

Welcome to GardenHub’s documentation!

GardenHub is an open source web application that facilitates food distribution
for community gardens. It’s written in Python [https://www.python.org/] using the Django web
framework [https://www.djangoproject.com/].

GardenHub’s source code [https://github.com/HarvestHub/GardenHub] may be found on GitHub.

Contents:

	Developer Guide
	Models

	Order states

	Views

	Deployment (WIP)

	User Guide
	Client view vs admin panel

	Inviting new users

	Managing plots/gardens

Indices and tables

	Index

	Module Index

	Search Page

Developer Guide

This section will explain how to hack on GardenHub.

Contents:

	Models
	Querying objects

	Full model reference

	Order states
	QuerySet filtering

	Views

	Deployment (WIP)
	1. Getting the server

	2. Provisioning the server

Models

[image: ../_images/db-schema.png]

Querying objects

	
class gardenhub.managers.OrderQuerySet(model=None, query=None, using=None, hints=None)

	Custom QuerySet for advanced filtering of orders.

The following fields enable filtering orders via Order.objects. For
example,

from gardenhub.models import Order

All open orders
orders = Order.objects.open()

All open orders that haven't been picked today
orders = Order.objects.open().unpicked_today()

	
active()

	Orders that are happening right now.

	
closed()

	Orders that have finished or were canceled.

	
inactive()

	All orders that aren’t happening right now.

	
open()

	Orders that have not finished but also may not have begun.

	
picked_today()

	Orders that have at least one Pick from today.

	
unpicked_today()

	Orders that have no Picks from today.

	
upcoming()

	Orders that have not yet begun but are scheduled to happen.

	
class gardenhub.managers.UserManager

	Custom User manager because the custom User model only does auth by email.

	
get_or_invite_users(emails, request)

	Gets or creates users from the list of emails. When a user is created
they are sent an invitation email.

Full model reference

	
class gardenhub.models.Affiliation(*args, **kwargs)

	A group of affiliated gardens.

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
class gardenhub.models.Crop(*args, **kwargs)

	A crop represents an item that may be picked, such as a zuchini or an
orange. Crops are stored in a master list, managed by the site admin, and
may be listed on Orders or Picks.

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
class gardenhub.models.Garden(*args, **kwargs)

	A whole landscape, divided into many plots. Managed by Garden Managers.

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
class gardenhub.models.Order(*args, **kwargs)

	A request from a Gardener or Garden Manager to enlist a particular Plot for
picking over a specified number of days.

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
get_picks()

	Return the list of Picks that occurred on this Order’s plot within
this Order’s timeframe.

	
get_status_icon()

	Returns a Semantic UI status icon class string depending on this
order’s status. This may be removed in the future.

	
is_active()

	Whether this Order is active.

	
is_closed()

	Whether this Order is closed.

	
is_open()

	Whether this Order is open.

	
progress()

	Percentage this order is complete, as a decimal between 0-100.

	
was_picked_today()

	True if at least one Pick was submitted today for the Order’s Plot.

	
class gardenhub.models.Pick(*args, **kwargs)

	A submission by a picker signifying that certain Crops have been picked
from a particular Plot at a particular time.

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
inquirers()

	People to notify about this pick.

	
class gardenhub.models.Plot(*args, **kwargs)

	Subdivision of a Garden, allocated to a Gardener for growing food.

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
class gardenhub.models.User(*args, **kwargs)

	Custom user class for GardenHub users. This is necessary because we want to
authorize users by their email address (and provide a few extra fields).

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
can_edit_garden(garden)

	Can the given user manage this garden?
True if the user is listed in Garden.managers for that garden.
False otherwise.

	
can_edit_order(order)

	Can the given user manage this order?
True if the user can edit Order.plot for that order.
False otherwise.

	
can_edit_plot(plot)

	Can the given user manage this plot?
True if the user is listed in Plot.gardeners for that plot, OR the user
is listed in Garden.managers for the garden in Plot.garden.
False otherwise.

	
clean()

	Hook for doing any extra model-wide validation after clean() has been
called on every field by self.clean_fields. Any ValidationError raised
by this method will not be associated with a particular field; it will
have a special-case association with the field defined by NON_FIELD_ERRORS.

	
email_user(subject, message, from_email=None, **kwargs)

	Send an email to this user.

	
get_full_name()

	Return the first_name plus the last_name, with a space in between.

	
get_gardens()

	Return all the Gardens the given user can edit.

	
get_orders()

	Return all Orders for the given user’s Plots and Gardens.

	
get_peers()

	Return all the Users within every Plot and Garden that you manage,
except yourself.

	
get_picker_gardens()

	Return all Gardens where the user is in Garden.picker.

	
get_picker_orders()

	Return all Orders this user is assigned to fulfill.

	
get_plots()

	Return all the Plots the given user can edit. Users can edit any plot
which they are a gardener on, and any plot in a garden they manage.

	
get_short_name()

	Return the short name for the user.

	
has_orders()

	Determine whether the user has any orders at all.

	
is_anything()

	GardenHub is only useful if the logged-in user can manage any garden or
plot. If not, that is very sad. :(

	
is_garden_manager()

	A garden manager is someone who facilitates renting Plots of a Garden
out to Gardeners. Any person who is set as Garden.manager on at least
one Garden.

	
is_gardener()

	A gardener is someone who rents a garden Plot and grows food there.
Gardeners are assigned to Plot.gardener on at least one Plot. GM’s of
a garden with plots are also considered gardeners.

	
is_order_picker(order)

	Is the user assigned as a picker on this order?
True if the user is listed in Order.plot.garden.pickers.
False otherwise.

	
is_picker()

	A picker is someone who is assigned to fulfill Orders on a Garden. They
will submit Picks over the duration of the Orders.

Order states

Orders are often queried by one of more possible states they can be in. Below is a chart of all the possible states.

	State:

	open

	closed

	upcoming

	active

	inactive

	start date

	Any

	Past

	Future

	Up through today

	Future

	end date

	Future

	Past

	Future

	Today forward

	Past

	canceled

	No

	Coerced

	No

	No

	Coerced

	comparison

	and

	and

	and

	and

	or

Legend:

	canceled = No means that if the order is canceled it cannot be this state.

	canceled = Coerced means that the order will automatically be in this state by virtue of the fact it is canceled.

	comparison describes how the start date and end date of the order are compared. For instance, an open order can have any start date and an end date in the future. An inactive order can have a start date in the future or an end date in the past.

QuerySet filtering

Corresponding to the table above, orders have custom QuerySet functions for each of the states. For instance, Order.objects.open() or Order.objects.active().

Views

	
class gardenhub.views.AccountRemoveView(**kwargs)

	Bases: django.contrib.auth.mixins.LoginRequiredMixin, django.views.generic.edit.DeletionMixin, django.views.generic.base.TemplateView

Remove the logged-in user’s GardenHub account.

	
delete(request, *args, **kwargs)

	Call the delete() method on the fetched object and then redirect to the
success URL.

	
class gardenhub.views.AccountSettingsView(**kwargs)

	Bases: django.contrib.auth.mixins.LoginRequiredMixin, django.views.generic.edit.FormView

Account settings screen for the logged-in user.

	
form_class

	alias of gardenhub.forms.AccountSettingsForm

	
form_valid(form)

	If the form is valid, redirect to the supplied URL.

	
class gardenhub.views.AccountView(**kwargs)

	Bases: django.contrib.auth.mixins.LoginRequiredMixin, django.views.generic.base.TemplateView

Profile edit screen for the logged-in user.

	
class gardenhub.views.ApiCrops(**kwargs)

	Bases: django.contrib.auth.mixins.LoginRequiredMixin, gardenhub.mixins.UserCanEditPlotMixin, django.views.generic.detail.DetailView

Return JSON about crops.

	
model

	alias of gardenhub.models.Plot

	
class gardenhub.views.GardenDetailView(**kwargs)

	Bases: django.contrib.auth.mixins.LoginRequiredMixin, gardenhub.mixins.UserCanEditGardenMixin, django.views.generic.detail.DetailView

View a single garden.

	
model

	alias of gardenhub.models.Garden

	
class gardenhub.views.GardenListView(**kwargs)

	Bases: django.contrib.auth.mixins.LoginRequiredMixin, django.views.generic.list.ListView

A list of all gardens the logged-in user can edit.

	
get_queryset()

	Return the list of items for this view.

The return value must be an iterable and may be an instance of
QuerySet in which case QuerySet specific behavior will be enabled.

	
class gardenhub.views.GardenUpdateView(**kwargs)

	Bases: django.contrib.auth.mixins.LoginRequiredMixin, gardenhub.mixins.UserCanEditGardenMixin, django.views.generic.edit.UpdateView

Edit form for an individual garden.

	
form_class

	alias of gardenhub.forms.GardenForm

	
form_valid(form)

	If the form is valid, save the associated model.

	
model

	alias of gardenhub.models.Garden

	
class gardenhub.views.HomePageView(**kwargs)

	Bases: django.contrib.auth.mixins.LoginRequiredMixin, django.views.generic.base.TemplateView

Welcome screen with calls to action.

	
class gardenhub.views.LogoutView(**kwargs)

	Bases: django.contrib.auth.views.LogoutView

Logs out the user and redirects them to the login screen.

	
class gardenhub.views.OrderCancelView(**kwargs)

	Bases: django.contrib.auth.mixins.LoginRequiredMixin, django.contrib.auth.mixins.UserPassesTestMixin, django.views.generic.edit.DeleteView

	
delete(request, *args, **kwargs)

	Call the delete() method on the fetched object and then redirect to the
success URL.

	
model

	alias of gardenhub.models.Order

	
class gardenhub.views.OrderCreateView(**kwargs)

	Bases: django.contrib.auth.mixins.LoginRequiredMixin, django.contrib.auth.mixins.UserPassesTestMixin, django.views.generic.edit.CreateView

This is a form used to submit a new order. It’s used by gardeners, garden
managers, or anyone who has the ability to edit a plot.

	
form_class

	alias of gardenhub.forms.OrderForm

	
form_valid(form)

	If the form is valid, save the associated model.

	
get_form(*args, **kwargs)

	Return an instance of the form to be used in this view.

	
get_form_kwargs()

	Return the keyword arguments for instantiating the form.

	
model

	alias of gardenhub.models.Order

	
class gardenhub.views.OrderDetailView(**kwargs)

	Bases: django.contrib.auth.mixins.LoginRequiredMixin, django.contrib.auth.mixins.UserPassesTestMixin, django.views.generic.detail.DetailView

Review an individual order that’s been submitted. Anyone who can edit the
plot may view or cancel these orders.

	
model

	alias of gardenhub.models.Order

	
class gardenhub.views.OrderListView(**kwargs)

	Bases: django.contrib.auth.mixins.LoginRequiredMixin, django.views.generic.list.ListView

Manage orders page to view all upcoming orders.

	
get_queryset()

	Return the list of items for this view.

The return value must be an iterable and may be an instance of
QuerySet in which case QuerySet specific behavior will be enabled.

	
class gardenhub.views.PasswordResetConfirmView(**kwargs)

	Bases: django.contrib.auth.views.PasswordResetConfirmView

	
form_valid(form)

	If the form is valid, redirect to the supplied URL.

	
class gardenhub.views.PasswordResetView(**kwargs)

	Bases: django.contrib.auth.views.PasswordResetView

	
form_valid(form)

	If the form is valid, redirect to the supplied URL.

	
class gardenhub.views.PickCreateView(**kwargs)

	Bases: django.contrib.auth.mixins.LoginRequiredMixin, django.contrib.auth.mixins.UserPassesTestMixin, django.views.generic.edit.CreateView

Form enabling a picker to submit a Pick for a given plot.

	
form_valid(form)

	If the form is valid, save the associated model.

	
get_context_data(**kwargs)

	Insert the form into the context dict.

	
get_form_kwargs()

	Return the keyword arguments for instantiating the form.

	
model

	alias of gardenhub.models.Pick

	
class gardenhub.views.PlotCreateView(**kwargs)

	Bases: django.contrib.auth.mixins.LoginRequiredMixin, django.contrib.auth.mixins.UserPassesTestMixin, django.views.generic.edit.CreateView

	
form_class

	alias of gardenhub.forms.PlotForm

	
form_valid(form)

	If the form is valid, save the associated model.

	
model

	alias of gardenhub.models.Plot

	
class gardenhub.views.PlotListView(**kwargs)

	Bases: django.contrib.auth.mixins.LoginRequiredMixin, django.views.generic.list.ListView

A list of all plots the logged-in user can edit.

	
get_queryset()

	Return the list of items for this view.

The return value must be an iterable and may be an instance of
QuerySet in which case QuerySet specific behavior will be enabled.

	
class gardenhub.views.PlotUpdateView(**kwargs)

	Bases: django.contrib.auth.mixins.LoginRequiredMixin, gardenhub.mixins.UserCanEditPlotMixin, django.views.generic.edit.UpdateView

Edit form for an individual plot.

	
form_class

	alias of gardenhub.forms.PlotForm

	
form_valid(form)

	If the form is valid, save the associated model.

	
get_form(*args, **kwargs)

	Return an instance of the form to be used in this view.

	
model

	alias of gardenhub.models.Plot

	
gardenhub.views.account_activate_view(request, token)

	When a new user is invited, an email call to action will send them to this
view so they can fill out their profile and activate their account.

Deployment (WIP)

This guide will walk you through deploying an instance of GardenHub online. It will make a lot of choices for you, with the trade-off of not requiring advanced knowledge in order to do this. Familiarity with the Linux terminal is required.

1. Getting the server

If you don’t have one, create an account with DigitalOcean [https://www.digitalocean.com/]. Then create a new droplet. It will cost you at least $10/mo, possibly more depending on the size of your userbase.

	You will want to select the latest LTS, 64-bit Ubuntu as your OS. At the time of writing, that is 16.04 x64. The LTS version is the one that ends in .04, not .10.

	Choose at least 2GB of memory if you intend to run this application seriously. If not, you may be able to get away with less. With many users, you will want to increase the memory so the app doesn’t become slow. You can always do this later.

	Choose a datacenter region that is close to the majority of your users, if possible.

	Enable IPv6.

	Set the hostname to the domain name you intend to use, such as gardenhub.io.

	You can leave the other options alone. Click “Create”.

Next, wait a minute for the droplet to provision. Once it’s done, you’ll get an IP address. You can use that to shell into the server via your terminal. Replace the IP address with your droplet’s:

ssh root@765.432.1

The password will be provided by DigitalOcean.

2. Provisioning the server

First, let’s install Dokku [http://dokku.viewdocs.io/dokku/]. It will let us push the GardenHub repo up to the server via git. While ssh’d into the server, run this:

wget https://raw.githubusercontent.com/dokku/dokku/v0.11.3/bootstrap.sh
sudo DOKKU_TAG=v0.11.3 bash bootstrap.sh

Once it completes, visit your server’s IP address in your web browser and follow the instructions. Be sure to tick the virtual hosts option and enter the domain name you intend to use with the app.

TODO: Write the rest of this

User Guide

This is a walkthrough for garden managers and administrators of the app. This guide will show you how to perform common administrative tasks.

Contents:

	Client view vs admin panel
	Client view

	Admin panel

	Inviting new users
	Invite a new user to a plot

	Invite a new user to a garden

	Create a new user manually

	Managing plots/gardens
	Adding yourself to a plot

	Adding yourself to a garden

Client view vs admin panel

There are two main parts of the site that are used to manage data: the client view and the admin panel.

There are some things that can only be accomplished within the client view, and others that can only be accomplished in the admin panel.

Client view

The client view is what end-users will see. This design is geared towards gardeners and pickers. It is the default view that will show when visiting the GardenHub app. In the client view, people can only see plots and gardens they are assigned to, even if they are an administrator. This is by design. Administrators are treated just like any other user in this view with no special capabilities.

The client view is the only place that users can invite other users to GardenHub via email.

[image: ../_images/client.png]

Admin panel

The admin panel is a tool for directly editing data in GardenHub’s database. You can use this to manually create users, manage gardens and plots, and edit the master list of crops. Administrators can access the entire site’s database through this view, regardless of whether they’re assigned to those gardens or plots.

[image: ../_images/admin-panel.png]
The admin panel can be accessed by first logging into GardenHub, then going under your user dropdown in the top navigation and clicking “Admin”. Note that only superusers and staff members can access the admin panel.

[image: ../_images/admin-button.png]

Inviting new users

For now, GardenHub is an invite-only platform. Anyone can invite other people to co-manage resources they can edit (such as plots or gardens). To invite a new user, you must first create the plot or garden you would like that user to manage, then add that user’s email address into the “managers” (or “gardeners”) field.

Email invitations only work in the client view.

Invite a new user to a plot

First, create a new plot, or edit an existing plot. Type the email address of the user you’d like to invite into the “gardeners” field. You will need to click away after so the email becomes enclosed in a gray box as shown below. Then you may click “Save plot” and an invitation will be sent to the email address(es) you entered.

Administrators must first add themselves to the plot before they can edit it in the client view.

[image: ../_images/invite-user-plot.png]

Invite a new user to a garden

First, create a new garden, or edit an existing garden. Type the email address of the user you’d like to invite into the “managers” field. You will need to click away after so the email becomes enclosed in a gray box as shown below. Then you may click “Save” and an invitation will be sent to the email address(es) you entered.

Administrators must first add themselves to the garden before they can edit it in the client view.

[image: ../_images/invite-user-garden.png]

Create a new user manually

If you’d like to create a new user without inviting them to a plot or garden, you can add them manually. They won’t receive an email invitation, so you will need to send them the password you choose.

First, visit the admin panel. You’ll need to be a superuser or staff user to do this:

[image: ../_images/admin-button.png]
Next, click the “Add” button next to “Users”:

[image: ../_images/admin-add-user.png]
Fill out the form. You must tick the “Active” box to allow the user to log in. You may also tick “Staff status” and “Superuser status” to grant this user admin privileges.

[image: ../_images/admin-user-form.png]
Finally, click “Save”. The user you created will now be able to log in. Be sure to assign them to any plots or gardens you’d like them to manage.

Managing plots/gardens

Adding yourself to a plot

If you want the ability to invite people via email to a plot, you will need to first assign yourself to that plot so you can access the plot within the client view.

	Visit the admin panel.

	Click “Plots”.

	Click the name of the plot you’d like to assign yourself to.

	Under the “Gardeners” field, find your name, and while holding the “Control” key (or “Command” key on MacOS), click it.

	Click “Save”.

Adding yourself to a garden

If you want the ability to invite people via email to a garden, you will need to first assign yourself to that garden so you can access the garden within the client view.

	Visit the admin panel.

	Click “Gardens”.

	Click the name of the garden you’d like to assign yourself to.

	Under the “Managers” field, find your name, and while holding the “Control” key (or “Command” key on MacOS), click it.

	Click “Save”.

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 gardenhub	

 	
 	
 gardenhub.managers	

 	
 	
 gardenhub.models	

 	
 	
 gardenhub.views	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | U
 | W

A

 	
 	account_activate_view() (in module gardenhub.views)

 	AccountRemoveView (class in gardenhub.views)

 	AccountSettingsView (class in gardenhub.views)

 	AccountView (class in gardenhub.views)

 	
 	active() (gardenhub.managers.OrderQuerySet method)

 	Affiliation (class in gardenhub.models)

 	Affiliation.DoesNotExist

 	Affiliation.MultipleObjectsReturned

 	ApiCrops (class in gardenhub.views)

C

 	
 	can_edit_garden() (gardenhub.models.User method)

 	can_edit_order() (gardenhub.models.User method)

 	can_edit_plot() (gardenhub.models.User method)

 	clean() (gardenhub.models.User method)

 	
 	closed() (gardenhub.managers.OrderQuerySet method)

 	Crop (class in gardenhub.models)

 	Crop.DoesNotExist

 	Crop.MultipleObjectsReturned

D

 	
 	delete() (gardenhub.views.AccountRemoveView method)

 	(gardenhub.views.OrderCancelView method)

E

 	
 	email_user() (gardenhub.models.User method)

F

 	
 	form_class (gardenhub.views.AccountSettingsView attribute)

 	(gardenhub.views.GardenUpdateView attribute)

 	(gardenhub.views.OrderCreateView attribute)

 	(gardenhub.views.PlotCreateView attribute)

 	(gardenhub.views.PlotUpdateView attribute)

 	form_valid() (gardenhub.views.AccountSettingsView method)

 	(gardenhub.views.GardenUpdateView method)

 	(gardenhub.views.OrderCreateView method)

 	(gardenhub.views.PasswordResetConfirmView method)

 	(gardenhub.views.PasswordResetView method)

 	(gardenhub.views.PickCreateView method)

 	(gardenhub.views.PlotCreateView method)

 	(gardenhub.views.PlotUpdateView method)

G

 	
 	Garden (class in gardenhub.models)

 	Garden.DoesNotExist

 	Garden.MultipleObjectsReturned

 	GardenDetailView (class in gardenhub.views)

 	gardenhub.managers (module)

 	gardenhub.models (module)

 	gardenhub.views (module)

 	GardenListView (class in gardenhub.views)

 	GardenUpdateView (class in gardenhub.views)

 	get_context_data() (gardenhub.views.PickCreateView method)

 	get_form() (gardenhub.views.OrderCreateView method)

 	(gardenhub.views.PlotUpdateView method)

 	get_form_kwargs() (gardenhub.views.OrderCreateView method)

 	(gardenhub.views.PickCreateView method)

 	
 	get_full_name() (gardenhub.models.User method)

 	get_gardens() (gardenhub.models.User method)

 	get_or_invite_users() (gardenhub.managers.UserManager method)

 	get_orders() (gardenhub.models.User method)

 	get_peers() (gardenhub.models.User method)

 	get_picker_gardens() (gardenhub.models.User method)

 	get_picker_orders() (gardenhub.models.User method)

 	get_picks() (gardenhub.models.Order method)

 	get_plots() (gardenhub.models.User method)

 	get_queryset() (gardenhub.views.GardenListView method)

 	(gardenhub.views.OrderListView method)

 	(gardenhub.views.PlotListView method)

 	get_short_name() (gardenhub.models.User method)

 	get_status_icon() (gardenhub.models.Order method)

H

 	
 	has_orders() (gardenhub.models.User method)

 	
 	HomePageView (class in gardenhub.views)

I

 	
 	inactive() (gardenhub.managers.OrderQuerySet method)

 	inquirers() (gardenhub.models.Pick method)

 	is_active() (gardenhub.models.Order method)

 	is_anything() (gardenhub.models.User method)

 	is_closed() (gardenhub.models.Order method)

 	
 	is_garden_manager() (gardenhub.models.User method)

 	is_gardener() (gardenhub.models.User method)

 	is_open() (gardenhub.models.Order method)

 	is_order_picker() (gardenhub.models.User method)

 	is_picker() (gardenhub.models.User method)

L

 	
 	LogoutView (class in gardenhub.views)

M

 	
 	model (gardenhub.views.ApiCrops attribute)

 	(gardenhub.views.GardenDetailView attribute)

 	(gardenhub.views.GardenUpdateView attribute)

 	(gardenhub.views.OrderCancelView attribute)

 	(gardenhub.views.OrderCreateView attribute)

 	(gardenhub.views.OrderDetailView attribute)

 	(gardenhub.views.PickCreateView attribute)

 	(gardenhub.views.PlotCreateView attribute)

 	(gardenhub.views.PlotUpdateView attribute)

O

 	
 	open() (gardenhub.managers.OrderQuerySet method)

 	Order (class in gardenhub.models)

 	Order.DoesNotExist

 	Order.MultipleObjectsReturned

 	
 	OrderCancelView (class in gardenhub.views)

 	OrderCreateView (class in gardenhub.views)

 	OrderDetailView (class in gardenhub.views)

 	OrderListView (class in gardenhub.views)

 	OrderQuerySet (class in gardenhub.managers)

P

 	
 	PasswordResetConfirmView (class in gardenhub.views)

 	PasswordResetView (class in gardenhub.views)

 	Pick (class in gardenhub.models)

 	Pick.DoesNotExist

 	Pick.MultipleObjectsReturned

 	PickCreateView (class in gardenhub.views)

 	picked_today() (gardenhub.managers.OrderQuerySet method)

 	
 	Plot (class in gardenhub.models)

 	Plot.DoesNotExist

 	Plot.MultipleObjectsReturned

 	PlotCreateView (class in gardenhub.views)

 	PlotListView (class in gardenhub.views)

 	PlotUpdateView (class in gardenhub.views)

 	progress() (gardenhub.models.Order method)

U

 	
 	unpicked_today() (gardenhub.managers.OrderQuerySet method)

 	upcoming() (gardenhub.managers.OrderQuerySet method)

 	User (class in gardenhub.models)

 	
 	User.DoesNotExist

 	User.MultipleObjectsReturned

 	UserManager (class in gardenhub.managers)

W

 	
 	was_picked_today() (gardenhub.models.Order method)

 _static/plus.png

_static/admin-button.png
Manage = Q) ex ~

& Profile
8 Admin

® Signout

_static/admin-panel.png
Site administration

Picks +Add & Change

Plots +Add & Change

Users +Add & Change

Myactions

x
User

x
User

x
User

+ Alex's Garden[1]
Flot

+ Alex's Garden
Garden

acom squash
cop

_images/invite-user-plot.png
Py F Manage = a» Nex ~

Garden”
The garden this plot is

Alex's Garden -

The plot's name is probably a number, like 11. The plot should be clearly labeled with a sign.

1
Gardeners.
List the people who should manage this plot, or enter an email address to invite someone new.
AlexGleason »{ || you@email.com x -
Crops.

List the crops growing on this plot.

alfalfaspouts » | artichoke x | bananas x -

v Save Plot

_static/up-pressed.png

_static/admin-add-user.png
Site administration

Myactions

x
User

x
User

x
User

+ Alex's Garden[1]
Flot

Picks +add # Change + s Garden
Plots +add 4 Change # acom squash

cop
Users +Add |/ Change

_static/up.png

_static/client.png
Manage = Q) ex +

Let's get started.

Choose one of the options below to get begin.

New Order

Create a brand new order.

Manage Plots
Create and edit plots in your garden.

_static/admin-user-form.png
IEW SITE / CHANGE PA

Home Gardenhub » Users > Add user

Add user

First, enter a username and password. Then, you'll be able to edit more user options.

Email address: you@email.com

“The user's email address, which is used for notfications and doubles as the username for logging in.

Password: |
Password confirmation: |
Firstname: | Jane

The user's gven name or ickname,sometimes used nacasual context.
Lastname: | Doe |

The users fomily name, sometimes used to itinulsh one use fom ancther
Active

Designates whether tis user should be treated as active. Unselect tis instead of deleting accounts

[Staff status
Designates whether the user canfog into this admin site.

) Superuser status
Desgnates ha s user b ll erissons without explictly asigning then

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_images/client.png
Manage = Q) ex +

Let's get started.

Choose one of the options below to get begin.

New Order

Create a brand new order.

Manage Plots
Create and edit plots in your garden.

_images/db-schema.png
km.v

quester (order)

managers (gardens) | pters (_garden_piters_s)

(ranagers (afiaton) /

Gstract astract
nhriancs nhriancs

peter (pcig

jardeners (phts)

Aftilatio

roups (usar) "\ user_parmisions (usar)

AbstractBaseUser

_images/admin-panel.png
Site administration

Picks +Add & Change

Plots +Add & Change

Users +Add & Change

Myactions

x
User

x
User

x
User

+ Alex's Garden[1]
Flot

+ Alex's Garden
Garden

acom squash
cop

_images/admin-user-form.png
IEW SITE / CHANGE PA

Home Gardenhub » Users > Add user

Add user

First, enter a username and password. Then, you'll be able to edit more user options.

Email address: you@email.com

“The user's email address, which is used for notfications and doubles as the username for logging in.

Password: |
Password confirmation: |
Firstname: | Jane

The user's gven name or ickname,sometimes used nacasual context.
Lastname: | Doe |

The users fomily name, sometimes used to itinulsh one use fom ancther
Active

Designates whether tis user should be treated as active. Unselect tis instead of deleting accounts

[Staff status
Designates whether the user canfog into this admin site.

) Superuser status
Desgnates ha s user b ll erissons without explictly asigning then

_images/invite-user-garden.png
«

Enter the name of this garden.

Alex's Garden

Address”

Enter the address of this garden.

91000 GardenHub Dr, Philadelphia PA 19149

Managers.

Manage = Q) ex +

List the people who should manage this garden, or enter an email address to invite someone new.

Alex Gleason

you@email.com x

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to GardenHub’s documentation!

 		
 Developer Guide

 		
 Models

 		
 Querying objects

 		
 Full model reference

 		
 Order states

 		
 QuerySet filtering

 		
 Views

 		
 Deployment (WIP)

 		
 1. Getting the server

 		
 2. Provisioning the server

 		
 User Guide

 		
 Client view vs admin panel

 		
 Client view

 		
 Admin panel

 		
 Inviting new users

 		
 Invite a new user to a plot

 		
 Invite a new user to a garden

 		
 Create a new user manually

 		
 Managing plots/gardens

 		
 Adding yourself to a plot

 		
 Adding yourself to a garden

_images/admin-add-user.png
Site administration

Myactions

x
User

x
User

x
User

+ Alex's Garden[1]
Flot

Picks +add # Change + s Garden
Plots +add 4 Change # acom squash

cop
Users +Add |/ Change

_static/down.png

_images/admin-button.png
Manage = Q) ex ~

& Profile
8 Admin

® Signout

_static/db-schema.png
km.v

quester (order)

managers (gardens) | pters (_garden_piters_s)

(ranagers (afiaton) /

Gstract astract
nhriancs nhriancs

peter (pcig

jardeners (phts)

Aftilatio

roups (usar) "\ user_parmisions (usar)

AbstractBaseUser

_static/down-pressed.png

_static/invite-user-plot.png
Py F Manage = a» Nex ~

Garden”
The garden this plot is

Alex's Garden -

The plot's name is probably a number, like 11. The plot should be clearly labeled with a sign.

1
Gardeners.
List the people who should manage this plot, or enter an email address to invite someone new.
AlexGleason »{ || you@email.com x -
Crops.

List the crops growing on this plot.

alfalfaspouts » | artichoke x | bananas x -

v Save Plot

_static/file.png

_static/invite-user-garden.png
«

Enter the name of this garden.

Alex's Garden

Address”

Enter the address of this garden.

91000 GardenHub Dr, Philadelphia PA 19149

Managers.

Manage = Q) ex +

List the people who should manage this garden, or enter an email address to invite someone new.

Alex Gleason

you@email.com x

_static/minus.png

