

Welcome to the GameBench API Client documentation!

Contents:

	Overview

	Using the GameBench API Client
	Installation

	Setup

	Basic Usage

	Request Examples
	Time-Series Model

	Generic models

	How to Extend the Library

	Global Settings

	Contributing
	Who can Make Contributions?

	What Code You Can Contribute

	Contacting Us

	The Development Environment

	Project Management

	Version Control Process

	Code Review

	Development Standards
	Code Style

	Readability

	Automated Tests

	Documentation

	Object Oriented Design and Software Architecture

	Resources

	Code of Conduct
	Our Pledge

	Our Standards

	Our Responsibilities

	Scope

	Enforcement

	Attribution

Indices and tables

	Index

	Module Index

	Search Page

Overview

The GameBench API Client library supplies a high-level object-oriented interface to the GameBench API. It is built in
Python 3.7 and uses the Requests library and Pandas data frames to easily integrate into data analysis software.

The library has two main architectural components; the models and API packages. The API package is responsible for
URL requests and dealing with the responses. The models are the objects representing the data returned. A mediator
provides the glue between the api and the models.

As a user of the library, you should only ever need to interact with the models creator class and the model objects
it can return.

Right now, the models are very thin. They only contain a property that has the data frame assigned. Over time we
would like to add common functionality, like aggregates, to these classes.

Using the GameBench API Client

Installation

The GameBench API Client can be install using pip:

pip install GameBenchAPI-PyClient-BigFish

It can also be found on the GitHub [https://github.com/bigfishgames/GameBenchAPI-PyClient] page.

Setup

Add the username and password for the GameBench account you are using to the ‘global_settings.py’
module.

	1
2
3
4
5
6
7

	 GAMEBENCH_CONFIG = {
 'url': 'https://api.production.gamebench.net',
 'api_version': '/v1',
 'username': 'john.smith@example.com',
 'password': 'password',
 'company_id': '',
 }

See Global Settings for for information on this module.

Basic Usage

In the module that will be calling the API Client, import the ModelCreator class.

from gamebench_api_client.models.creator.model_creator import ModelCreator

Create an instance of the ModelCreator and pass in the following information:

	The model that you want, which should be in a CamelCase style.

	A dictionary that specifies the information you want.

Here is one example for requesting time series data:

	1
2
3
4
5

	time_series_request = {
 'session_id': 66d926f47ff5a7a5d853d1058c6305614e1ae6a5
}

creator = ModelCreator('Cpu', time_series_request)

This will make the request to the API and store the returned data. You can call the
get_model method for the ModelCreator instance to get the results.

See Request Examples for more dictionary examples.

Request Examples

To make a request, import the ModelCreator class.
Instantiating the ModelCreator requires two arguments. The first is a CamelCase style ‘model’
named after the metric that you are looking for; the model is dynamically imported based on this
name. The second argument is a dictionary that must include specific key/value pairs for
querying the GameBench API.

Here are examples of the dictionaries that can be passed to the ModelCreator as an argument
to get back information.

Time-Series Model

This type of request is used for the following models: Battery, Cpu, CPU Core Frequency,
Energy, FPS, FPS Stability, GPU (Imagination), GPU, Janks, Memory, Network, and Power.
Here is an example of how you could get the CPU data for a session and what the DataFrame
for that information looks like:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	 from gamebench_api_client.models.creator.model_creator import ModelCreator

time_series_request = {
 'session_id': '66d926f47ff5a7a5d853d1058c6305614e1ae6a5'
}

creator = ModelCreator('Cpu', time_series_request)
cpu_time_series = creator.get_model()

results = cpu_time_series.data

print(results)

"""
 appUsage daemonUsage gbUsage timestamp totalCpuUsage
0 1372571.375 0 12.658228 5257 39.688461
"""

When requesting time-series data, pass in the model you want as the first argument
to the ModelCreator. The given dictionary then just needs to include the ‘session_id’ key
and the associated id as the value.

Generic models

This type of request is used for the following models: Keyword, Markers, Session Notes,
and Session Summary.

	1
2
3
4
5

	 generic_request = {
 'session_id': '66d926f47ff5a7a5d853d1058c6305614e1ae6a5'
 }

 creator = ModelCreator('SessionNotes', generic_request)

When requesting the session summary, markers, or notes for a session, the given dictionary only needs to include
the session id. However, there are two other requests that can be made.

Keyword Search

This type of request allows you to pass in keywords that can be used to search for specific
sessions. Adding a ‘data’ dictionary to the given dictionary will allow you to give keywords
to search for.

Example:

	1
2
3
4
5
6
7

	generic_request = {
 'data': {
 'query': 'iPad'
 }
}

creator = ModelCreator('Keyword', generic_request)

Sessions

This type of request is different from the session summary request as it gives the summary information
for multiple sessions. by passing in the appropriate key/value pairs, you can search for available
sessions through the GameBench API. This type of request requires the ‘session_id’ key, that is
used in normal session summary requests, to either not be included or have an empty string as a
value.

Adding a ‘params’ key to the given dictionary will allow you to give search parameters.

Example:

	1
2
3
4
5
6
7

	generic_request = {
 'params': {
 'pageSize': 15
 }
}

creator = ModelCreator('SessionSummary', generic_request)

To see a full list of the available search options, see the
GameBench API Documentation [https://docs.gamebench.net/api/documentation].

Session Detail

The session summary information also contains inner dictionaries, such as device information
and app information. The SessionSummary class has class members which let you get just these
details if needed. For example, if you just wanted information on the device that was used
for testing just call the SessionSummary.device variable. This will return the device
information in a DataFrame.

Here are all of the detail metrics you can call this way: app, device, location, metrics, and
network app usage.

How to Extend the Library

The GameBench API was originally written to use the Requests HTTP Library. However, this functionality can be extended to work with other libraries that need to be used. The following is an example of extending the Adapter for use with URLLib.

The abstract base class ‘Adapter’:

adapter.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	class Adapter(ABC):
 """ Abstract adapter for external HTTP request services."""

 def __init__(self):
 """ Abstract init that creates an empty service object."""

 self._http_library = None

 @abstractmethod
 def request(self):
 """ Abstract method to make a request."""

 pass

This class can simply be inherited to a new class for whichever library will be used. The _http_library instance variable should be used in the new class to hold a reference to the imported library. The request method needs to be implemented in all concrete classes and will be used to send the request. Here is the implemented class for using URLLib:

adapter.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	 class URLLibAdapter(Adapter):

 def __init__(self, **request_attributes):
 super().__init__()
 import urllib.request # Import the library needed
 self._http_library = urllib.request # Assign library to the _http_library variable
 self.method = request_attributes['method']
 self.url = request_attributes['url']
 self.headers = request_attributes['attributes']['headers']

 def request(self):
 return self._http_library.Request(self.url, headers=self.headers, method=self.method)

For this class we set up our local import of the urllib.request library. We assign that library to the instance variable to be used in the request method. The request_attributes argument will be the dictionary returned from the request retriever. This will include the needed elements for a request. Each of the needed needed elements is assigned to a variable. The request method then sends a request to the library using this information and returns the result.

Now that we have the new library set up to send requests, we just have to update our response retrievers to use this library. Here is what the Authentication Retriever currently looks like:

response_retriever.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	 class AuthResponseRetriever(AbstractRetriever):
 """ Facade for getting Auth token from the Request.

 :param request_parameters: Dictionary containing information needed for
 an authentication request. Example:
 {'username': 'John@gmail.com', 'password': '1234'}
 """

 def __init__(self, **request_parameters):
 super().__init__(**request_parameters)
 self.request = self.director.get_auth_request(**self.request_parameters)
 self.adapter = RequestsAdapter(**self.request)
 self.response = self.adapter.request()

 def get_response_json(self):
 """ Return the JSON of the response object.

 :return: The JSON data for a response.
 """

 return super().get_response_json()

This is using the RequestsAdapter to send requests. We can just update the adapter variable to use the URLLibAdapter to use the new library.

This is all that needs to be done to add in the library of your choosing. We’d love to refactor this class and allow
it to be user configurable.

Global Settings

The global_settings.py module is the home to the global variable GAMEBENCH_CONFIG.
This dictionary holds the API endpoint information that the library uses.
It also contains the username and password for the GameBench account you are using,
and the company ID.

global_settings.py

	1
2
3
4
5
6
7

	 GAMEBENCH_CONFIG = {
 'url': 'https://api.production.gamebench.net',
 'api_version': '/v1',
 'username': '',
 'password': '',
 'company_id': '',
 }

If the API endpoint ever changes it can be updated in this file.

The company ID can be found on the GameBench Web Dashboard [https://web.gamebench.net].
Once signed in go to the ‘My Account’ section. The company id is the alpha-numeric string
in the URL.

Contributing

Who can Make Contributions?

We want everyone to feel free and welcome to add value to this project.
We welcome all people from all roles and skill levels.

If you are a beginner, you might start with improving documentation,
fixing lightweight bugs, little refactoring tasks, and improving tests.
Please reach out to us and we will help you find approachable work.

Regardless of experience, we encourage you to talk through your plans
with us and push branches early to get feedback before you get too deep.

What Code You Can Contribute

All code must be compatible with the license shipped with the project.
This project is a
BSD-3 [https://opensource.org/licenses/BSD-3-Clause] licensed
product. By contributing, you certify that you have a legal right to
submit your contributions.

Contacting Us

We have a
Gitter [https://gitter.im/bigfishgames/GameBench-API-PyClient?utm_source=share-link&utm_medium=link&utm_campaign=share-link]
community setup for chatting through issues, feature requests, and all
things software development.

The Development Environment

IDEs and text editors are very personal decisions. We want to you work
with tools that you are effective using. We have supplied an
EditorConfig file, configuration files for static analysis, and auto
formatters, as well as our PyCharm .idea folder.

We love PyCharm, we recommend PyCharm, and we hope you use PyCharm and
learn all its tools and shortcuts. If we can make one pitch, it is that
we have PyCharm configured to use the same static analysis and
formatting settings we check on push. Early feedback is always better
than late feedback.

Project Management

We run a simple ZenHub Kanban board [https://app.zenhub.com/workspaces/gamebenchapi-5cabf535a736c27636b0283d/board?repos=180245554]. You are welcome to work anything in the
backlog at any time if it does not depend on incomplete stories. We
prioritize the backlog every other Monday morning. Please find the
highest priority item you would like to work on and commit to finishing
within 2 weeks. While we are backlog grooming, we will look for items
that have been in progress for 2 weeks and check on the status.

Version Control Process

Master

The master branch should always be releasable. Unreleased working
software isn’t supplying value to anyone. Our development standards and
processes exist to help this be a reality.

Branching

When you begin work on a bug fix or feature, cut a branch from master.
Be sure your local master is up to date with the remote master branch
before creating yours. Name the branch with a clear concise name
followed by the issue number. Ex: URLlibSupport-#1123 or
FixDuplicateHTTPRequests-#213

Update your branch from master often as you work to avoid complex
conflict resolution at the end.

Commits

We recommend that you commit early and often. This gives you more
freedom to go back and forth between commits as your solution evolves.
However, the frequency of commits is a personal preference.

Commits messages should help you and others quickly understand what has
changed and why. This can often be a way to track down new bugs or
regressions. Finally, include a GitHub issue reference in all commits.

Summary: This should be a short title.

Example:

Interface Adapter for urllib.request.Request() #1234

Message: The message should call out what has changed and very
briefly why.

Example:

Issue #1234

Added ULRLibRequest adapter class to match output from
api.request.factory to input of urllib.request.Request() to keep
interface segregation and decouple the library from our use cases.

Updated RequestTarget ABC to allow generic adaptees and specific
adaptees in the adapter implementations.

Removed outdated inline comment from RequestTarget to improve
readability.

Pushes

Push your branch to remote early in the process and then as you have
working pieces complete.

The early push is to get your early design decisions out quickly. This
allows you to share your branch with others for feedback even before a
formal pull request and code review. Finding issues early is much easier
to deal with than finding them later. This is an important consideration
if you are new to our development approach or an inexperienced engineer.

Finally, you will create a pull request when you have finished. Pull
requests have several automated checks that need to pass before we can
merge your branch into master.

	The full test suite must pass.

	Docs generated.

	Static analysis must pass.

	Code coverage must be above 95%

	Compliance checks must pass.

In addition to the automated checks, an official maintainer must approve
the pull request.

Code Review

Code review can be awkward for some engineers. It can be difficult to
put your work up for judgment. Rest assured, future you will come to
love it if you embrace it as an opportunity to learn and grow. Even when
we disagree, we all come away with a broader perspective.

We all write imperfect code. If no one ever exposed us to different
approaches, we would never grow. Submitter and reviewer must put aside
their egos and help each other.

For reviewers, you are there to help the project and the submitter be
successful. That means you must be clear and concise with your feedback.
Candid, but respectful. You must also present a path forward. If you
call out some code for improvement, we expect you to call out the
standard it is violating and a little nudge in the right direction.

If either party violates our Code of Conduct , we will act as described
in that policy.

Code review is a critical step in creating quality software. More eyes
and minds are always better than fewer. Everyone who takes part can
learn and grow, not just the submitter.

Code reviewers should focus entirely on whether the submission aligns
with our development standards. Some elements might be subjective and
not all code needs to perfectly align with standards. Everyone should
strive for a consensus on what things the submitter must change, which
should be new stories, and which are trivial.

There is a danger in kicking the can down the road when it comes to code
quality. These things tend to snowball and drive down velocity over
time. If a change adds certain value, it is worth doing now. Not later.

We will quickly reject pull requests that have any of the following
anti-patterns and quality risks:

	No unit tests.

	No integration tests.

	Classes with low cohesion. If there is not a strong working
relationship between the properties and methods.

	So-called “god” classes and methods.

	Many methods that exceed 10 logical statements.

	Many methods that need more than 5 arguments.

	Many methods that have many levels of indentation, such as nested if
statements and nested loops.

	Copy/paste programming.

Free Open-Source Software (FOSS) is amazing because it brings together
people who want to add value for everyone. We want you to succeed. So
please push your branch early and ask for feedback if you see any of the
items above appearing in your code.

A maintainer will merge the branch to master and release when you and
the reviewers have reached consensus, fixed issues, and all automated
checks have passed.

Next up, Development Standards!

Development Standards

The value of software solutions is often clear and immediate. But many
are surprised when their project’s timeline and costs begin to spiral
out of control. Sometimes you can slow this freefall so it only takes
more use of the software to recover the costs, but it can also lead to
disaster. We know this routine very well. And we are passionate about
reducing these risks.

In the sphere of FOSS, it is important to live and breathe software
quality. When we publish open source code, we expose ourselves to more
unknowns. More clients, more use cases, and more reasons to change. For
the project to remain relevant, it must adapt quickly and reliably while
also adding value.

We also embrace the unknowns of a diverse group of contributors.
Different skill levels, experience, and opinions on how to write
software. When a project can align the power of diversity toward a
common vision, awesome things can happen.

These standards are a guide to help the project meet its long-term goals
and deliver value to the community. On this topic we have strong
convictions. And we have experienced the costs of failure to follow
them.

We also arn’t perfect, so we write these down and focus code review on
these standards.

These standards are also here so future you and other contributors have
an easier time writing new features or fixing defects.

Code Style

We follow PEP-8 formatting with some modifications. The modifications
bring formatting more in line with Google’s Python style guide and some
quality of life improvements. We also use Google style docstrings.

Please use our auto formatter configuration file. When in doubt,
follow the conventions in the module you are working in.

Readability

Everyday writing is hard. Capturing the right tone, words, and structure
to communicate clearly and concisely isn’t trivial. And that’s using a
tool (written human language) that’s been in active development for
thousands of years.

Programming languages don’t make communication any easier with all the
symbols and OddBall waysOf jamming_words_together. How we name and
structure our code has a profound influence on readability. And
readability influences velocity and quality.

“Indeed, the ratio of time spent reading vs. writing is well over
10:1. We are constantly reading old code as part of the effort to
write new code. Because this ratio is so high, we want the reading of
code to be easy, even if it makes the writing harder. Of course
there’s no way to write code without reading it, so making it easy to
read actually makes it easier to write.”

Martin, Robert C. The Robert C. Martin Clean Code Collection
(Collection) (Robert C. Martin Series). Pearson Education. Kindle
Edition.

In the context of FOSS, it is particularly important to consider the
effect of poor readability on your community. Given an unknown audience
of great diversity, we ought to make special effort to ensure the
meaning of our code is self-evident.

Here are some rules of thumb we like to follow:

The Sentence Check:
Read your code out loud. If someone not familiar with the project
could understand you, it should be good. This is easier with higher
level policies and interfaces than with low level details, of course.

Universal Readability > Idioms > Conventions:
Prioritize universal understanding over idiomatic code or
conventions.

Many languages have unique ways of doing things, or idioms. If those
idioms interfere with readability and supply no other significant
value, avoid using them. A one-line Python list comprehension can be
beautiful. But, can quickly turn into a tangled mess if it grows
beyond a single line.

Many conventions exist to serve needs that are outdated or
unnecessary. We will touch on common conventions later.

Comments are Red Flags:
Specifically, comments that describe what the code is doing show
the code isn’t expressive enough. If the code is expressive, then the
comment will be redundant and become another axis of change, defects,
and waste.

This guideline doesn’t apply to docstring comments or comments that
describe why a contributor took a specific approach. When we write
controversial code, a good comment describing why we wrote it is
especially useful.

Names

As a software engineer, you spend much of your time reading code. When
you aren’t reading, you will be naming things. Variables, methods,
classes, modules, packages, and tests. The quality of your names has a
direct effect on the productivity of your peers and future you.

A name should communicate what, how, and why in as few words as
possible.

Variables

Variable names should be nouns separated by underscores. Either singular
or plural depending on context. You can usually name a list of employee
objects, employees. Context, such as scope and the variables within
the scope, can inform other decision about variable names. Variables
should be more descriptive and verbose when they occupy a broader scope.
Global variables should then supply all the needed context within their
name. Consider: globals.DATABASE_TIMEOUT_IN_SECONDS vs.
database.connection.settings.timeout. Both timeout variables are
appropriately descriptive within their scope.

You should avoid encodings, prefixes, suffixes, and pointless
conventions. This includes:

	Type “hints” in the name. If you have two collections in the same
scope that hold the same things but in different collection types,
then please use some typing information in the name. Otherwise, the
type “hint” becomes noise and in some cases disinformation. The
variable full_name_string is no more informative than full_name.
Neither is employee_object more informative than employee.

	Conventions like Hungarian notation and m_ for members do not add
value.

Conventions that can help:

Single letter variables can work well in little algorithms that carry
history and meaning. For example, incrementors can be, “i.” And
formulas can use their common variable letters, such as:

In Python:

	1
2
3
4

	 a = 3
 b = 5
 c = math.sqrt(a ** 2 + b ** 2)
 print(str(c))

However, you may also consider using more descriptive names for those
without specific knowledge.

Example:

	1
2
3
4

	 adjacent = 3
 opposite = 4
 hypotenuse = math.sqrt(adjacent ** 2 + opposite ** 2)
 sine = opposite / hypotenuse

You may also use the common access level intention hints that are common
in the Python community. A single leading underscore to communicate that
clients shouldn’t use this member outside of the class. If it is
important that clients do not easily access the member, go ahead and
name mangle it with a leading double underscore.

Please use all caps for constants.

Classes, Modules, Packages

All high-level collections should also be nouns. The higher-level you
go, the more bias you should express toward using problem domain names.
The lower level you go, bias toward solution domain names. Looking at
the root of your project, you should be able to clearly understand what
problem the software is trying to solve. As you click into the folders
and then the modules you should see more of how the engineers have
chosen to solve the problem.

Example:

	gamebench_client

	api

	api_facade.py

	entity_request_mediator.py

	requests

	interfaces

	requests_library_adapter.py

	request_builder.py

	parameters

	parameter_builder.py

	parameter_director.py

	methods

	method_factory.py

	urls

	url_builder.py

	url_director.py

	entities

	entity_factory.py

	metrics

	metric_factory.py

	cpu.py

	gpu.py

	sessions

	session.py

	settings

	defaults.py

	custom.py

When using a design pattern or common structural elements, use the
common names for these. Examples: URLLibAdapater, RequestBuilder,
UserModel, or UserView.

Packages and Modules

Use all lowercase words separated by underscores. Singular or plural
based on context.

Classes

Use CamelCase nouns. Singular or plural based on context. The more
specific a class becomes, the more verbose its name will become.
Consider User, EmployeeUser, AcmeCorpEmployeeUser. Each covers a
specific set of behaviors and data and the name becomes more verbose. If
you use a class far away from its definition or the path does not supply
good context, you should also consider a more descriptive name over a
concise name if refactoring the structure isn’t practical.

Methods

Methods are actions, so they should be verbs. Use lowercase underscore
separated words. A method should either ask a question (query), ask for
data (query), or issue a command that changes state. A method should not
be both a query and command. So be sure that your name matches the
action type to avoid confusion.

Query and Command Separation:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	 class User:
 def __init__(self, first_name, last_name):
 self.first_name = str.strip(first_name)
 self.last_name = str.strip(last_name)
 self._is_active = True

 def get_full_name(self):
 """ Query the full name of the user."""
 space = " "
 full_name = space.join([
 str.title(self.first_name),
 str.title(self.last_name)
])

 return full_name

 def activate(self):
 """Change state of user to active."""
 self._is_active = True

 def deactivate(self):
 """Change state of user to inactive."""
 self._is_active = False

 def is_active(self):
 """Query user's active status."""
 return self._is_active

Avoid This:

	1
2
3
4
5

	 def activate (self):
 """Change state of user to active and return user._is_active."""
 self._is_active = True

 return self._is_active

In command methods, use exceptions to communicate failure rather than
different returns.

Be consistent when using words that have little distinction. For
example, what is the difference between get and fetch? We default to
using “get” for query methods until we find another name with a
meaningful and unambiguous distinction that fits the context. One might
argue that get_full_name() isn’t a pure getter. We tend to agree.
Someone might name it, concatenate_first_and_last_names(). The problem
is that “concatenate” sounds like a command that changes state and does
not return anything.

There is processing but no state change and we want the full name
returned. We are preferring clarity of intent over perfect accuracy or
conformity to convention. Depending on the scope of this methods use,
you might even name it my_user.get_first_and_last_as_full_name().

The Python standard library doesn’t always do this. For example,
str.join() returns the joined elements of the iterable given in the
arguments into a string using the string object calling it as the
separator. It is a confusing method if you aren’t familiar with it. It
sounds like a command but returns data and the caller occupies an odd
role. For greater clarity, a to_string() method on the iterable class
and/or from_iterable() on the string class. Ideally, both would be
available.

To get a sense of clarity, try reading the following code out loud:

	1
2
3
4

	 full_name = space.join([
 str.title(self.first_name),
 str.title(self.last_name)
])

“Full name equals space join stir title first name and stir title last
name.” The choice to use “str” is historical and a barrier to entry for
those new to our field. As is “char,” “int,” and all other abbreviated
words. Consider these alternatives:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	 def get_full_name(self):
 full_name = self.first_name.get_title_cased() +
 " " +
 self.last_name.get_title_cased()

 return full_name

 def get_full_name(self):
 full_name_items = [
 self.first_name.as_title_cased(),
 self.last_name.as_title_cased()
]
 full_name = String.create_from_list(name_elements, separated_by=" ")

 return full_name

The first reads: “Full name equals first name get title cased plus
space plus last name get title cased.”

The second reads: “Full name items equals first name as title cased and
last name as title cased. Full name equals a string created from list of
full name items separated by a space.”

Both examples are much closer to spoken English. And you can see there
is quite a bit of latitude to carefully consider names. With just a few
minor interpretations, these really could read as a normal
sentence. “The full name is a string created from a list of name
elements separated by a space.” As you write your code, try to find
ways to reduce the amount of interpretation needed and your intent will
become clearer.

Examples:

my_string = some_list_object.to_string([separator]) which would return
a new string object.

my_string = String.from_iterable(iterable[, separator]) This would be
an override of String.__init__().

This isn’t a judgement of Python. We love Python and enjoy it the most
of all interpreted languages. We also recognize that this would be a
substantial change. We also recognize the historical context that this
appears to come from.

The method, str.join() is a good example of how names and structure
can influence the learning curve through readability. When learning
curves are low, everyone can be more effective more quickly.

You will also notice in the query and command separation examples there
are two setters for the active property. We aren’t against setters as a
convention, but if there is an opportunity to make code more semantic,
we like it. In this case, calling a method with no arguments and a name
expressing clear intent is a straightforward way to reduce silly bugs
and increase readability.

	1
2
3

	 new_hire = Employee.from_full_name(full_name)
 new_hire.set_active(True)
 new_hire.save()

vs:

	1
2
3

	 new_hire = Employee.from_full_name(full_name)
 new_hire.activate()
 new_hire.save()

even better, but this comes later.

	1

	 human_resources_facade.onboard_new_hire(full_name)

Automated Tests

We passionately believe quality automated tests are critical to the
success of any software project.

“The third of W. Edwards Deming’s fourteen points for management
states, ‘Cease dependence on inspection to achieve quality. Eliminate
the need for inspection on a mass basis by building quality into the
product in the first place’ (Deming 2000). In continuous delivery, we
invest in building a culture supported by tools and people where we
can detect any issues quickly, so that they can be fixed straight
away when they are cheap to detect and resolve.”

Forsgren PhD, Nicole. Accelerate: The Science of Lean Software and
DevOps: Building and Scaling High Performing Technology Organizations.
IT Revolution Press. Kindle Edition.

We also believe that how we distribute our effort across the test levels
can have profound effects on the usefulness and value of the tests. We
solve for how to spend effort by understanding when testing creates
value. Finally, we need to understand what parts of the process of
development, testing, and fixing defects are the most expensive.

Google has published a nice little article on this topic:
https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html

Ideal Distribution of Tests

The lower level the test, the faster it runs, the more quickly you get
feedback, and the defect is more isolated. This means faster fixes. Aim
to have 70% of your tests be unit level tests. A unit is simply the
smallest container of organization. In our case, that is a method or
function.

Pull requests must have all applicable test levels covered before
maintainers merge it to master.

Coverage

The ideal coverage is 100%. With a language like Python, 100% can be
possible. CI checks enforce 95% coverage from the entire suite. You do
not need to add unit tests for these things:

	Objects that you cannot call directly.

	Trivial methods. Methods that have no branching logic and only use
the simplest of statements. Example:

	1
2

	 def get_name(self):
 return self.name

	3rd-party libraries, unless you suspect they are defective.

Recommended Approach

There are competing approaches to writing tests. Given the goal of fast
feedback and the Lean principle of building quality into production
processes, test-driven development is the clear winner. We have noted
some confusion about what is and isn’t test-driven development (TDD).

Here is the short story:

	There is no single magic potion to make clean higher quality code.
You must exercise multiple disciplines to reach the goal. TDD is just
one of them.

	TDD as we recommend practicing it, is super Lean. TDD has several
cycles that cover the entire scope of the application from
line-to-line all the way up to architectural considerations.

	TDD doesn’t mean you can skip planning and design altogether. Have a
big picture in mind. But don’t force your design to work. Through the
full TDD cycle, you will gain information that will better inform
your structure.

Test-Driven Development (TDD):

When we talk about TDD, we are talking about a multi-cycle process. The
cycles of TDD have distinct goals. An engineer must use all the cycles
well to realize the full benefits of TDD.

Second-by-Second:

The focus here is brutally simply: Make it work! And at any cost.
You will move through this cycle several times before a unit test is
complete.

	Write a failing test before any production code.

	No more test code than you need to create a failure.

	No more production code than you need to pass the failing test.

The tests you write at the beginning of the second-by-second cycle will
be ugly. And the production code you write will be too. Just make them
pass. Don’t resist this.

If you get stuck at any point in this cycle, either because you cannot
make the test pass or because you feel like you must write a bunch of
untested production code, your test is wrong. The test definition might
be incorrect, or the test covers too much of the problem. Think smaller
and focus on what you know first.

Minute-by-Minute:

This is the first step where you will begin to focus on making it
“right.” You will move through the complete cycle about once per unit
test.

The refactor step is a common point of failure. Sometimes we speed right
past it and then only later realize our code is gross. Always keep your
eye out to remove duplication and improve readability once your code
works, but not before. Focus on one problem at a time. Moving on to
make a new unit test pass without refactoring only makes the work to
clean it up bigger and riskier. And that’s not Lean.

Refactoring must be a continuous activity part of the minute-by-minute
process of creating software if we are to make software that works and
can change easily. There is not going to be time later. There is no
tomorrow. There is only now…

10 Minute Cycle – Generalize:

Here we apply even more effort toward making it right. Within this
cycle, you will be applying the Transformation Priority
Premise [https://en.wikipedia.org/wiki/Transformation_Priority_Premise].
Look for overly specific production code and then generalize it. Your
tests and test suite should become more specific and detailed, but your
production code should also become more general.

Here, you might again find yourself stuck. If that happens, you need to
start removing tests until you can take a different approach with
different tests.

Hour-by-Hour – Architecture and Design:

Finally, we make things right within the context of bigger design
buckets. A focus on the small or local problem can blind you to the fact
you are crossing architectural boundaries or violating SOLID principles.
You should take time every hour or so to analyze your design, but don’t
make changes unless all your tests are passing.

We will talk about architecture and object-oriented design in a later
section.

Scope of a Unit Test

In traditional QA language, a unit is the smallest measure. Typically,
this would be a method. Following TDD, you will make your production
code increasingly general as your test become more specific. This means
you start out with a unit test covering one method but then you break
that method into smaller units as you extract out logic. That original
unit test is still covering the refactored code. This is a decision
point.

One path would suggest that you mock out the behavior of the new methods
for isolation. Another would be to ensure that your current unit test is
supplying all the behavioral coverage needed and stop there. The correct
response is a judgement call. And there are trade offs. The more you
mock, the more you couple your tests to implementation. The less you
mock the less isolation you achieve.

There are real dangers to both. Coupling tests to implementation can
lead to overly fragile tests. But insufficient isolation can reduce the
benefit of unit level testing. The ideal test pyramid is a guide to help
you, so are your fellow engineers. So, talk it through, weigh the risks
and benefits, and decide.

Documentation

If we write our code well, how we intend others to use it should be as
self-evident as how it works. That’s a nice goal, but let’s not lean
into that too much. Many of the words we use in programming are
overloaded or not universally understood. Our documentation aims to
reduce those risks while reducing the risk of spending too much time on
documentation that might change too often to be useful. Here is our
approach:

	We write docstrings as part of the development process for everything
but the most trivial code. We include everything a client would need
to know to use the code and what to expect from it.

	We write or update user documentation as needed. We include only what
a user needs to understand what we believe is the ideal way for them
to use the software. For example, a user should only ever need to
interact with the entity factory method and the objects it returns to
them. So, we document this method and the objects it returns with
realistic use cases and examples.

	We also document where we have designed the software to be
extendable. For example, if you can only use a specific HTTP library
for security reasons, we will supply examples of how you can replace
the Requests library.

	We document the parts of the software that you can change through
configuration settings.

As you work on features and bug fixes, you will be creating and updating
docstrings. You should also cross-reference the documentation to be sure
that your changes don’t create buggy documents.

All documentation must be in a format understood by Sphinx. Please use
reStructuredText as the markup language. See the “Resources” section for
links.

Object Oriented Design and Software Architecture

Our goal with design and architectural decisions is to reduce coupling
and improve understanding of the system. To create working software is
not enough. We must also create software that is easy to change and
adapt to different environments.

Object Design

How we design our objects influences how easily others understand our
software and how easy it is to change. As an engineer gains more skill,
they will learn diverse ways to exploit object-oriented techniques to
achieve these goals.

The Starting Point: Cohesion

To begin, our classes tend to reflect reality in some logical way. A car
class has properties like make, model, year, and color. And methods like
accelerate and brake. As a start, this is okay but quickly starts to
fall apart as we try to model this class closer to real cars. For
example, not all cars have four wheels, 5-speed manual transmissions, or
run on gasoline. Most cars steer with just the front two wheels, but
some have 4-wheel active or passive steering.

As we add more configurations, these configurations then introduce
changes to what behaviors are possible and how you implement those
behaviors. If we stay in this mode of thinking, we will up end with a
giant class full of if statements, huge methods, and bugs.

If you are new to OOP, we suggest thinking about class design in terms
of cohesiveness rather than a logical reflection of the real world. This
should lead to more but smaller highly focused classes and fewer
parameters in constructors and other methods.

Look for these warning signs:

	Methods with more than 3 or 4 parameters. These might reveal to you a
class in hiding.

	Methods that don’t act on any properties or supply a high-level
interface to other methods in the class. These might reveal to you
feature envy. The method might better belong in another existing
class or a new class.

	A group of methods act on a group of properties and another group of
methods on another group of properties. These might reveal to you a
class in hiding.

The Next Step – SOLID

It is helpful to have a framework of principles to guide us toward
highly cohesive classes and make design decisions that help us reduce
rigidity and fragility in our software. We like Dr. Martin’s collection
of object-oriented design principles for their relative simplicity and
the easy to remember acronym.

Single Responsibility Principle (SRP)

A class should have one and only one reason to change. An easy
illustration is a report. The format of the report and the calculations
that create the data within it are distinct reasons to change. These
responsibilities should live in different classes.

Open-Closed Principle (OCP)

You should be able to extend a class’ behavior without changing the
class. For example, you should be able to add support for Python’s
urllib without changing any code related our implementation of the
Requests library. GamebenchClient.api.requests is open for extension.
You would implement a new concrete adapter inheriting from the adapter’s
ABC and enter a custom setting for request library path.

The result of designs that conform to this principle is the ability to
add new features without changing already working code.

Liskov Substitution Principle (LSP)

Methods that use or refer to a base class must be able to use objects of
derived classes without knowing anything has changed. This one can be
obvious when you have a bunch of if, elif, else statements figuring out
how to work with derivatives. However, you can violate this one more
subtly too. If you find yourself changing the base class definition to
accommodate a new derivative, it is a sign you might be violating this
principle.

Interface Segregation Principle (ISP)

You should not force a client to depend on methods it does not use. What
this means is that you should be defining small interfaces specific to a
client. If you find that your interface has methods used by one client
and a group of methods used by another, split them out into different
interfaces. For example, we don’t want our interfaces that handle
creating URLs and other request parameters to know anything about the
Requests library’s interface. We certainly don’t want an import
dependency. So, we have used the adapter pattern to conform the two
interfaces. If we need to conform another HTTP library to our module, we
simply derive another adapter.

This principle further guides us toward pluggability and software that
is simple to change.

Dependency Inversion Principle (DIP)

Always depend on abstractions, not concrete classes. If you consistently
apply OCP and LSP, you will arrive at this dependency inversion
principle. You will know you are violating this principle when you
change one thing and must change many others, you make one change that
breaks other areas that might even be unrelated, and you cannot reuse
your module in another piece of software.

One of the places we see this principle most violated is in web
applications that use an ORM. If your core business logic has direct
dependencies on your framework, you couple the code that has the most
value to a trivial detail. The cost to change is incredibly high. The
solution is to provide an interface that allows you to swap ORMs with
relative ease and keep the ORM imports out of your critical business
logic.

We measure abstractness as the distance from I/O. There are other ways
to think about it, but this is the most straightforward way we have
found. The closer a module or class is to inputs or outputs, the more
concrete it is. A file reader/writer, HTTP request/response, and device
drivers are good examples of the most concrete details.

This principle applies between classes, modules, and the entire
architecture of the software.

Step Three: Common Problems w/ Common Solutions

After some time designing objects, you will find common problems that
you will need to solve. A frequent problem ought to have a common
solution. This is where design patterns come in to save the day. Diving
into design patterns is outside the scope of this document, but you will
see solution domain names related to design patterns all throughout this
project. You will also likely run into a reviewer asking you to use a
certain pattern when creating a new feature.

We encourage you to study all the design patterns, when to use which,
and practice design pattern katas. One problem you will run into is with
examples. For some reason, many examples are much too general and
unrealistic. This is a shame. You end up having to synthesize
information you read with the example given and the realities you know.
If you are not very experienced, these examples might even feel
pointless. Don’t fear. Practice helps and we are here to help too.

One thing you will notice in common with many of the design patterns is
the use of “has-a” rather than “is-a” object relationships. A request
object has a mediator object. A metrics object has a mediator
object. This is a powerful concept worth exploration and practice. Go
for it.

See the “Resources” section for more information on design patterns.

Is this Pythonic?

Python is an interpreted language, so some of the advantages of these
principles aren’t relevant. Specifically, source code dependencies do
not mean we have to suffer recompiling or building many modules when we
could have used dependency inversion to only rebuild one. However, that
isn’t the only benefit of these principles. It is just a massive one
when you are working in huge complex software projects that need many
teams working on distinct parts of the system.

We still get the benefits of a more intuitive structure, loose coupling,
and more freedom to solve problems that only appear after our software
is in use by customers. Let’s say we release a web application and find
that we really need to switch to a horizontal scaling database like
OrientDB. Oh no! We developed our software using Django and adding
OrientDB support would take a long time. We are victims of our own
success. To make it worse, we followed “web MVC” advice and put all
kinds of business logic in the model! Woe to the fat model! Woe to tight
coupling!

All we needed to do to protect ourselves was to separate and isolate our
core business logic from all other concerns and dependencies. Then
create an interface for PyOrient OGM. That’s a much smaller lift that
figuring out how to extend the Django ORM to work with OrientDB. We’ve
investigated it. Which should tell you that some of us have made
mistakes like this and learned from it.

Python also gives you incredible power to solve problems using
polymorphism. We have multiple inheritance. We have functions that are
objects. We can override fundamental behaviors of Python. That’s cool.
Some might say Python trusts us too much, but that means we need to take
care to be responsible professionals.

Within the best of our knowledge and skills, we commit to do no harm to
function or structure. And the maintainers can help you make the same
commitment.

Design Red Flags

Fragility: Your change is causing tests to fail in modules you didn’t
change. Or Refactoring causes many tests to fail.

Rigidity: To add a new little feature, you must change code in many
places.

Train Wrecks: Object.object.object.method().method().choo_choo

Tight Coupling: Logic for real world processes occupying the same
space as or depending directly on frameworks, databases, drivers, and
other I/O modules.

Resources

Awesome Authors:

Robert C. Martin (Uncle
Bob) [https://www.amazon.com/Robert-C.-Martin/e/B000APG87E?ref=sr_ntt_srch_lnk_2&qid=1551285619&sr=8-2]:
One of the original signers of the Agile Manifesto. The Clean Coder.

Martin
Fowler [https://www.amazon.com/Martin-Fowler/e/B000AQ6PGM?ref=dbs_a_def_rwt_sims_vu00_r0_c0]:
One of the original signers of the Agile Manifesto. Author of a
fantastic book on refactoring.

Kent
Beck [https://www.amazon.com/Kent-Beck/e/B000APC0EY?ref=dbs_a_def_rwt_sims_vu00_r0_c1]:
One of the original signers of the Agile Manifesto, creator of Extreme
Programming, pioneer of design patterns, and test-driven development.

Testing

Google: Just Say No to More End-to-End
Tests [https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html]

Kinds of Tests: Uncle Bob – First Class
Tests [https://blog.cleancoder.com/uncle-bob/2017/05/05/TestDefinitions.html]

Test-Driven Development:

Uncle Bob: The Three Laws of TDD [https://youtu.be/AoIfc5NwRks]
(video)

Uncle Bob: The Pragmatics of
TDD [https://blog.cleancoder.com/uncle-bob/2013/03/06/ThePragmaticsOfTDD.html]

Uncle Bob: Giving Up on
TDD [https://blog.cleancoder.com/uncle-bob/2016/03/19/GivingUpOnTDD.html]

Martin Fowler: Mocks Aren’t
Stubs [https://martinfowler.com/articles/mocksArentStubs.html]

Object-Oriented Design

SOLID Principles [https://en.wikipedia.org/wiki/SOLID]

Design Principles and Design
Patterns [https://web.archive.org/web/20150906155800/http:/www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf]

Design Patterns on
Wikipedia [https://en.wikipedia.org/wiki/Software_design_pattern]:
This is a nice summary with examples.

Refactoring.Guru [https://word-edit.officeapps.live.com/we/Refactoring.Guru]

Source Making: Design
Patterns: [https://sourcemaking.com/design_patterns] This is a great
resource for choosing from competing patterns and refactoring
techniques. However, the Python examples aren’t useful to many novices.

Uncle Bob: The Clean
Architecture [https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html]

Documentation

Getting Started with
Sphinx [https://docs.readthedocs.io/en/latest/intro/getting-started-with-sphinx.html]

reStructuredText
Primer [http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html]

An Introduction to Sphinx and Read the Docs for Technical
Writers [http://www.ericholscher.com/blog/2016/jul/1/sphinx-and-rtd-for-writers/]

Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at oss-code-of-conduct@bigfishgames.com. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 gamebench_api_client	

 	
 	
 gamebench_api_client.api	

 	
 	
 gamebench_api_client.api.requests_retriever	

 	
 	
 gamebench_api_client.api.requests_retriever.builder	

 	
 	
 gamebench_api_client.api.requests_retriever.builder.attributes	

 	
 	
 gamebench_api_client.api.requests_retriever.builder.attributes.attributes_creator	

 	
 	
 gamebench_api_client.api.requests_retriever.builder.method	

 	
 	
 gamebench_api_client.api.requests_retriever.builder.method.method_creator	

 	
 	
 gamebench_api_client.api.requests_retriever.builder.request_builder	

 	
 	
 gamebench_api_client.api.requests_retriever.builder.request_director	

 	
 	
 gamebench_api_client.api.requests_retriever.builder.url	

 	
 	
 gamebench_api_client.api.requests_retriever.builder.url.url_builder	

 	
 	
 gamebench_api_client.api.requests_retriever.builder.url.url_director	

 	
 	
 gamebench_api_client.api.requests_retriever.request_adapter	

 	
 	
 gamebench_api_client.api.requests_retriever.request_adapter.adapter	

 	
 	
 gamebench_api_client.api.response	

 	
 	
 gamebench_api_client.api.response.response_mediator	

 	
 	
 gamebench_api_client.api.response.response_retriever	

 	
 	
 gamebench_api_client.api.utilities	

 	
 	
 gamebench_api_client.api.utilities.dataframe_utilities	

 	
 	
 gamebench_api_client.global_settings	

 	
 	
 gamebench_api_client.models	

 	
 	
 gamebench_api_client.models.abstract_model	

 	
 	
 gamebench_api_client.models.authentication	

 	
 	
 gamebench_api_client.models.authentication.authentication	

 	
 	
 gamebench_api_client.models.creator	

 	
 	
 gamebench_api_client.models.creator.model_creator	

 	
 	
 gamebench_api_client.models.dataframes	

 	
 	
 gamebench_api_client.models.dataframes.generic	

 	
 	
 gamebench_api_client.models.dataframes.generic.abstract_generic	

 	
 	
 gamebench_api_client.models.dataframes.generic.generic_models	

 	
 	
 gamebench_api_client.models.dataframes.time_series	

 	
 	
 gamebench_api_client.models.dataframes.time_series.abstract_time_series	

 	
 	
 gamebench_api_client.models.dataframes.time_series.time_series_models	

 	
 	
 gamebench_api_client.singleton	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | K
 | M
 | N
 | P
 | R
 | S
 | T
 | U

_

 	
 	__init__() (gamebench_api_client.api.requests_retriever.builder.attributes.attributes_creator.Attributes method)

 	(gamebench_api_client.api.requests_retriever.builder.method.method_creator.Method method)

 	(gamebench_api_client.api.requests_retriever.builder.request_builder.AuthRequest method)

 	(gamebench_api_client.api.requests_retriever.builder.request_builder.RequestBuilder method)

 	(gamebench_api_client.api.requests_retriever.builder.request_builder.SessionRequest method)

 	(gamebench_api_client.api.requests_retriever.builder.request_director.RequestDirector method)

 	(gamebench_api_client.api.requests_retriever.builder.url.url_builder.URL method)

 	(gamebench_api_client.api.requests_retriever.builder.url.url_builder.URLBuilder method)

 	(gamebench_api_client.api.requests_retriever.builder.url.url_director.URLDirector method)

 	(gamebench_api_client.api.requests_retriever.request_adapter.adapter.Adapter method)

 	(gamebench_api_client.api.requests_retriever.request_adapter.adapter.RequestsAdapter method)

 	(gamebench_api_client.api.response.response_mediator.AuthenticationMediator method)

 	(gamebench_api_client.api.response.response_mediator.GenericMediator method)

 	(gamebench_api_client.api.response.response_mediator.ResponseMediator method)

 	(gamebench_api_client.api.response.response_mediator.SessionDetailMediator method)

 	(gamebench_api_client.api.response.response_mediator.TimeSeriesMediator method)

 	(gamebench_api_client.api.response.response_retriever.AbstractRetriever method)

 	(gamebench_api_client.api.response.response_retriever.AuthResponseRetriever method)

 	(gamebench_api_client.api.response.response_retriever.ResponseRetriever method)

 	(gamebench_api_client.models.abstract_model.AbstractModel method)

 	(gamebench_api_client.models.authentication.authentication.Authenticator method)

 	(gamebench_api_client.models.creator.model_creator.ModelCreator method)

 	(gamebench_api_client.models.creator.model_creator.ModelNotFound method)

 	(gamebench_api_client.models.dataframes.generic.abstract_generic.AbstractGenericModel method)

 	(gamebench_api_client.models.dataframes.generic.generic_models.SessionSummary method)

 	(gamebench_api_client.models.dataframes.time_series.abstract_time_series.AbstractTimeSeriesModel method)

 	(gamebench_api_client.singleton.Singleton method)

 	
 	__new__() (gamebench_api_client.singleton.Singleton static method)

A

 	
 	AbstractGenericModel (class in gamebench_api_client.models.dataframes.generic.abstract_generic)

 	AbstractModel (class in gamebench_api_client.models.abstract_model)

 	AbstractRetriever (class in gamebench_api_client.api.response.response_retriever)

 	AbstractTimeSeriesModel (class in gamebench_api_client.models.dataframes.time_series.abstract_time_series)

 	Adapter (class in gamebench_api_client.api.requests_retriever.request_adapter.adapter)

 	
 	Attributes (class in gamebench_api_client.api.requests_retriever.builder.attributes.attributes_creator)

 	AuthenticationMediator (class in gamebench_api_client.api.response.response_mediator)

 	Authenticator (class in gamebench_api_client.models.authentication.authentication)

 	AuthRequest (class in gamebench_api_client.api.requests_retriever.builder.request_builder)

 	AuthResponseRetriever (class in gamebench_api_client.api.response.response_retriever)

 	AuthURL (class in gamebench_api_client.api.requests_retriever.builder.url.url_builder)

B

 	
 	Battery (class in gamebench_api_client.models.dataframes.time_series.time_series_models)

C

 	
 	construct_request() (gamebench_api_client.api.requests_retriever.builder.request_director.RequestDirector method)

 	construct_url() (gamebench_api_client.api.requests_retriever.builder.url.url_director.URLDirector method)

 	
 	Cpu (class in gamebench_api_client.models.dataframes.time_series.time_series_models)

 	CpuCoreFrequency (class in gamebench_api_client.models.dataframes.time_series.time_series_models)

D

 	
 	DirectorLoader (class in gamebench_api_client.api.requests_retriever.builder.request_director)

E

 	
 	Energy (class in gamebench_api_client.models.dataframes.time_series.time_series_models)

F

 	
 	Fps (class in gamebench_api_client.models.dataframes.time_series.time_series_models)

 	
 	FpsStability (class in gamebench_api_client.models.dataframes.time_series.time_series_models)

G

 	
 	gamebench_api_client (module)

 	gamebench_api_client.api (module)

 	gamebench_api_client.api.requests_retriever (module)

 	gamebench_api_client.api.requests_retriever.builder (module)

 	gamebench_api_client.api.requests_retriever.builder.attributes (module)

 	gamebench_api_client.api.requests_retriever.builder.attributes.attributes_creator (module)

 	gamebench_api_client.api.requests_retriever.builder.method (module)

 	gamebench_api_client.api.requests_retriever.builder.method.method_creator (module)

 	gamebench_api_client.api.requests_retriever.builder.request_builder (module)

 	gamebench_api_client.api.requests_retriever.builder.request_director (module)

 	gamebench_api_client.api.requests_retriever.builder.url (module)

 	gamebench_api_client.api.requests_retriever.builder.url.url_builder (module)

 	gamebench_api_client.api.requests_retriever.builder.url.url_director (module)

 	gamebench_api_client.api.requests_retriever.request_adapter (module)

 	gamebench_api_client.api.requests_retriever.request_adapter.adapter (module)

 	gamebench_api_client.api.response (module)

 	gamebench_api_client.api.response.response_mediator (module)

 	gamebench_api_client.api.response.response_retriever (module)

 	gamebench_api_client.api.utilities (module)

 	gamebench_api_client.api.utilities.dataframe_utilities (module)

 	gamebench_api_client.global_settings (module)

 	gamebench_api_client.models (module)

 	gamebench_api_client.models.abstract_model (module)

 	gamebench_api_client.models.authentication (module)

 	gamebench_api_client.models.authentication.authentication (module)

 	gamebench_api_client.models.creator (module)

 	gamebench_api_client.models.creator.model_creator (module)

 	gamebench_api_client.models.dataframes (module)

 	gamebench_api_client.models.dataframes.generic (module)

 	gamebench_api_client.models.dataframes.generic.abstract_generic (module)

 	
 	gamebench_api_client.models.dataframes.generic.generic_models (module)

 	gamebench_api_client.models.dataframes.time_series (module)

 	gamebench_api_client.models.dataframes.time_series.abstract_time_series (module)

 	gamebench_api_client.models.dataframes.time_series.time_series_models (module)

 	gamebench_api_client.singleton (module)

 	GenericMediator (class in gamebench_api_client.api.response.response_mediator)

 	get_auth_request() (gamebench_api_client.api.requests_retriever.builder.request_director.RequestDirector method)

 	get_auth_url() (gamebench_api_client.api.requests_retriever.builder.url.url_director.URLDirector static method)

 	get_data() (gamebench_api_client.api.requests_retriever.builder.attributes.attributes_creator.Attributes method)

 	(gamebench_api_client.models.abstract_model.AbstractModel method)

 	(gamebench_api_client.models.authentication.authentication.Authenticator method)

 	(gamebench_api_client.models.dataframes.generic.abstract_generic.AbstractGenericModel method)

 	(gamebench_api_client.models.dataframes.time_series.abstract_time_series.AbstractTimeSeriesModel method)

 	get_headers() (gamebench_api_client.api.requests_retriever.builder.attributes.attributes_creator.Attributes method)

 	get_method() (gamebench_api_client.api.requests_retriever.builder.method.method_creator.Method method)

 	get_model() (gamebench_api_client.models.creator.model_creator.ModelCreator method)

 	get_params() (gamebench_api_client.api.requests_retriever.builder.attributes.attributes_creator.Attributes method)

 	get_response_json() (gamebench_api_client.api.response.response_retriever.AbstractRetriever method)

 	(gamebench_api_client.api.response.response_retriever.AuthResponseRetriever method)

 	(gamebench_api_client.api.response.response_retriever.ResponseRetriever method)

 	get_results() (gamebench_api_client.api.response.response_mediator.AuthenticationMediator method)

 	(gamebench_api_client.api.response.response_mediator.GenericMediator method)

 	(gamebench_api_client.api.response.response_mediator.ResponseMediator method)

 	(gamebench_api_client.api.response.response_mediator.SessionDetailMediator method)

 	(gamebench_api_client.api.response.response_mediator.TimeSeriesMediator method)

 	get_session_request() (gamebench_api_client.api.requests_retriever.builder.request_director.RequestDirector method)

 	get_session_url() (gamebench_api_client.api.requests_retriever.builder.url.url_director.URLDirector static method)

 	get_username_and_password() (in module gamebench_api_client.global_settings)

 	Gpu (class in gamebench_api_client.models.dataframes.time_series.time_series_models)

 	GpuImg (class in gamebench_api_client.models.dataframes.time_series.time_series_models)

I

 	
 	is_metric_present() (gamebench_api_client.api.requests_retriever.builder.method.method_creator.Method method)

J

 	
 	Janks (class in gamebench_api_client.models.dataframes.time_series.time_series_models)

 	
 	json_to_normalized_dataframe() (in module gamebench_api_client.api.utilities.dataframe_utilities)

K

 	
 	Keyword (class in gamebench_api_client.models.dataframes.generic.generic_models)

M

 	
 	Markers (class in gamebench_api_client.models.dataframes.generic.generic_models)

 	Memory (class in gamebench_api_client.models.dataframes.time_series.time_series_models)

 	Method (class in gamebench_api_client.api.requests_retriever.builder.method.method_creator)

 	METRIC_PATH (gamebench_api_client.models.abstract_model.AbstractModel attribute)

 	(gamebench_api_client.models.dataframes.generic.generic_models.Keyword attribute)

 	(gamebench_api_client.models.dataframes.generic.generic_models.Markers attribute)

 	(gamebench_api_client.models.dataframes.generic.generic_models.SessionNotes attribute)

 	(gamebench_api_client.models.dataframes.generic.generic_models.SessionSummary attribute)

 	(gamebench_api_client.models.dataframes.time_series.time_series_models.Battery attribute)

 	(gamebench_api_client.models.dataframes.time_series.time_series_models.Cpu attribute)

 	(gamebench_api_client.models.dataframes.time_series.time_series_models.CpuCoreFrequency attribute)

 	(gamebench_api_client.models.dataframes.time_series.time_series_models.Energy attribute)

 	(gamebench_api_client.models.dataframes.time_series.time_series_models.Fps attribute)

 	(gamebench_api_client.models.dataframes.time_series.time_series_models.FpsStability attribute)

 	(gamebench_api_client.models.dataframes.time_series.time_series_models.Gpu attribute)

 	(gamebench_api_client.models.dataframes.time_series.time_series_models.GpuImg attribute)

 	(gamebench_api_client.models.dataframes.time_series.time_series_models.Janks attribute)

 	(gamebench_api_client.models.dataframes.time_series.time_series_models.Memory attribute)

 	(gamebench_api_client.models.dataframes.time_series.time_series_models.Network attribute)

 	(gamebench_api_client.models.dataframes.time_series.time_series_models.Power attribute)

 	
 	ModelCreator (class in gamebench_api_client.models.creator.model_creator)

 	ModelNotFound

 	MODELS_AND_MODULES (gamebench_api_client.models.creator.model_creator.ModelCreator attribute)

N

 	
 	Network (class in gamebench_api_client.models.dataframes.time_series.time_series_models)

P

 	
 	Power (class in gamebench_api_client.models.dataframes.time_series.time_series_models)

R

 	
 	Request (class in gamebench_api_client.api.requests_retriever.builder.request_builder)

 	request() (gamebench_api_client.api.requests_retriever.request_adapter.adapter.Adapter method)

 	(gamebench_api_client.api.requests_retriever.request_adapter.adapter.RequestsAdapter method)

 	RequestBuilder (class in gamebench_api_client.api.requests_retriever.builder.request_builder)

 	
 	RequestDirector (class in gamebench_api_client.api.requests_retriever.builder.request_director)

 	RequestsAdapter (class in gamebench_api_client.api.requests_retriever.request_adapter.adapter)

 	ResponseMediator (class in gamebench_api_client.api.response.response_mediator)

 	ResponseRetriever (class in gamebench_api_client.api.response.response_retriever)

S

 	
 	session_detail_to_dataframe() (in module gamebench_api_client.api.utilities.dataframe_utilities)

 	SessionDetailMediator (class in gamebench_api_client.api.response.response_mediator)

 	SessionNotes (class in gamebench_api_client.models.dataframes.generic.generic_models)

 	SessionRequest (class in gamebench_api_client.api.requests_retriever.builder.request_builder)

 	SessionSummary (class in gamebench_api_client.models.dataframes.generic.generic_models)

 	SessionURL (class in gamebench_api_client.api.requests_retriever.builder.url.url_builder)

 	set_api_endpoint() (in module gamebench_api_client.global_settings)

 	set_data() (gamebench_api_client.api.requests_retriever.builder.request_builder.AuthRequest method)

 	(gamebench_api_client.api.requests_retriever.builder.request_builder.RequestBuilder method)

 	(gamebench_api_client.api.requests_retriever.builder.request_builder.SessionRequest method)

 	set_headers() (gamebench_api_client.api.requests_retriever.builder.request_builder.AuthRequest method)

 	(gamebench_api_client.api.requests_retriever.builder.request_builder.RequestBuilder method)

 	(gamebench_api_client.api.requests_retriever.builder.request_builder.SessionRequest method)

 	set_method() (gamebench_api_client.api.requests_retriever.builder.request_builder.AuthRequest method)

 	(gamebench_api_client.api.requests_retriever.builder.request_builder.RequestBuilder method)

 	(gamebench_api_client.api.requests_retriever.builder.request_builder.SessionRequest method)

 	
 	set_params() (gamebench_api_client.api.requests_retriever.builder.request_builder.AuthRequest method)

 	(gamebench_api_client.api.requests_retriever.builder.request_builder.RequestBuilder method)

 	(gamebench_api_client.api.requests_retriever.builder.request_builder.SessionRequest method)

 	set_suffix() (gamebench_api_client.api.requests_retriever.builder.url.url_builder.AuthURL method)

 	(gamebench_api_client.api.requests_retriever.builder.url.url_builder.SessionURL method)

 	(gamebench_api_client.api.requests_retriever.builder.url.url_builder.URLBuilder method)

 	set_url() (gamebench_api_client.api.requests_retriever.builder.request_builder.AuthRequest method)

 	(gamebench_api_client.api.requests_retriever.builder.request_builder.RequestBuilder method)

 	(gamebench_api_client.api.requests_retriever.builder.request_builder.SessionRequest method)

 	(gamebench_api_client.api.requests_retriever.builder.url.url_builder.AuthURL method)

 	(gamebench_api_client.api.requests_retriever.builder.url.url_builder.SessionURL method)

 	(gamebench_api_client.api.requests_retriever.builder.url.url_builder.URLBuilder method)

 	set_url_director() (gamebench_api_client.api.requests_retriever.builder.request_director.DirectorLoader method)

 	Singleton (class in gamebench_api_client.singleton)

T

 	
 	TimeSeriesMediator (class in gamebench_api_client.api.response.response_mediator)

 	
 	to_dataframe() (in module gamebench_api_client.api.utilities.dataframe_utilities)

U

 	
 	URL (class in gamebench_api_client.api.requests_retriever.builder.url.url_builder)

 	
 	URLBuilder (class in gamebench_api_client.api.requests_retriever.builder.url.url_builder)

 	URLDirector (class in gamebench_api_client.api.requests_retriever.builder.url.url_director)

gamebench_api_client.api.requests_retriever.builder.attributes package

Submodules

gamebench_api_client.api.requests_retriever.builder.attributes.attributes_creator module

	
class gamebench_api_client.api.requests_retriever.builder.attributes.attributes_creator.Attributes(**request_parameters)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class that determines the request’s attributes - headers, params, data.

	Parameters

	request_parameter – Dictionary provided by the user.

	
__init__(**request_parameters)

	Initialize self. See help(type(self)) for accurate signature.

	
get_data()

	Determines which data should be used for the request.

In the case of auth requests, this is the username and password of the
GameBench account. For other requests it will include the information
provided by the user, or an empty string if nothing was provided.

	Returns

	A Dictionary containing either the username and password,
or the data key and its value.

	
get_headers()

	Determines which headers should be used for the request.

	Returns

	A dictionary containing the needed Headers for a request.

	
get_params()

	Determines which parameters should be used for the request.

	Returns

	A Dictionary containing the needed ‘params’ key/value pair.

Module contents

gamebench_api_client.api.requests_retriever.builder.method package

Submodules

gamebench_api_client.api.requests_retriever.builder.method.method_creator module

	
class gamebench_api_client.api.requests_retriever.builder.method.method_creator.Method(**request_parameters)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class that determines the request method.

	
__init__(**request_parameters)

	Create the instance variable for given dictionary.

	Parameters

	request_parameters – Dictionary containing information needed to set the method.

	
get_method()

	Determines request method.

If there is a metric (gpu, cpu, battery, etc.) the request will
be set as “GET”, otherwise it is a “POST”.

	
is_metric_present()

	Determine if there is a metric present in the request parameters.

Module contents

gamebench_api_client.api.requests_retriever.builder.url package

Submodules

gamebench_api_client.api.requests_retriever.builder.url.url_builder module

	
class gamebench_api_client.api.requests_retriever.builder.url.url_builder.AuthURL

	Bases: gamebench_api_client.api.requests_retriever.builder.url.url_builder.URLBuilder

Concrete builder that constructs and assembles the auth URL
object by implementing UrlBuilder interface.

	
set_suffix()

	Implementation of the abstract set_suffix method.

Sets the proper suffix for authentication.

	
set_url()

	Implementation of the abstract set_url method.

Sets the url property to the URL string created by _build_url

	
class gamebench_api_client.api.requests_retriever.builder.url.url_builder.SessionURL

	Bases: gamebench_api_client.api.requests_retriever.builder.url.url_builder.URLBuilder

Concrete builder that constructs and assembles the session URL
object by implementing UrlBuilder interface.

	
set_suffix(**request_parameters)

	Implementation of the abstract set_suffix method.

Creates the suffix variable for the URL object and sets it to the proper suffix for authentication.

	Parameters

	request_parameters – session_id, metric - strings representing the session_id and metric respectively.

	
set_url()

	Implementation of the abstract set_url method.
Sets the completed URL string to the URL object.

	
class gamebench_api_client.api.requests_retriever.builder.url.url_builder.URL

	Bases: object [https://docs.python.org/3/library/functions.html#object]

URL object with basic properties used by the URLBuilder.

	
__init__()

	Initialize self. See help(type(self)) for accurate signature.

	
class gamebench_api_client.api.requests_retriever.builder.url.url_builder.URLBuilder

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

Abstract interface for creating each part of the URL object.

	
__init__()

	Initialize self. See help(type(self)) for accurate signature.

	
set_suffix()

	Abstract method for setting the suffix properties to the URL.

	
set_url()

	Base class for setting the completed URL to the URL object.

gamebench_api_client.api.requests_retriever.builder.url.url_director module

	
class gamebench_api_client.api.requests_retriever.builder.url.url_director.URLDirector

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Constructs the URL object using the URLBuilder interface.

	
__init__()

	Initialize self. See help(type(self)) for accurate signature.

	
construct_url(builder, **request_parameters)

	Constructs an URL object.

	Parameters

	
	builder – object which determines which concrete creator to use.

	request_parameters – strings used when creating the session URL
(session_id, metric).

	
static get_auth_url()

	Constructs an auth URL object and returns the auth
URL string.

	Returns

	auth.url - The auth URL string.

	
static get_session_url(**request_parameters)

	Constructs a session URL object and returns the session
URL string.

	Parameters

	request_parameters – Dictionary from the user containing information
for the request.

	Returns

	session.url - The session URL string.

Module contents

gamebench_api_client.api.requests_retriever.builder package

Subpackages

	gamebench_api_client.api.requests_retriever.builder.attributes package
	Submodules

	gamebench_api_client.api.requests_retriever.builder.attributes.attributes_creator module

	Module contents

	gamebench_api_client.api.requests_retriever.builder.method package
	Submodules

	gamebench_api_client.api.requests_retriever.builder.method.method_creator module

	Module contents

	gamebench_api_client.api.requests_retriever.builder.url package
	Submodules

	gamebench_api_client.api.requests_retriever.builder.url.url_builder module

	gamebench_api_client.api.requests_retriever.builder.url.url_director module

	Module contents

Submodules

gamebench_api_client.api.requests_retriever.builder.request_builder module

	
class gamebench_api_client.api.requests_retriever.builder.request_builder.AuthRequest(**request_parameters)

	Bases: gamebench_api_client.api.requests_retriever.builder.request_builder.RequestBuilder

Concrete builder that constructs and assembles the auth request object.

	Parameters

	request_parameters – Dictionary containing information needed to build the request.

	
__init__(**request_parameters)

	Creates an instance of the Request object for construction.

	Parameters

	request_parameters – session_id - id for the current session
metric - specific category of data being requested (cpu, gpu, battery, etc.)
auth_token - authorization token necessary for retrieving data.
params - parameters appended to certain session requests (pageSize, timePushed, etc.)
data - json body appended to certain session requests
(example: {“apps” : [], “devices” : [], “manufacturers” : []})

	
set_data()

	Implementation of the abstract set_data method.

Sets the data property for authentication requests.

	
set_headers()

	Implementation of the abstract set_headers method.

Sets the proper headers property for authentication
requests.

	
set_method()

	Implementation of the abstract set_method method.

Sets the proper method property for authentication
requests.

	
set_params()

	Implementation of the abstract set_params method.

Sets the proper params property for authentication
requests (Note - there aren’t any).

	
set_url(url_director)

	Implementation of the abstract set_method method.

Calls the URL Builder methods to build the auth URL and
sets the url property.

	
class gamebench_api_client.api.requests_retriever.builder.request_builder.Request

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The request object under construction.

	
class gamebench_api_client.api.requests_retriever.builder.request_builder.RequestBuilder(**request_parameters)

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

Abstract interface for building requests.

	
__init__(**request_parameters)

	Creates an instance of the Request object for construction.

	Parameters

	request_parameters – session_id - id for the current session
metric - specific category of data being requested (cpu, gpu, battery, etc.)
auth_token - authorization token necessary for retrieving data.
params - parameters appended to certain session requests (pageSize, timePushed, etc.)
data - json body appended to certain session requests
(example: {“apps” : [], “devices” : [], “manufacturers” : []})

	
set_data()

	Set any necessary data to send to the API.

This is used for authentication requests, or requesting
specific searches back.

	
set_headers()

	Set the correct headers for the request.

	
set_method()

	Set the proper method for each request.

This can be any valid request method (POST, GET, etc.).

	
set_params()

	Set any necessary parameters for the request.

These are items such as searching for a company ID
or limiting the number of items returned.

	
set_url(url_director)

	Set the correct url for the request.

This will call the URL Builder methods to build the
needed URL.

	
class gamebench_api_client.api.requests_retriever.builder.request_builder.SessionRequest(**request_parameters)

	Bases: gamebench_api_client.api.requests_retriever.builder.request_builder.RequestBuilder

Concrete builder that constructs and assembles the session
request object by implementing the RequestBuilder interface.

	
__init__(**request_parameters)

	Creates an instance of the Request object for construction.

	Parameters

	request_parameters – session_id - id for the current session
metric - specific category of data being requested (cpu, gpu, battery, etc.)
auth_token - authorization token necessary for retrieving data.
params - parameters appended to certain session requests (pageSize, timePushed, etc.)
data - json body appended to certain session requests
(example: {“apps” : [], “devices” : [], “manufacturers” : []})

	
set_data()

	Implementation of the abstract set_data method.

Sets the proper data property for session
requests.

	
set_headers()

	Implementation of the abstract set_headers method.

Sets the proper headers property for session
requests.

	
set_method()

	Implementation of the abstract set_method method.

Sets the proper method property for session requests.

	
set_params()

	Implementation of the abstract set_params method.

Sets the proper params property for session
requests.

	
set_url(url_director)

	Implementation of the abstract set_method method.

Calls the URL Builder methods to build the session URL
and sets the url property.

gamebench_api_client.api.requests_retriever.builder.request_director module

” Director interface for getting requests from the builder.

	
class gamebench_api_client.api.requests_retriever.builder.request_director.DirectorLoader

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
set_url_director()

	

	
class gamebench_api_client.api.requests_retriever.builder.request_director.RequestDirector(**request_parameters)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Constructs the Request object using the RequestBuilder interface.

	
__init__(**request_parameters)

	Set up the _builder to be used by the constructor.

	Parameters

	request_parameters – Dictionary containing information needed to build the request.

	
construct_request(builder)

	Constructs a Request objects.

	Parameters

	builder – object which determines which concrete creator to use.

	
get_auth_request()

	Constructs an authorization request object and returns the properties
as a dictionary.

	Returns

	request - dictionary containing each element of the auth request.

	
get_session_request()

	Constructs and returns a session request object.

	Returns

	request - dictionary containing each element of the session request.

Module contents

gamebench_api_client.api.requests_retriever.request_adapter package

Submodules

gamebench_api_client.api.requests_retriever.request_adapter.adapter module

	
class gamebench_api_client.api.requests_retriever.request_adapter.adapter.Adapter

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

Abstract adapter for external HTTP request services.

	
__init__()

	Abstract init that creates an empty service object.

	
request()

	Abstract method to make a request.

	
class gamebench_api_client.api.requests_retriever.request_adapter.adapter.RequestsAdapter(**request_attributes)

	Bases: gamebench_api_client.api.requests_retriever.request_adapter.adapter.Adapter

Concrete adapter to use the Requests library to send an api call.

	
__init__(**request_attributes)

	Receives request attributes to use for the request and creates _service object.

The request library is imported within the init to help define exactly where it is used.

	Parameters

	request_attributes – Dictionary containing the following keys and values:
method - Request method to use (POST, GET, etc.).
url - Rest endpoint to send a request to.
attributes - Dictionary containing other keyword arguments to add to the request.

	
request()

	Concrete implementation to send a request call through Requests.

	Returns

	A requests.Response object - http://docs.python-requests.org/en/master/api/#requests.Response

Module contents

gamebench_api_client.api.requests_retriever package

Subpackages

	gamebench_api_client.api.requests_retriever.builder package
	Subpackages
	gamebench_api_client.api.requests_retriever.builder.attributes package
	Submodules

	gamebench_api_client.api.requests_retriever.builder.attributes.attributes_creator module

	Module contents

	gamebench_api_client.api.requests_retriever.builder.method package
	Submodules

	gamebench_api_client.api.requests_retriever.builder.method.method_creator module

	Module contents

	gamebench_api_client.api.requests_retriever.builder.url package
	Submodules

	gamebench_api_client.api.requests_retriever.builder.url.url_builder module

	gamebench_api_client.api.requests_retriever.builder.url.url_director module

	Module contents

	Submodules

	gamebench_api_client.api.requests_retriever.builder.request_builder module

	gamebench_api_client.api.requests_retriever.builder.request_director module

	Module contents

	gamebench_api_client.api.requests_retriever.request_adapter package
	Submodules

	gamebench_api_client.api.requests_retriever.request_adapter.adapter module

	Module contents

Module contents

gamebench_api_client.api.response package

Submodules

gamebench_api_client.api.response.response_mediator module

	
class gamebench_api_client.api.response.response_mediator.AuthenticationMediator(**request_parameters)

	Bases: gamebench_api_client.api.response.response_mediator.ResponseMediator

Concrete Mediator for Authentication requests to use.

	Parameters

	request_parameters –

	
__init__(**request_parameters)

	Initialize self. See help(type(self)) for accurate signature.

	
get_results()

	Retrieves the Authentication token for a user.

	Return response_json

	Auth Token as a JSON.

	
class gamebench_api_client.api.response.response_mediator.GenericMediator(**request_parameters)

	Bases: gamebench_api_client.api.response.response_mediator.ResponseMediator

Concrete Mediator for generic objects to use.

	
__init__(**request_parameters)

	Initialize self. See help(type(self)) for accurate signature.

	
get_results()

	Sets JSON data into a Pandas DataFrame.

	Returns

	DataFrame of the JSON data from a response.

	
class gamebench_api_client.api.response.response_mediator.ResponseMediator(**request_parameters)

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

Abstract Mediator.

	Parameters

	request_parameters – Dictionary from the user containing information
for the request.

	
__init__(**request_parameters)

	Initialize self. See help(type(self)) for accurate signature.

	
get_results()

	Abstract method to get the JSON from the retriever.

For the Time Series, Generic, and Session Detail mediators this information
will be returned in a Pandas DataFrame. The Authentication simply returns
the Auth Token.

	
class gamebench_api_client.api.response.response_mediator.SessionDetailMediator(**request_parameters)

	Bases: gamebench_api_client.api.response.response_mediator.ResponseMediator

Concrete Mediator for session detail objects to use.

	
__init__(**request_parameters)

	Initialize self. See help(type(self)) for accurate signature.

	
get_results()

	Sets JSON data into a Pandas DataFrame.

	Returns

	DataFrame of the JSON data from a response.

	
class gamebench_api_client.api.response.response_mediator.TimeSeriesMediator(**request_parameters)

	Bases: gamebench_api_client.api.response.response_mediator.ResponseMediator

Concrete Mediator for Time Series objects to use.

	
__init__(**request_parameters)

	Initialize self. See help(type(self)) for accurate signature.

	
get_results()

	Sets JSON data into a Pandas DataFrame.

	Returns

	DataFrame of the JSON data from a response.

gamebench_api_client.api.response.response_retriever module

	
class gamebench_api_client.api.response.response_retriever.AbstractRetriever(**request_parameters)

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

Abstract retriever class for contacting the RequestDirector and RequestAdapter.

When instantiated a network call will be made through the Request Adapter.

	Parameters

	request_parameters – Dictionary from the user containing information
for the request.

	
__init__(**request_parameters)

	Initialize self. See help(type(self)) for accurate signature.

	
get_response_json()

	Abstract method to return the JSON of the response object.

	Returns

	The JSON data for a response.

	
class gamebench_api_client.api.response.response_retriever.AuthResponseRetriever(**request_parameters)

	Bases: gamebench_api_client.api.response.response_retriever.AbstractRetriever

Facade for getting Auth token from the Request.

	Parameters

	request_parameters – Dictionary containing information needed for
an authentication request. Example:
{‘username’: ‘John@gmail.com’, ‘password’: ‘1234’}

	
__init__(**request_parameters)

	Initialize self. See help(type(self)) for accurate signature.

	
get_response_json()

	Return the JSON of the response object.

	Returns

	The JSON data for a response.

	
class gamebench_api_client.api.response.response_retriever.ResponseRetriever(**request_parameters)

	Bases: gamebench_api_client.api.response.response_retriever.AbstractRetriever

Facade to retrieve data for non-auth requests.

	
__init__(**request_parameters)

	Initialize self. See help(type(self)) for accurate signature.

	
get_response_json()

	Return the JSON of the response object.

	Returns

	The JSON data for a response.

Module contents

gamebench_api_client.api.utilities package

Submodules

gamebench_api_client.api.utilities.dataframe_utilities module

	
gamebench_api_client.api.utilities.dataframe_utilities.json_to_normalized_dataframe(response_json)

	Normalizes a semi-structured JSON data into a flat table.

This is necessary for time-series and other similarly-structured objects.

	Parameters

	response_json – Response JSON returned from session request.

	Return normalized_dataframe

	Pandas DataFrame containing normalized JSON data.

	
gamebench_api_client.api.utilities.dataframe_utilities.session_detail_to_dataframe(metric, response_json)

	Creates a Pandas DataFrame for non-time-series session detail.

The session summary object contains multiple inner dictionaries. This method
should be used to get one of those metrics and put the values into a DataFrame.

	Parameters

	
	metric – The specific dictionary needed from the response json (eg: app, device, metric).

	response_json – response json returned from a session
request.

	Returns

	Pandas DataFrame generated by a single session request
json dictionary.

	
gamebench_api_client.api.utilities.dataframe_utilities.to_dataframe(response_json)

	Create a Pandas DataFrame object from a Session response
json.

	Parameters

	response_json – response json returned from a session
request.

	Returns

	Pandas DataFrame generated by an entire session
response json.

Module contents

gamebench_api_client.api package

Subpackages

	gamebench_api_client.api.requests_retriever package
	Subpackages
	gamebench_api_client.api.requests_retriever.builder package
	Subpackages
	gamebench_api_client.api.requests_retriever.builder.attributes package
	Submodules

	gamebench_api_client.api.requests_retriever.builder.attributes.attributes_creator module

	Module contents

	gamebench_api_client.api.requests_retriever.builder.method package
	Submodules

	gamebench_api_client.api.requests_retriever.builder.method.method_creator module

	Module contents

	gamebench_api_client.api.requests_retriever.builder.url package
	Submodules

	gamebench_api_client.api.requests_retriever.builder.url.url_builder module

	gamebench_api_client.api.requests_retriever.builder.url.url_director module

	Module contents

	Submodules

	gamebench_api_client.api.requests_retriever.builder.request_builder module

	gamebench_api_client.api.requests_retriever.builder.request_director module

	Module contents

	gamebench_api_client.api.requests_retriever.request_adapter package
	Submodules

	gamebench_api_client.api.requests_retriever.request_adapter.adapter module

	Module contents

	Module contents

	gamebench_api_client.api.response package
	Submodules

	gamebench_api_client.api.response.response_mediator module

	gamebench_api_client.api.response.response_retriever module

	Module contents

	gamebench_api_client.api.utilities package
	Submodules

	gamebench_api_client.api.utilities.dataframe_utilities module

	Module contents

Module contents

gamebench_api_client.models.authentication package

Submodules

gamebench_api_client.models.authentication.authentication module

This module is responsible for getting the Authentication token for the client.

The Authenticator is an interface to the Mediator which contacts the lower-
level logic to actually build and send requests.

	
class gamebench_api_client.models.authentication.authentication.Authenticator

	Bases: gamebench_api_client.models.abstract_model.AbstractModel, gamebench_api_client.singleton.Singleton

Class responsible for obtaining an authentication token.

	
__init__()

	Sets up the mediator and data attributes.

The mediator is set to the mediator that it will be contacting. The data
is the return from the get_token method.

	
get_data()

	Calls the get_results method from the Mediator object.

	Returns

	The authentication token as a JSON.

Module contents

gamebench_api_client.models.creator package

Submodules

gamebench_api_client.models.creator.model_creator module

	
class gamebench_api_client.models.creator.model_creator.ModelCreator(model, **request_parameters)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Creates model objects based on the users requirements.

Class variables are composed of the different models and which modules they are in.

	
MODELS_AND_MODULES = {'gamebench_api_client.models.dataframes.generic.generic_models': ['Keyword', 'Markers', 'SessionNotes', 'SessionSummary'], 'gamebench_api_client.models.dataframes.session_detail.session_detail_models': ['App', 'Device', 'Location', 'Metrics', 'NetworkUsage'], 'gamebench_api_client.models.dataframes.time_series.time_series_models': ['Battery', 'Cpu', 'CpuCoreFrequency', 'Energy', 'Fps', 'FpsStability', 'Energy', 'GpuImg', 'Gpu', 'Janks', 'Memory', 'Network', 'Power']}

	

	
__init__(model, **request_parameters)

	Sets up the instance of a needed model.

	Parameters

	
	model – The name of the model that the user wants.

	request_parameters – This will be a dictionary from the
client that includes the following keys:

session_id: ID for a specific session.
metric: Which metric the user requested (cpu, memory, etc.).
auth_token: Auth token for the user.
params: URL appended filters.
data: Dictionary of filter keywords.

	
get_model()

	Returns the instance of a specified model.

	Return instance

	Instance of a model.

	
exception gamebench_api_client.models.creator.model_creator.ModelNotFound(model)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Raised when the model given doesn’t exist.

	
__init__(model)

	Initialize self. See help(type(self)) for accurate signature.

Module contents

gamebench_api_client.models.dataframes.generic package

Submodules

gamebench_api_client.models.dataframes.generic.abstract_generic module

	
class gamebench_api_client.models.dataframes.generic.abstract_generic.AbstractGenericModel(**request_parameters)

	Bases: gamebench_api_client.models.abstract_model.AbstractModel, abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

Concrete class for models needing to access the Generic Frame Mediator.

Each model is kept as it’s own class so new methods can be added
individually as needed.

	
__init__(**request_parameters)

	Sets up the mediator and data attributes.

The mediator is set to the mediator that it will be contacting. The data
is set to the DataFrame returned from the get_results method.

	
get_data()

	Returns a Pandas DataFrame containing metric data from a response json.

	Returns

	Pandas DataFrame containing metric data.

gamebench_api_client.models.dataframes.generic.generic_models module

All modules that use the GenericMediator.

The classes inherit from the AbstractGenericModel.
Each model is kept as its own class so new behavior can be added
individually as needed.

	
class gamebench_api_client.models.dataframes.generic.generic_models.Keyword(**request_parameters)

	Bases: gamebench_api_client.models.dataframes.generic.abstract_generic.AbstractGenericModel

Object to set the results for a keyword search.

	
METRIC_PATH = '/typeahead'

	

	
class gamebench_api_client.models.dataframes.generic.generic_models.Markers(**request_parameters)

	Bases: gamebench_api_client.models.dataframes.generic.abstract_generic.AbstractGenericModel

Object to set the Markers information for a session.

	
METRIC_PATH = '/markers'

	

	
class gamebench_api_client.models.dataframes.generic.generic_models.SessionNotes(**request_parameters)

	Bases: gamebench_api_client.models.dataframes.generic.abstract_generic.AbstractGenericModel

Object to set the Session Notes for a session.

	
METRIC_PATH = '/notes'

	

	
class gamebench_api_client.models.dataframes.generic.generic_models.SessionSummary(**request_parameters)

	Bases: gamebench_api_client.models.dataframes.generic.abstract_generic.AbstractGenericModel

Object to set the Session Summary information for a session.

Instance variables represent the inner dictionaries present in
the SessionSummary DataFrame. They return a DataFrame with only
that data in it.

	
METRIC_PATH = ''

	

	
__init__(**request_parameters)

	Sets up the mediator and data attributes.

The mediator is set to the mediator that it will be contacting. The data
is set to the DataFrame returned from the get_results method.

Module contents

gamebench_api_client.models.dataframes.time_series package

Submodules

gamebench_api_client.models.dataframes.time_series.abstract_time_series module

	
class gamebench_api_client.models.dataframes.time_series.abstract_time_series.AbstractTimeSeriesModel(**request_parameters)

	Bases: gamebench_api_client.models.abstract_model.AbstractModel, abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

Concrete class for models needing to access the Time Series Mediator.

Each model is kept as it’s own class so new methods can be added
individually as needed.

	
__init__(**request_parameters)

	Sets up the mediator and data attributes.

The mediator is set to the mediator that it will be contacting. The data
is set to the DataFrame returned from the get_results method.

	
get_data()

	Returns a Pandas DataFrame containing metric data from a response json.

	Returns

	Pandas DataFrame containing metric data.

gamebench_api_client.models.dataframes.time_series.time_series_models module

All modules that use the TimeSeriesMediator.

The classes inherit from the AbstractTimeSeriesModel.
Each model is kept as its own class so new behavior can be added
individually as needed.

	
class gamebench_api_client.models.dataframes.time_series.time_series_models.Battery(**request_parameters)

	Bases: gamebench_api_client.models.dataframes.time_series.abstract_time_series.AbstractTimeSeriesModel

Object to set the Battery information for a session.

	
METRIC_PATH = '/battery'

	

	
class gamebench_api_client.models.dataframes.time_series.time_series_models.Cpu(**request_parameters)

	Bases: gamebench_api_client.models.dataframes.time_series.abstract_time_series.AbstractTimeSeriesModel

Object to set the CPU usage information for a session.

	
METRIC_PATH = '/cpu'

	

	
class gamebench_api_client.models.dataframes.time_series.time_series_models.CpuCoreFrequency(**request_parameters)

	Bases: gamebench_api_client.models.dataframes.time_series.abstract_time_series.AbstractTimeSeriesModel

Object to set the CPU Core Frequency information for a session.

	
METRIC_PATH = '/corefreq'

	

	
class gamebench_api_client.models.dataframes.time_series.time_series_models.Energy(**request_parameters)

	Bases: gamebench_api_client.models.dataframes.time_series.abstract_time_series.AbstractTimeSeriesModel

Object to set the Energy information for a session.

	
METRIC_PATH = '/energy'

	

	
class gamebench_api_client.models.dataframes.time_series.time_series_models.Fps(**request_parameters)

	Bases: gamebench_api_client.models.dataframes.time_series.abstract_time_series.AbstractTimeSeriesModel

Object to set the FPS information for a session.

	
METRIC_PATH = '/fps'

	

	
class gamebench_api_client.models.dataframes.time_series.time_series_models.FpsStability(**request_parameters)

	Bases: gamebench_api_client.models.dataframes.time_series.abstract_time_series.AbstractTimeSeriesModel

Object to set the FPS Stability information for a session.

	
METRIC_PATH = '/fpsStability'

	

	
class gamebench_api_client.models.dataframes.time_series.time_series_models.Gpu(**request_parameters)

	Bases: gamebench_api_client.models.dataframes.time_series.abstract_time_series.AbstractTimeSeriesModel

Object to set the non-Imagination GPU information for a session.

	
METRIC_PATH = '/gpu/other'

	

	
class gamebench_api_client.models.dataframes.time_series.time_series_models.GpuImg(**request_parameters)

	Bases: gamebench_api_client.models.dataframes.time_series.abstract_time_series.AbstractTimeSeriesModel

Object to set the Imagination GPU information for a session.

	
METRIC_PATH = '/gpu/img'

	

	
class gamebench_api_client.models.dataframes.time_series.time_series_models.Janks(**request_parameters)

	Bases: gamebench_api_client.models.dataframes.time_series.abstract_time_series.AbstractTimeSeriesModel

Object to set the Janks information for a session.

	
METRIC_PATH = '/janks'

	

	
class gamebench_api_client.models.dataframes.time_series.time_series_models.Memory(**request_parameters)

	Bases: gamebench_api_client.models.dataframes.time_series.abstract_time_series.AbstractTimeSeriesModel

Object to set the Memory information for a session.

	
METRIC_PATH = '/memory'

	

	
class gamebench_api_client.models.dataframes.time_series.time_series_models.Network(**request_parameters)

	Bases: gamebench_api_client.models.dataframes.time_series.abstract_time_series.AbstractTimeSeriesModel

Object to set the Network information for a session.

	
METRIC_PATH = '/network'

	

	
class gamebench_api_client.models.dataframes.time_series.time_series_models.Power(**request_parameters)

	Bases: gamebench_api_client.models.dataframes.time_series.abstract_time_series.AbstractTimeSeriesModel

Object to set the Power information for a session.

	
METRIC_PATH = '/power'

	

Module contents

gamebench_api_client.models.dataframes package

Subpackages

	gamebench_api_client.models.dataframes.generic package
	Submodules

	gamebench_api_client.models.dataframes.generic.abstract_generic module

	gamebench_api_client.models.dataframes.generic.generic_models module

	Module contents

	gamebench_api_client.models.dataframes.time_series package
	Submodules

	gamebench_api_client.models.dataframes.time_series.abstract_time_series module

	gamebench_api_client.models.dataframes.time_series.time_series_models module

	Module contents

Module contents

gamebench_api_client.models package

Subpackages

	gamebench_api_client.models.authentication package
	Submodules

	gamebench_api_client.models.authentication.authentication module

	Module contents

	gamebench_api_client.models.creator package
	Submodules

	gamebench_api_client.models.creator.model_creator module

	Module contents

	gamebench_api_client.models.dataframes package
	Subpackages
	gamebench_api_client.models.dataframes.generic package
	Submodules

	gamebench_api_client.models.dataframes.generic.abstract_generic module

	gamebench_api_client.models.dataframes.generic.generic_models module

	Module contents

	gamebench_api_client.models.dataframes.time_series package
	Submodules

	gamebench_api_client.models.dataframes.time_series.abstract_time_series module

	gamebench_api_client.models.dataframes.time_series.time_series_models module

	Module contents

	Module contents

Submodules

gamebench_api_client.models.abstract_model module

	
class gamebench_api_client.models.abstract_model.AbstractModel(**request_parameters)

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

Abstract model class.

The METRIC_PATH class member is created for the individual models
to add the needed string.

	
METRIC_PATH = ''

	

	
__init__(**request_parameters)

	Sets up the mediator and data attributes.

	
get_data()

	Returns a Pandas DataFrame containing metric data from a response json.

	Returns

	Pandas DataFrame containing metric data.

Module contents

gamebench_api_client package

Subpackages

	gamebench_api_client.api package
	Subpackages
	gamebench_api_client.api.requests_retriever package
	Subpackages
	gamebench_api_client.api.requests_retriever.builder package
	Subpackages
	gamebench_api_client.api.requests_retriever.builder.attributes package
	Submodules

	gamebench_api_client.api.requests_retriever.builder.attributes.attributes_creator module

	Module contents

	gamebench_api_client.api.requests_retriever.builder.method package
	Submodules

	gamebench_api_client.api.requests_retriever.builder.method.method_creator module

	Module contents

	gamebench_api_client.api.requests_retriever.builder.url package
	Submodules

	gamebench_api_client.api.requests_retriever.builder.url.url_builder module

	gamebench_api_client.api.requests_retriever.builder.url.url_director module

	Module contents

	Submodules

	gamebench_api_client.api.requests_retriever.builder.request_builder module

	gamebench_api_client.api.requests_retriever.builder.request_director module

	Module contents

	gamebench_api_client.api.requests_retriever.request_adapter package
	Submodules

	gamebench_api_client.api.requests_retriever.request_adapter.adapter module

	Module contents

	Module contents

	gamebench_api_client.api.response package
	Submodules

	gamebench_api_client.api.response.response_mediator module

	gamebench_api_client.api.response.response_retriever module

	Module contents

	gamebench_api_client.api.utilities package
	Submodules

	gamebench_api_client.api.utilities.dataframe_utilities module

	Module contents

	Module contents

	gamebench_api_client.models package
	Subpackages
	gamebench_api_client.models.authentication package
	Submodules

	gamebench_api_client.models.authentication.authentication module

	Module contents

	gamebench_api_client.models.creator package
	Submodules

	gamebench_api_client.models.creator.model_creator module

	Module contents

	gamebench_api_client.models.dataframes package
	Subpackages
	gamebench_api_client.models.dataframes.generic package
	Submodules

	gamebench_api_client.models.dataframes.generic.abstract_generic module

	gamebench_api_client.models.dataframes.generic.generic_models module

	Module contents

	gamebench_api_client.models.dataframes.time_series package
	Submodules

	gamebench_api_client.models.dataframes.time_series.abstract_time_series module

	gamebench_api_client.models.dataframes.time_series.time_series_models module

	Module contents

	Module contents

	Submodules

	gamebench_api_client.models.abstract_model module

	Module contents

Submodules

gamebench_api_client.global_settings module

Global settings for the GameBench API Client.

	
gamebench_api_client.global_settings.get_username_and_password()

	Takes the username and password from global variable GAMEBENCH_CONFIG and returns it as a dictionary.

	Returns

	user_credentials: Dictionary of key username and value password from the global variable GAMEBENCH_CONFIG

	
gamebench_api_client.global_settings.set_api_endpoint()

	Concatenates the url and api_version to return the full api endpoint.

	Return api_endpoint

	concatenated string of the url and the api_version
from the GAMEBENCH_CONFIG dictionary.

gamebench_api_client.singleton module

	
class gamebench_api_client.singleton.Singleton(*args, **kwds)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Generic Singleton.

	
__init__(*args, **kwds)

	Initialize self. See help(type(self)) for accurate signature.

	
static __new__(cls, *args, **kwds)

	Create and return a new object. See help(type) for accurate signature.

Module contents

gamebench_api_client

	gamebench_api_client package
	Subpackages
	gamebench_api_client.api package
	Subpackages

	Module contents

	gamebench_api_client.models package
	Subpackages

	Submodules

	gamebench_api_client.models.abstract_model module

	Module contents

	Submodules

	gamebench_api_client.global_settings module

	gamebench_api_client.singleton module

	Module contents

 _static/comment-bright.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to the GameBench API Client documentation!

 		
 Overview

 		
 Using the GameBench API Client

 		
 Installation

 		
 Setup

 		
 Basic Usage

 		
 Request Examples

 		
 Time-Series Model

 		
 Generic models

 		
 Keyword Search

 		
 Sessions

 		
 Session Detail

 		
 How to Extend the Library

 		
 Global Settings

 		
 Contributing

 		
 Who can Make Contributions?

 		
 What Code You Can Contribute

 		
 Contacting Us

 		
 The Development Environment

 		
 Project Management

 		
 Version Control Process

 		
 Master

 		
 Branching

 		
 Commits

 		
 Pushes

 		
 Code Review

 		
 Development Standards

 		
 Code Style

 		
 Readability

 		
 Names

 		
 Variables

 		
 Classes, Modules, Packages

 		
 Automated Tests

 		
 Ideal Distribution of Tests

 		
 Coverage

 		
 Recommended Approach

 		
 Test-Driven Development (TDD):

 		
 Scope of a Unit Test

 		
 Documentation

 		
 Object Oriented Design and Software Architecture

 		
 Object Design

 		
 Resources

 		
 Awesome Authors:

 		
 Testing

 		
 Test-Driven Development:

 		
 Object-Oriented Design

 		
 Documentation

 		
 Code of Conduct

 		
 Our Pledge

 		
 Our Standards

 		
 Our Responsibilities

 		
 Scope

 		
 Enforcement

 		
 Attribution

_static/BFG_Logo.png

_static/ajax-loader.gif

