

    
      
          
            
  
Welcome to Gallimaufry’s documentation!


General


	Overview

	Structure

	Caveats

	Installation
	Manual/pypi

	Docker










API


	USB

	Device

	Configuration

	Interface

	Endpoint

	HID






Examples


	CSAW 2012: Net300
	Overview

	Step 0: Analysis

	Step 1: Extract the Keystrokes

	Resources





	HackIT 2017: Foren100
	Overview

	Step 0: Analysis

	Step 1: Extract the Keystrokes

	Resources





	Pico 2017: Just Keyp Trying
	Overview

	Step 0: Analysis

	Step 1: Extract the Keystrokes

	Resources





	UTCTF 2019: Rogue Leader [https://bannsecurity.com/index.php/home/10-ctf-writeups/50-utctf-2019-rogue-leader]








Indices and tables


	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  
Overview

gallimaufry is a python3 wrapper for parsing USB packet capture (or .pcap)
files. It utilizes tshark on the backend for parsing of the packet capture
files. The output of parsing the pcap file is a python class object that
represents everything it knows about what’s in the pcap.




Structure

The pcap object will basically mimic the underlying USB protocol. This means,
in general, you will have the following class hierarchy:

USB -> Devices -> Configurations -> Interfaces -> Endpoints

For more information about the structure of USB descriptors, there’s a very
nice writeup at beyondlogic [http://www.beyondlogic.org/usbnutshell/usb5.shtml].




Caveats

Auto parsing for gallimaufry currently relies on parsing information from what
are called Descriptors. Descriptors are the way that the USB protocol tells the
host what is connected and what to expect. The packet capture may not have all
the descriptors. If it does not, those objects will not be automatically
generated. However, you can manually parse them (as in the PicoCTF example) if
you provide a bit more information.





          

      

      

    

  

    
      
          
            
  
Installation

Installation is fairly strait forward. You can install it manually, or use a
pre-build Docker image.


Manual/pypi

Manual installation simply involves ensuring that you have tshark installed
and then installing the gallimaufry package. You can do that as follows:

$ # Install tshark
$ sudo apt-get update && sudo apt-get install -y tshark python3
$ # Optionally, create a virtual environment
$ mkvirtualenv --python=$(which python3) -i gallimaufry gallimaufry








Docker

There is an automated Docker build for this project that will take care of
ensuring everything that needs to be installed is.

To download the latest version, do the following:

$ sudo docker pull bannsec/gallimaufry





You can run the container as follows:

$ sudo docker run -it --rm -v $PWD:/pcaps bannsec/gallimaufry





That will drop you into a shell where you can run the tool. It will also mount
your current directory inside the container under /pcaps.







          

      

      

    

  

    
      
          
            
  
USB





          

      

      

    

  

    
      
          
            
  
Device





          

      

      

    

  

    
      
          
            
  
Configuration





          

      

      

    

  

    
      
          
            
  
Interface





          

      

      

    

  

    
      
          
            
  
Endpoint





          

      

      

    

  

    
      
          
            
  
HID





          

      

      

    

  

    
      
          
            
  
CSAW 2012: Net300


Overview

For the Net300 challenge we are given a file named dongle.pcap. The first
thing to do is open it in something like Wireshark. A quick peek with
Wireshark shows that they have captured USB packets. Our goal will likely
be to extract the flag from the data being transferred.




Step 0: Analysis

At this point, we’re not quite sure what data is being passed around in these
USB packets. Based on the nature of the protocol, it could be many things, and
the method of transferring that information does not often allow you to simply
run strings to discover what it is. Let’s open it up with gallimaufry:

In [1]: from Gallimaufry.USB import USB

In [2]: pcap = USB("./dongle.pcap")
Expected 1 Descriptors. Found 0.

In [3]: pcap
Out[3]: <USB packets=2844>





So we’ve parsed the pcap file. There is a warning stating that we expected 1
Descriptor but didn’t find it. This is OK, but it’s a good thing to keep in
mind. Basically, gallimaufry relies on parsing the same information that your
USB device sends to your host. This allows us to know what type of device it
is, and other useful information for proper parsing. The warning above means
that the Descriptor told us we should expect 1 of them, but we found none. This
could be for any number of reasons, mostly likely that the Descriptor we’re
parsing came before our pcap. Even if you have no Descriptors, however, you can
still use gallimaufry to parse the data, but you have to do a little more work
yourself. This will be covered in the example of Pico 2017.

Now that we’ve loaded up the pcap, we should take a look at what’s inside it.
With smaller pcap files, the easiest way is probably to use the summary
property:

In [5]: print(pcap.summary)
PCAP: /home/user/opt/gallimaufry/examples/keyboard/csaw2012/dongle.pcap
Total Packets: 2844

Devices
-------

        Van Ooijen Technische Informatica - Teensyduino Keyboard+Mouse+Joystick
        -----------------------------------------------------------------------
        bus_id: 2
        device_address: 0
        device_version: 1.0.5
        bluetooth_version: 2.0.0
        packets: 4

        Configurations
        --------------

        Van Ooijen Technische Informatica - Teensyduino Keyboard+Mouse+Joystick
        -----------------------------------------------------------------------
        bus_id: 2
        device_address: 26
        device_version: 1.0.5
        bluetooth_version: 2.0.0
        packets: 2758

        Configurations
        --------------

                Configuration 1
                ---------------
                bNumInterfaces = 4
                self_powered = True
                remote_wakeup = False

                Interfaces
                -----------

                        Interface 0
                        -----------
                        Class: HID – Human Interface Device
                        SubClass: Boot Interface Subclass
                        Protocol: Keyboard

                        Endpoints
                        ---------

                                Endpoint 3
                                ----------
                                direction: In
                                transfer_type: Interrupt
                                packets: 2696

                        Interface 1
                        -----------
                        Class: HID – Human Interface Device
                        SubClass: Boot Interface Subclass
                        Protocol: Mouse

                        Endpoints
                        ---------

                                Endpoint 4
                                ----------
                                direction: In
                                transfer_type: Interrupt
                                packets: 20

                        Interface 2
                        -----------
                        Class: HID – Human Interface Device
                        SubClass: No Subclass
                        Protocol: None

                        Endpoints
                        ---------

                                Endpoint 1
                                ----------
                                direction: In
                                transfer_type: Interrupt
                                packets: 0


                                Endpoint 2
                                ----------
                                direction: Out
                                transfer_type: Interrupt
                                packets: 0

                        Interface 3
                        -----------
                        Class: HID – Human Interface Device
                        SubClass: No Subclass
                        Protocol: None

                        Endpoints
                        ---------

                                Endpoint 5
                                ----------
                                direction: In
                                transfer_type: Interrupt
                                packets: 0





Since we weren’t told ahead of time where the flag is, we should likely guess
that it is from the stream that has the majority of the packets. Thus, simply
trace down that list watching who is sending the most packets, and we find that
it’s coming from Configuration 1, Endpoint 3, which is being described as a
keyboard.




Step 1: Extract the Keystrokes

Here we can drill down into the object to extract the keystrokes. Let’s take a
look at the devices:

In [6]: pcap.devices
Out[6]:
[<Van Ooijen Technische Informatica Teensyduino Keyboard+Mouse+Joystick v1.0.5 USB2.0.0 bus_id=2 address=0>,
 <Van Ooijen Technische Informatica Teensyduino Keyboard+Mouse+Joystick v1.0.5 USB2.0.0 bus_id=2 address=26>]





Looking at our summary, we know it’s the device with address 26. We can then
drill down into the Configurations:

In [7]: pcap.devices[1].configurations
Out[7]: [<Configuration bNumInterfaces=4 bConfigurationValue=1>]





There’s only one. Let’s look at the Interfaces:

In [8]: pcap.devices[1].configurations[0].interfaces
Out[8]:
[<Interface HID – Human Interface Device bInterfaceNumber=0>,
 <Interface HID – Human Interface Device bInterfaceNumber=1>,
 <Interface HID – Human Interface Device bInterfaceNumber=2>,
 <Interface HID – Human Interface Device bInterfaceNumber=3>]





From the summary, we know we want Interface 0. Finally, checkout the endpoints:

In [9]: pcap.devices[1].configurations[0].interfaces[0].endpoints
Out[9]: [<Endpoint number=3 direction=In transfer_type=Interrupt packets=2696>]





There’s only one of them. At this point, we have an Endpoint object. The
library has identified that this endpoint is a keyboard, and has added a
Keyboard object to it. Let’s pull that out.:

In [12]: keyboard = pcap.devices[1].configurations[0].interfaces[0].endpoints[0].keyboard

In [13]: keyboard
Out[13]: <Keyboard keystrokes=668>





Notice that the Keyboard object has identified 668 keystrokes for this
endpoint. Let’s extract them:

In [14]: keyboard.keystrokes
Out[14]: '[RIGHT_GUI]rxterm -geometry 12x1+0+0\necho k\n[RIGHT_GUI]rxterm -geometry 12x1+75+0\necho e\n[RIGHT_GUI]rxterm -geometry 12x1+150+0\necho y\n[RIGHT_GUI]rxterm -geometry 12x1+225+0\necho {\n[RIGHT_GUI]rxterm -geometry 12x1+300+0\necho c\n[RIGHT_GUI]rxterm -geometry 12x1+375+0\necho 4\n[RIGHT_GUI]rxterm -geometry 12x1+450+0\necho 8\n[RIGHT_GUI]rxterm -geometry 12x1+525+0\necho b\n[RIGHT_GUI]rxterm -geometry 12x1+600+0\necho a\n[RIGHT_GUI]rxterm -geometry 12x1+675+0\necho 9\n[RIGHT_GUI]rxterm -geometry 12x1+0+40\necho 9\n[RIGHT_GUI]rxterm -geometry 12x1+75+40\necho 3\n[RIGHT_GUI]rxterm -geometry 12x1+150+40\necho d\n[RIGHT_GUI]rxterm -geometry 12x1+225+40\necho 3\n[RIGHT_GUI]rxterm -geometry 12x1+300+40\necho 5\n[RIGHT_GUI]rxterm -geometry 12x1+450+40\necho c\n[RIGHT_GUI]rxterm -geometry 12x1+375+40\necho 3\n[RIGHT_GUI]rxterm -geometry 12x1+525+40\necho a\n[RIGHT_GUI]rxterm -geometry 12x1+600+40\necho }\n'

In [15]: print(keyboard.keystrokes)
[RIGHT_GUI]rxterm -geometry 12x1+0+0
echo k
[RIGHT_GUI]rxterm -geometry 12x1+75+0
echo e
[RIGHT_GUI]rxterm -geometry 12x1+150+0
echo y
[RIGHT_GUI]rxterm -geometry 12x1+225+0
echo {
[RIGHT_GUI]rxterm -geometry 12x1+300+0
echo c
[RIGHT_GUI]rxterm -geometry 12x1+375+0
echo 4
[RIGHT_GUI]rxterm -geometry 12x1+450+0
echo 8
[RIGHT_GUI]rxterm -geometry 12x1+525+0
echo b
[RIGHT_GUI]rxterm -geometry 12x1+600+0
echo a
[RIGHT_GUI]rxterm -geometry 12x1+675+0
echo 9
[RIGHT_GUI]rxterm -geometry 12x1+0+40
echo 9
[RIGHT_GUI]rxterm -geometry 12x1+75+40
echo 3
[RIGHT_GUI]rxterm -geometry 12x1+150+40
echo d
[RIGHT_GUI]rxterm -geometry 12x1+225+40
echo 3
[RIGHT_GUI]rxterm -geometry 12x1+300+40
echo 5
[RIGHT_GUI]rxterm -geometry 12x1+450+40
echo c
[RIGHT_GUI]rxterm -geometry 12x1+375+40
echo 3
[RIGHT_GUI]rxterm -geometry 12x1+525+40
echo a
[RIGHT_GUI]rxterm -geometry 12x1+600+40
echo }





The [RIGHT_GUI] means that the person typing pressed the right GUI key, such
as the Windows key. The rest of the challenge is simply interpreting those
keystrokes as commands and finding the one of them is out of order.

Flag: key[c48ba993d353ca]




Resources


	dongle.pcap [https://github.com/Owlz/gallimaufry/blob/master/docs/source/examples/csaw_2012_net300.pcap?raw=true]










          

      

      

    

  

    
      
          
            
  
HackIT 2017: Foren100


Overview

For the Foren100 challenge we are given a file named task.pcap. The first
thing to do is open it in something like Wireshark. A quick peek with
Wireshark shows that they have captured USB packets. Our goal will likely
be to extract the flag from the data being transferred.




Step 0: Analysis

At this point, we’re not quite sure what data is being passed around in these
USB packets. Based on the nature of the protocol, it could be many things, and
the method of transferring that information does not often allow you to simply
run strings to discover what it is. Let’s open it up with gallimaufry:

In [1]: from Gallimaufry import USB

In [2]: pcap = USB("./task.pcap")

In [3]: pcap
Out[3]: <USB packets=835>





Now that we’ve loaded up the pcap, we should take a look at what’s inside it.
With smaller pcap files, the easiest way is probably to use the summary
property:

In [4]: print(pcap.summary)
PCAP: /home/user/opt/gallimaufry/examples/keyboard/HackIT2017/task.pcap
Total Packets: 835

Devices
-------

    Apple, Inc. - Aluminum Keyboard (ISO)
    -------------------------------------
    bus_id: 1
    device_address: 3
    device_version: 0.6.9
    bluetooth_version: 2.0.0
    packets: 514

    Configurations
    --------------

        Configuration 1
        ---------------
        bNumInterfaces = 2
        self_powered = False
        remote_wakeup = False

        Interfaces
        -----------

            Interface 0
            -----------
            Class: HID – Human Interface Device
            SubClass: Boot Interface Subclass
            Protocol: Keyboard

            Endpoints
            ---------

                Endpoint 1
                ----------
                direction: In
                transfer_type: Interrupt
                packets: 478

            Interface 1
            -----------
            Class: HID – Human Interface Device
            SubClass: No Subclass
            Protocol: None

            Endpoints
            ---------

                Endpoint 2
                ----------
                direction: In
                transfer_type: Interrupt
                packets: 0





This is a very clean usb pcap. There’s only one Device, with one Configuration,
and two interfaces. Of those interfaces, only one interface and one endpoint
have data. It’s a fair bet that we should look at what’s in that data.




Step 1: Extract the Keystrokes

Here we can drill down into the object to extract the keystrokes. Let’s take a
look at the devices:

In [6]: pcap.devices
Out[6]: [<Apple, Inc. Aluminum Keyboard (ISO) v0.6.9 USB2.0.0 bus_id=1 address=3>]





Drill down next into the configurations:

In [7]: pcap.devices[0].configurations
Out[7]: [<Configuration bNumInterfaces=2 bConfigurationValue=1>]





There’s only one. Let’s look at the Interfaces:

In [8]: pcap.devices[0].configurations[0].interfaces
Out[8]:
[<Interface HID – Human Interface Device bInterfaceNumber=0>,
 <Interface HID – Human Interface Device bInterfaceNumber=1>]





From the summary, we know we want Interface 0. Finally, checkout the endpoints:

In [9]: pcap.devices[0].configurations[0].interfaces[0].endpoints
Out[9]: [<Endpoint number=1 direction=In transfer_type=Interrupt packets=478>]





There’s only one of them. At this point, we have an Endpoint object. The
library has identified that this endpoint is a keyboard, and has added a
Keyboard object to it. Let’s pull that out.:

In [10]: keyboard = pcap.devices[0].configurations[0].interfaces[0].endpoints[0].keyboard

In [11]: keyboard
Out[11]: <Keyboard keystrokes=208>





Notice that the Keyboard object has identified 208 keystrokes for this
endpoint. Let’s extract them:

In [12]: print(keyboard.keystrokes)
w
k
f
b
3'[Up Arrow][[Up Arrow]l[Up Arrow]#[Up Arrow]{w$[Down Arrow]>b[Down Arrow]ag[Down Arrow][e[Down Arrow]ci.[[Up Arrow][f[Up Arrow]{k[Up Arrow]n$[Up Arrow]ju}[Down Arrow]:[Down Arrow]3[Down Arrow]u[Down Arrow]%=[Up Arrow]~[Up Arrow]y[Up Arrow]6[Up Arrow],'[Down Arrow]p[Down Arrow]b[Down Arrow]7[Down Arrow]%&[Up Arrow]d[Up Arrow]0[Up Arrow]j[Up Arrow]pt[Down Arrow]i[Down Arrow]a[Down Arrow][[Down Arrow]k([Up Arrow]=[Up Arrow]r[Up Arrow]m[Up Arrow]]=[Down Arrow]0[Down Arrow]d[Down Arrow]>[Down Arrow]lc[Up Arrow]*[Up Arrow]_[Up Arrow]{[Up Arrow]j%[Down Arrow]u[Down Arrow]s[Down Arrow]([Down Arrow]*2[Up Arrow]0[Up Arrow]n[Up Arrow]'[Up Arrow];9[Down Arrow]h[Down Arrow]4[Down Arrow]][Down Arrow]y4[Up Arrow]'[Up Arrow]k[Up Arrow];[Up Arrow]+p[Down Arrow]f[Down Arrow]e[Down Arrow]$[Down Arrow]!}[Up Arrow]1[Up Arrow]_[Up Arrow]k[Up Arrow]s&[Down Arrow]s[Down Arrow]2[Down Arrow]c[Down Arrow]%q[Up Arrow]$[Up Arrow].[Up Arrow]![Up Arrow]#,[Down Arrow]s[Down Arrow]0[Down Arrow]c[Down Arrow]z3[Up Arrow]e[Up Arrow]}[Up Arrow]-[Up Arrow]i





At this point you may notice there are a bunch of [Up Arrow] and
[Down Arrow] in the output. This is gallimaufry’s way of telling you that
arrow characters were pushed. Thus, simply printing out the output like this,
while a good start, won’t get us all the way. gallimaufry has the ability to
attempt to interpret keystrokes in different settings. As of writing, the only
setting it is interpreting is a notepad like setting. The goal for this setting
is to interpret characters (such as the arrows) and maintain state of a cursor
object, thus allowing it to correctly reproduce what was being typed.

To utilize this, use the keystrokes_interpret property, like so:

In [13]: print(keyboard.keystrokes_interpret)
w{w$ju},'pt]=j%;9+ps&#,i
k#>bn$:6pjim0{u'h;fks!s-
flag{k3yb0ard_sn4ke_2.0}
b[[e[fu~7d[=>*(0]'$1c$ce
3'ci.[%=%&k(lc*2y4!}%qz3





We can see that the flag is in the middle of the other random looking keys.

Flag: flag{k3yb0ard_sn4ke_2.0}




Resources


	task.pcap [https://github.com/Owlz/gallimaufry/blob/master/docs/source/examples/hackit_2017_foren100.pcap?raw=true]










          

      

      

    

  

    
      
          
            
  
Pico 2017: Just Keyp Trying


Overview

As with the previous examples, we are given a pcap that, upon opening, we
discover contains USB packets. This example will go over a trick that may be
necessary when you do not have all the packets. Specifically, it discusses how
to handle the case when we do not have all the descriptors present but still
want to parse out the keystrokes.




Step 0: Analysis

To start with, let’s open the pcap with gallimaufry:

In [1]: from Gallimaufry.USB import USB

In [2]: pcap = USB("./data.pcap")

In [3]: pcap
Out[3]: <USB packets=66>





This example is a very clean pcap. Only 66 packets! Let’s see what packets
we’ve found by looking at the summary:

In [5]: print(pcap.summary)
PCAP:
data.pcap
Total Packets: 66

Devices
-------





Here is where you find the gotcha. The summary returned nothing! The reason for
this is that, upon inspection of the pcap, the USB descriptor payloads are not
present. Due to this, gallimaufry does not know the types of objects to
create.

If you wanted to inspect the packets parsed through gallimaufry manually,
you can use the pcap property:

In [6]: pcap.pcap
OrderedDict([('_index', 'packets-2017-10-25'),
              ('_type', 'pcap_file'),
              ('_score', None),
              ('_source',
               OrderedDict([('layers',
                             OrderedDict([('frame',
                                           OrderedDict([('frame.encap_type',
                                                         '152'),
                                                        ('frame.time',
                                                         'Mar 22, 2017 21:07:40.230170000 EDT'),
                                                        ('frame.offset_shift',
                                                         '0.000000000'),
                                                        ('frame.time_epoch',
                                                         '1490231260.230170000'),
                                                        ('frame.time_delta',
                                                         '3.716062000'),
                                                        ('frame.time_delta_displayed',
                                                         '3.716062000'),
                                                        ('frame.time_relative',
                                                         '23.453109000'),
                                                        ('frame.number', '65'),
                                                        ('frame.len', '35'),
                                                        ('frame.cap_len',
                                                         '35'),
                                                        ('frame.marked', '0'),
                                                        ('frame.ignored', '0'),
                                                        ('frame.protocols',
                                                         'usb')])),
                                          ('usb',
                                           OrderedDict([('usb.src', '2.1.1'),
                                                        ('usb.addr', 'host'),
                                                        ('usb.dst', 'host'),
                                                        ('usb.usbpcap_header_len',
                                                         '27'),
                                                        ('usb.irp_id',
                                                         '0xffffb689ac2d3940'),
                                                        ('usb.usbd_status',
                                                         '0'),
                                                        ('usb.function', '9'),
                                                        ('usb.irp_info',
                                                         '0x00000001'),
                                                        ('usb.irp_info_tree',
                                                         OrderedDict([('usb.irp_info.reserved',
                                                                       '0x00000000'),
                                                                      ('usb.irp_info.direction',
                                                                       '0x00000001')])),
                                                        ('usb.bus_id', '2'),
                                                        ('usb.device_address',
                                                         '1'),
                                                    ('usb.endpoint_number',
                                                     '0x00000081'),
                                                    ('usb.endpoint_number_tree',
                                                     OrderedDict([('usb.endpoint_number.direction',
                                                                   '1'),
                                                                  ('usb.endpoint_number.endpoint',
                                                                   '1')])),
                                                    ('usb.transfer_type',
                                                     '0x00000001'),
                                                    ('usb.data_len', '8'),
                                                    ('usb.bInterfaceClass',
                                                     '65535')])),
                                      ('usb.capdata',
                                       '01:00:00:00:00:00:00:00')]))]))]),
                                       <<clipped>>





Future work on this tool will include endpoint summaries that are agnostic of
Devices, but until that time you will have to do a bit of manual work to pull
out the packets you’re interested in.




Step 1: Extract the Keystrokes

Since we were not able to auto-parse this pcap, we will need to first extract
the relevant packets. To do this, let’s pull out all packets with the USB
endpoint of 1 on bus_id 2 and device_address 1


Note

Remember that the actual endpoint number is derived from the
endpoint_number field (in this case 0x81) by taking the lowest 3 bits.
Here, we have 0x81 & 0b111 == 1.



In [7]: packets = pcap.pcap_filter(bus_id=2, device_address=1, endpoint_number=1)

In [8]: len(packets)
Out [8]: 66





Note here that the number of packets we extracted is the same as the total
number of packets this capture has. The authors of this challenge were trying
to be nice to us by removing unnecessary payloads before giving it to us.

At this point, we would like to parse out the keystrokes. However, the
Keyboard object wasn’t automatically generated for us. Since we have the
packets we want, let’s manually generate a Keyboard object with these
packets:

In [9]: from Gallimaufry.Classes.HID.Keyboard import Keyboard

In [10]: keyboard = Keyboard(packets)

In [11]: keyboard
Out [11]: <Keyboard keystrokes=29>





Our Keyboard object has been created, and it successfully parsed out 29
keystrokes from the packets it received. We can now ask it to print out those
keystrokes as we have done previously:

In [12]: keyboard.keystrokes
Out [12]: 'flag{pr355_0nwards_c98ccf99}[LEFT_CONTROL]c'





Funny enough, we also caught the authors executing a Ctrl-C using the Left
Control button.




Resources


	data.pcap [https://github.com/bannsec/gallimaufry/blob/master/docs/source/examples/pico_2017_Just_Keyp_Trying.pcap?raw=true]










          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _static/comment-bright.png





_static/comment-close.png





_static/ajax-loader.gif





_static/down.png





_static/comment.png





_static/down-pressed.png





_static/file.png





_static/minus.png





_static/plus.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Gallimaufry’s documentation!
        


        		
          Overview
        


        		
          Structure
        


        		
          Caveats
        


        		
          Installation
          
            		
              Manual/pypi
            


            		
              Docker
            


          


        


        		
          USB
        


        		
          Device
        


        		
          Configuration
        


        		
          Interface
        


        		
          Endpoint
        


        		
          HID
        


        		
          CSAW 2012: Net300
          
            		
              Overview
            


            		
              Step 0: Analysis
            


            		
              Step 1: Extract the Keystrokes
            


            		
              Resources
            


          


        


        		
          HackIT 2017: Foren100
          
            		
              Overview
            


            		
              Step 0: Analysis
            


            		
              Step 1: Extract the Keystrokes
            


            		
              Resources
            


          


        


        		
          Pico 2017: Just Keyp Trying
          
            		
              Overview
            


            		
              Step 0: Analysis
            


            		
              Step 1: Extract the Keystrokes
            


            		
              Resources
            


          


        


      


    
  

_static/up.png





_static/up-pressed.png





