
Garcon, Documentation
Release 0.0.4

Michael Ortali

Jan 06, 2018

Contents

1 Requirements 3

2 Goal 5

3 Code sample 7

4 Documentation 9
4.1 User’s guide . 9
4.2 Api . 11
4.3 Release notes . 24

5 Licence 25

Python Module Index 27

i

ii

Garcon, Documentation, Release 0.0.4

Lightweight library for AWS SWF.

Contents 1

Garcon, Documentation, Release 0.0.4

2 Contents

CHAPTER 1

Requirements

• Python 2.7, 3.4 (tested)

• Boto 2.34.0 (tested)

3

Garcon, Documentation, Release 0.0.4

4 Chapter 1. Requirements

CHAPTER 2

Goal

The goal of this library is to allow the creation of Amazon Simple Workflow without the need to worry about the
orchestration of the different activities and building out the different workers. This framework aims to help simple
workflows. If you have a more complex case, you might want to use directly boto.

5

Garcon, Documentation, Release 0.0.4

6 Chapter 2. Goal

CHAPTER 3

Code sample

The code sample shows a workflow that has 4 activities. It starts with activity_1, which after being completed schedule
activity_2 and activity_3 to be ran in parallel. The workflow ends after the completion of activity_4 which requires
activity_2 and activity_3 to be completed:

from __future__ import print_function

from garcon import activity
from garcon import runner

domain = 'dev'
create = activity.create(domain)

test_activity_1 = create(
name='activity_1',
tasks=runner.Sync(

lambda activity, context: print('activity_1')))

test_activity_2 = create(
name='activity_2',
requires=[test_activity_1],
run=runner.Async(

lambda activity, context: print('activity_2_task_1'),
lambda activity, context: print('activity_2_task_2')))

test_activity_3 = create(
name='activity_3',
requires=[test_activity_1],
run=runner.Sync(

lambda activity, context: print('activity_3')))

test_activity_4 = create(
name='activity_4',
requires=[test_activity_3, test_activity_2],
run=runner.Sync(

7

Garcon, Documentation, Release 0.0.4

lambda activity, context: print('activity_4')))

8 Chapter 3. Code sample

CHAPTER 4

Documentation

4.1 User’s guide

4.1.1 Introduction

Garcon is a Python library for Amazon SWF, originally built at The Orchard.

The goal of this library is to allow the creation of workflows using SWF without the need to worry about the orches-
tration of the different activities, and build out the complex different workers.

Main Features:

• Simple: when you write a flow, the deciders and the activity workers are automatically generated. No extra work
is required.

• Retry mechanisms: if an activity has failed, you can set a maximum of retries. It ends up very useful when you
work with external APIs.

• Scalable timeouts: all the timeout are calculated and consider other running workflows.

• Activity Generators: some workflows requires more than one instance of a specific activity.

4.1.2 Code Sample

Before going onto the details, let’s take a quick look at the Garcon’s implementation of Serial Activity Execution:

from garcon import activity
from garcon import runners

domain = 'dev'
name = 'boto_tutorial'
create = activity.create(domain, name)

a_tasks = create(

9

http://www.theorchard.com/about-us/jobs/
http://docs.pythonboto.org/en/latest/swf_tut.html#serial-activity-execution

Garcon, Documentation, Release 0.0.4

name='a_tasks',
run=runner.Sync(

lambda context, activity: dict(result='Now don’t be givin him sambuca!'))

b_tasks = create(
name='b_tasks',
requires=[a_tasks],
run=runner.Sync(

lambda context, activity: print(context)))

c_tasks = create(
name='c_tasks',
requires=[b_tasks],
run=runner.Sync(

lambda context, activity: print(context)))

By way of comparison, check out the implementation using directly boto.

Note: Notes: Executing this code shows that the activity “a_tasks” returns a dictionary which hydrates the execution
context. When the activity “b_tasks” is executed, the context passed for its execution contains the key/value
previously passed as an output. Same observation can be done in “c_tasks”.

All activities are running in series. More examples (including runners) are available online.

4.1.3 Generators

Generators spawn one or more instances of an activity based on values provided in the context.

One of our use case includes a job that calls an API each day to get metrics for all the countries in the world. If the
API fails for one country, the entire activity fails—retrying it means we will have to restart the entire list of countries.

Instead of having one activity to do all calls, it’s a lot more robust to have one activity per country and have a retry
mechanism applied to it. Failures will only be contained for one country that has failed instead of all.

Note: Be aware that SWF has a limit on the number of events the history can hold, always make sure the number of
activities spawned by the generator will allow enough room.

Example:

from garcon import activity
from garcon import runner
from garcon import task
import random

domain = 'dev'
name = 'country_flow'
create = activity.create(domain, name)

def country_generator(context):
We limit this so you can more easily see the failures / retries.
total_countries = 6
for country_id in range(1, total_countries):

yield {'generator.country_id': country_id}

@task.decorate()

10 Chapter 4. Documentation

https://gist.github.com/xethorn/62695a072bb4f15726fd
https://github.com/xethorn/garcon/tree/master/example

Garcon, Documentation, Release 0.0.4

def unstable_country_task(activity, country_id):
num = int(random.random() * 4)
base = 'activity_2_country_id_{country_id}'.format(

country_id=country_id)

if num == 3:
Make the task randomly fail.
print(base, 'has failed')
raise Exception('fails')

print(base, 'has succeeded')

test_activity_1 = create(
name='activity_1',
tasks=runner.Sync(

lambda context, activity: print('activity_1')))

test_activity_2 = create(
name='activity_2',
requires=[test_activity_1],
generators=[

country_generator],
retry=3,
tasks=runner.Sync(

unstable_country_task.fill(country_id='generator.country_id')))

test_activity_3 = create(
name='activity_3',
requires=[test_activity_2],
tasks=runner.Sync(

lambda context, activity: print('end of flow')))

Note: Generators attribute takes a list of generators. If you have a flow that has a date range, list of countries, you can
create activities that corresponds to one day and one specific countries. If you have 10 days in your range and
20 countries, you will run 200 activities.

4.2 Api

4.2.1 Activity

Activities are self generated classes to which you can pass an identifier, and a list of tasks to perform. The activities
are in between the decider and the tasks.

For ease, two types of task runners are available: Sync and Async. If you need something more specific, you should
either create your own runner, or you should create a main task that will then split the work.

Create an activity:

from garcon import activity

First step is to create the workflow on a specific domain.
create = activity.create('domain')

initial_activity = create(
Name of your activity

4.2. Api 11

Garcon, Documentation, Release 0.0.4

name='activity_name',

List of tasks to run (here we use the Sync runner)
run=runner.Sync(task1),

No requires since it's the first one. Later in your flow, if you have
a dependency, just use the variable that contains the activity.
requires=[],

If the activity fails, number of times you want to retry.
retry=0,

If you want to run the activity `n` times, you can use a generator.
generator=[generator_name])

class garcon.activity.Activity(**kwargs)
Bases: boto.swf.layer2.ActivityWorker, garcon.log.GarconLogger

execute_activity(context)
Execute the runner.

Parameters context (dict) – The flow context.

hydrate(data)
Hydrate the task with information provided.

Parameters data (dict) – the data to use (if defined.)

instances(context)
Get all instances for one activity based on the current context.

There are two scenarios: when the activity worker has a generator and when it does not. When it doesn’t
(the most simple case), there will always be one instance returned.

Generators will however consume the context to calculate how many instances of the activity are needed
– and it will generate them (regardless of their state.)

Parameters context (dict) – the current context.

Returns

all the instances of the activity (for a current workflow execution.)

Return type list

poll_for_activity(*args, **kwargs)
Runs Activity Poll.

If a SWF throttling exception is raised during a poll, the poll will be retried up to 5 times using exponential
backoff algorithm.

Upgrading to boto3 would make this retry logic redundant.

Parameters identity (str) – Identity of the worker making the request, which is recorded
in the ActivityTaskStarted event in the AWS console. This enables diagnostic tracing when
problems arise.

run(identity=None)
Activity Runner.

Information is being pulled down from SWF and it checks if the Activity can be ran. As part of the
information provided, the input of the previous activity is consumed (context).

12 Chapter 4. Documentation

https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#str

Garcon, Documentation, Release 0.0.4

Parameters activity_id (str) – Identity of the worker making the request, which is
recorded in the ActivityTaskStarted event in the AWS console. This enables diagnostic trac-
ing when problems arise.

task_list = None

version = '1.0'

class garcon.activity.ActivityInstance(activity_worker, local_context=None, execu-
tion_context=None)

activity_name
Return the activity name of the worker.

create_execution_input()
Create the input of the activity from the context.

AWS has a limit on the number of characters that can be used (32k). If you use the task.decorate, the data
sent to the activity is optimized to match the values of the context as well as the execution context.

Returns the input to send to the activity.

Return type dict

heartbeat_timeout
Return the heartbeat in seconds.

This heartbeat corresponds on when an activity needs to send a signal to swf that it is still running. This
will set the value when the activity is scheduled.

Returns Task list timeout.

Return type int

id
Generate the id of the activity.

The id is crutial (not just important): it allows to indentify the state the activity instance in the event history
(if it has failed, been executed, or marked as completed.)

Returns

composed of the activity name (task list), and the activity id.

Return type str

retry
Return the number of retries allowed (matches the worker.)

runner
Shortcut to get access to the runner.

Raises runner.RunnerMissing – an activity should always have a runner, if the runner
is missing an exception is raised (we will not be able to calculate values such as timeouts
without a runner.)

Returns the activity runner.

Return type Runner

schedule_to_close
Return the schedule to close timeout.

The schedule to close timeout is a simple calculation that defines when an activity (from the moment it
has been scheduled) should end. It is a calculation between the schedule to start timeout and the activity
timeout.

4.2. Api 13

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#str

Garcon, Documentation, Release 0.0.4

Returns Schedule to close timeout.

Return type int

schedule_to_start
Return the schedule to start timeout.

The schedule to start timeout assumes that only one activity worker is available (since swf does not provide
a count of available workers). So if the default value is 5 minutes, and you have 10 instances: the schedule
to start will be 50 minutes for all instances.

Returns Schedule to start timeout.

Return type int

timeout
Return the timeout in seconds.

This timeout corresponds on when the activity has started and when we assume the activity has ended
(which corresponds in boto to start_to_close_timeout.)

Returns Task list timeout.

Return type int

exception garcon.activity.ActivityInstanceNotReadyException
Bases: exceptions.Exception

Exception when an activity instance is not ready.

Activity instances that are considered not ready are instances that have not completed.

class garcon.activity.ActivityState(activity_id)
Provides information about a specific activity instance state (if the instance is already scheduled, has failed, or
has been completed.) Along with the default values, this class also provides additional metadata such as the
result of an activity instance.

add_state(state)
Add a state in the activity execution.

Parameters state (int) – the state of the activity to add (see activity.py)

get_last_state()
Get the last state of the activity execution.

Returns the state of the activity (see: activity.py)

Return type int

ready
Check if an activity is ready.

result
Get the result.

set_result(result)
Set the result of the activity.

This method sometimes throws an exception: an activity id can only have one result.

Parameters result (dict) – Result of the activity.

wait()
Wait until ready.

14 Chapter 4. Documentation

https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/exceptions.html#exceptions.Exception
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/stdtypes.html#dict

Garcon, Documentation, Release 0.0.4

class garcon.activity.ActivityWorker(flow, activities=None)

run()
Run the activities.

class garcon.activity.ExternalActivity(timeout=None, heartbeat=None)
Bases: garcon.activity.Activity

External activity

One of the main advantages of SWF is the ability to write a workflow that has activities written in any languages.
The external activity class allows to write the workflow in Garcon and benefit from some features (timeout
calculation among other things, sending context data.)

run()
Run the external activity.

This activity is handled outside, so the run method should remain unimplemented and return False (so the
run loop stops.)

garcon.activity.count_activity_failures(states)
Count the number of times an activity has failed.

Parameters states (dict) – list of activity states.

Returns The number of times an activity has failed.

Return type int

garcon.activity.create(domain, name, version=’1.0’, on_exception=None)
Helper method to create Activities.

The helper method simplifies the creation of an activity by setting the domain, the task list, and the activity
dependencies (what other activities) need to be completed before this one can run.

Note: The task list is generated based on the domain and the name of the activity. Always make sure your
activity name is unique.

Parameters

• domain (str) – the domain name.

• name (str) – name of the activity.

• version (str) – activity version.

• on_exception (callable) – the error handler.

Returns activity generator.

Return type callable

garcon.activity.find_activities(flow, context)
Retrieves all the activities from a flow.

Parameters flow (module) – the flow module.

Returns All the activity instances for the flow.

Return type list

4.2. Api 15

https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#callable
https://docs.python.org/2/library/functions.html#callable

Garcon, Documentation, Release 0.0.4

garcon.activity.find_available_activities(flow, history, context)
Find all available activity instances of a flow.

The history contains all the information of our activities (their state). This method focuses on finding all the
activities that need to run.

Parameters

• flow (module) – the flow module.

• history (dict) – the history information.

• context (dict) – from the context find the available activities.

garcon.activity.find_uncomplete_activities(flow, history, context)
Find uncomplete activity instances.

Uncomplete activities are all the activities that are not marked as completed.

Parameters

• flow (module) – the flow module.

• history (dict) – the history information.

• context (dict) – from the context find the available activities.

Yields activity – The available activity.

garcon.activity.find_workflow_activities(flow)
Retrieves all the activities from a flow

Parameters flow (module) – the flow module.

Returns all the activities.

Return type list

garcon.activity.worker_runner(worker)
Run indefinitely the worker.

Parameters worker (object) – the Activity worker.

4.2.2 Decider Worker

The decider worker is focused on orchestrating which activity needs to be executed and when based on the flow
procided.

class garcon.decider.DeciderWorker(flow, register=True)
Bases: boto.swf.layer2.Decider, garcon.log.GarconLogger

create_decisions_from_flow(decisions, activity_states, context)
Create the decisions from the flow.

Simple flows don’t need a custom decider, since all the requirements can be provided at the activity level.
Discovery of the next activity to schedule is thus very straightforward.

Parameters

• decisions (Layer1Decisions) – the layer decision for swf.

• activity_states (dict) – all the state activities.

• context (dict) – the context of the activities.

16 Chapter 4. Documentation

https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/stdtypes.html#dict

Garcon, Documentation, Release 0.0.4

delegate_decisions(decisions, decider, history, context)
Delegate the decisions.

For more complex flows (the ones that have, for instance, optional activities), you can write your own
decider. The decider receives a method schedule which schedule the activity if not scheduled yet, and if
scheduled, returns its result.

Parameters

• decisions (Layer1Decisions) – the layer decision for swf.

• decider (callable) – the decider (it needs to have schedule)

• history (dict) – all the state activities and its history.

• context (dict) – the context of the activities.

get_activity_states(history)
Get the activity states from the history.

From the full history extract the different activity states. Those states contain

Parameters history (list) – the full history.

Returns

list of all the activities and their state. It only contains activities that have been sched-
uled with AWS.

Return type dict

get_history(poll)
Get all the history.

The full history needs to be recovered from SWF to make sure that all the activities have been properly
scheduled. With boto, only the last 100 events are provided, this methods retrieves all events.

Parameters poll (object) – The poll object (see AWS SWF for details.)

Returns All the events.

Return type list

register()
Register the Workflow on SWF.

To work, SWF needs to have pre-registered the domain, the workflow, and the different activities, this
method takes care of this part.

run(identity=None)
Run the decider.

The decider defines which task needs to be launched and when based on the list of events provided. It
looks at the list of all the available activities, and launch the ones that:

• are not been scheduled yet.

• have all the dependencies resolved.

If the decider is not able to find an uncompleted activity, the workflow can safely mark its execution as
complete.

Parameters identity (str) – Identity of the worker making the request, which is recorded
in the DecisionTaskStarted event in the AWS console. This enables diagnostic tracing when
problems arise.

Returns

4.2. Api 17

https://docs.python.org/2/library/functions.html#callable
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#str

Garcon, Documentation, Release 0.0.4

Always return true, so any loop on run can act as a long running process.

Return type boolean

class garcon.decider.ScheduleContext
The schedule context keeps track of all the current scheduling progress – which allows to easy determinate if
there are more decisions to be taken or if the execution can be closed.

mark_uncompleted()
Mark the scheduling as completed.

When a scheduling is completed, it means all the activities have been properly scheduled and they have all
completed.

garcon.decider.ensure_requirements(requires)
Ensure scheduling meets requirements.

Verify the state of the requirements to make sure the activity can be scheduled.

Parameters requires (list) – list of all requirements.

Throws:

ActivityInstanceNotReadyException: if one of the activity in the requirements is not ready.

garcon.decider.schedule(decisions, schedule_context, history, context, schedule_id, current_activity,
requires=None, input=None, version=’1.0’)

Schedule an activity.

Scheduling an activity requires all the requirements to be completed (all activities should be marked as com-
pleted). The scheduler also mixes the input with the full execution context to send the data to the activity.

Parameters

• decisions (Layer1Decisions) – the layer decision for swf.

• schedule_context (dict) – information about the schedule.

• history (dict) – history of the execution.

• context (dict) – context of the execution.

• schedule_id (str) – the id of the activity to schedule.

• current_activity (Activity) – the activity to run.

• requires (list) – list of all requirements.

• input (dict) – additional input for the context.

Throws:

ActivityInstanceNotReadyException: if one of the activity in the requirements is not ready.

Returns the state of the schedule (contains the response).

Return type State

garcon.decider.schedule_activity_task(decisions, instance, version=’1.0’, id=None)
Schedule an activity task.

Parameters

• decisions (Layer1Decisions) – the layer decision for swf.

• instance (ActivityInstance) – the activity instance to schedule.

18 Chapter 4. Documentation

https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/stdtypes.html#dict

Garcon, Documentation, Release 0.0.4

• version (str) – the version of the activity instance.

• id (str) – optional id of the activity instance.

garcon.event.activity_states_from_events(events)
Get activity states from a list of events.

The workflow events contains the different states of our activities. This method consumes the logs, and regen-
erates a dictionnary with the list of all the activities and their states.

Note: Please note: from the list of events, only activities that have been registered are accessible. For all the
others that have not yet started, they won’t be part of this list.

Parameters events (dict) – list of all the events.

Returns the activities and their state.

Return type dict

garcon.event.get_current_context(events)
Get the current context from the list of events.

Each activity returns bits of information that needs to be provided to the next activities.

Parameters events (list) – List of events.

Returns The current context.

Return type dict

Garcon logger module

class garcon.log.GarconLogger
This class is meant to be extended to get the Garcon logger feature The logger injects the execution context into
the logger name.

This is used by the Activity class in Garcon and allows you to log from the activity object. Typically, you
can log from a Garcon task and it will prefix your log messages with execution context information (domain,
workflow_id, run_id).

Requirements: Your loggers need to be set up so there is at least one of them with a name prefixed with
LOGGER_PREFIX. The Garcon logger will inherit the handlers from that logger.

The formatter for your handler(s) must use the logger name. Formatter Example:

%(asctime)s - %(name)s - %(levelname)s - %(message)s

This formatter will generate a log message as follow: ‘2015-01-15 - garcon.[domain].[workflow_id].[run_id] -
[level] - [message]’

logger
Return the appropriate logger. Default to LOGGER_PREFIX if no logger name was set.

Returns a logger object

Return type logging.Logger

set_log_context(execution_context)
Set a logger name with execution context passed in.

Parameters execution_context (dict) – execution context information

4.2. Api 19

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/logging.html#logging.Logger
https://docs.python.org/2/library/stdtypes.html#dict

Garcon, Documentation, Release 0.0.4

unset_log_context()
Unset the logger name.

garcon.log.get_logger_namespace(execution_context)
Return the logger namespace for a given execution context.

Parameters execution_context (dict) – execution context information

4.2.3 Task runners

The task runners are responsible for running all the tasks (either in series or in parallel). There’s only one task runner
per activity.

class garcon.runner.Async(*args, **kwargs)
Bases: garcon.runner.BaseRunner

execute(activity, context)

class garcon.runner.BaseRunner(*args)

execute(activity, context)
Execution of the tasks.

heartbeat(context)
Calculate and return the heartbeat for an activity.

The heartbeat represents when an actvitity should be sending a signal to SWF that it has not completed
yet. The heartbeat is sent everytime a new task is going to be launched.

Similar to the BaseRunner.timeout, the heartbeat is pessimistic, it looks at the largest heartbeat and set it
up.

Returns

The heartbeat timeout (boto requires the timeout to be a string not a regular number.)

Return type str

requirements(context)
Find all the requirements from the list of tasks and return it.

If a task does not use the task.decorate, no assumptions can be made on which values from the context will
be used, and it will raise an exception.

Raise:

NoRequirementFound: The exception when no requirements have been mentioned in at least
one or more tasks.

Returns the list of the required values from the context.

Return type set

timeout(context)
Calculate and return the timeout for an activity.

The calculation of the timeout is pessimistic: it takes the worse case scenario (even for asynchronous task
lists, it supposes there is only one thread completed at a time.)

Returns

The timeout (boto requires the timeout to be a string and not a regular number.)

20 Chapter 4. Documentation

https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/stdtypes.html#set

Garcon, Documentation, Release 0.0.4

Return type str

class garcon.runner.External(timeout=None, heartbeat=None)
Bases: garcon.runner.BaseRunner

exception garcon.runner.NoRunnerRequirementsFound
Bases: exceptions.Exception

exception garcon.runner.RunnerMissing
Bases: exceptions.Exception

class garcon.runner.Sync(*args)
Bases: garcon.runner.BaseRunner

execute(activity, context)

4.2.4 Task

Tasks are small discrete applications that are meant to perform a defined action within an activity. An activity can have
more than one task, they can run in series or in parallel.

Tasks can add values to the context by returning a dictionary that contains the informations to add (useful if you need
to pass information from one task – in an activity, to another activity’s task.)

Note: If you need a task runner that is not covered by the two scenarios below, you may need to just have a main task,
and have this task split the work the way you want.

garcon.task.contextify(fn)
Decorator to take values from the context and apply them to fn.

The goal of this decorator is to allow methods to be called with different values from the same context. For
instance: if you need to increase the throughtput of two different dynamodb tables, you will need to pass a table
name, table index, and the new throughtput.

If you have more than one table, it gets difficult to manage. With this decorator, it’s a little easier:

@contextify
def increase_dynamodb_throughtput(

activity, context, table_name=None, table_index=None,
table_throughtput=None):

print(table_name)
activity_task = increase_dynamodb_throughtput.fill(

table_name='dynamodb.table_name1',
table_index='dynamodb.table_index1',
table_throughtput='dynamodb.table_throughtput1')

context = dict(
'dynamodb.table_name1': 'table_name',
'dynamodb.table_index1': 'index',
'dynamodb.table_throughtput1': 'throughtput1')

activity_task(..., context) # shows table_name

garcon.task.decorate(timeout=None, heartbeat=None, enable_contextify=True)
Generic task decorator for tasks.

Parameters

• timeout (int) – The timeout of the task (see timeout).

• heartbeat (int) – The heartbeat timeout.

4.2. Api 21

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/exceptions.html#exceptions.Exception
https://docs.python.org/2/library/exceptions.html#exceptions.Exception
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int

Garcon, Documentation, Release 0.0.4

• contextify (boolean) – If the task can be contextified (see contextify).

Returns The wrapper.

Return type callable

garcon.task.fill_function_call(fn, requirements, activity, context)
Fill a function calls from values from the context to the variable.

Parameters

• fn (callable) – the function to call.

• requirements (dict) – the requirements. The key represent the variable name and the
value represents where the value is in the context.

• activity (ActivityWorker) – the current activity worker.

• context (dict) – the current context.

Returns The arguments to call the method with.

Return type dict

garcon.task.flatten(callables, context=None)
Flatten the tasks.

The task list is a mix of tasks and generators. The task generators are consuming the context and spawning new
tasks. This method flattens everything into one list.

Parameters callables (list) – list of callables (including tasks and generators.)

Yields callable – one of the task.

garcon.task.is_task_list(fn)
Check if a function is a task list.

Returns if a function is a task list.

Return type boolean

garcon.task.list(fn)
Wrapper for a callable to define a task generator.

Generators are used to check values in the context and schedule different tasks based on it. Note: depending on
the tasks returned by the generator, the timout values will be calculated differently.

For instance:

@task.list
def create_client(context):

yield create_user.fill(
username='context.username',
email='context.email')

if context.get('context.credit_card'):
yield create_credit_card.fill(

username='context.username',
credit_card='context.credit_card')

yield send_email.fill(email='context.email')

garcon.task.namespace_result(dictionary, namespace)
Namespace the response

This method takes the keys in the map and add a prefix to all the keys (the namespace):

22 Chapter 4. Documentation

https://docs.python.org/2/library/functions.html#callable
https://docs.python.org/2/library/functions.html#callable
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/stdtypes.html#dict

Garcon, Documentation, Release 0.0.4

resp = dict(key='value', index='storage')
namespace_response(resp, 'namespace')
Returns: {'namespace.index': 'storage', 'namespace.key': 'value'}

Parameters

• dictionary (dict) – The dictionary to update.

• map (dict) – The keys to update.

Returns the updated dictionary

Return type Dict

garcon.task.timeout(time, heartbeat=None)
Wrapper for a task to define its timeout.

Parameters

• time (int) – the timeout in seconds

• heartbeat (int) – the heartbeat timeout (in seconds too.)

4.2.5 Utils

garcon.utils.create_dictionary_key(dictionary)
Create a key that represents the content of the dictionary.

Parameters dictionary (dict) – the dictionary to use.

Returns the key that represents the content of the dictionary.

Return type str

garcon.utils.non_throttle_error(swf_response_error)
Activity Runner.

Determine whether SWF Exception was a throttle or a different error.

Parameters error – boto.exception.SWFResponseError instance.

Returns True if SWFResponseError was a throttle, False otherwise.

Return type bool

garcon.utils.throttle_backoff_handler(details)
Callback to be used when a throttle backoff is invoked.

For more details see: https://github.com/litl/backoff/#event-handlers

Parameters dictionary (dict) – Details of the backoff invocation. Valid keys include:

target: reference to the function or method being invoked. args: positional arguments
to func. kwargs: keyword arguments to func. tries: number of invocation tries so
far. wait: seconds to wait (on_backoff handler only). value: value triggering backoff
(on_predicate decorator only).

4.2. Api 23

https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://github.com/litl/backoff/#event-handlers
https://docs.python.org/2/library/stdtypes.html#dict

Garcon, Documentation, Release 0.0.4

4.3 Release notes

4.3.1 What’s new in Garcon 0.0.4

May 12th, 2015

External Activities

SWF allows any activities to be written in any language (allowing the service to be fully polyglot). This change makes
it easier for Garcon to handle and work with external activities.

To define an external activity: simply set the flag external on the activity creation, and define (it’s mandatory) the
timeout and, if needed, the heartbeat timeout.

Change: #52 <https://github.com/xethorn/garcon/pull/52/>‘

24 Chapter 4. Documentation

CHAPTER 5

Licence

This web site and all documentation is licensed under Creative Commons 3.0.

25

http://creativecommons.org/licenses/by/3.0/

Garcon, Documentation, Release 0.0.4

26 Chapter 5. Licence

Python Module Index

g
garcon.activity, 11
garcon.decider, 16
garcon.event, 19
garcon.log, 19
garcon.runner, 20
garcon.task, 21
garcon.utils, 23

27

Garcon, Documentation, Release 0.0.4

28 Python Module Index

Index

A
Activity (class in garcon.activity), 12
activity_name (garcon.activity.ActivityInstance attribute),

13
activity_states_from_events() (in module garcon.event),

19
ActivityInstance (class in garcon.activity), 13
ActivityInstanceNotReadyException, 14
ActivityState (class in garcon.activity), 14
ActivityWorker (class in garcon.activity), 14
add_state() (garcon.activity.ActivityState method), 14
Async (class in garcon.runner), 20

B
BaseRunner (class in garcon.runner), 20

C
contextify() (in module garcon.task), 21
count_activity_failures() (in module garcon.activity), 15
create() (in module garcon.activity), 15
create_decisions_from_flow() (gar-

con.decider.DeciderWorker method), 16
create_dictionary_key() (in module garcon.utils), 23
create_execution_input() (gar-

con.activity.ActivityInstance method), 13

D
DeciderWorker (class in garcon.decider), 16
decorate() (in module garcon.task), 21
delegate_decisions() (garcon.decider.DeciderWorker

method), 16

E
ensure_requirements() (in module garcon.decider), 18
execute() (garcon.runner.Async method), 20
execute() (garcon.runner.BaseRunner method), 20
execute() (garcon.runner.Sync method), 21
execute_activity() (garcon.activity.Activity method), 12
External (class in garcon.runner), 21

ExternalActivity (class in garcon.activity), 15

F
fill_function_call() (in module garcon.task), 22
find_activities() (in module garcon.activity), 15
find_available_activities() (in module garcon.activity), 15
find_uncomplete_activities() (in module garcon.activity),

16
find_workflow_activities() (in module garcon.activity),

16
flatten() (in module garcon.task), 22

G
garcon.activity (module), 11
garcon.decider (module), 16
garcon.event (module), 19
garcon.log (module), 19
garcon.runner (module), 20
garcon.task (module), 21
garcon.utils (module), 23
GarconLogger (class in garcon.log), 19
get_activity_states() (garcon.decider.DeciderWorker

method), 17
get_current_context() (in module garcon.event), 19
get_history() (garcon.decider.DeciderWorker method), 17
get_last_state() (garcon.activity.ActivityState method), 14
get_logger_namespace() (in module garcon.log), 20

H
heartbeat() (garcon.runner.BaseRunner method), 20
heartbeat_timeout (garcon.activity.ActivityInstance at-

tribute), 13
hydrate() (garcon.activity.Activity method), 12

I
id (garcon.activity.ActivityInstance attribute), 13
instances() (garcon.activity.Activity method), 12
is_task_list() (in module garcon.task), 22

29

Garcon, Documentation, Release 0.0.4

L
list() (in module garcon.task), 22
logger (garcon.log.GarconLogger attribute), 19

M
mark_uncompleted() (garcon.decider.ScheduleContext

method), 18

N
namespace_result() (in module garcon.task), 22
non_throttle_error() (in module garcon.utils), 23
NoRunnerRequirementsFound, 21

P
poll_for_activity() (garcon.activity.Activity method), 12

R
ready (garcon.activity.ActivityState attribute), 14
register() (garcon.decider.DeciderWorker method), 17
requirements() (garcon.runner.BaseRunner method), 20
result (garcon.activity.ActivityState attribute), 14
retry (garcon.activity.ActivityInstance attribute), 13
run() (garcon.activity.Activity method), 12
run() (garcon.activity.ActivityWorker method), 15
run() (garcon.activity.ExternalActivity method), 15
run() (garcon.decider.DeciderWorker method), 17
runner (garcon.activity.ActivityInstance attribute), 13
RunnerMissing, 21

S
schedule() (in module garcon.decider), 18
schedule_activity_task() (in module garcon.decider), 18
schedule_to_close (garcon.activity.ActivityInstance at-

tribute), 13
schedule_to_start (garcon.activity.ActivityInstance

attribute), 14
ScheduleContext (class in garcon.decider), 18
set_log_context() (garcon.log.GarconLogger method), 19
set_result() (garcon.activity.ActivityState method), 14
Sync (class in garcon.runner), 21

T
task_list (garcon.activity.Activity attribute), 13
throttle_backoff_handler() (in module garcon.utils), 23
timeout (garcon.activity.ActivityInstance attribute), 14
timeout() (garcon.runner.BaseRunner method), 20
timeout() (in module garcon.task), 23

U
unset_log_context() (garcon.log.GarconLogger method),

19

V
version (garcon.activity.Activity attribute), 13

W
wait() (garcon.activity.ActivityState method), 14
worker_runner() (in module garcon.activity), 16

30 Index

	Requirements
	Goal
	Code sample
	Documentation
	User’s guide
	Api
	Release notes

	Licence
	Python Module Index

