

Garcon

Lightweight library for AWS SWF.

Requirements

	Python 2.7, 3.4 (tested)

	Boto 2.34.0 (tested)

Goal

The goal of this library is to allow the creation of Amazon Simple Workflow without the need to worry about the orchestration of the different activities and building out the different workers. This framework aims to help simple workflows. If you have a more complex case, you might want to use directly boto.

Code sample

The code sample shows a workflow that has 4 activities. It starts with activity_1, which after being completed schedule activity_2 and activity_3 to be ran in parallel. The workflow ends after the completion of activity_4 which requires activity_2 and activity_3 to be completed:

from __future__ import print_function

from garcon import activity
from garcon import runner

domain = 'dev'
create = activity.create(domain)

test_activity_1 = create(
 name='activity_1',
 tasks=runner.Sync(
 lambda activity, context: print('activity_1')))

test_activity_2 = create(
 name='activity_2',
 requires=[test_activity_1],
 run=runner.Async(
 lambda activity, context: print('activity_2_task_1'),
 lambda activity, context: print('activity_2_task_2')))

test_activity_3 = create(
 name='activity_3',
 requires=[test_activity_1],
 run=runner.Sync(
 lambda activity, context: print('activity_3')))

test_activity_4 = create(
 name='activity_4',
 requires=[test_activity_3, test_activity_2],
 run=runner.Sync(
 lambda activity, context: print('activity_4')))

Documentation

	User’s guide
	Introduction

	Code Sample

	Generators

	Api

	Release notes
	What’s new in Garcon 0.0.4

Licence

This web site and all documentation is licensed under Creative
Commons 3.0 [http://creativecommons.org/licenses/by/3.0/].

User’s guide

	Introduction

	Code Sample

	Generators

Introduction

Garcon is a Python library for Amazon SWF, originally built at
The Orchard [http://www.theorchard.com/about-us/jobs/].

The goal of this library is to allow the creation of workflows using SWF
without the need to worry about the orchestration of the different activities,
and build out the complex different workers.

Main Features:

	Simple: when you write a flow, the deciders and the activity workers are
automatically generated. No extra work is required.

	Retry mechanisms: if an activity has failed, you can set a maximum of retries.
It ends up very useful when you work with external APIs.

	Scalable timeouts: all the timeout are calculated and consider other running
workflows.

	Activity Generators: some workflows requires more
than one instance of a specific activity.

Code Sample

Before going onto the details, let’s take a quick look at the Garcon’s
implementation of Serial Activity Execution [http://docs.pythonboto.org/en/latest/swf_tut.html#serial-activity-execution]:

from garcon import activity
from garcon import runners

domain = 'dev'
name = 'boto_tutorial'
create = activity.create(domain, name)

a_tasks = create(
 name='a_tasks',
 run=runner.Sync(
 lambda context, activity: dict(result='Now don’t be givin him sambuca!'))

b_tasks = create(
 name='b_tasks',
 requires=[a_tasks],
 run=runner.Sync(
 lambda context, activity: print(context)))

c_tasks = create(
 name='c_tasks',
 requires=[b_tasks],
 run=runner.Sync(
 lambda context, activity: print(context)))

By way of comparison, check out the implementation [https://gist.github.com/xethorn/62695a072bb4f15726fd]
using directly boto.

	Note:

	Notes: Executing this code shows that the activity “a_tasks” returns a
dictionary which hydrates the execution context. When the activity “b_tasks”
is executed, the context passed for its execution contains the key/value
previously passed as an output. Same observation can be done in “c_tasks”.

All activities are running in series. More examples [https://github.com/xethorn/garcon/tree/master/example]
(including runners) are available online.

Generators

Generators spawn one or more instances of an activity based on values provided
in the context.

One of our use case includes a job that calls an API each day to get metrics
for all the countries in the world. If the API fails for one country, the entire
activity fails — retrying it means we will have to restart the entire list of
countries.

Instead of having one activity to do all calls, it’s a lot more robust to have
one activity per country and have a retry mechanism applied to it. Failures
will only be contained for one country that has failed instead of all.

	Note:

	Be aware that SWF has a limit on the number of events the history can hold,
always make sure the number of activities spawned by the generator will
allow enough room.

Example:

from garcon import activity
from garcon import runner
from garcon import task
import random

domain = 'dev'
name = 'country_flow'
create = activity.create(domain, name)

def country_generator(context):
 # We limit this so you can more easily see the failures / retries.
 total_countries = 6
 for country_id in range(1, total_countries):
 yield {'generator.country_id': country_id}

@task.decorate()
def unstable_country_task(activity, country_id):
 num = int(random.random() * 4)
 base = 'activity_2_country_id_{country_id}'.format(
 country_id=country_id)

 if num == 3:
 # Make the task randomly fail.
 print(base, 'has failed')
 raise Exception('fails')

 print(base, 'has succeeded')

test_activity_1 = create(
 name='activity_1',
 tasks=runner.Sync(
 lambda context, activity: print('activity_1')))

test_activity_2 = create(
 name='activity_2',
 requires=[test_activity_1],
 generators=[
 country_generator],
 retry=3,
 tasks=runner.Sync(
 unstable_country_task.fill(country_id='generator.country_id')))

test_activity_3 = create(
 name='activity_3',
 requires=[test_activity_2],
 tasks=runner.Sync(
 lambda context, activity: print('end of flow')))

	Note:

	Generators attribute takes a list of generators. If you have a flow that
has a date range, list of countries, you can create activities that
corresponds to one day and one specific countries. If you have 10 days in
your range and 20 countries, you will run 200 activities.

Api

Activity

Activities are self generated classes to which you can pass an identifier,
and a list of tasks to perform. The activities are in between the decider and
the tasks.

For ease, two types of task runners are available: Sync and Async. If
you need something more specific, you should either create your own runner, or
you should create a main task that will then split the work.

Create an activity:

from garcon import activity

First step is to create the workflow on a specific domain.
create = activity.create('domain')

initial_activity = create(
 # Name of your activity
 name='activity_name',

 # List of tasks to run (here we use the Sync runner)
 run=runner.Sync(task1),

 # No requires since it's the first one. Later in your flow, if you have
 # a dependency, just use the variable that contains the activity.
 requires=[],

 # If the activity fails, number of times you want to retry.
 retry=0,

 # If you want to run the activity `n` times, you can use a generator.
 generator=[generator_name])

	
class garcon.activity.Activity(**kwargs)

	Bases: boto.swf.layer2.ActivityWorker, garcon.log.GarconLogger

	
execute_activity(context)

	Execute the runner.

	Parameters

	context (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – The flow context.

	
hydrate(data)

	Hydrate the task with information provided.

	Parameters

	data (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – the data to use (if defined.)

	
instances(context)

	Get all instances for one activity based on the current context.

There are two scenarios: when the activity worker has a generator and
when it does not. When it doesn’t (the most simple case), there will
always be one instance returned.

Generators will however consume the context to calculate how many
instances of the activity are needed – and it will generate them
(regardless of their state.)

	Parameters

	context (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – the current context.

	Returns

	
	all the instances of the activity (for a current workflow

	execution.)

	Return type

	list

	
poll_for_activity(*args, **kwargs)

	Runs Activity Poll.

If a SWF throttling exception is raised during a poll, the poll will
be retried up to 5 times using exponential backoff algorithm.

Upgrading to boto3 would make this retry logic redundant.

	Parameters

	identity (str [https://docs.python.org/2/library/functions.html#str]) – Identity of the worker making the request, which
is recorded in the ActivityTaskStarted event in the AWS
console. This enables diagnostic tracing when problems arise.

	
run(identity=None)

	Activity Runner.

Information is being pulled down from SWF and it checks if the Activity
can be ran. As part of the information provided, the input of the
previous activity is consumed (context).

	Parameters

	activity_id (str [https://docs.python.org/2/library/functions.html#str]) – Identity of the worker making the request, which
is recorded in the ActivityTaskStarted event in the AWS
console. This enables diagnostic tracing when problems arise.

	
task_list = None

	

	
version = '1.0'

	

	
class garcon.activity.ActivityInstance(activity_worker, local_context=None, execution_context=None)

	
	
activity_name

	Return the activity name of the worker.

	
create_execution_input()

	Create the input of the activity from the context.

AWS has a limit on the number of characters that can be used (32k). If
you use the task.decorate, the data sent to the activity is optimized
to match the values of the context as well as the execution context.

	Returns

	the input to send to the activity.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
heartbeat_timeout

	Return the heartbeat in seconds.

This heartbeat corresponds on when an activity needs to send a signal
to swf that it is still running. This will set the value when the
activity is scheduled.

	Returns

	Task list timeout.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

	
id

	Generate the id of the activity.

The id is crutial (not just important): it allows to indentify the
state the activity instance in the event history (if it has failed,
been executed, or marked as completed.)

	Returns

	
	composed of the activity name (task list), and the activity

	id.

	Return type

	str [https://docs.python.org/2/library/functions.html#str]

	
retry

	Return the number of retries allowed (matches the worker.)

	
runner

	Shortcut to get access to the runner.

	Raises

	runner.RunnerMissing – an activity should always have a runner,
if the runner is missing an exception is raised (we will not
be able to calculate values such as timeouts without a runner.)

	Returns

	the activity runner.

	Return type

	Runner

	
schedule_to_close

	Return the schedule to close timeout.

The schedule to close timeout is a simple calculation that defines when
an activity (from the moment it has been scheduled) should end. It is
a calculation between the schedule to start timeout and the activity
timeout.

	Returns

	Schedule to close timeout.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

	
schedule_to_start

	Return the schedule to start timeout.

The schedule to start timeout assumes that only one activity worker is
available (since swf does not provide a count of available workers). So
if the default value is 5 minutes, and you have 10 instances: the
schedule to start will be 50 minutes for all instances.

	Returns

	Schedule to start timeout.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

	
timeout

	Return the timeout in seconds.

This timeout corresponds on when the activity has started and when we
assume the activity has ended (which corresponds in boto to
start_to_close_timeout.)

	Returns

	Task list timeout.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

	
exception garcon.activity.ActivityInstanceNotReadyException

	Bases: exceptions.Exception [https://docs.python.org/2/library/exceptions.html#exceptions.Exception]

Exception when an activity instance is not ready.

Activity instances that are considered not ready are instances that have
not completed.

	
class garcon.activity.ActivityState(activity_id)

	Provides information about a specific activity instance state (if the
instance is already scheduled, has failed, or has been completed.) Along
with the default values, this class also provides additional metadata such
as the result of an activity instance.

	
add_state(state)

	Add a state in the activity execution.

	Parameters

	state (int [https://docs.python.org/2/library/functions.html#int]) – the state of the activity to add (see activity.py)

	
get_last_state()

	Get the last state of the activity execution.

	Returns

	the state of the activity (see: activity.py)

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

	
ready

	Check if an activity is ready.

	
result

	Get the result.

	
set_result(result)

	Set the result of the activity.

This method sometimes throws an exception: an activity id can only have
one result.

	Parameters

	result (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Result of the activity.

	
wait()

	Wait until ready.

	
class garcon.activity.ActivityWorker(flow, activities=None)

	
	
run()

	Run the activities.

	
class garcon.activity.ExternalActivity(timeout=None, heartbeat=None)

	Bases: garcon.activity.Activity

External activity

One of the main advantages of SWF is the ability to write a workflow that
has activities written in any languages. The external activity class allows
to write the workflow in Garcon and benefit from some features (timeout
calculation among other things, sending context data.)

	
run()

	Run the external activity.

This activity is handled outside, so the run method should remain
unimplemented and return False (so the run loop stops.)

	
garcon.activity.count_activity_failures(states)

	Count the number of times an activity has failed.

	Parameters

	states (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – list of activity states.

	Returns

	The number of times an activity has failed.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

	
garcon.activity.create(domain, name, version='1.0', on_exception=None)

	Helper method to create Activities.

The helper method simplifies the creation of an activity by setting the
domain, the task list, and the activity dependencies (what other
activities) need to be completed before this one can run.

Note

The task list is generated based on the domain and the name of the
activity. Always make sure your activity name is unique.

	Parameters

	
	domain (str [https://docs.python.org/2/library/functions.html#str]) – the domain name.

	name (str [https://docs.python.org/2/library/functions.html#str]) – name of the activity.

	version (str [https://docs.python.org/2/library/functions.html#str]) – activity version.

	on_exception (callable [https://docs.python.org/2/library/functions.html#callable]) – the error handler.

	Returns

	activity generator.

	Return type

	callable [https://docs.python.org/2/library/functions.html#callable]

	
garcon.activity.find_activities(flow, context)

	Retrieves all the activities from a flow.

	Parameters

	flow (module) – the flow module.

	Returns

	All the activity instances for the flow.

	Return type

	list

	
garcon.activity.find_available_activities(flow, history, context)

	Find all available activity instances of a flow.

The history contains all the information of our activities (their state).
This method focuses on finding all the activities that need to run.

	Parameters

	
	flow (module) – the flow module.

	history (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – the history information.

	context (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – from the context find the available activities.

	
garcon.activity.find_uncomplete_activities(flow, history, context)

	Find uncomplete activity instances.

Uncomplete activities are all the activities that are not marked as
completed.

	Parameters

	
	flow (module) – the flow module.

	history (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – the history information.

	context (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – from the context find the available activities.

	Yields

	activity – The available activity.

	
garcon.activity.find_workflow_activities(flow)

	Retrieves all the activities from a flow

	Parameters

	flow (module) – the flow module.

	Returns

	all the activities.

	Return type

	list

	
garcon.activity.worker_runner(worker)

	Run indefinitely the worker.

	Parameters

	worker (object [https://docs.python.org/2/library/functions.html#object]) – the Activity worker.

Decider Worker

The decider worker is focused on orchestrating which activity needs to be
executed and when based on the flow procided.

	
class garcon.decider.DeciderWorker(flow, register=True)

	Bases: boto.swf.layer2.Decider, garcon.log.GarconLogger

	
create_decisions_from_flow(decisions, activity_states, context)

	Create the decisions from the flow.

Simple flows don’t need a custom decider, since all the requirements
can be provided at the activity level. Discovery of the next activity
to schedule is thus very straightforward.

	Parameters

	
	decisions (Layer1Decisions) – the layer decision for swf.

	activity_states (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – all the state activities.

	context (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – the context of the activities.

	
delegate_decisions(decisions, decider, history, context)

	Delegate the decisions.

For more complex flows (the ones that have, for instance, optional
activities), you can write your own decider. The decider receives a
method schedule which schedule the activity if not scheduled yet,
and if scheduled, returns its result.

	Parameters

	
	decisions (Layer1Decisions) – the layer decision for swf.

	decider (callable [https://docs.python.org/2/library/functions.html#callable]) – the decider (it needs to have schedule)

	history (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – all the state activities and its history.

	context (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – the context of the activities.

	
get_activity_states(history)

	Get the activity states from the history.

From the full history extract the different activity states. Those
states contain

	Parameters

	history (list) – the full history.

	Returns

	
	list of all the activities and their state. It only contains

	activities that have been scheduled with AWS.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
get_history(poll)

	Get all the history.

The full history needs to be recovered from SWF to make sure that all
the activities have been properly scheduled. With boto, only the last
100 events are provided, this methods retrieves all events.

	Parameters

	poll (object [https://docs.python.org/2/library/functions.html#object]) – The poll object (see AWS SWF for details.)

	Returns

	All the events.

	Return type

	list

	
register()

	Register the Workflow on SWF.

To work, SWF needs to have pre-registered the domain, the workflow,
and the different activities, this method takes care of this part.

	
run(identity=None)

	Run the decider.

The decider defines which task needs to be launched and when based on
the list of events provided. It looks at the list of all the available
activities, and launch the ones that:

	are not been scheduled yet.

	have all the dependencies resolved.

If the decider is not able to find an uncompleted activity, the
workflow can safely mark its execution as complete.

	Parameters

	identity (str [https://docs.python.org/2/library/functions.html#str]) – Identity of the worker making the request, which
is recorded in the DecisionTaskStarted event in the AWS
console. This enables diagnostic tracing when problems arise.

	Returns

	
	Always return true, so any loop on run can act as a long

	running process.

	Return type

	boolean

	
class garcon.decider.ScheduleContext

	The schedule context keeps track of all the current scheduling progress –
which allows to easy determinate if there are more decisions to be taken
or if the execution can be closed.

	
mark_uncompleted()

	Mark the scheduling as completed.

When a scheduling is completed, it means all the activities have been
properly scheduled and they have all completed.

	
garcon.decider.ensure_requirements(requires)

	Ensure scheduling meets requirements.

Verify the state of the requirements to make sure the activity can be
scheduled.

	Parameters

	requires (list) – list of all requirements.

	Throws:

	
	ActivityInstanceNotReadyException: if one of the activity in the

	requirements is not ready.

	
garcon.decider.schedule(decisions, schedule_context, history, context, schedule_id, current_activity, requires=None, input=None, version='1.0')

	Schedule an activity.

Scheduling an activity requires all the requirements to be completed (all
activities should be marked as completed). The scheduler also mixes the
input with the full execution context to send the data to the activity.

	Parameters

	
	decisions (Layer1Decisions) – the layer decision for swf.

	schedule_context (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – information about the schedule.

	history (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – history of the execution.

	context (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – context of the execution.

	schedule_id (str [https://docs.python.org/2/library/functions.html#str]) – the id of the activity to schedule.

	current_activity (Activity) – the activity to run.

	requires (list) – list of all requirements.

	input (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – additional input for the context.

	Throws:

	
	ActivityInstanceNotReadyException: if one of the activity in the

	requirements is not ready.

	Returns

	the state of the schedule (contains the response).

	Return type

	State

	
garcon.decider.schedule_activity_task(decisions, instance, version='1.0', id=None)

	Schedule an activity task.

	Parameters

	
	decisions (Layer1Decisions) – the layer decision for swf.

	instance (ActivityInstance) – the activity instance to schedule.

	version (str [https://docs.python.org/2/library/functions.html#str]) – the version of the activity instance.

	id (str [https://docs.python.org/2/library/functions.html#str]) – optional id of the activity instance.

	
garcon.event.activity_states_from_events(events)

	Get activity states from a list of events.

The workflow events contains the different states of our activities. This
method consumes the logs, and regenerates a dictionnary with the list of
all the activities and their states.

Note

Please note: from the list of events, only activities that have been
registered are accessible. For all the others that have not yet
started, they won’t be part of this list.

	Parameters

	events (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – list of all the events.

	Returns

	the activities and their state.

	Return type

	dict

	
garcon.event.get_current_context(events)

	Get the current context from the list of events.

Each activity returns bits of information that needs to be provided to the
next activities.

	Parameters

	events (list) – List of events.

	Returns

	The current context.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Garcon logger module

	
class garcon.log.GarconLogger

	This class is meant to be extended to get the Garcon logger feature
The logger injects the execution context into the logger name.

This is used by the Activity class in Garcon and allows you to log from
the activity object. Typically, you can log from a Garcon task and it will
prefix your log messages with execution context information (domain,
workflow_id, run_id).

Requirements:
Your loggers need to be set up so there is at least one of them with a name
prefixed with LOGGER_PREFIX. The Garcon logger will inherit the handlers
from that logger.

The formatter for your handler(s) must use the logger name.
Formatter Example:

%(asctime)s - %(name)s - %(levelname)s - %(message)s

This formatter will generate a log message as follow:
‘2015-01-15 - garcon.[domain].[workflow_id].[run_id] - [level] - [message]’

	
logger

	Return the appropriate logger. Default to LOGGER_PREFIX if
no logger name was set.

	Returns

	a logger object

	Return type

	logging.Logger [https://docs.python.org/2/library/logging.html#logging.Logger]

	
set_log_context(execution_context)

	Set a logger name with execution context passed in.

	Parameters

	execution_context (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – execution context information

	
unset_log_context()

	Unset the logger name.

	
garcon.log.get_logger_namespace(execution_context)

	Return the logger namespace for a given execution context.

	Parameters

	execution_context (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – execution context information

Task runners

The task runners are responsible for running all the tasks (either in series
or in parallel). There’s only one task runner per activity.

	
class garcon.runner.Async(*args, **kwargs)

	Bases: garcon.runner.BaseRunner

	
execute(activity, context)

	

	
class garcon.runner.BaseRunner(*args)

	
	
execute(activity, context)

	Execution of the tasks.

	
heartbeat(context)

	Calculate and return the heartbeat for an activity.

The heartbeat represents when an actvitity should be sending a signal
to SWF that it has not completed yet. The heartbeat is sent everytime
a new task is going to be launched.

Similar to the BaseRunner.timeout, the heartbeat is pessimistic, it
looks at the largest heartbeat and set it up.

	Returns

	
	The heartbeat timeout (boto requires the timeout to be a

	string not a regular number.)

	Return type

	str [https://docs.python.org/2/library/functions.html#str]

	
requirements(context)

	Find all the requirements from the list of tasks and return it.

If a task does not use the task.decorate, no assumptions can be made
on which values from the context will be used, and it will raise an
exception.

	Raise:

	
	NoRequirementFound: The exception when no requirements have been

	mentioned in at least one or more tasks.

	Returns

	the list of the required values from the context.

	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]

	
timeout(context)

	Calculate and return the timeout for an activity.

The calculation of the timeout is pessimistic: it takes the worse case
scenario (even for asynchronous task lists, it supposes there is only
one thread completed at a time.)

	Returns

	
	The timeout (boto requires the timeout to be a string and not

	a regular number.)

	Return type

	str [https://docs.python.org/2/library/functions.html#str]

	
class garcon.runner.External(timeout=None, heartbeat=None)

	Bases: garcon.runner.BaseRunner

	
exception garcon.runner.NoRunnerRequirementsFound

	Bases: exceptions.Exception [https://docs.python.org/2/library/exceptions.html#exceptions.Exception]

	
exception garcon.runner.RunnerMissing

	Bases: exceptions.Exception [https://docs.python.org/2/library/exceptions.html#exceptions.Exception]

	
class garcon.runner.Sync(*args)

	Bases: garcon.runner.BaseRunner

	
execute(activity, context)

	

Task

Tasks are small discrete applications that are meant to perform a defined
action within an activity. An activity can have more than one task, they can
run in series or in parallel.

Tasks can add values to the context by returning a dictionary that contains
the informations to add (useful if you need to pass information from one
task – in an activity, to another activity’s task.)

Note

If you need a task runner that is not covered by the two scenarios below,
you may need to just have a main task, and have this task split the work
the way you want.

	
garcon.task.contextify(fn)

	Decorator to take values from the context and apply them to fn.

The goal of this decorator is to allow methods to be called with different
values from the same context. For instance: if you need to increase the
throughtput of two different dynamodb tables, you will need to pass a
table name, table index, and the new throughtput.

If you have more than one table, it gets difficult to manage. With this
decorator, it’s a little easier:

@contextify
def increase_dynamodb_throughtput(
 activity, context, table_name=None, table_index=None,
 table_throughtput=None):
 print(table_name)
activity_task = increase_dynamodb_throughtput.fill(
 table_name='dynamodb.table_name1',
 table_index='dynamodb.table_index1',
 table_throughtput='dynamodb.table_throughtput1')
context = dict(
 'dynamodb.table_name1': 'table_name',
 'dynamodb.table_index1': 'index',
 'dynamodb.table_throughtput1': 'throughtput1')
activity_task(..., context) # shows table_name

	
garcon.task.decorate(timeout=None, heartbeat=None, enable_contextify=True)

	Generic task decorator for tasks.

	Parameters

	
	timeout (int [https://docs.python.org/2/library/functions.html#int]) – The timeout of the task (see timeout).

	heartbeat (int [https://docs.python.org/2/library/functions.html#int]) – The heartbeat timeout.

	contextify (boolean) – If the task can be contextified (see contextify).

	Returns

	The wrapper.

	Return type

	callable [https://docs.python.org/2/library/functions.html#callable]

	
garcon.task.fill_function_call(fn, requirements, activity, context)

	Fill a function calls from values from the context to the variable.

	Parameters

	
	fn (callable [https://docs.python.org/2/library/functions.html#callable]) – the function to call.

	requirements (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – the requirements. The key represent the variable
name and the value represents where the value is in the context.

	activity (ActivityWorker) – the current activity worker.

	context (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – the current context.

	Returns

	The arguments to call the method with.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
garcon.task.flatten(callables, context=None)

	Flatten the tasks.

The task list is a mix of tasks and generators. The task generators are
consuming the context and spawning new tasks. This method flattens
everything into one list.

	Parameters

	callables (list) – list of callables (including tasks and generators.)

	Yields

	callable – one of the task.

	
garcon.task.is_task_list(fn)

	Check if a function is a task list.

	Returns

	if a function is a task list.

	Return type

	boolean

	
garcon.task.list(fn)

	Wrapper for a callable to define a task generator.

Generators are used to check values in the context and schedule different
tasks based on it. Note: depending on the tasks returned by the generator,
the timout values will be calculated differently.

For instance:

@task.list
def create_client(context):
 yield create_user.fill(
 username='context.username',
 email='context.email')
 if context.get('context.credit_card'):
 yield create_credit_card.fill(
 username='context.username',
 credit_card='context.credit_card')
 yield send_email.fill(email='context.email')

	
garcon.task.namespace_result(dictionary, namespace)

	Namespace the response

This method takes the keys in the map and add a prefix to all the keys
(the namespace):

resp = dict(key='value', index='storage')
namespace_response(resp, 'namespace')
Returns: {'namespace.index': 'storage', 'namespace.key': 'value'}

	Parameters

	
	dictionary (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – The dictionary to update.

	map (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – The keys to update.

	Returns

	the updated dictionary

	Return type

	Dict

	
garcon.task.timeout(time, heartbeat=None)

	Wrapper for a task to define its timeout.

	Parameters

	
	time (int [https://docs.python.org/2/library/functions.html#int]) – the timeout in seconds

	heartbeat (int [https://docs.python.org/2/library/functions.html#int]) – the heartbeat timeout (in seconds too.)

Utils

	
garcon.utils.create_dictionary_key(dictionary)

	Create a key that represents the content of the dictionary.

	Parameters

	dictionary (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – the dictionary to use.

	Returns

	the key that represents the content of the dictionary.

	Return type

	str [https://docs.python.org/2/library/functions.html#str]

	
garcon.utils.non_throttle_error(swf_response_error)

	Activity Runner.

Determine whether SWF Exception was a throttle or a different error.

	Parameters

	error – boto.exception.SWFResponseError instance.

	Returns

	True if SWFResponseError was a throttle, False otherwise.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

	
garcon.utils.throttle_backoff_handler(details)

	Callback to be used when a throttle backoff is invoked.

For more details see: https://github.com/litl/backoff/#event-handlers

	Parameters

	dictionary (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Details of the backoff invocation. Valid keys
include:

target: reference to the function or method being invoked.
args: positional arguments to func.
kwargs: keyword arguments to func.
tries: number of invocation tries so far.
wait: seconds to wait (on_backoff handler only).
value: value triggering backoff (on_predicate decorator only).

Release notes

	What’s new in Garcon 0.0.4
	May 12th, 2015

What’s new in Garcon 0.0.4

May 12th, 2015

External Activities

SWF allows any activities to be written in any language (allowing the service
to be fully polyglot). This change makes it easier for Garcon to handle and
work with external activities.

To define an external activity: simply set the flag external on the activity
creation, and define (it’s mandatory) the timeout and, if needed, the
heartbeat timeout.

Change: #52 <https://github.com/xethorn/garcon/pull/52/>`

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 garcon	

 	
 	
 garcon.activity	

 	
 	
 garcon.decider	

 	
 	
 garcon.event	

 	
 	
 garcon.log	

 	
 	
 garcon.runner	

 	
 	
 garcon.task	

 	
 	
 garcon.utils	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	Activity (class in garcon.activity)

 	activity_name (garcon.activity.ActivityInstance attribute)

 	activity_states_from_events() (in module garcon.event)

 	ActivityInstance (class in garcon.activity)

 	
 	ActivityInstanceNotReadyException

 	ActivityState (class in garcon.activity)

 	ActivityWorker (class in garcon.activity)

 	add_state() (garcon.activity.ActivityState method)

 	Async (class in garcon.runner)

B

 	
 	BaseRunner (class in garcon.runner)

C

 	
 	contextify() (in module garcon.task)

 	count_activity_failures() (in module garcon.activity)

 	create() (in module garcon.activity)

 	
 	create_decisions_from_flow() (garcon.decider.DeciderWorker method)

 	create_dictionary_key() (in module garcon.utils)

 	create_execution_input() (garcon.activity.ActivityInstance method)

D

 	
 	DeciderWorker (class in garcon.decider)

 	
 	decorate() (in module garcon.task)

 	delegate_decisions() (garcon.decider.DeciderWorker method)

E

 	
 	ensure_requirements() (in module garcon.decider)

 	execute() (garcon.runner.Async method)

 	(garcon.runner.BaseRunner method)

 	(garcon.runner.Sync method)

 	
 	execute_activity() (garcon.activity.Activity method)

 	External (class in garcon.runner)

 	ExternalActivity (class in garcon.activity)

F

 	
 	fill_function_call() (in module garcon.task)

 	find_activities() (in module garcon.activity)

 	find_available_activities() (in module garcon.activity)

 	
 	find_uncomplete_activities() (in module garcon.activity)

 	find_workflow_activities() (in module garcon.activity)

 	flatten() (in module garcon.task)

G

 	
 	garcon.activity (module)

 	garcon.decider (module)

 	garcon.event (module)

 	garcon.log (module)

 	garcon.runner (module)

 	garcon.task (module)

 	
 	garcon.utils (module)

 	GarconLogger (class in garcon.log)

 	get_activity_states() (garcon.decider.DeciderWorker method)

 	get_current_context() (in module garcon.event)

 	get_history() (garcon.decider.DeciderWorker method)

 	get_last_state() (garcon.activity.ActivityState method)

 	get_logger_namespace() (in module garcon.log)

H

 	
 	heartbeat() (garcon.runner.BaseRunner method)

 	
 	heartbeat_timeout (garcon.activity.ActivityInstance attribute)

 	hydrate() (garcon.activity.Activity method)

I

 	
 	id (garcon.activity.ActivityInstance attribute)

 	
 	instances() (garcon.activity.Activity method)

 	is_task_list() (in module garcon.task)

L

 	
 	list() (in module garcon.task)

 	
 	logger (garcon.log.GarconLogger attribute)

M

 	
 	mark_uncompleted() (garcon.decider.ScheduleContext method)

N

 	
 	namespace_result() (in module garcon.task)

 	
 	non_throttle_error() (in module garcon.utils)

 	NoRunnerRequirementsFound

P

 	
 	poll_for_activity() (garcon.activity.Activity method)

R

 	
 	ready (garcon.activity.ActivityState attribute)

 	register() (garcon.decider.DeciderWorker method)

 	requirements() (garcon.runner.BaseRunner method)

 	result (garcon.activity.ActivityState attribute)

 	retry (garcon.activity.ActivityInstance attribute)

 	
 	run() (garcon.activity.Activity method)

 	(garcon.activity.ActivityWorker method)

 	(garcon.activity.ExternalActivity method)

 	(garcon.decider.DeciderWorker method)

 	runner (garcon.activity.ActivityInstance attribute)

 	RunnerMissing

S

 	
 	schedule() (in module garcon.decider)

 	schedule_activity_task() (in module garcon.decider)

 	schedule_to_close (garcon.activity.ActivityInstance attribute)

 	schedule_to_start (garcon.activity.ActivityInstance attribute)

 	
 	ScheduleContext (class in garcon.decider)

 	set_log_context() (garcon.log.GarconLogger method)

 	set_result() (garcon.activity.ActivityState method)

 	Sync (class in garcon.runner)

T

 	
 	task_list (garcon.activity.Activity attribute)

 	throttle_backoff_handler() (in module garcon.utils)

 	
 	timeout (garcon.activity.ActivityInstance attribute)

 	timeout() (garcon.runner.BaseRunner method)

 	(in module garcon.task)

U

 	
 	unset_log_context() (garcon.log.GarconLogger method)

V

 	
 	version (garcon.activity.Activity attribute)

W

 	
 	wait() (garcon.activity.ActivityState method)

 	
 	worker_runner() (in module garcon.activity)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Garcon

 		
 User’s guide

 		
 Introduction

 		
 Code Sample

 		
 Generators

 		
 Api

 		
 Release notes

 		
 What’s new in Garcon 0.0.4

_static/up-pressed.png

_static/up.png

