
GaitAnalysisToolKit Documentation
Release 0.2.0dev

Jason K. Moore

December 08, 2014

Contents

1 Motek Module 3
1.1 Mocap Module . 3
1.2 Record Module . 9
1.3 Meta Data . 10
1.4 Usage . 13

2 Gait Module 17

3 gaitanalysis Package 19
3.1 motek Module . 19
3.2 gait Module . 29
3.3 controlid Module . 34

4 Introduction 39

5 Python Packages 41

6 Octave Libraries 43

7 Installation 45
7.1 Dependencies . 46

8 Tests 47

9 Vagrant 49

10 Documentation 51

11 Contributing 53
11.1 Git Notes . 54

12 Release Notes 55
12.1 0.1.2 . 55
12.2 0.1.1 . 55
12.3 0.1.0 . 55

13 Indices and tables 57

Bibliography 59

i

Python Module Index 61

ii

GaitAnalysisToolKit Documentation, Release 0.2.0dev

Contents:

Contents 1

GaitAnalysisToolKit Documentation, Release 0.2.0dev

2 Contents

CHAPTER 1

Motek Module

Motek Medical sells hardware/software packages which include treadmills with force plate measurement capabilities
and motion bases, motion capture systems, visual displays, and other sensors for various measurements. Their soft-
ware, D-Flow, manages the data streams from the various systems and is responsible for displaying interactive visuals,
sounds, and motions to the subject. The gaitanalysis.motek module includes classes that eases processing the
data collected from typical D-Flow output files, but may have some limitations with respect to the hardware because
we only have one system available.

The Human Motion and Control Lab at Cleveland State University has such a system. Our system includes:

• A ForceLink R-Mill which has dual 6 DoF force plates, independent belts for each foot, and lateral and pitch
motion capabilities.

• A 10 Camera Motion Analysis motion capture system which includes the Cortex software and hardware for
collecting analog and camera data simultaneously.

• Delsys wireless EMG + 3D Accelerometers.

• Motek Medical’s D-Flow software and visual display system.

Cortex alone is capable of delivering data from the cameras, force plates, and analog sensors (EMG/Accelerometer),
but D-Flow is required to collect data from digital sensors and the treadmill’s motion (lateral, pitch, and belts). D-Flow
can output multiple types of files which contain the different data.

Our motion capture system’s coordinate system is such that the X coordinate points to the right, the Y coordinate
points upwards, and the Z coordinate follows from the right-hand-rule, i.e. points backwards with respect to a person
walking forward on the treadmill. The camera’s coordinate system is aligned to an origin point on treadmill’s surface
during camera calibration.

1.1 Mocap Module

D-Flow’s mocap module has a file tab which allows you to export the time series data collected from Cortex in two
different file formats: tab separated values (TSV) and the C3D format (see http://www.c3d.org). The TSV files are
approximately twice the size of the C3D files, don’t maintain machine precision, and do not allow for meta data
storage. But for now, this software only deals with the TSV file format.

The text file output from the mocap module in DFlow is a tab delimited file. The first line is the header and contains a
time stamp column, frame number column, marker position columns, force plate force/moment columns, force plate
center of pressure columns, other analog columns, and potentially results from the real time Human Body Model
which is included with the D-Flow software. These are detailed below. The numerical values of the measurements are
provided in decimal floating point notation with 6 decimals of precision, e.g. 123456.123456 [%1.6f].

3

http://www.motekmedical.com
http://www.motekmedical.com/products/d-flow-software/
http://www.forcelink.nl/
http://www.forcelink.nl/index.php/product/r-mill/
http://www.motionanalysis.com
http://www.motionanalysis.com/html/movement/cortex.html
http://delsys.com
http://en.wikipedia.org/wiki/Tab-separated_values
http://www.c3d.org
http://dx.doi.org/10.1007/s11517-013-1076-z

GaitAnalysisToolKit Documentation, Release 0.2.0dev

1.1.1 Data Column Descriptions

Time Stamp The TimeStamp column records the D-Flow system time when it receives a “frame” from Cortex
in seconds since D-Flow was started. This is approximately at 100 hz (Cortex’s sample rate), but has slight
variability per sample period, something like +/- 0.002 s or so. This column can be used to synchronize with
other D-Flow output files which include a D-Flow time stamp, e.g. the output of the record module. The
following figure shows the difference, .diff(), of an example D-Flow time stamp, giving the variability in
periods at each measurement instance.

Frame Number The FrameNumber column gives a positive integer to count the frame numbers delivered by Cor-
tex. It seems as though none of the frames are ever dropped but this should be verified.

Marker Coordinates The columns that correspond to marker coordinates have one of three suffixes: .PosX, .PosY,
.PosZ. The prefix is the marker name which is set by providing a name to the marker in Cortex. There are
specific names which are required for D-Flow’s Human Body Model’s computations. The marker coordinates
are given in meters. See below for some additional virtual markers.

Force Plate Kinetics There are three forces and three moments recorded by each of the two force plates in Newtons
and Newton-Meters, respectively. The prefix for these columns is either FP1 or FP2 and represents either
force plate 1 (left) or 2 (right). The suffixes are either .For[XYZ], .Mom[XYZ] for the forces and moments,
respectively. The force plate voltages are sampled at a much higher frequency than the cameras, but delivered
at the Cortex camera sample rate, 100 Hz through the D-Flow mocap module. A force/moment calibration
matrix stored in Cortex converts the voltages to forces and moments before sending it to D-Flow 1. Cortex also
computes the center of pressure from the forces, moments, and force plate dimensions. These have the same
prefixes for the plate number, have the suffix .Cop[XYZ], and are in meters.

1 Cortex currently does not output anything for the .MomY momemt on both of the force plates. So D-Flow records the raw voltages from Cortex
and applies the calibration matrix in D-Flow to get correct values using an .idc file.

4 Chapter 1. Motek Module

GaitAnalysisToolKit Documentation, Release 0.2.0dev

Analog Channels Cortex can sample additional analog channels. These columns have headers which take this form
Channel[1-99].Anlg and the names are fixed to correspond to the channels in the National Instruments
DAQ box which samples the analog sensors. The first twelve of these are reserved for the force plate voltage
measurements. These correspond to the voltages of the force sensors in the two force plates and are as follows
(channels 1-12).

1. F1Y1

2. F1Y2

3. F1Y3

4. F1X1

5. F1X2

6. F1Z1

7. F2Y1

8. F2Y2

9. F2Y3

10. F2X1

11. F2X2

12. F2Z1

Top View of treadmill surface showing location of the Y sensors:

FP1	FP2
Y2	Y2
Y1	Y3
Y3	Y1

The remaining analog channels are connected to the 16 Delsys EMG/Accelerometers measurements. Each
sensor has four signals: EMG, AccX, AccY, and AccZ. The are ordered in the remaining channels as:

13. EMG1

14. ACCX1

15. ACCY1

16. ACCZ1

17. EMG2

18. ACCX2

19. ACCY2

20. ACCZ2

21. etc.

1.1. Mocap Module 5

GaitAnalysisToolKit Documentation, Release 0.2.0dev

Note that all of the signals are in volts!. You must scale them yourself.

Note: The EMG/Acceleromter channels are 96 milliseconds behind the force plate measurements, according
to the DelSys manual 2. There may be other delays present too that may or may not be taken care of in Cortex
or D-Flow. The lag of the EMG/Accelerometers is due to the wireless communication.

Human Body Model The mocap TSV file can also contain joint angles [degrees], joint moments [Newton-Meters],
joint power [Watts], and muscle forces [Newtons] computed by the real time Human Body model. The joint
angle headers end in .Ang, the joint moments in .Mom, the joint power .Pow, and the muscle forces are
prefixed with R_ or L_. D-Flow also outputs the centor of mass in meters of the person in the HBM.COM.[XYZ]
columns.

Segment Positions and Rotations D-Flow also outputs positional and rotational information about body segments.
There are virtual markers with suffixes .Pos[XYZ] And there are also segment rotations in degrees. These
header labels end in .Rot[XYZ]. The definition of the positions and rotations is unclear and it is unclear what
they are used for. The following list gives the prefixes:

• pelvis

• thorax

• spine

• pelvislegs

• lfemur

• ltibia

• lfoot

• toes

• rfemur

• rtibia

• rfoot

• rtoes

Todo
There are probably more of these for the upper body.

1.1.2 Missing Values

D-Flow handles missing values internally to perform well with their real time computations, but there are some im-
portant issues to note when dealing with the data outputs from D-Flow with regards to missing values. Depending on
how many markers were used, where they were placed, and what analysis is used, different techniques can be used to
fill in the gaps.

Firstly, the markers sometimes go missing (i.e. can’t been seen by the cameras) which is typical of motion capture
systems. Care must be taken that all markers are always captured by the system, but there will always be some missing
values. If the data was recorded in a D-Flow version less than 3.16.2rc4 3, D-Flow records the last non-missing value
in all three axes until the marker is visible again when a marker goes missing. The following figure gives an example:

2 We’ve done independent measurements that show a ~72 millisecond delay.
3 We received versions 3.16.1 and then 3.16.2rc4 so I have no idea when the change was introduced between those versions. If this software is

used with a version between 3.16.1 and 3.16.2c4, then it may or may not work correctly.

6 Chapter 1. Motek Module

GaitAnalysisToolKit Documentation, Release 0.2.0dev

In D-Flow versions greater than or equal to 3.16.2rc4 the missing markers are indicated in the TSV file as either
0.000000 or -0.000000, which is the same as has been in the HBM columns in all versions of D-Flow. The
D-Flow version must be provided in the meta data yml file, otherwise it will assume D-Flow is at the latest
version.

The mocap output file can also contain variables computed by the real time implementation of the Human Body Model
(HBM). If the HBM computation fails at a D-Flow sample period, strings of zeros, either 0.000000 or -0.000000,
are inserted for missing values. The following figure shows the resulting HBM output with zeros:

1.1. Mocap Module 7

GaitAnalysisToolKit Documentation, Release 0.2.0dev

Notice that failed HBM computations don’t always correspond to missing markers.

The HBM software only handles zero values for marker coordinates. If markers are zero, then HBM ignores them
and tries to compute the inverse dynamics with a reduced set of markers. So if you playback recordings which have
missing markers stored as constant values in D-Flow, you will likely get incorrect inverse dynamics.

1.1.3 Time Delays

There are time delays between the camera marker data, force plate analog signals, and the wireless
EMG/Accelerometers. The documentation for the Delsys wireless system explicity states that there is a 96ms de-
lay in the data with respect to the analog signals that are sampled from the unit which is due to the wireless data
transfer. There is also an measurable delay in the camera data with respect to the analog data which seems to hover
around 7 ms.

1.1.4 Other

Note that the order of the “essential” measurements in the file must be retained if you expect to run the file back into
D-Flow for playback. I think the essential measurements are the time stamp, frame number, marker coordinates, and
force plate kinetics, and analog channels 4 (maybe because of the IDC file).

4 The first twelve analog channels may only be required because we use the .idc file to work around the fact that the .MomY force plate
moments are not correctly collected by D-Flow from Cortex.

8 Chapter 1. Motek Module

GaitAnalysisToolKit Documentation, Release 0.2.0dev

1.1.5 Inertial Compensation

If you accelerate the treadmill there will be forces and moments measured by the force plates that simply come from
the inertial effects of the motion. When external loads are applied to the force plates, you must subtract these inertial
forces from the measured forces to get correct estimates of the body fixed externally applied forces.

The markers are measured with respect to the camera’s inertial reference frame, earth, but the treadmill forces are mea-
sured with respect to the treadmill’s laterally and rotationally moving reference frame. We need both to be expressed
in the same inertial reference frame for ease of future computations.

To deal with this we measure the location of additional markers affixed to the treadmill and the 3D acceleration of the
treadmill at 4 points.

Typically, the additional accelerometers are connected to these channels and the arrow on the accelerometers which
aligns with the local X axis direction is always pointing forward (i.e. aligned with the negative z direction).

Front left
Channel13.Anlg : EMG
Channel14.Anlg : AccX
Channel15.Anlg : AccY
Channel16.Anlg : AccZ

Back left
Channel17.Anlg : EMG
Channel18.Anlg : AccX
Channel19.Anlg : AccY
Channel20.Anlg : AccZ

Front right
Channel21.Anlg : EMG
Channel22.Anlg : AccX
Channel23.Anlg : AccY
Channel24.Anlg : AccZ

Back right
Channel25.Anlg : EMG
Channel26.Anlg : AccX
Channel27.Anlg : AccY
Channel28.Anlg : AccZ

This information will be stored in the meta data file, see below.

Location of of accels and markers should stay the same between unloaded and loaded trials, but position doesn’t matter
other wise.

1.2 Record Module

The record module in D-Flow allows one to sample any signal available in the D-Flow environment at the variable
D-Flow sample rate which can vary from 0 to 300 Hz depending on how fast D-Flow is completing it’s computations.
Any signal that you desire to record, including the ones already provided in the Mocap Module, are available. This is
particularly useful for measuring the motions of the treadmill: both belts’ speed, lateral motion, and pitching motion.
The record module only outputs a tab delimited text file. It includes a Time column which records the D-Flow system
time in seconds which corresponds to the same time recorded in the TimeStamp column in mocap module tsv file.
And it additionally records the 6 decimal precision values of other measurements that you include. Finally, the record
module is capable of recording the time at which various D-Flow events occur. It does this by inserting commented
(#) lines in between the rows when the event occurred. For example an event may look like:

1.2. Record Module 9

GaitAnalysisToolKit Documentation, Release 0.2.0dev

#
EVENT A - COUNT 1
#

Where A is the event name (fixed by D-Flow, you can’t select custom names) and the number after COUNT gives an
integer count of how many times that event has occurred. D-Flow only seems to allow a total of 6 unique events to be
recorded, with names A-F. At the end of the file the total number of event occurrences are counted:

EVENT A occured 1 time
EVENT B occured 1 time
EVENT C occured 1 time
EVENT D occured 1 time
EVENT E occured 1 time

1.2.1 Treadmill

The right and left belt speeds can be measured with the record module. You must select a check box in the treadmill
module to ensure that the actual speed is recorded and not the desired speed. It does not seem possible to measure the
pitch angle nor the lateral position of the treadmill using the record module, it only records the desired (the input) to
each.

1.3 Meta Data

D-Flow does not have any way to store meta data with its output. This is unfortunate because the C3D format has full
support for meta data. It is also possible to add meta data into the header of text files, but it is not the cleanest solution.
So we’ve implemented our own method to track this information. The DFlowData class has the option to include a
meta data file with the other data files that can record arbitrary data about the trial. Things like subject id, subject body
segment parameter info, trial description, etc can and should be included. This data will be available for output to the
C3D format or other data storage formats and can be used for internal algorithms in further analysis.

The meta data file must conform to the YAML format, which is a common human readable data serialization format.
As time progresses the structure of the meta data file will become more standard, but for now there are only a few
requirements.

1.3.1 Basics

There are some standard meta data that should be collected with every trial.

study:
id: 58
name: Control Identification
description: Perturb the subject during walking and running.

subject:
id: 567
birthdate: 1982-05-17
age: 28
mass: 70
mass-units: kilogram
height: 1.82
height-units: meters
gender: male/female # for body seg calcs in hbm

trial:
id: 1

10 Chapter 1. Motek Module

http://en.wikipedia.org/wiki/YAML

GaitAnalysisToolKit Documentation, Release 0.2.0dev

datetime: 2013-12-03 05:06:00
notes: text to give anomalies
nominal-speed: 5
nominal-speed: m/s
stationary-platform: True/False
pitch: True
sway: True
marker-set: full/lower/NA
dflow-version: 3.16.1
hardware-settings:

high-performance: True/False
files:

compensation: ../T002/mocap-module-002.txt
mocap: mocap-module-001.txt
record: record-module-001.txt
cortex: cortex-001.cap
mox: gait-001.mox
meta: meta-001.yml

marker-map:
M5: T10
M6: STRN

Todo
HBM requires some measurements of the person and that can be found in the HBM tab of the mocap module. We
should include those here. ankle width, knee with, cuttoff frequency.

Todo
We need to store the scaling factors/matrices for the analog signals in the meta data.

study

id Some unique identified for your study.

name A string which contains the name of the project.

description One or more sentences that give a basic description of the project.

subject

id A unique identifier for the subject in this trial. This can be a number, a string, etc.

birth-date A date formatted string that gives the subjects birthdate.

age A integer giving the subjects age in years at the time of the trial. It’s better to provide the subject’s birthdate
so that the age can be computed for the date of the trial.

mass A positive real number giving the subjects weight. Note that actual weight on the trial day can likely be
computed from the force plate data and that should be used for accuracy purposes.

mass-units The full name or standard unit symbol for the mass quantity.

height A positive real number giving the subject’s height the day of the trial.

height-units The full name or standard unit symbol for the height quantity.

gender A string describing the gender of the subject.

trial

id A unique identifier for this trial. The meta file name should also include this identifier.

1.3. Meta Data 11

GaitAnalysisToolKit Documentation, Release 0.2.0dev

datetime A date formatted string giving the date and/or time of the trial. If you are concerned about the time
zone, UTC time is the best to use here.

notes A string with a any notes about the trial. The more of this information that can be included in structured
tags in the meta.yml file the better. This should be a catch-all otherwise.

nominal-speed Most trials have a nominal speed throughout the duration of the trial. This field can be used to
denote that. This is primarily for reference as the actual speed can be recorded in D-Flow’s record module.

nominal-speed-units: m/s The full name or standard unit symbol for the mass quantity.

stationary-platform A boolean value, [True|False], that indicates whether the treadmill motion was actuated
during the trial. If this flag is false, the DFlowData class will look for compensation data, compensate
for the inertial affects to the force plate data, and express the forces and moments in the motion capture
reference frame.

pitch A boolean value, [True|False], which indicates if the pitch degree of freedom was acutated during the
trial.

sway A boolean value, [True|False], which indicates if the lateral (sway) degree of freedom was acutated during
the trial.

marker-set A string that indicates the HBM marker set used during the trial [full|lower|NA].

dflow-version This should be a string that matches the version of D-Flow used to record the trial. This is
required to deal with changes in D-Flow’s output from earlier versions we had.

cortex-version This should be a string that matches the version of Cortex used to record the trial.

hardware-settings There are tons of settings for the hardware in both D-Flow, Cortex, and the other software
in the system. We hope to save the settings from each software with each trial, but for now this field can
be used to note the most important ones.

high-performance A boolean value that indicates whether the D-Flow high performance setting was on
(True) or off (False).

files This should be a key value mapping of files associated with this trial. The values should be the path to the
file relative to this meta file.

marker-map If you want to rename the column headers for markers in the mocap module or record module’s
TSV files then you can specify the mapping here. For example, if the column headings in the raw data
file are M5.PosX, M5.PosY, and M5.PosZ but you want to give the marker an easy to remember name,
then the marker map M5: T10 will set the column headers for that marker to T10.PosX, T10.PosY,
and T10.PosZ, respectively. This only works for header names that end in .Pos[XYZ].

1.3.2 Analog Channel Names

Since D-Flow doesn’t allow you to set the names of the analog channels in the mocap module, the meta data file should
include mappings, so that useful measurement names will be available for future use, for example:

trial:
analog-channel-map:

Channel1.Anlg: F1Y1
Channel2.Anlg: F1Y2
Channel3.Anlg: F1Y3
Channel4.Anlg: F1X1
Channel5.Anlg: F1X2
Channel6.Anlg: F1Z1
Channel7.Anlg: F2Y1
Channel8.Anlg: F2Y2
Channel9.Anlg: F2Y3

12 Chapter 1. Motek Module

GaitAnalysisToolKit Documentation, Release 0.2.0dev

Channel10.Anlg: F2X1
Channel11.Anlg: F2X2
Channel12.Anlg: F2Z1
Channel13.Anlg: Front_Left_EMG
Channel14.Anlg: Front_Left_AccX
Channel15.Anlg: Front_Left_AccY
Channel16.Anlg: Front_Left_AccZ
Channel17.Anlg: Back_Left_EMG
Channel18.Anlg: Back_Left_AccX
Channel19.Anlg: Back_Left_AccY
Channel20.Anlg: Back_Left_AccZ
Channel21.Anlg: Front_Right_EMG
Channel22.Anlg: Front_Right_AccX
Channel23.Anlg: Front_Right_AccY
Channel24.Anlg: Front_Right_AccZ
Channel25.Anlg: Back_Right_EMG
Channel26.Anlg: Back_Right_AccX
Channel27.Anlg: Back_Right_AccY
Channel28.Anlg: Back_Right_AccZ

16 accelerometers in order starting at Channel13. EMG, X, Y, Z order

1.3.3 Events

D-Flow doesn’t allow you to define names to events and auto-names up to 6 events A-F. You can specify an event
name map that will be used to automatically segment your data into more memorable names events:

trial:
event:

A: force plate zeroing begins
B: walking begins
C: walking with lateral perturbations begins

1.4 Usage

The DFlowData class is used to post process data collected from the D-Flow mocap and record modules. It does
these operations:

1. Loads the meta data file into a Python dictionary if there is one.

2. Loads the mocap and record modules into Pandas DataFrames. 5

3. Shifts the Delsys signals in the mocap module data to accomodate for the wireless time delay, ~96ms.

4. Identifies the missing values in the mocap marker data and replaces with NaN.

5. Returns statistics on how many missing values in the marker time series are present, the max consecutive missing
values, etc.

6. Optionally, interpolates the missing marker values and replaces them with interpolated estimates.

7. Compensates the force measurments for the motion of the treadmill base.

(a) Pulls the compensation file path from meta data.

(b) Loads the compensation file (only the necessary columns).

5 Only supports TSV files, we plan to add C3D support for the mocap file.

1.4. Usage 13

GaitAnalysisToolKit Documentation, Release 0.2.0dev

(c) Identifies the missing markers and interpolates to fill them.

(d) Shifts the Delsys signals to correct time.

(e) Filter the forces, accelerometer, and treadmill markers at 6 hz low pass.

(f) Compute the compensated forces (apply inertial compensation and express in global reference frame)

(g) Replace the force/moment measurements in the mocap data file with the compensated forces/moments.

8. Scales the analog signals to their proper units. 6

9. Merges the data from the mocap module and record module into one DataFrame.

10. Optionally, low pass filter all human related data. (If there wasn’t a stationary platform, then these should always
be filtered with the same low pass filter as the compensation algorithm used.)

11. Extracts sections of the data based on event names.

12. Writes the cleaned and augmented data to file 7.

1.4.1 Python API

The DFlowData class gives a simple Python API for working with the D-Flow file outputs.

from gaitanalysis.motek import DFlowData

Initialize the object.
data = DFlowData(mocap_tsv_path=’trial_01_mocap.txt’,

record_tsv_path=’trial_01_record.txt’,
meta_yml_path=’trial_01_meta.yml’)

clean_data runs through steps 1 through 8. Many steps are optional
depending on the optional keyword arguments.
data.clean_data()

The following command returns a Pandas DataFrame of all the measurements
for the time period matching the event.
perturbed_walking = data.extract_processed_data(event=’walking with perturbation’)

The class in includes writers to write the manipulated data to file, in
this case a D-Flow compatible text file.
data.write_dflow_tsv(’trial_01_clean.txt’)

1.4.2 Command Line

The following command will load the three input files, clean up the data, and write the results to file, which can be
loaded back into D-Flow or used in some other application.

dflowdata -m trial_01_mocap.txt -r trial_01_record.txt -y trial_01_meta.yml trial_01_clean.txt

1.4.3 Examples

This shows how to compare the raw marker data with the new interpolated data, in this case a simple linear interpola-
tion.

6 Not implemented yet, scaling factors should be stored in meta data?.
7 Only outputs to tsv.

14 Chapter 1. Motek Module

GaitAnalysisToolKit Documentation, Release 0.2.0dev

import pandas
import maplotlib.pyplot as plt

data = DFlowData(’mocap-module-01.txt’, ’record-module-01.txt’)
data.clean_data()

unclean = pandas.read_csv(’mocap-module-01.txt’, delimiter=’\t’)

fig, axes = plt.subplots(3, 1, sharex=True)

for i, label in enumerate([’RHEE.PosX’, ’RHEE.PosY’, ’RHEE.PosZ’]):

axes[i].plot(data.data[’TimeStamp’], data.data[label],
unclean[’TimeStamp’], unclean[label], ’.’)

axes[i].set_ylabel(label + ’ [m]’)

axes[i].legend([’Interpolated’, ’Raw’], fontsize=8)

axes[2].set_xlabel(’Time’)

fig.show()

1.4. Usage 15

GaitAnalysisToolKit Documentation, Release 0.2.0dev

16 Chapter 1. Motek Module

CHAPTER 2

Gait Module

The gaitanalysis.gait module provides tools to process and analyze with typical data collected during the
measurement of human locomotion (gait). In general, the three dimensional coordinates throughout time of a set of
markers which are attached to anatomical features on the human are tracked. Secondly, various analog signals are
recorded. In particular, voltages which are proportional to the applied forces and moments on one or two force plates,
voltages from electromyography (EMG) measurements, and/or accelerometers, etc. All of these measurements are
stored as discrete samples in time.

17

GaitAnalysisToolKit Documentation, Release 0.2.0dev

18 Chapter 2. Gait Module

CHAPTER 3

gaitanalysis Package

The following documentation provides both the pubic and private API for the modules included in the gaitanalysis
package. We will try our best to follow semantic versioning with respect to the public API. The private member
functions, starts with _, are subject to change during development and will not be held to semantic versioning. Use at
your own risk.

3.1 motek Module

class gaitanalysis.motek.DFlowData(mocap_tsv_path=None, record_tsv_path=None,
meta_yml_path=None)

Bases: object

A class to store and manipulate the data outputs from Motek Medical’s D-Flow software.

_analog_column_labels(labels)
Returns a list of analog channel column labels and the indices of the labels.

Parameters labels : list of strings

This should be a superset of column labels, some of which may be human body model
results, and should include the default analog channel labels output from the D-Flow
mocap model, i.e. “Channel[1-99].Anlg”.

Returns analog_labels : list of strings

The labels of analog channels in the order found in labels.

analog_indices : list of integers

The indices of the analog columns with respect to the indices of labels.

emg_column_labels : list of strings

The labels of emg channels in the order found in labels

accel_column_labels : list of strings

The labels of accelerometer channels in the order found in labels

_c = ‘Z’

_calibrate_accel_data(data_frame, y1=0, y2=-9.81)
Two-point calibration of accelerometer signals. Converts from voltage to meters/second^2

Parameters data_frame : pandas.DataFrame

Accelerometer data in volts to be calibrated

19

http://semver.org/

GaitAnalysisToolKit Documentation, Release 0.2.0dev

y1 : float, optional

y2 : float, optional

Returns data_frame : pandas.DataFrame

Calibrated accelerometer data in m/s^2

Notes

A calibration file must be specified in the meta file and its structure is as follows: There must be a column
for each accelerometer signal to be calibrated, so three columns per sensor. There must be three rows
of accelerometer readings. The first row is the reading when the sensors are placed with z-axis pointing
straight up. The second row is the reading when the x-axis is pointing straight up. The third row is the
reading when the y-axis is pointing straight up. (xyz) —– (001) (100) (010)

_clean_compensation_data(data_frame)
Returns a the data frame with Delsys signals shifted and all signals low pass filtered.

Parameters data_frame : pandas.DataFrame

This data frame should contain only the columns needed for the compensation calcula-
tions: accelerometers and forces/moments.

Returns data_frame : pandas.DataFrame

The cleaned compensation data.

_compensate(mocap_data_frame, markers_missing=False)
Returns the data frame with the forces compensated.

Parameters mocap_data_frame : pandas.DataFrame

A data frame that contains the force plate forces and moments to be compensated, along
with the measurements of the markers and accelerometers that were attached to the
treadmill.

markers_missing : pandas.DataFrame

If the treadmill markers have missing markers, this should be true so that they are fixed
before the compensation.

Returns mocap

Notes

This method does the following:

1.Pulls the compensation file path from meta data.

2.Loads the compensation file (only the necessary columns).

3.Identifies the missing markers in the compensation file and interpolates to fill them.

4.Shifts the Delsys signals to correct time.

5.Filter the forces, accelerometer, and treadmill markers at 6 hz low pass.

6.Compute the compensated forces (apply inertial compensation and express in global reference
frame)

7.Replace the force/moment measurements in the mocap data file with the compensated
forces/moments.

20 Chapter 3. gaitanalysis Package

GaitAnalysisToolKit Documentation, Release 0.2.0dev

_compensate_forces(calibration_data_frame, data_frame)
Computes the forces and moments which are due to the lateral and pitching motions of the treadmill and
subtracts them from the measured forces and moments based on linear acceleration measurements of the
treadmill.

_compensation_needed()
Returns true if the meta data includes:

‘trial: stationary-platform: False’

_end = ‘Z’

_express(data_frame, rotation_matrix)
Returns a new data frame in which the marker, force, moment, and center of pressure vectors are expressed
in a different reference frame using the provided rotation matrix.

Parameters data_frame : pandas.DataFrame

A data frame which contains columns for the DFlow marker, force, moment, and center
of pressure outputs.

rotation_matrix : array_like, shape(3, 3)

A rotation matrix which will be premultiplied to all vectors in the provided data frame.

Returns rotated_data_frame : pandas.DataFrame

A copy of the provided data frame in which all vectors are expressed in a new reference
frame.

Notes

If v_df is a vector expressed in data frame’s original coordinate system and v_new is the same vector
expressed in the desired coordinate system, then:

v_new = rotation_matrix * v_df

This function does nothing with the segment columns. As it stands it is not clear what the .Rot[XYZ]
columns are so all segment columns are left alone.

This function also does not currently deal with any human body model columns, e.g. the center of mass.

_express_in_isb_standard_coordinates(data_frame)
Returns a new data frame in which the marker, force, moment, and center of pressure vectors are expressed
in the the ISB standard coordinate system given in [Wu1995]. This referene frame has the X axis aligned
in the directin of travel, the Y axis vertical and opposite of gravity, and the Z axis to the right, following
the right hand rule.

Parameters data_frame : pandas.DataFrame

A data frame which contains columns for the DFlow marker, force, moment, and center
of pressure outputs. The coordinate system for the vectors must be the Cortex default
system (X to the right, Y up, Z backwards).

Returns rotated_data_frame : pandas.DataFrame

A copy of the provided data frame in which all vectors are expressed in the ISB standard
coordinate system.

3.1. motek Module 21

GaitAnalysisToolKit Documentation, Release 0.2.0dev

Notes

See DflowData._express for more details.

References

[Wu1995]

_extract_events_from_record_file()
Returns a dictionary of events and times. The event names will be the default A-F which is output by
D-Flow unless you specify unique names in the meta data file. If there are no events in the record file, this
will return nothing.

_force_column_labels(without_center_of_pressure=False)
Returns a list of force column labels.

Parameters without_center_of_pressure: boolean, optional, default=False

If true, the center of pressure labels will not be included in the list.

Returns labels : list of strings

A list of the force plate related signals.

_generate_cortex_time_stamp(data_frame)
Returns the data frame with a new index based on the constant sample rate from Cortex.

_hbm_column_labels(labels)
Returns a list of human body model column labels, the indices of the labels, and the indices of the non-hbm
labels in relation to the rest of the header.

Parameters labels : list of strings

This should be a superset of column labels, some of which may be human body model
results.

Returns hbm_labels : list of strings

The labels of columns of HBM data time series in the order found in labels.

hbm_indices : list of integers

The indices of the HBM columns with respect to the indices of labels.

non_hbm_indices : list of integers

The indices of the non-HBM columns with respect to the indices of labels.

static _header_labels(path_to_file, delimiter=’t’)
Returns a list of labels from the header, i.e. the first line of a delimited text file.

Parameters path_to_file : string

Path to the delimited text file with a header on the first line.

delimiter : string, optional, default=’ ‘

The delimiter used in the file.

Returns header_labels : list of strings

A list of the headers in order as included from the file.

_identify_missing_markers(data_frame)
Returns the data frame in which all marker columns have had constant marker values replaced with NaN.

22 Chapter 3. gaitanalysis Package

GaitAnalysisToolKit Documentation, Release 0.2.0dev

Parameters data_frame : pandas.DataFrame, size(n, m)

A data frame which contains columns of marker position time histories. The marker
time histories may contain periods of constant values.

Returns data_frame : pandas.DataFrame, size(n, m)

The same data frame which was supplied expect that constant values in the marker
columns have been replaced with NaN.

Notes

D-Flow replaces missing marker values with the last available measurement in time. This method is used
to properly replace them with a unique idnetifier, NaN. If two adjacent measurements in time were actually
the same value, then this method will replace the subsequent ones with NaNs, and is not correct, but the
likelihood of this happening is low.

_load_compensation_data()
Returns a data frame which includes the treadmill forces/moments, and the accelerometer signals as time
series with respect to the D-Flow time stamp.

_load_mocap_data(ignore_hbm=False, id_na=False)
Returns a data frame generated from the mocap TSV file.

Parameters ignore_hbm : boolean, optional, default=False

If true, the columns associated with D-Flow’s real time human body model computa-
tions will not be loaded.

id_na : boolean, optional, default=False

If true the marker and/or HBM columns will be loaded with all ‘0.000000’ and ‘-
0.000000’ strings in the HBM columns replaced with numpy.NaN. This is dependent
on the D-Flow version as, versions <= 3.16.1 stored missing markers as the previous
valid value.

Returns data_frame : pandas.DataFrame

_load_record_data()
Returns a data frame containing the data from the record module.

_marker_column_labels(labels)
Returns a list of column labels that correpsond to markers, i.e. ones that end in ‘.PosX’, ‘.PosY’, or ‘.PosZ’,
given a master list.

Parameters labels : list of strings

This should be a superset of column labels, some of which may be marker column
labels.

Returns marker_labels : list of strings

The labels of columns of marker time series in the order found in labels.

_merge_mocap_record()
Returns a data frame that is a merger of the mocap and record data, if needed.

_missing_markers_are_zeros()
Returns True if the mocap module marker missing values are represented as strings of zeros, ‘-0.000000’
and ‘0.000000’ and False if missing markers are represented as the previous valid value. This depends on
the D-Flow version being present in the trial meta data. If it isn’t then it is assumed that missing markers
are represented as strings of zeros, i.e. latest D-Flow behavior.

3.1. motek Module 23

GaitAnalysisToolKit Documentation, Release 0.2.0dev

_mocap_column_labels()
Returns a list of strings containing the motion capture file’s column labels. The list is in the same order as
in the mocap tsv file.

_orient_accelerometers(data_frame)

Parameters mocap_data_frame : pandas.DataFrame

DataFrame containing accelerometer signals to be placed in treadmill reference frame.

Returns mocap_data_frame : pandas.DataFrame

DataFrame containing accelerometer signals in treadmill reference frame.

_parse_meta_data_file()
Returns a dictionary containing the meta data stored in the optional meta data file.

_relabel_analog_columns(data_frame)
Relabels analog channels in data frame to names defined in the yml meta file. Channels not specified
in the meta file are keep their original names. self.analog_column_labels, self.emg_column_labels, and
self.accel_column_labels are updated with the new names.

Parameters data_frame : pandas.DataFrame, size(n, m)

Returns data_frame : pandas.DataFrame, size(n, m

The same data frame with columns relabeled.

_relabel_markers(data_frame)
Returns the data frame with the columns renamed to reflect the provided mapping and updates the marker
column and mocap column label attributes to reflect the new names. If there is no marker map in the meta
data the data frame is returned unmodified.

Parameters data_frame : pandas.DataFrame

A data frame with column names which match the keys in the meta data:trial:marker-
map.

_resample_record_data(data_frame)
Resamples the raw data from the record file at the sample rate of the mocap file.

_segment = ‘rtoes’

_shift_delsys_signals(data_frame, time_col=’TimeStamp’)
Returns a data frame in which the Delsys columns are linearly interpolated (and extrapolated) at the time
they were actually measured.

_store_compensation_data_path()
Stores the path to the compensation data file.

Notes

The meta data yaml file must include a relative file path to a mocap file that contains time series data
appropriate for computing the force inertial and rotational compensations. The yaml declaration should
look like this example:

files: mocap: mocap-378.txt record: record-378.txt meta: meta-378.yml compensation:
../path/to/mocap/file.txt

_suffix = ‘.RotZ’

_suffix_beg = ‘.Cop’

24 Chapter 3. gaitanalysis Package

GaitAnalysisToolKit Documentation, Release 0.2.0dev

analog_channel_regex = ‘^Channel[0-9]+\\.Anlg$’

c = ‘Z’

clean_data(ignore_hbm=False, id_na=True, interpolate=True, interpolation_order=1)
Returns the processed, “cleaned”, data.

Parameters ignore_hbm : boolean, optional, default=False

HBM columns will not be loaded from the mocap model data TSV file. This can save
some load time if you are not using that data.

id_na : boolean, optional, default=True

Identifies any missing values in the marker and/or HBM data and replaces the with
np.NaN.

interpolate : boolean, optional, default=True

If true, the missing values in the markers and/or HBM columns will be interpolated.
Note that if force compensation is needed, the markers on the treadmill will always
have the missing values interpolated regardless of this flag. This argument is ignored if
id_na is False, as there are no identified missing marker values available to interpolate
over.

interpolation_order : integer, optional, default=1

The spline interpolation order (between 1 and 5). See
scipy.interpolate.InterpolatedUnivariateSpline.

Notes

1.Loads the mocap and record modules into Pandas DataFrames.

2.Relabels the columns headers to more meaningful names if this is specified in the meta data.

3.Shifts the Delsys signals in the mocap module data to accomodate for the wireless time delay. The
value of the delay is stored in DflowData.delsys_time_delay.

4.Identifies the missing values in the mocap marker data and replaces them with numpy.nan.

5.Optionally, interpolates the missing marker and HBM values and replaces them with interpolated
estimates.

6.Compensates the force measurments for the motion of the treadmill base, if needed.

(a)Pulls the compensation mocap file path from meta data.

(b)Loads the compensation mocap file (only the necessary columns).

(c)Identifies the missing markers and interpolates to fill them.

(d)Shifts the Delsys signals to correct time.

(e)Filter the forces, accelerometer, and treadmill markers with a 6 hz low pass 2nd order Butterworth
filter.

(f)Computes the compensated forces by subtracting the inertial forces and expressing the forces in
the camera reference frame.

(g)Replaces the force/moment measurements in the mocap data file with the compensated
forces/moments.

8.Merges the data from the mocap module and record module into one data frame.

3.1. motek Module 25

GaitAnalysisToolKit Documentation, Release 0.2.0dev

constant_marker_tolerance = 1e-16

cortex_sample_rate = 100

delsys_time_delay = 0.096

dflow_segments = [’pelvis’, ‘thorax’, ‘spine’, ‘pelvislegs’, ‘lfemur’, ‘ltibia’, ‘lfoot’, ‘toes’, ‘rfemur’, ‘rtibia’, ‘rfoot’, ‘rtoes’]

extract_processed_data(event=None, index_col=None, isb_coordinates=False)
Returns the processed data in a data frame. If an event name is provided, then a data frame with only that
event is returned.

Parameters event : string, optional, default=None

A name of a detected event. Must be a valid key in self.events. This will be either the
D-Flow auto-named events (A, B, C, D, E, F) or the names specified in the meta data
file.

index_col : string, optional, default=None

A name of a column in the data frame. If provided the the column will be removed
from the data frame and used as the index. This is useful for assigning one of the time
columns as the index.

isb_coordinates : boolean, optional, default=False

If True, the marker, force, moment, and center of pressure vectors will be expressed in
the ISB standard coordinate system instead of the Cortex default coordinate system.

Returns data_frame : pandas.DataFrame

The processed data.

force_plate_names = [’FP1’, ‘FP2’]

force_plate_regex = ‘^FP[12]\\.[For|Mom|Cop][XYZ]$’

force_plate_suffix = [’.ForX’, ‘.MomX’, ‘.CopX’, ‘.ForY’, ‘.MomY’, ‘.CopY’, ‘.ForZ’, ‘.MomZ’, ‘.CopZ’]

hbm_column_regexes = [’^\\s?[LR]_.*’, ‘.*\\.Mom$’, ‘.*\\.Ang$’, ‘.*\\.Pow$’, ‘.*\\.COM.[XYZ]$’]

hbm_na = [‘0.000000’, ‘-0.000000’]

low_pass_cutoff = 6.0

marker_coordinate_regex = ‘.*\\.Pos[XYZ]$’

marker_coordinate_suffixes = [’.PosX’, ‘.PosY’, ‘.PosZ’]

missing_value_statistics(data_frame)
Returns a report of missing values in the data frame.

rotation_suffixes = [’.RotX’, ‘.RotY’, ‘.RotZ’]

segment_labels = [’pelvis.PosX’, ‘pelvis.PosY’, ‘pelvis.PosZ’, ‘pelvis.RotX’, ‘pelvis.RotY’, ‘pelvis.RotZ’, ‘thorax.PosX’, ‘thorax.PosY’, ‘thorax.PosZ’, ‘thorax.RotX’, ‘thorax.RotY’, ‘thorax.RotZ’, ‘spine.PosX’, ‘spine.PosY’, ‘spine.PosZ’, ‘spine.RotX’, ‘spine.RotY’, ‘spine.RotZ’, ‘pelvislegs.PosX’, ‘pelvislegs.PosY’, ‘pelvislegs.PosZ’, ‘pelvislegs.RotX’, ‘pelvislegs.RotY’, ‘pelvislegs.RotZ’, ‘lfemur.PosX’, ‘lfemur.PosY’, ‘lfemur.PosZ’, ‘lfemur.RotX’, ‘lfemur.RotY’, ‘lfemur.RotZ’, ‘ltibia.PosX’, ‘ltibia.PosY’, ‘ltibia.PosZ’, ‘ltibia.RotX’, ‘ltibia.RotY’, ‘ltibia.RotZ’, ‘lfoot.PosX’, ‘lfoot.PosY’, ‘lfoot.PosZ’, ‘lfoot.RotX’, ‘lfoot.RotY’, ‘lfoot.RotZ’, ‘toes.PosX’, ‘toes.PosY’, ‘toes.PosZ’, ‘toes.RotX’, ‘toes.RotY’, ‘toes.RotZ’, ‘rfemur.PosX’, ‘rfemur.PosY’, ‘rfemur.PosZ’, ‘rfemur.RotX’, ‘rfemur.RotY’, ‘rfemur.RotZ’, ‘rtibia.PosX’, ‘rtibia.PosY’, ‘rtibia.PosZ’, ‘rtibia.RotX’, ‘rtibia.RotY’, ‘rtibia.RotZ’, ‘rfoot.PosX’, ‘rfoot.PosY’, ‘rfoot.PosZ’, ‘rfoot.RotX’, ‘rfoot.RotY’, ‘rfoot.RotZ’, ‘rtoes.PosX’, ‘rtoes.PosY’, ‘rtoes.PosZ’, ‘rtoes.RotX’, ‘rtoes.RotY’, ‘rtoes.RotZ’]

treadmill_markers = [’ROT_REF.PosX’, ‘ROT_REF.PosY’, ‘ROT_REF.PosZ’, ‘ROT_C1.PosX’, ‘ROT_C1.PosY’, ‘ROT_C1.PosZ’, ‘ROT_C2.PosX’, ‘ROT_C2.PosY’, ‘ROT_C2.PosZ’, ‘ROT_C3.PosX’, ‘ROT_C3.PosY’, ‘ROT_C3.PosZ’, ‘ROT_C4.PosX’, ‘ROT_C4.PosY’, ‘ROT_C4.PosZ’]

write_dflow_tsv(filename, na_rep=’NA’)

class gaitanalysis.motek.MissingMarkerIdentifier(data_frame)
Bases: object

_c = ‘Z’

constant_marker_tolerance = 1e-16

26 Chapter 3. gaitanalysis Package

GaitAnalysisToolKit Documentation, Release 0.2.0dev

identify(columns=None)
Returns the data frame in which all or the specified columns have had constant values replaced with NaN.

Returns data_frame : pandas.DataFrame, size(n, m)

The same data frame which was supplied with constant values replaced with NaN.

columns : list of strings, optional, default=None

The specific list of columns in the data frame that should be analyzed. This is typically
a list of all marker columns.

Notes

D-Flow replaces missing marker values with the last available measurement in time. This method is used
to properly replace them with a unique identifier, NaN. If two adjacent measurements in time were actually
the same value, then this method will replace the subsequent ones with NaNs, and is not correct, but the
likelihood of this happening is low.

marker_coordinate_suffixes = [’.PosX’, ‘.PosY’, ‘.PosZ’]

statistics()
Returns a data frame containing the number of missing samples and maximum number of consecutive
missing samples for each column.

gaitanalysis.motek.low_pass_filter(data_frame, columns, cutoff, sample_rate, **kwargs)
Returns the data frame with indicated columns filtered with a low pass second order forward/backward Butter-
worth filter.

Parameters data_frame : pandas.DataFrame

A data frame with time series columns.

columns : sequence of strings

The columns that should be filtered.

cutoff : float

The low pass cutoff frequency in Hz.

sample_rate : float

The sample rate of the time series in Hz.

kwargs : key value pairs

Any addition keyword arguments to pass to dtk.process.butterworth.

Returns data_frame : pandas.DataFrame

The same data frame which was passed in with the specified columns replaced by fil-
tered versions.

gaitanalysis.motek.markers_for_2D_inverse_dynamics(marker_set=’lower’)
Returns lists of markers from the D-Flow human body model marker protocol(lower or full), that should be used
with leg2d.m.

Parameters marker_set : string, optional, default=’lower’

Specify either ‘lower’ or ‘full’ depending on which marker set you used.

Returns left_marker_coords : list of strings, len(12)

The X and Y coordinates for the 6 left markers.

3.1. motek Module 27

GaitAnalysisToolKit Documentation, Release 0.2.0dev

right_marker_coords : list of strings, len(12)

The X and Y coordinates for the 6 right markers.

left_forces : list of strings, len(3)

The X and Y ground reaction forces and the Z ground reaction moment of the left leg.

right_forces : list of strings, len(3)

The X and Y ground reaction forces and the Z ground reaction moment of the left leg.

Notes

The returned marker labels correspond to the ISB standard coordinate system for gait, with X in the direction of
travel, Y opposite to gravity, and Z to the subject’s right.

D-Flow/Cortex output data (and marker labels) in a different coordinate system and follow this conversion:

•The D-Flow X unit vector is equal to the ISB Z unit vector.

•The D-Flow Y unit vector is equal to the ISB Y unit vector.

•The D-FLow Z unit vector is equal to the ISB -X unit vector.

So it is up to the user to ensure that the marker and force data that corresponds to the returned labels is expressed
in the ISB coordinate frame before passing it into leg2d.m. DFlowData has methods that can express the
data in the correct coordinate system on output.

The forces and moments must also be normalized by body mass before using with leg2d.m.

gaitanalysis.motek.spline_interpolate_over_missing(data_frame, abscissa_column, or-
der=1, columns=None)

Returns the data frame with all missing values replaced by some interpolated or extrapolated values derived
from a spline.

Parameters data_frame : pandas.DataFrame

A data frame which contains a column for the abscissa and other columns which may
or may not have missing values, i.e. NaN.

abscissa_column : string

The column name which represents the abscissa.

order : integer, optional, default=1

The order of the spline. Can be 1 through 5 for linear through quin-
tic splines. The default is a linear spline. See documentation for
scipy.interpolate.InterpolatedUnivariateSpline.

columns : list of strings, optional, default=None

If only a particular set of columns need interpolation, they can be specified here.

Returns data_frame : pandas.DataFrame

The same data frame passed in with all NaNs in the specified columns replaced with
interpolated or extrapolated values.

28 Chapter 3. gaitanalysis Package

GaitAnalysisToolKit Documentation, Release 0.2.0dev

3.2 gait Module

class gaitanalysis.gait.GaitData(data)
Bases: object

A class to store typical gait data.

attrs_to_store = [’data’, ‘gait_cycles’, ‘gait_cycle_stats’, ‘strikes’, ‘offs’]

grf_landmarks(right_vertical_signal_col_name, left_vertical_signal_col_name, method=’force’,
do_plot=False, min_time=None, max_time=None, **kwargs)

Returns the times at which heel strikes and toe offs happen in the raw data.

Parameters right_vertical_signal_col_name : string

The name of the column in the raw data frame which corresponds to the right foot
vertical ground reaction force.

left_vertical_signal_col_name : string

The name of the column in the raw data frame which corresponds to the left foot vertical
ground reaction force.

method: string {force|accel}

Whether to use force plate data or accelerometer data to calculate landmarks

Returns right_strikes : np.array

All indices at which right_grfy is non-zero and it was 0 at the preceding time index.

left_strikes : np.array

Same as above, but for the left foot.

right_offs : np.array

All indices at which left_grfy is 0 and it was non-zero at the preceding time index.

left_offs : np.array

Same as above, but for the left foot.

Notes

This is a simple wrapper to gait_landmarks_from_grf and supports all the optional keyword arguments
that it does.

inverse_dynamics_2d(left_leg_markers, right_leg_markers, left_leg_forces, right_leg_forces,
body_mass, low_pass_cutoff)

Computes the hip, knee, and ankle angles, angular rates, joint moments, and joint forces and adds them as
columns to the data frame.

Parameters left_leg_markers : list of strings, len(12)

The names of the columns that give the X and Y marker coordinates for six markers.

right_leg_markers : list of strings, len(12)

The names of the columns that give the X and Y marker coordinates for six markers.

left_leg_forces : list of strings, len(3)

The names of the columns of the ground reaction forces and moments (Fx, Fy, Mz).

3.2. gait Module 29

GaitAnalysisToolKit Documentation, Release 0.2.0dev

right_leg_forces : list of strings, len(3)

The names of the columns of the ground reaction forces and moments (Fx, Fy, Mz).

body_mass : float

The mass, in kilograms, of the subject.

low_pass_cutoff : float

The cutoff frequency in hertz.

Returns data_frame : pandas.DataFrame

The main data frame now with columns for the new variables. Note that the force
coordinates labels (X, Y) are relative to the coordinate system described herein.

Notes

This computation assumes the following coordinate system:

Y
^ _ o _
| | ---> v
| / -----> x

where X is forward (direction of walking) and Y is up.

Make sure the sign conventions of the columns you pass in are correct!

The markers should be in the following order:

1. Shoulder

2. Greater trochanter

3. Lateral epicondyle of knee

4. Lateral malleolus

5. Heel (placed at same height as marker 6)

6. Head of 5th metatarsal

The underlying function low pass filters the data before computing the inverse dynamics. You should pass
in unfiltered data.

load(filename)
Loads data from disk via HDF5 (PyTables).

Parameters filename : string

Path to an HDF5 file.

plot_gait_cycles(*col_names, **kwargs)
Plots the time histories of each gait cycle.

Parameters col_names : string

A variable number of strings naming the columns to plot.

mean : boolean, optional

If true the mean and standard deviation of the cycles will be plotted.

kwargs : key value pairs

30 Chapter 3. gaitanalysis Package

GaitAnalysisToolKit Documentation, Release 0.2.0dev

Any extra kwargs to pass to the matplotlib plot command.

plot_landmarks(col_names, side, event=’both’, index=0, window=None,
num_cycles_to_plot=None, curve_kwargs=None, heel_kwargs=None,
toe_kwargs=None)

Creates a plot of the desired signal(s) with the gait event times overlaid on top of the signal.

Parameters col_names : sequence of strings

A variable number of strings naming the columns to plot.

side : string, {right|left}

Whether to plot the gait landmarks from the right or left leg.

event : string, {heelstrikes|toeoffs|both|none}

Which gait landmarks to plot.

index : integer, optional, default=0

The index of the first time sample in the plot. This is useful if you want to plot the
cycles starting at an arbitrary point in time in the data.

window : integer, optional, default=None

The number of time samples to plot. This is useful when a trial has many cycles and
you only want to view some of them in the plot.

num_cycles_to_plot : integer, optional, default=None

This is an alternative way to specify the window. If this is provided, the window argment
is ignored and the window is estimated by the desired number of cycles.

curve_kwargs : dictionary, optional

Valid matplotlib kwargs that will be used for the signal curves.

heel_kwargs : dictionary, optional

Valid matplotlib kwargs that will be used for the heel-strike lines.

toe_kwargs : dictionary, optional

Valid matplotlib kwargs that will be used for the toe-off lines.

Returns axes : matplotlib.Axes

The list of axes for the subplots or a single axes if only one column was supplied. Same
as matplotlib.pyplot.subplots returns.

Notes

The index, window and num_cycles_to_plot arguments do not simply set the x limit to bound the data of
interest, they do not plot any data outside the desired range (and is thus faster).

save(filename)
Saves data to disk via HDF5 (PyTables).

Parameters filename : string

Path to an HDF5 file.

split_at(side, section=’both’, num_samples=None, belt_speed_column=None)
Forms a pandas.Panel which has an item for each cycle. The index of each cycle data frame will be a
percentage of gait cycle.

3.2. gait Module 31

GaitAnalysisToolKit Documentation, Release 0.2.0dev

Parameters side : string {right|left}

Split with respect to the right or left side heel strikes and/or toe-offs.

section : string {both|stance|swing}

Whether to split around the stance phase, swing phase, or both.

num_samples : integer, optional

If provided, the time series in each gait cycle will be interpolated at values evenly spaced
at num_sample in time across the gait cycle. If None, the maximum number of possible
samples per gait cycle will be used.

belt_speed_column : string, optional

The column name corresponding to the belt speed on the corresponding side.

Returns gait_cycles : pandas.Panel

A panel where each item is a gait cycle. Each cycle has the same number of time
samples and the index is set to the percent of the gait cycle.

time_derivative(col_names, new_col_names=None)
Numerically differentiates the specified columns with respect to the time index and adds the new columns
to self.data.

Parameters col_names : list of strings

The column names for the time series which should be numerically time differentiated.

new_col_names : list of strings, optional

The desired new column name(s) for the time differentiated series. If None, then a
default name of Time derivative of <origin column name> will be used.

tpose(data_frame)
Computes the mass of the subject. Computes to orientation of accelerometers on a subject during quiet
standing relative to treadmill Y-axis

gaitanalysis.gait.find_constant_speed(time, speed, plot=False, filter_cutoff=1.0)
Returns the indice at which the treadmill speed becomes constant and the time series when the treadmill speed
is constant.

Parameters time : array_like, shape(n,)

A monotonically increasing array.

speed : array_like, shape(n,)

A speed array, one sample for each time. Should ramp up and then stablize at a speed.

plot : boolean, optional

If true a plot will be displayed with the results.

filter_cutoff : float, optional

The filter cutoff frequency for filtering the speed in Hertz.

Returns indice : integer

The indice at which the speed is consider constant thereafter.

new_time : ndarray, shape(n-indice,)

The new time array for the constant speed section.

32 Chapter 3. gaitanalysis Package

GaitAnalysisToolKit Documentation, Release 0.2.0dev

gaitanalysis.gait.gait_landmarks_from_accel(time, right_accel, left_accel, threshold=0.33,
**kwargs)

Obtain right and left foot strikes from the time series data of accelerometers placed on the heel.

Parameters time : array_like, shape(n,)

A monotonically increasing time array.

right_accel : array_like, shape(n,)

The vertical component of accel data for the right foot.

left_accel : str, shape(n,)

Same as above, but for the left foot.

threshold : float, between 0 and 1

Increase if heelstrikes/toe-offs are falsly detected

Returns right_foot_strikes : np.array

All times at which a right foot heelstrike is determined

left_foot_strikes : np.array

Same as above, but for the left foot.

right_toe_offs : np.array

All times at which a right foot toeoff is determined

left_toe_offs : np.array

Same as above, but for the left foot.

gaitanalysis.gait.gait_landmarks_from_grf(time, right_grf, left_grf, threshold=1e-05, fil-
ter_frequency=None, **kwargs)

Obtain gait landmarks (right and left foot strike & toe-off) from ground reaction force (GRF) time series data.

Parameters time : array_like, shape(n,)

A monotonically increasing time array.

right_grf : array_like, shape(n,)

The vertical component of GRF data for the right leg.

left_grf : str, shape(n,)

Same as above, but for the left leg.

threshold : float, optional

Below this value, the force is considered to be zero (and the corresponding foot is not
touching the ground).

filter_frequency : float, optional, default=None

If a filter frequency is provided, in Hz, the right and left ground reaction forces will be
filtered with a 2nd order low pass filter before the landmarks are identified. This method
assumes that there is a constant (or close to constant) sample rate.

Returns right_foot_strikes : np.array

All times at which right_grfy is non-zero and it was 0 at the preceding time index.

left_foot_strikes : np.array

Same as above, but for the left foot.

3.2. gait Module 33

GaitAnalysisToolKit Documentation, Release 0.2.0dev

right_toe_offs : np.array

All times at which left_grfy is 0 and it was non-zero at the preceding time index.

left_toe_offs : np.array

Same as above, but for the left foot.

Notes

Source modifed from:

https://github.com/fitze/epimysium/blob/master/epimysium/postprocessing.py

gaitanalysis.gait.interpolate(data_frame, time)
Returns a data frame with a index based on the provided time array and linear interpolation.

Parameters data_frame : pandas.DataFrame

A data frame with time series columns. The index should be in same units as the pro-
vided time array.

time : array_like, shape(n,)

A monotonically increasing array of time in seconds at which the data frame should be
interpolated at.

Returns interpolated_data_frame : pandas.DataFrame

The data frame with an index matching time_vector and interpolated values based on
data_frame.

gaitanalysis.gait.plot_gait_cycles(gait_cycles, *col_names, **kwargs)
Plots the time histories from each gait cycle on one graph.

Parameters gait_cycles : pandas.Panel

A panel of gait cycles. Each item should be a cycle DataFrame with time histories of
variables. The index should be the percent gait cycle.

col_names : string

A variable number of strings naming the columns to plot.

mean : boolean, optional, default=False

If true the mean and standard deviation of the gait cycles will be plotted instead of the
individual lines.

kwargs : key value pairs

Any extra kwargs to pass to the matplotlib plot command.

3.3 controlid Module

class gaitanalysis.controlid.SimpleControlSolver(data, sensors, controls, valida-
tion_data=None)

Bases: object

This assumes a simple linear control structure at each time instance in a gait cycle.

The measured joint torques equal some limit cycle joint torque plus a matrix of gains multiplied by the error in
the sensors and the nominal value of the sensors.

34 Chapter 3. gaitanalysis Package

https://github.com/fitze/epimysium/blob/master/epimysium/postprocessing.py

GaitAnalysisToolKit Documentation, Release 0.2.0dev

m_measured(t) = m_nominal + K(t) [s_nominal(t) - s(t)] = m*(t) - K(t) s(t)

This class solves for the time dependent gains and the “commanded” controls using a simple linear least squares.

compute_estimated_controls(gain_matrices, nominal_controls)
Returns the predicted values of the controls and the contributions to the controls given gains, K(t), and
nominal controls, m*(t), for each point in the gait cycle.

Parameters gain_matrices : ndarray, shape(n, q, p)

The estimated gain matrices for each time step.

control_vectors : ndarray, shape(n, q)

The nominal control vector plus the gains multiplied by the reference sensors at each
time step.

Returns panel : pandas.Panel, shape(m, n, q)

There is one data frame to correspond to each gait cycle in self.validation_data. Each
data frame has columns of time series which store m(t), m*(t), and the individual com-
ponents due to K(t) * se(t).

Notes

m(t) = m0(t) + K(t) * [s0(t) - s(t)] = m0(t) + K(t) * se(t) m(t) = m*(t) - K(t) * s(t)

This function returns m(t), m0(t), m*(t) for each control and K(t) * [s0(t) - s(t)] for each sensor affecting
each control. Where s0(t) is estimated by taking the mean with respect to the gait cycles.

controls

deconstruct_solution(x, covariance)
Returns the gain matrices, K(t), and m*(t) for each time step in the gait cycle given the solution vector and
the covariance matrix of the solution.

m(t) = m*(t) - K(t) s(t)

Parameters x : array_like, shape(n * q * (p + 1),)

The solution matrix containing the gains and the commanded controls.

covariance : array_like, shape(n * q * (p + 1), n * q * (p + 1))

The covariance of x with respect to the variance in the fit.

Returns gain_matrices : ndarray, shape(n, q, p)

The gain matrices at each time step, K(t).

control_vectors : ndarray, shape(n, q)

The nominal control vector plus the gains multiplied by the reference sensors at each
time step.

gain_matrices_variance : ndarray, shape(n, q, p)

The variance of the found gains (covariance is neglected).

control_vectors_variance : ndarray, shape(n, q)

The variance of the found commanded controls (covariance is neglected).

3.3. controlid Module 35

GaitAnalysisToolKit Documentation, Release 0.2.0dev

Notes

x looks like:

[k11(0), k12(0), ..., kqp(0), m1*(0), ..., mq*(0), ..., k11(n), k12(0), ..., kqp(n), m1*(n), ..., mq*(n)]

If there is a gain omission matrix then nan’s are substituted for all gains that were set to zero.

form_a_b()
Returns the A matrix and the b vector for the linear least squares fit.

Returns A : ndarray, shape(n * q, n * q * (p + 1))

The A matrix which is sparse and contains the sensor measurements and ones.

b : ndarray, shape(n * q,)

The b vector which constaints the measured controls.

Notes

In the simplest fashion, you can put:

m(t) = m*(t) - K * s(t)

into the form:

Ax = b

with:

b = m(t)
A = [-s(t) 1]
x = [K(t) m*(t)]^T

[-s(t) 1] * [K(t) m*(t)]^T = m(t)

form_control_vectors()
Returns an array of control vectors for each cycle and each time step in the identification data.

Returns control_vectors : ndarray, shape(m, n, q)

The sensor vector form the i’th cycle and the j’th time step will look like [control_0, ...,
control_(q-1)].

form_sensor_vectors()
Returns an array of sensor vectors for each cycle and each time step in the identification data.

Returns sensor_vectors : ndarray, shape(m, n, p)

The sensor vector form the i’th cycle and the j’th time step will look like [sensor_0, ...,
sensor_(p-1)].

gain_inclusion_matrix

identification_data

least_squares(A, b, ignore_cov=False)
Returns the solution to the linear least squares and the covariance matrix of the solution.

Parameters A : array_like, shape(n, m)

The coefficient matrix of Ax = b.

36 Chapter 3. gaitanalysis Package

GaitAnalysisToolKit Documentation, Release 0.2.0dev

b : array_like, shape(n,)

The right hand side of Ax = b.

ignore_cov: boolean, optional, default=False

The covariance computation for a very large A matrix can be extremely slow. If this is
set to True, then the computation is skipped and the covariance of the identified param-
eters is set to zero.

Returns x : ndarray, shape(m,)

The best fit solution.

variance : float

The variance of the fit.

covariance : ndarray, shape(m, m)

The covariance of the solution.

plot_control_contributions(estimated_panel, max_num_gait_cycles=4)
Plots two graphs for each control and each gait cycle showing contributions from the linear portions. The
first set of graphs shows the first few gait cycles and the contributions to the control moments. The second
set of graph shows the mean contributions to the control moment over all gait cycles.

Parameters panel : pandas.Panel, shape(m, n, q)

There is one data frame to correspond to each gait cycle. Each data frame has columns
of time series which store m(t), m*(t), and the individual components due to K(t) * se(t).

plot_estimated_vs_measure_controls(estimated_panel, variance)
Plots a figure for each control where the measured control is shown compared to the estimated along with
a plot of the error.

Parameters estimated_panel : pandas.Panel

A panel where each item is a gait cycle.

variance : float

The variance of the fit.

Returns axes : array of matplotlib.axes.Axes, shape(q,)

The plot axes.

plot_gains(gains, gain_variance, y_scale_function=None)
Plots the identified gains versus percentage of the gait cycle.

Parameters gain_matrix : ndarray, shape(n, q, p)

The estimated gain matrices for each time step.

gain_variance : ndarray, shape(n, q, p)

The variance of the estimated gain matrices for each time step.

y_scale_function : function, optional, default=None

A function that returns the portion of a control and sensor label that can be used for
scaling the y axes.

Returns axes : ndarray of matplotlib.axis, shape(q, p)

sensors

3.3. controlid Module 37

GaitAnalysisToolKit Documentation, Release 0.2.0dev

solve(sparse_a=False, gain_inclusion_matrix=None, ignore_cov=False)
Returns the estimated gains and sensor limit cycles along with their variance.

Parameters sparse_a : boolean, optional, default=False

If true a sparse A matrix will be used along with a sparse linear least squares solver.

gain_inclusion_matrix : boolean array_like, shape(q, p)

A matrix which is the same shape as the identified gain matrices which has False in place
of gains that should be assumed to be zero and True for gains that should be identified.

ignore_cov: boolean, optional, default=False

The covariance computation for a very large A matrix can be extremely slow. If this is
set to True, then the computation is skipped and the covariance of the identified param-
eters is set to zero.

Returns gain_matrices : ndarray, shape(n, q, p)

The estimated gain matrices for each time step.

control_vectors : ndarray, shape(n, q)

The nominal control vector plus the gains multiplied by the reference sensors at each
time step.

variance : float

The variance in the fitted curve.

gain_matrices_variance : ndarray, shape(n, q, p)

The variance of the found gains (covariance is neglected).

control_vectors_variance : ndarray, shape(n, q)

The variance of the found commanded controls (covariance is neglected).

estimated_controls : pandas.Panel

validation_data

38 Chapter 3. gaitanalysis Package

CHAPTER 4

Introduction

This is a collection of tools that are helpful for gait analysis. Some are specific to the needs of the Human Motion
and Control Lab at Cleveland State University but other portions may have potential for general use. It is relatively
modular so you can use what you want. It is primarily structured as a Python distribution but the Octave files are also
accessible independently.

39

GaitAnalysisToolKit Documentation, Release 0.2.0dev

40 Chapter 4. Introduction

CHAPTER 5

Python Packages

The main Python package is gaitanalysis and it contains five modules listed below. oct2py is used to call
Octave routines in the Python code where needed.

gait.py General tools for working with gait data such as gait landmark identification and 2D inverse dynamics.
The main class is GaitData.

controlid.py Tools for identifying control mechanisms in human locomotion.

markers.py Routines for processing marker data.

motek.py Tools for processing and cleaning data from Motek Medical‘s products, e.g. the D-Flow software outputs.

utils.py Helper functions for the other modules.

Each module has a corresponding test module in gaitanalysis/tests sub-package which contain unit tests for
the classes and functions in the respective module.

41

http://www.motekmedical.com

GaitAnalysisToolKit Documentation, Release 0.2.0dev

42 Chapter 5. Python Packages

CHAPTER 6

Octave Libraries

Several Octave routines are included in the gaitanalysis/octave directory.

2d_inverse_dynamics Implements joint angle and moment computations of a 2D lower body human.

inertial_compensation Compensates force plate forces and moments for inertial effects and re-expresses the
forces and moments in the camera reference frame.

mmat Fast matrix multiplication.

soder Computes the rigid body orientation and location of a group of markers.

time_delay Deals with the analog signal time delays.

43

GaitAnalysisToolKit Documentation, Release 0.2.0dev

44 Chapter 6. Octave Libraries

CHAPTER 7

Installation

You will need Python 2.7 and setuptools to install the packages. Its best to install the dependencies first (NumPy, SciPy,
matplotlib, Pandas, PyTables). The SciPy Stack instructions are helpful for this: http://www.scipy.org/stackspec.html.

Supported versions:

• python >= 2.7

• numpy >= 1.6.1

• scipy >= 0.9.0

• matplotlib >= 1.1.0

• tables >= 2.3.1

• pandas >= 0.12.0

• pyyaml >= 3.10

• DynamicistToolKit >= 0.3.5

• oct2py >= 1.2.0

• octave >= 3.8.1

We recommend installing Anaconda for users in our lab to get all of the dependencies.

We also utilize Octave code, so an install of Octave with is also required. See http://octave.sourceforge.net/index.html
for installation instructions.

You can install using pip (or easy_install). Pip will theoretically 1 get the dependencies for you (or at least check if
you have them):

$ pip install https://github.com/csu-hmc/GaitAnalysisToolKit/zipball/master

Or download the source with your preferred method and install manually.

Using Git:

$ git clone git@github.com:csu-hmc/GaitAnalysisToolKit.git
$ cd GaitAnalysisToolKit

Or wget:

$ wget https://github.com/csu-hmc/GaitAnalysisToolKit/archive/master.zip
$ unzip master.zip
$ cd GaitAnalysisToolKit-master

1 You will need all build dependencies and also note that matplotlib doesn’t play nice with pip.

45

http://www.scipy.org/stackspec.html
http://docs.continuum.io/anaconda/
http://octave.sourceforge.net/index.html

GaitAnalysisToolKit Documentation, Release 0.2.0dev

Then for basic installation:

$ python setup.py install

Or install for development purposes:

$ python setup.py develop

7.1 Dependencies

It is recommended to install the software dependencies as follows:

Octave can be installed from your package manager or from a downloadable binary, for example on Debian based
Linux:

$ sudo apt-get install octave

For oct2py to work, calling Octave from the command line should work after Octave is installed. For example,

$ octave
GNU Octave, version 3.8.1
Copyright (C) 2014 John W. Eaton and others.
This is free software; see the source code for copying conditions.
There is ABSOLUTELY NO WARRANTY; not even for MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. For details, type ’warranty’.

Octave was configured for "x86_64-pc-linux-gnu".

Additional information about Octave is available at http://www.octave.org.

Please contribute if you find this software useful.
For more information, visit http://www.octave.org/get-involved.html

Read http://www.octave.org/bugs.html to learn how to submit bug reports.
For information about changes from previous versions, type ’news’.

octave:1>

The core dependencies can be installed with conda in a conda environment:

$ conda create -n gait python=2.7 pip numpy scipy matplotlib pytables pandas pyyaml nose sphinx
$ source activate gait

And the dependencies which do not have conda packages can be installed into the environment with pip:

(gait)$ pip install DynamicistToolKit oct2py

46 Chapter 7. Installation

CHAPTER 8

Tests

When in the repository directory, run the tests with nose:

$ nosetests

47

GaitAnalysisToolKit Documentation, Release 0.2.0dev

48 Chapter 8. Tests

CHAPTER 9

Vagrant

A vagrant file and provisioning script are included to test the code on both a Ubuntu 12.04 and Ubuntu 13.10 box. To
load the box and run the tests simply type:

$ cd vagrant
$ vagrant up

See VagrantFile and the *bootstrap.sh files to see what’s going on.

49

GaitAnalysisToolKit Documentation, Release 0.2.0dev

50 Chapter 9. Vagrant

CHAPTER 10

Documentation

The documentation is hosted at ReadTheDocs:

http://gait-analysis-toolkit.readthedocs.org

You can build the documentation (currently sparse) if you have Sphinx and numpydoc:

$ cd docs
$ make html
$ firefox _build/html/index.html

51

http://gait-analysis-toolkit.readthedocs.org

GaitAnalysisToolKit Documentation, Release 0.2.0dev

52 Chapter 10. Documentation

CHAPTER 11

Contributing

The recommended procedure for contributing code to this repository is detailed here. It is the standard method of
contributing to Github based repositories (https://help.github.com/articles/fork-a-repo).

If you have don’t have access rights to this repository then you should fork the repository on Github using the Github
UI and clone the fork that you just made to your machine:

git clone git@github.com:<your-username>/GaitAnalysisToolKit.git

Change into the directory:

cd GaitAnalysisToolKit

Now, setup a remote called upstream that points to the main repository so that you can keep your local repository
up-to-date:

git remote add upstream git@github.com:csu-hmc/GaitAnalysisToolKit.git

Now you have a remote called origin (the default) which points to your Github account’s copy and a remote called
upstream that points to the main repository on the csu-hmc organization Github account.

It’s best to keep your local master branch up-to-date with the upstream master branch and then branch locally to create
new features. To update your local master branch simply:

git checkout master
git pull upstream master

If you have access rights to the main repository simply, clone it and don’t worry about making a fork on your Github
account:

git clone git@github.com:csu-hmc/GaitAnalysisToolKit.git

Change into the directory:

cd GaitAnalysisToolKit

Now, to contribute a change to the repository you should create a new branch off of the local master branch:

git checkout -b my-branch

Now make changes to the software and be sure to always include tests! Make sure all tests pass on your machine with:

nosetests

Once tests pass, add any new files you created:

53

https://help.github.com/articles/fork-a-repo

GaitAnalysisToolKit Documentation, Release 0.2.0dev

git add my_new_file.py

Now commit your changes:

git commit -am "Added an amazing new feature."

Push your commits to a mirrored branch on the Github repository that you cloned:

git push origin my-branch

Now visit the repository on Github (either yours or the main one) and you should see a “compare and pull button” to
make a pull request against the main repository. Github and Travis-CI will check for merge conflicts and run the tests
again on a cloud machine. You can ask others to review your code at this point and if all is well, press the “merge”
button on the pull request. Finally, delete the branches on your local machine and on your Github repo:

git branch -d my-branch && git push origin :my-branch

11.1 Git Notes

• The master branch on main repository on Github should always pass all tests and we should strive to keep it in a
stable state. It is best to not merge contributions into master unless tests are passing, and preferably if someone
else approved your code.

• In general, do not commit changes to your local master branch, always pull in the latest changes from the master
branch with git pull upstream master then checkout a new branch for your changes. This way you
keep your local master branch up-to-date with the main master branch on Github.

• In general, do not push changes to the main repo master branch directly, use branches and push the branches up
with a pull request.

• In general, do not commit binary files, files generated from source, or large data files to the repository. See
https://help.github.com/articles/working-with-large-files for some reasons.

54 Chapter 11. Contributing

https://help.github.com/articles/working-with-large-files

CHAPTER 12

Release Notes

12.1 0.1.2

• Fixed bug preventing GaitData.plot_grf_landmarks from working.

• Removed inverse_data.mat from the source distribution.

12.2 0.1.1

• Fixed installation issue where the octave and data files were not included in the installation directory.

12.3 0.1.0

• Initial release

• Copied the walk module from DynamicistToolKit @ eecaebd31940179fe25e99a68c91b75d8b8f191f

55

GaitAnalysisToolKit Documentation, Release 0.2.0dev

56 Chapter 12. Release Notes

CHAPTER 13

Indices and tables

• genindex

• modindex

• search

57

GaitAnalysisToolKit Documentation, Release 0.2.0dev

58 Chapter 13. Indices and tables

Bibliography

[Wu1995] Wu G. and Cavanagh, P. R., 1995, “ISB recommendations for standardization in the reporting of kinematic
data”, J. Biomechanics, Vol 28, No 10.

59

GaitAnalysisToolKit Documentation, Release 0.2.0dev

60 Bibliography

Python Module Index

g
gaitanalysis.controlid, 34
gaitanalysis.gait, 29
gaitanalysis.motek, 19

61

GaitAnalysisToolKit Documentation, Release 0.2.0dev

62 Python Module Index

Index

Symbols
_analog_column_labels() (gaitanaly-

sis.motek.DFlowData method), 19
_c (gaitanalysis.motek.DFlowData attribute), 19
_c (gaitanalysis.motek.MissingMarkerIdentifier at-

tribute), 26
_calibrate_accel_data() (gaitanalysis.motek.DFlowData

method), 19
_clean_compensation_data() (gaitanaly-

sis.motek.DFlowData method), 20
_compensate() (gaitanalysis.motek.DFlowData method),

20
_compensate_forces() (gaitanalysis.motek.DFlowData

method), 20
_compensation_needed() (gaitanalysis.motek.DFlowData

method), 21
_end (gaitanalysis.motek.DFlowData attribute), 21
_express() (gaitanalysis.motek.DFlowData method), 21
_express_in_isb_standard_coordinates() (gaitanaly-

sis.motek.DFlowData method), 21
_extract_events_from_record_file() (gaitanaly-

sis.motek.DFlowData method), 22
_force_column_labels() (gaitanalysis.motek.DFlowData

method), 22
_generate_cortex_time_stamp() (gaitanaly-

sis.motek.DFlowData method), 22
_hbm_column_labels() (gaitanalysis.motek.DFlowData

method), 22
_header_labels() (gaitanalysis.motek.DFlowData static

method), 22
_identify_missing_markers() (gaitanaly-

sis.motek.DFlowData method), 22
_load_compensation_data() (gaitanaly-

sis.motek.DFlowData method), 23
_load_mocap_data() (gaitanalysis.motek.DFlowData

method), 23
_load_record_data() (gaitanalysis.motek.DFlowData

method), 23
_marker_column_labels() (gaitanaly-

sis.motek.DFlowData method), 23

_merge_mocap_record() (gaitanalysis.motek.DFlowData
method), 23

_missing_markers_are_zeros() (gaitanaly-
sis.motek.DFlowData method), 23

_mocap_column_labels() (gaitanaly-
sis.motek.DFlowData method), 23

_orient_accelerometers() (gaitanalysis.motek.DFlowData
method), 24

_parse_meta_data_file() (gaitanalysis.motek.DFlowData
method), 24

_relabel_analog_columns() (gaitanaly-
sis.motek.DFlowData method), 24

_relabel_markers() (gaitanalysis.motek.DFlowData
method), 24

_resample_record_data() (gaitanalysis.motek.DFlowData
method), 24

_segment (gaitanalysis.motek.DFlowData attribute), 24
_shift_delsys_signals() (gaitanalysis.motek.DFlowData

method), 24
_store_compensation_data_path() (gaitanaly-

sis.motek.DFlowData method), 24
_suffix (gaitanalysis.motek.DFlowData attribute), 24
_suffix_beg (gaitanalysis.motek.DFlowData attribute), 24

A
analog_channel_regex (gaitanalysis.motek.DFlowData

attribute), 24
attrs_to_store (gaitanalysis.gait.GaitData attribute), 29

C
c (gaitanalysis.motek.DFlowData attribute), 25
clean_data() (gaitanalysis.motek.DFlowData method), 25
compute_estimated_controls() (gaitanaly-

sis.controlid.SimpleControlSolver method),
35

constant_marker_tolerance (gaitanaly-
sis.motek.DFlowData attribute), 26

constant_marker_tolerance (gaitanaly-
sis.motek.MissingMarkerIdentifier attribute),
26

63

GaitAnalysisToolKit Documentation, Release 0.2.0dev

controls (gaitanalysis.controlid.SimpleControlSolver at-
tribute), 35

cortex_sample_rate (gaitanalysis.motek.DFlowData at-
tribute), 26

D
deconstruct_solution() (gaitanaly-

sis.controlid.SimpleControlSolver method),
35

delsys_time_delay (gaitanalysis.motek.DFlowData at-
tribute), 26

dflow_segments (gaitanalysis.motek.DFlowData at-
tribute), 26

DFlowData (class in gaitanalysis.motek), 19

E
extract_processed_data() (gaitanalysis.motek.DFlowData

method), 26

F
find_constant_speed() (in module gaitanalysis.gait), 32
force_plate_names (gaitanalysis.motek.DFlowData at-

tribute), 26
force_plate_regex (gaitanalysis.motek.DFlowData

attribute), 26
force_plate_suffix (gaitanalysis.motek.DFlowData

attribute), 26
form_a_b() (gaitanalysis.controlid.SimpleControlSolver

method), 36
form_control_vectors() (gaitanaly-

sis.controlid.SimpleControlSolver method),
36

form_sensor_vectors() (gaitanaly-
sis.controlid.SimpleControlSolver method),
36

G
gain_inclusion_matrix (gaitanaly-

sis.controlid.SimpleControlSolver attribute),
36

gait_landmarks_from_accel() (in module gaitanaly-
sis.gait), 32

gait_landmarks_from_grf() (in module gaitanalysis.gait),
33

gaitanalysis.controlid (module), 34
gaitanalysis.gait (module), 29
gaitanalysis.motek (module), 19
GaitData (class in gaitanalysis.gait), 29
grf_landmarks() (gaitanalysis.gait.GaitData method), 29

H
hbm_column_regexes (gaitanalysis.motek.DFlowData at-

tribute), 26

hbm_na (gaitanalysis.motek.DFlowData attribute), 26

I
identification_data (gaitanaly-

sis.controlid.SimpleControlSolver attribute),
36

identify() (gaitanalysis.motek.MissingMarkerIdentifier
method), 26

interpolate() (in module gaitanalysis.gait), 34
inverse_dynamics_2d() (gaitanalysis.gait.GaitData

method), 29

L
least_squares() (gaitanaly-

sis.controlid.SimpleControlSolver method),
36

load() (gaitanalysis.gait.GaitData method), 30
low_pass_cutoff (gaitanalysis.motek.DFlowData at-

tribute), 26
low_pass_filter() (in module gaitanalysis.motek), 27

M
marker_coordinate_regex (gaitanaly-

sis.motek.DFlowData attribute), 26
marker_coordinate_suffixes (gaitanaly-

sis.motek.DFlowData attribute), 26
marker_coordinate_suffixes (gaitanaly-

sis.motek.MissingMarkerIdentifier attribute),
27

markers_for_2D_inverse_dynamics() (in module gait-
analysis.motek), 27

missing_value_statistics() (gaitanaly-
sis.motek.DFlowData method), 26

MissingMarkerIdentifier (class in gaitanalysis.motek), 26

P
plot_control_contributions() (gaitanaly-

sis.controlid.SimpleControlSolver method),
37

plot_estimated_vs_measure_controls() (gaitanaly-
sis.controlid.SimpleControlSolver method),
37

plot_gains() (gaitanalysis.controlid.SimpleControlSolver
method), 37

plot_gait_cycles() (gaitanalysis.gait.GaitData method),
30

plot_gait_cycles() (in module gaitanalysis.gait), 34
plot_landmarks() (gaitanalysis.gait.GaitData method), 31

R
rotation_suffixes (gaitanalysis.motek.DFlowData at-

tribute), 26

64 Index

GaitAnalysisToolKit Documentation, Release 0.2.0dev

S
save() (gaitanalysis.gait.GaitData method), 31
segment_labels (gaitanalysis.motek.DFlowData at-

tribute), 26
sensors (gaitanalysis.controlid.SimpleControlSolver at-

tribute), 37
SimpleControlSolver (class in gaitanalysis.controlid), 34
solve() (gaitanalysis.controlid.SimpleControlSolver

method), 37
spline_interpolate_over_missing() (in module gaitanaly-

sis.motek), 28
split_at() (gaitanalysis.gait.GaitData method), 31
statistics() (gaitanalysis.motek.MissingMarkerIdentifier

method), 27

T
time_derivative() (gaitanalysis.gait.GaitData method), 32
tpose() (gaitanalysis.gait.GaitData method), 32
treadmill_markers (gaitanalysis.motek.DFlowData

attribute), 26

V
validation_data (gaitanaly-

sis.controlid.SimpleControlSolver attribute),
38

W
write_dflow_tsv() (gaitanalysis.motek.DFlowData

method), 26

Index 65

	Motek Module
	Mocap Module
	Record Module
	Meta Data
	Usage

	Gait Module
	gaitanalysis Package
	motek Module
	gait Module
	controlid Module

	Introduction
	Python Packages
	Octave Libraries
	Installation
	Dependencies

	Tests
	Vagrant
	Documentation
	Contributing
	Git Notes

	Release Notes
	0.1.2
	0.1.1
	0.1.0

	Indices and tables
	Bibliography
	Python Module Index

