
galaxyutils
Release v0.1.2

Tyler Nichols

Jan 01, 2020

CONTENTS

1 config_parser 1
1.1 Overview . 1
1.2 Documentation . 2

2 time_tracker 3
2.1 Overview . 3
2.2 Documentation . 4

3 Features 5

i

ii

CHAPTER

ONE

CONFIG_PARSER

1.1 Overview

This particular file allows for the use of a configuration file for a plugin (known as config.cfg), which is created
from a default configuration file (known as default_config.cfg).

These configuration files have the following format:

• Lines beginning with # are comments, and are not interpreted by the underlying parser. These can be used to
inform users about an option’s default value, allowed values, and purpose.

• Lines beginning with ## are default-only comments, meaning that they will not be copied from
default_config.cfg into config.cfg when creating a duplicated configuration file. These can be
used to discourage users from editing the default_config.cfg file, among other reasons.

• Lines not preceded by a # or a ## are interpreted to have both an option’s name and its value, separated by an
assignment operator (=).

Here is an example of a valid default_config.cfg file:

DO NOT EDIT OR DELETE THIS FILE! If you need to make changes, then copy this file,
→˓save it as "config.cfg" in the
plugin root directory, and edit that file instead!

log_sensitive_data=False
Default Value: False
Allowed Values:
- True
- False
If set to true, this setting will add sensitive information to the log file
→˓generated by this plugin. Since this
information can compromise the security of your account, this setting is best left
→˓to false, unless you are
debugging the plugin.

Within a plugin (preferably in a file designated to constants, like consts.py), the defined setting can then be ac-
cessed like this:

CONFIG_OPTIONS = get_config_options([
Option(option_name="log_sensitive_data")

])

LOG_SENSITIVE_DATA = CONFIG_OPTIONS["log_sensitive_data"]

For more details regarding accessing the user’s defined configuration settings, see the documentation below.

1

galaxyutils, Release v0.1.2

1.2 Documentation

2 Chapter 1. config_parser

CHAPTER

TWO

TIME_TRACKER

2.1 Overview

This particular file allows for the creation of a TimeTracker object, which contains methods that allow an integra-
tion developer to keep track of the user’s play time for games in their library.

It is the developer’s responsibility to do the following:

• Store the user’s play time cache for another session. A good implementation for doing so is to both save the
play time cache to the persistent_cache and to write it locally to a file on the user’s disk. This ensures
that the user’s play time is safe if the persistent_cache is erased (i.e., the user loses authentication). An
example is shown below.

async def shutdown(self):
if self.game_time_cache: # Do not overwrite the file if the cache is empty. This

→˓prevents accidentally erasing
the user's previous game time cache and resetting

→˓their play time.
file = open("PlayTimeCache.txt", "w+")
Consider informing the user to not modify the game time cache file.
file.write("# DO NOT EDIT THIS FILE\n")
file.write(self.game_time_tracker.get_time_cache_hex())
file.close()

await self._http_client.close()
await super().shutdown()

def game_times_import_complete(self):
self.game_time_cache = self.game_time_tracker.get_time_cache()
self.persistent_cache["game_time_cache"] = self.game_time_tracker.get_time_cache_

→˓hex()
self.push_cache()

• Retrieve the user’s play time cache from the previous session. Supposing that the cache was saved according
to the previous example, a good implementation would be to retrieve it from the persistent_cache if
possible, and then fall back to the locally stored file if it cannot be found there. In general, it is best to use a
locally stored file to retrieve the game time cache only if all other methods fail. An example is shown below.

def handshake_complete(self):
Check the persistent cache first.
if "game_time_cache" in self.persistent_cache:

self.game_time_cache = pickle.loads(bytes.fromhex(self.persistent_cache["game_
→˓time_cache"]))

If the game time cache cannot be found in the persistent cache, then check a
→˓local file for it.

(continues on next page)

3

galaxyutils, Release v0.1.2

(continued from previous page)

else:
try:

file = open("PlayTimeCache.txt", "r")
for line in file.readlines():

if line[:1] != "#":
self.game_time_cache = pickle.loads(bytes.fromhex(line))
break

except FileNotFoundError:
If the file does not exist, then use an empty game time cache.
self.game_time_tracker = TimeTracker()
return

self.game_time_tracker = TimeTracker(game_time_cache=self.game_time_cache)

2.2 Documentation

This module contains some utilities that Galaxy 2.0 plugin developers may find useful. The utilities are designed to be
platform- and operating system-independent.

4 Chapter 2. time_tracker

CHAPTER

THREE

FEATURES

Currently, the features of this module include the following:

• Internal Play Time Tracker (time_tracker.py): Keep track of a user’s play time for each game manually,
and save it locally to the user’s disk.

• Configuration File Support (config_parser.py): Create and utilize a customized config.cfg file, which can
contain settings that users and developers can alter to affect how a plugin functions.

5

	config_parser
	Overview
	Documentation

	time_tracker
	Overview
	Documentation

	Features

