
gardnr Documentation
Release 0.5.3

Jason Biegel

Dec 01, 2019

Contents:

1 Tutorials 3
1.1 Part 1: Logging metric data with Drivers . 3
1.2 Part 2: Manual Log Entry . 7
1.3 Part 3: Scheduling . 7
1.4 Part 4: Power Drivers . 8
1.5 Part 5: Grows . 10
1.6 Part 6: Triggers and Grow Recipes . 10

2 Guides 13
2.1 Driver Configuration . 13
2.2 MQTT . 14

3 Indices and tables 15

i

ii

gardnr Documentation, Release 0.5.3

GARDNR is a bootstrapper for DIY IoT projects with a focus on horticulture. What that means is GARDNR makes
it easy to setup customized fully-functional monitoring and automation solutions. All of the mundane features of
creating a system come out-of-the-box. This allows you to focus on writing the code that interfaces with hardware.

Contents: 1

gardnr Documentation, Release 0.5.3

2 Contents:

CHAPTER 1

Tutorials

Here is the best place to start learning how to get GARDNR up and running. The tutorial sections build off of each
other so it will be easier to do them in order.

1.1 Part 1: Logging metric data with Drivers

GARDNR requires Python 3.5 or higher.

Be sure to famliarize yourself with Object-oriented programming and Python classes before using GARDNR.

First, install GARDNR using pip:

$ pip install gardnr

The basic features of GARDNR are logging metrics to the database and exporting metric logs. To start logging a
metric, you first must add the metric to the database, like so:

$ gardnr add metric air temperature hello-world

Next, a sensor driver can be added which can create logs for the metric hello-world. The sensor driver code must be
implemented before it can be added to the database. GARDNR can generate empty templates of driver classes to be
able to write them faster.

$ gardnr new sensor hello_world_sensor.py

There should now be a file called hello_world_sensor.py in your current directory. Open this file in your preferred
code editor, it should contain:

from gardnr import drivers, logger, metrics

class Sensor(drivers.Sensor):
"""

(continues on next page)

3

https://docs.python.org/3.5/tutorial/classes.html
https://pip.pypa.io/en/stable/

gardnr Documentation, Release 0.5.3

(continued from previous page)

Add code to interface with physical or virtual sensors here.
"""

def setup(self):
"""
Add configuration here
"""

remove the next line and add code
pass

def read(self):
"""
Example log:

metrics.create_metric_log('my-metric', 42)

Example image log:

metrics.create_image_log(
self.metric_name,
image_bytes,
extension=self.image_file_extension

)
"""

remove the next line and add code
pass

At the end of the file, remove the last two lines and insert:

metrics.create_metric_log('hello-world', 20)

Be sure to indent the line above by eight spaces so it is properly nested under the read method. Your
hello_world_sensor.py file should now look like:

from gardnr import drivers, logger, metrics

class Sensor(drivers.Sensor):
"""
Add code to interface with physical or virtual sensors here.
"""

def setup(self):
"""
Add configuration here
"""

remove the next line and add code
pass

def read(self):
"""
Example log:

(continues on next page)

4 Chapter 1. Tutorials

gardnr Documentation, Release 0.5.3

(continued from previous page)

metrics.create_metric_log('my-metric', 42)

Example image log:

metrics.create_image_log(
self.metric_name,
image_bytes,
extension=self.image_file_extension

)
"""

metrics.create_metric_log('hello-world', 20)

Next, the sensor driver module must be added to GARDNR’s system. To do this, run the following command:

$ gardnr add driver hello-world-sensor hello_world_sensor:Sensor

The sensor driver module you just added to GARDNR can now be executed using the following command:

$ gardnr read

What running the command above does is create a log for our hello-world metric. Now we can add an exporter driver
to GARDNR. Exporters allow logs to be sent to external locations.. In this case, the log will simply be printed to the
console for demostration purposes. First, start with an empty exporter template:

$ gardnr new exporter hello_world_exporter.py

Next, open hello_world_exporter.py in your preferred code editor, it should contain:

from gardnr import constants, drivers, logger

class Exporter(drivers.Exporter):
"""
Uncomment these to filter the types of metrics are logged.
Either whitelist or blacklist must be used, not both.
"""
whitelist = [constants.IMAGE]
blacklist = [constants.IMAGE]

def setup(self):
"""
Add configuration here
"""

remove the next line and add code
pass

def export(self, logs):
"""
Output the list of logs to an external destination.
The log object has the following fields available.

Log:

(continues on next page)

1.1. Part 1: Logging metric data with Drivers 5

gardnr Documentation, Release 0.5.3

(continued from previous page)

id: str
timestamp: datetime
longitude: float
latitude: float
elevation: float
value: blob
metric:

topic: str
type: str
manual: bool

"""
for log in logs:

remove the next line and add code
pass

At the end of the file, remove the last two lines and insert:

print(log.value)

Be sure to indent the line above by 12 spaces so it is properly nested under the for loop inside the export method. Your
hello_world_sensor.py file should now look like:

from gardnr import constants, drivers, logger

class Exporter(drivers.Exporter):
"""
Uncomment these to filter the types of metrics are logged.
Either whitelist or blacklist must be used, not both.
"""
whitelist = [constants.IMAGE]
blacklist = [constants.IMAGE]

def setup(self):
"""
Add configuration here
"""

remove the next line and add code
pass

def export(self, logs):
"""
Output the list of logs to an external destination.
The log object has the following fields available.

Log:
id: str
timestamp: datetime
longitude: float
latitude: float
elevation: float
value: blob
metric:

topic: str
type: str

(continues on next page)

6 Chapter 1. Tutorials

gardnr Documentation, Release 0.5.3

(continued from previous page)

manual: bool
"""
for log in logs:

print(log.value)

Next, the exporter driver module must be added to GARDNR’s system. To do this, run the following command:

$ gardnr add driver hello-world-exporter hello_world_exporter:Exporter

The exporter driver module you just added to GARDNR can now be executed using the following command:

$ gardnr write

You should now see 20 displayed in the console. Note, that if you were to run the above command again, nothing
would be displayed. This is because metric logs are only exported once per exporter in the system.

1.2 Part 2: Manual Log Entry

In Part 1: Logging metric data with Drivers you created a driver which wrote logs for an air temperature metric,
hello-world. For some metrics, you may not have the sensor hardware available to read metric data so there will be no
driver code to write to log metric data. Or, sensor hardware may fail and your driver code is unable to log metric data.
In these cases, you will want to manually log your metric data. To set a metric to manual mode, run:

$ gardnr manual on hello-world

Manual metrics will be displayed on the Log Entry System. The Log Entry System is part of the GARDNR web
server, to start it run:

$ gardnr-server -b 0.0.0.0:5000

Next, open http://localhost:5000 in a browser. You should see a text field to enter a value for the hello-world metric.
After you entered a number into the text field, hit the Submit buttom to log the value.

1.3 Part 3: Scheduling

Sensor and exporter drivers can be executed manually using the read and write commands respectively:

$ gardnr read # executes sensor drivers
$ gardnr write # executes exporter drivers

This can be tedious and inconvenient to manually run commands in a shell to execute driver code. Schedules can be
used to automatically execute drivers. First a schedule must be created. Schedules can be added to GARDNR using
CRON syntax.

$ gardnr add schedule every-five-minutes */5 * * * *
You entered: Every 5 minutes
Does this look correct? ([y]/n)

Note that the * is to escape the astericks so it is not evaluated by the shell as a wildcard. The command above will
add a schedule named every-five-minutes after you confirm by typing y and then Enter. Next, schedule a driver. We
will schedule the hello-world-sensor we created in Part 1: Logging metric data with Drivers:

1.2. Part 2: Manual Log Entry 7

http://localhost:5000
https://en.wikipedia.org/wiki/Cron

gardnr Documentation, Release 0.5.3

$ gardnr schedule add hello-world-sensor every-five-minutes

To execute scheduled drivers, enter the following command which will run indefinitely:

$ gardnr-automata

1.4 Part 4: Power Drivers

Power Drivers are used to control devices with binary states, either on or off. To create a new power driver from an
empty template, run:

$ gardnr new power hello_world_power.py

There should now be a file called hello_world_power.py in your current directory. Open this file in your preferred code
editor, it should contain:

from gardnr import drivers, logger

class Power(drivers.Power):
"""
Add code to interface with physical powered devices.
"""

def setup(self):
"""
Add configuration here
"""

remove the next line and add code
pass

def on(self):

"""
Communicate with a powered device

Example:

import subprocess
command = 'gpio mode 0 out; gpio write 0 1'
process = subprocess.Popen(command.split(), stdout=subprocess.PIPE)
output, error = process.communicate()
"""

remove the next line and add code
pass

def off(self):
pass

In the on method, remove the last two lines and insert:

print('Device turning on')

8 Chapter 1. Tutorials

gardnr Documentation, Release 0.5.3

In the off method, remove the last line and insert:

print('Device turning off')

Your hello_world_power.py file should now look like:

from gardnr import drivers, logger

class Power(drivers.Power):
"""
Add code to interface with physical powered devices.
"""

def setup(self):
"""
Add configuration here
"""

remove the next line and add code
pass

def on(self):

"""
Communicate with a powered device

Example:

import subprocess
command = 'gpio mode 0 out; gpio write 0 1'
process = subprocess.Popen(command.split(), stdout=subprocess.PIPE)
output, error = process.communicate()
"""

print('Device turning on')

def off(self):
print('Device turning off')

Next, add the driver to GARDNR by running:

$ gardnr add driver hello-world-power power_driver:Power

To run the on method, run the following command:

$ gardnr power on hello-world-power

You should now see Device turning on displayed in the console. To run the off method, run the following command:

$ gardnr power off hello-world-power

You should now see Device turning off displayed in the console.

Like sensor and exporter drivers, power drivers can also be scheduled, which is described in Part 3: Scheduling.
However, adding schedules for power drivers requires specifying the state as well. To put turning on a power driver on
a schedule, run:

1.4. Part 4: Power Drivers 9

gardnr Documentation, Release 0.5.3

$ gardnr schedule add hello-world-power every-five-minutes on

1.5 Part 5: Grows

Grow models are used to group metric logs into a collection, ideally for the duration of a single crop cycle. Grows
consist of a start and end time. To start a grow, run:

$ gardnr grow start

This will create an active grow until the grow is ended. Having an active grow also enables the use of triggers, which
is described in Part 6: Triggers and Grow Recipes

1.6 Part 6: Triggers and Grow Recipes

Triggers are a way to automatically change the state of a power driver based on the rules defined in a grow recipe. In
order for triggers to be enabled, there must be an active grow, explained in Part 5: Grows, as well as a grow recipe file
configured. Grow recipes are stored in an XML files and adhere to the Grow Recipe Schema.

To start, create a very simple grow recipe in a text editor:

<?xml version="1.0" encoding="UTF-8"?>

<recipe>

<default>
<air>

<temperature min="16" max="18" />
</air>

</default>

</recipe>

Save this file as hello-world-recipe.xml. Next, configure GARDNR to use the recipe you just created by adding it to
the settings. Open a new blank file in a text editor and add:

GROW_RECIPE = 'hello-world-recipe.xml'

Save the file as settings_local.py.

Next, add a trigger on the hello-world metric we created in Part 1: Logging metric data with Drivers when it reaches
the max temperature we specified in the grow recipe, it turns on the hello-world-power driver specified in Part 4:
Power Drivers. To add the trigger, run:

$ gardnr add trigger hello-world max hello-world-power on

Triggers are checked on a special schedule when gardnr-automata is run. To test, make sure
gardnr-automata is running and run a gardnr read command to log a metric value of 20 for the hello-world
metric. Within five minutes, you should see ‘Device turning on‘ appear in the console running gardnr-automata
because a temperature of 20 exceeds the max threshold of 18 for the air temperature metric hello-world, specified in
the grow recipe.

10 Chapter 1. Tutorials

https://grow-recipe-schema.readthedocs.io

gardnr Documentation, Release 0.5.3

Congratulations! You now know all of the core features GARDNR has to offer. Now you can start writing drivers
which interface with actual hardware devices and data stores. Some out-of-the-box drivers are available on GitHub
with instructions on setting up the hardware.

1.6. Part 6: Triggers and Grow Recipes 11

https://github.com/gardnr

gardnr Documentation, Release 0.5.3

12 Chapter 1. Tutorials

CHAPTER 2

Guides

Here is an assortment of guides for more advanced features of GARDNR not covered in the tutorial

2.1 Driver Configuration

Driver configuraiton is used to make Driver classes more re-usable. Instead of hardcoding attributes into a class,
you can have the attribute loaded at run-time into the driver instance. For example, imagine you have a sensor driver
class:

from gardnr import drivers

class Sensor(drivers.Sensor):

def read(self):
print('hello world')

Instead of using the string literal, 'hello world', an attributes can be used instead:

from gardnr import drivers

class Sensor(drivers.Sensor):

def read(self):
print(self.message)

Now, to set the the message attribute, we pass in a value while adding the driver class to GARDNR

$ gardnr add driver sensor attribute_sensor:Sensor -c message="hello world"

13

gardnr Documentation, Release 0.5.3

2.1.1 Multiple configuration attributes

Multiple configuration attributes can be passed in while adding a driver to GARDNR

$ gardnr add driver sensor attribute_sensor:Sensor -c attr1=55 attr2="foo"

2.2 MQTT

GARDNR comes with a built-in MQTT subscriber for logging metrics. In order to use the subscriber, it must be
connected to a broker, such as Mosquitto.

Use the metric name as the topic and the log value as the message.

To start the MQTT subscriber, run gardnr-mqtt

14 Chapter 2. Guides

http://mqtt.org
https://mosquitto.org

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

15

	Tutorials
	Part 1: Logging metric data with Drivers
	Part 2: Manual Log Entry
	Part 3: Scheduling
	Part 4: Power Drivers
	Part 5: Grows
	Part 6: Triggers and Grow Recipes

	Guides
	Driver Configuration
	MQTT

	Indices and tables

