txt');

echo file_get_contents('gaufrette://foo/world.txt'); // Says "Hello World!"

currentMenu: amazon-s3

AmazonS3 & AclAwareAmazonS3

Warning: This adapter has been deprecated since v0.4.0 and will be removed in v1.0.0. You should rather use the AwsS3 adapter.

When using the legacy Amazon S3 adapters (aws-sdk-php < 2), you will need to specify a CA
certificate to be able to talk to Amazon servers in https. You can use
the one which is shipped with the SDK by defining before creating the
\AmazonS3 object:

define("AWS_CERTIFICATE_AUTHORITY", true);

Specifying a custom CA certificate is not required when using the
Gaufrette\Adapter\AmazonS3 adapter because it uses the newest version of the
AWS SDK for PHP.

currentMenu: apc

APC

Warning: This adapter has been deprecated since v0.4.0 and will be removed in v1.0.0.

apc extension should be enabled in order to use this adapter.

Example

Apc adpater takes only two arguments :

	the first, mandatory, is a prefix to avoid conflicts between filesystems

	the second, not mandatory, is the ttl for each file stored

<?php

use Gaufrette\Adapter\Apc as ApcAdapter;
use Gaufrette\Filesystem;

$adapter = new ApcAdapter('/prefix', 600);
$filesystem = new Filesystem($adapter);

currentMenu: aws-s3

AWS S3

First, you will need to install the adapter:

composer require gaufrette/aws-s3-adapter

If you want a specific version of AWS SDK (both v2 and v3 are supported), you can require it:

composer require aws/aws-sdk-php

In order to use this adapter you’ll need an access key and a secret key.

Example

<?php

use Aws\S3\S3Client;
use Gaufrette\Adapter\AwsS3 as AwsS3Adapter;
use Gaufrette\Filesystem;

// For aws-sdk-php v3
$s3client = new S3Client([
 'credentials' => [
 'key' => 'your_key_here',
 'secret' => 'your_secret',
],
 'version' => 'latest',
 'region' => 'eu-west-1',
]);
// For aws-sdk-php v2
$s3client = S3Client::factory([
 'key' => 'your_key_here',
 'secret' => 'your_secret',
 'version' => '2006-03-01',
 'region' => 'eu-west-1',
]);
$adapter = new AwsS3Adapter($s3client,'your-bucket-name');
$filesystem = new Filesystem($adapter);

IAM policy

If you are not familiar with AWS, here are the key concepts:

	IAM, stands for Identity and Access Management [http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html]

	IAM policies, are the way to grant access to your IAM users/groups [http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html]

We strongly recommend you to create a dedicated IAM user with the most restrictive policy.

You can even skip s3:CreateBucket role if you manually create your bucket first, which is also recommended
for production environment.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:CreateBucket",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::bucket_name"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:PutObjectAcl",
 "s3:GetObject",
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::bucket_name/*"
]
 }
]
}

currentMenu: azure-blob-storage

AzureBlobStorage

Azure Blob Storage is the storage service provided by Microsoft Windows Azure cloud environment. First, you will need to install the adapter:

composer require gaufrette/azure-blob-storage-adapter

To instantiate the AzureBlobStorage adapter you need a BlobProxyFactoryInterface instance (you can use the default
BlobProxyFactory class) and a connection string. The connection string should follow this prototype:

BlobEndpoint=https://XXXXXXXXXX.blob.core.windows.net/;AccountName=XXXXXXXX;AccountKey=XXXXXXXXXXXXXXXXXXXX

You should be able to find your endpoint, account name and account key in your
Windows Azure management console [https://manage.windowsazure.com].

Thanks to the blob proxy factory, the adapter lazy loads the connection to the endpoint, so it will not create any
connection until it’s really needed (eg. when a read or write operation is issued).

Multi-container mode

If you specify a container name, adapter will use only that container for all blobs.

If you omit specifying a container, it will use a so-called multi-container mode in which container name is determined
directly from key. This allows for more flexibility if you’re using dedicated storage accounts per asset type
(ie. one for images, one for videos) as you get to group assets logically, use container-level privileges, etc.

Example

<?php

$connectionString = '...';
$factory = new Gaufrette\Adapter\AzureBlobStorage\BlobProxyFactory($connectionString);

// single-container mode
$adapter = new Gaufrette\Adapter\AzureBlobStorage($factory, 'my-container');
$filesystem = new Gaufrette\Filesystem($adapter);
// container=my-container, path=my/stuff.txt
$filesystem->write('my/stuff.txt', 'This is my stuff');

// multi-container mode
$adapter = new Gaufrette\Adapter\AzureBlobStorage($factory);
// make auto-created containers public by default
$containerOptions = new MicrosoftAzure\Storage\Blob\Models\CreateContainerOptions;
$containerOptions->setPublicAccess(true);
$adapter->setCreateContainerOptions($containerOptions);
$filesystem = new Gaufrette\Filesystem($adapter);
// container=my (auto-created), path=stuff.txt
$filesystem->write('my/stuff.txt', 'This is my stuff');

currentMenu: doctrine-dbal

Doctrine DBAL

First, you will need to install the adapter:

composer require gaufrette/doctrine-dbal-adapter

In order to use the adapter, you will need to prepare the table with the following columns:

| Columns |
|———-|
| key |
| content |
| mtime |
| checksum |

Example

Doctrine adapter takes three arguments:

	the first, mandatory, is a prepared DBAL connection (you can read more about it in the DBAL docs [http://doctrine-orm.readthedocs.org/projects/doctrine-dbal/en/latest/reference/configuration.html])

	the second, mandatory, is a table name where the files will be stored

	the third one is optional array of columns, which allows you to override the default column names

<?php

use Gaufrette\Adapter\DoctrineDbal as DbalAdapter;
use Gaufrette\Filesystem;

$connection = DriverManager::getConnection($params);
$adapter = new DbalAdapter($connection, 'files');
$filesystem = new Filesystem($adapter);

currentMenu: flysystem

Flysystem

First, you will need to install the adapter:

composer require gaufrette/flysystem-adapter

Folks from thephpleague [http://thephpleague.com/] have built extraordinary Flysystem [https://github.com/thephpleague/flysystem] package which does exactly the same thing as Gaufrette, but with slightly different API.

We wanted to make Gaufrette compatible with as many systems as possible, and didn’t want to reinvent the wheel.
So we built a Flysystem adapter.

With this adapter you can use any Flysystem adapter [https://github.com/thephpleague/flysystem#adapters] with no performance penalties. It is just a tiny layer that makes Gaufrette talk to Flysystem adapters.

Example

We will show using Flysystem adapter on Dropbox example.

First, you need to install Flysystem Dropbox adapter through composer:

$ composer require league/flysystem-dropbox

Now, just wrap Dropbox adapter into Gaufrette Flysystem adapter.

<?php

$adapter = new Gaufrette\Adapter\Flysystem(
 new League\Flysystem\Dropbox\DropboxAdapter(
 new Dropbox\Client('<token>', '<consumer_secret>')
)
);

$filesystem = new Gaufrette\Filesystem($adapter);

As said above, same pattern can be applied to any Flysystem adapter [https://github.com/thephpleague/flysystem#adapters].

currentMenu: ftp

FTP

First, you will need to install the adapter:

composer require gaufrette/ftp-adapter

ftp extension should be enabled in order to use this adapter.
Also, some FTP servers need valid configuration so Gaufrette can work with them as expected.

Server configuration

Some FTP servers does not show hidden files by default. You will probably need to tweak your server configuration.

Pure Ftpd

echo "yes" > /etc/pure-ftpd/conf/DisplayDotFiles

Proftpd

We need to change ListOptions in proftpd configuration (at debian system /etc/proftpd/proftpd.conf) to:

ListOptions "-la"

Example

The third argument of the Ftp adapter is not mandatory, however you can use it to pass configuration options
(port, username, password, etc.):

<?php

use Gaufrette\Adapter\Ftp as FtpAdapter;
use Gaufrette\Filesystem;

$adapter = new FtpAdapter('/media', 'my.host.com', array(
 'port' => 21,
 'username' => 'my_username',
 'password' => 'my_password',
 'passive' => true,
 'create' => true, // Whether to create the remote directory if it does not exist
 'mode' => FTP_BINARY, // Or FTP_TEXT
 'ssl' => true,
));
$filesystem = new Filesystem($adapter);

currentMenu: google-cloud-storage

GoogleCloudStorage

To use the GoogleCloudStorage adapter you will need to create a connection using the [Google APIs Client Library for PHP]
(https://github.com/google/google-api-php-client) and create a Client ID/Service Account in your [Developers Console]
(https://console.developers.google.com/). You can then create the \Google_Service_Storage which is required for the
GoogleCloudStorage adapter.

Example

<?php

use Gaufrette\Filesystem;
use Gaufrette\Adapter\GoogleCloudStorage;

$client = new \Google_Client();
$client->setClientId('xxxxxxxxxxxxxxx.apps.googleusercontent.com');
$client->setApplicationName('Gaufrette');

$cred = new \Google_Auth_AssertionCredentials(
 'xxxxxxxxxxxxxxx@developer.gserviceaccount.com',
 array(\Google_Service_Storage::DEVSTORAGE_FULL_CONTROL),
 file_get_contents('key.p12')
);
$client->setAssertionCredentials($cred);
if ($client->getAuth()->isAccessTokenExpired()) {
 $client->getAuth()->refreshTokenWithAssertion($cred);
}

$service = new \Google_Service_Storage($client);
$adapter = new Gaufrette\Adapter\GoogleCloudStorage($service, $config['gcsBucket'], array(
 'acl' => 'public',
), true);
$filesystem = new Gaufrette\Filesystem($adapter);

currentMenu: grid-fs

GridFS

Prerequisites

In order to use GridFS adapter, you should have accesible MongoDB instance, MongoDB PHP driver [http://docs.php.net/manual/en/book.mongodb.php] andthe mongodb/mongodb [https://docs.mongodb.com/php-library/master/] library installed.

First can install the MongoDB extension with:

pecl install mongodb

Then, install the adapter:

composer require gaufrette/gridfs-adapter

Usage

$client = new \MongoDB\Client('mongodb://localhost:27017');
$db = $client->selectDatabase('dbname');

$adapter = new \Gaufrette\Adapter\GridFS($db->selectGridFSBucket());

currentMenu: in-memory

InMemory

This adapter is useful in test environments where you don’t want to depend on external filesystems.

First, you will need to install the adapter:

composer require gaufrette/in-memory-adapter

Example

InMemory adapter only takes an array of available files as argument.

<?php

use Gaufrette\Adapter\InMemory;
use Gaufrette\Filesystem;

$adapter = new InMemory(array('my/file' => 'its content'));
$filesystem = new Filesystem($adapter);

currentMenu: local

Local & SafeLocal

Those two adapters aims to use local filesystem. The second one will encode in base64 the filename before storing/retrieving.

First, you will need to install the adapter:

composer require gaufrette/local-adapter

Example

<?php

use Gaufrette\Filesystem;
use Gaufrette\Adapter\Local as LocalAdapter;

$adapter = new LocalAdapter('/var/media', true, 0750);
$filesystem = new Filesystem($adapter);

currentMenu: open-cloud

OpenCloud & LazyOpenCloud

Warning: LazyOpenCloud adapter has been deprecated since v0.4.0 and will be removed in v1.0.0.

First, you will need to install the adapter:

composer require gaufrette/opencloud-adapter

To use the OpenCloud adapter you will need to create a connection using the OpenCloud SDK [https://github.com/rackspace/php-opencloud].
You can then fetch the ObjectStore which is required for the OpenCloud adapter.

OpenCloud Example

<?php

use OpenCloud\OpenStack;
use Gaufrette\Adapter\OpenCloud as OpenCloudAdapter;

$connection = new OpenCloud\OpenStack(
 'https://example.com/v2/identity',
 array(
 'username' => 'your username',
 'password' => 'your Keystone password',
 'tenantName' => 'your tenant (project) name'
)
);
$objectStore = $connection->objectStoreService('cloudFiles', 'LON', 'publicURL');

$adapter = new OpenCloudAdapter(
 $objectStore,
 'container-name'
);
$filesystem = new Filesystem($adapter);

Rackspace Example

Rackspace uses a difference connection class

<?php

use OpenCloud\Rackspace;
use Gaufrette\Adapter\OpenCloud as OpenCloudAdapter;

$connection = new OpenCloud\Rackspace(
 'https://identity.api.rackspacecloud.com/v2.0/',
 array(
 'username' => 'rackspace-user',
 'apiKey' => '0900af093093788912388fc09dde090ffee09'
)
);

$objectStore = $connection->objectStoreService('cloudFiles', 'LON', 'publicURL');

$adapter = new OpenCloudAdapter(
 $objectStore,
 'container-name'
);
$filesystem = new Filesystem($adapter);

LazyOpenCloud Example

Instantiating the OpenCloud object store service has some overhead because it issues an authentication request,
even if you end up not using the filesystem. For better performance you can use a lazy-loading adapter which only authenticates when needed.

<?php

// ... $connection from previous step, either OpenCloud\OpenStack or OpenCloud\Rackspace instance

$factory = new Gaufrette\Adapter\OpenStackCloudFiles\ObjectStoreFactory($connection);
$adapter = new Gaufrette\Adapter\LazyOpenCloud($factory, 'container-name');

$filesystem = new Filesystem($adapter);

currentMenu: phpseclib-sftp

phpseclib adapter

N.B. It is recommended to use this adapter over SFTP.

Prerequisites

First, you will need to install the adapter:

composer require gaufrette/phpseclib-sftp-adapter

Configuration

$sftp = new phpseclib\Net\SFTP($host = 'localhost', $port = 22);

//now you need to login manually with the lib
$sftp->login('foo', 'bar');

$adapter = new Gaufrette\Adapter\PhpseclibSftp($sftp, $distantDirectory = null, $createDirectoryIfDoesntExist = false);
$filesystem = new Gaufrette\Filesystem($adapter);

currentMenu: sftp

SFTP

Warning: This adapter has been deprecated since v0.4.0 and will be removed in v1.0.0.

N.B. SFTP adapter is not recommended to use due to https://bugs.php.net/bug.php?id=64169. It is recommended to use
phpseclib SFTP adapter instead.

This adapter is based on the ssh2 extension. If you don’t have this extension available and you can’t install it,
the PhpseclibSftp adapter is based on a full-php ssh client.

Prerequisites

	PHP-SSH [https://github.com/Herzult/php-ssh]

	SSH2 extension [http://www.php.net/manual/en/book.ssh2.php]

You can install it via:

composer require herzult/php-ssh:^1.1
pecl install ssh2-beta

Example

The first argument should be an instance of \Ssh\Client. Please refer to
herzult/php-ssh [https://github.com/Herzult/php-ssh] documentation to know how to build it.

The second argument is the base directory you want to use.

The third one indicates whether you want to automatically create directories if they does not exists
(i.e. when you create a file in a directory that does not exist yet).

<?php

use Gaufrette\Adapter\Sftp as SftpAdapter;
use Gaufrette\Filesystem;

$adapter = new SftpAdapter($sftpClient, '/media', true);
$filesystem = new Filesystem($adapter);

currentMenu: zip

ZIP

First, you will need to install the adapter:

composer require gaufrette/zip-adapter

You need zip extension too:

sudo apt-get install libzip-dev # On Debian, Ubuntu, ...
sudo pecl install zip

Warning: this adapter is buggy under Windows.

Example

<?php

use Gaufrette\Adapter\Zip as ZipAdapter;
use Gaufrette\Filesystem;

$adapter = new ZipAdapter('/path/to/my/zip/file');
$filesystem = new Filesystem($adapter);

currentMenu: home

Couscous Dark template

[image:]

Usage

To use the template, set it up in your couscous.yml configuration file:

template:
 url: https://github.com/CouscousPHP/Template-Dark

Configuration

Here are all the variables you can set in your couscous.yml:

Base URL of the published website
baseUrl: http://username.github.io/project

Used to link to the GitHub project
github:
 user: myself
 repo: my-project

title: My project
subTitle: This is a great project.

The left menu bar
menu:
 sections:
 main:
 name: Main documentation
 items:
 home:
 text: Home page
 # You can use relative urls
 relativeUrl: doc/faq.html
 foo:
 text: Another link
 # Or absolute urls
 absoluteUrl: https://example.com
 other:
 name: Other topics
 items:

Note that the menu items can also contain HTML:

home:
 text: "<i class=\"fa fa-github\"></i> Home page"
 relativeUrl: doc/faq.html

Menu

To set the current menu item (i.e. highlighted menu item), set the currentMenu
key in the Markdown files:

currentMenu: home

Welcome

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

