

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Fyreside 0.0.4 documentation

Fyreside

In Fyreside, players engage in perpetual card game integrated behind the
game’s social features. Basic gameplay is simple:

	Talk with people in-game to gain mana.

	Use your mana to play cards which hurt other players or help you.

	Try to get the highest score you can before someone kills you.

Note

Fyreside is in early, early alpha. This website is missing a

lot of info, and I apologize. <(v,v)>

Fyreside is intended to be played with a small group of people over a long
time, with one player serving as the host. (If that’s you,
here’s your guide.)

Players all draw from the same deck, and use the mana they gain from chatting
to play the cards they drew. Some cards directly hurt other players, or help
them. Others change cards in the deck, remove cards, or even add entirely new
cards. Some act as boosts to others, and so on. If you’re a player looking to
get more acquainted with the rules of play, here’s your guide.

And finally, if you’re looking for resources on customizing Fyreside, I’m
building those up as I build the game, so
here’s your guide.

Here’s the links to those three guides blown up, so you can find specifically
what you’re looking for:

	Hosting Fireside
	Getting Started

	Playing Fyreside
	Getting Started
	Logging In
	Picking a Client
	PHudBase WebMud

	tiny-fugue

	telnet

	Making An Account

	Your First Play

	The Player
	Commands

	Cards
	How Cards Work

	List of Cards
	Basic

	Battlesickle

	Clockwork

	Miracles

	Snacks

	As Seen On TV

	Development
	fyreside.subscriptions module

	fyreside.txt module
	Future

	Changelog
	Changelog
	%%version%% (unreleased)

	0.0.3 (2016-10-04)
	New

	Changes

	Fix

	Other

	0.0.2 (2016-10-02)

	0.0.1 (2016-10-02)
	Fix

	Other

	Reference

ignore these links: Index Module Index Search Page

 Copyright 2016, emsenn.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fyreside 0.0.4 documentation

Hosting Fireside

Note

While there are only instructions for installing Fyreside on a

	Linux machine through pip, this is not the only way to

	install the game. If you know what you’re doing and would like to
contribute,
please do [https://github.com/emsenn/fyreside/issues/new?title=Installation%20Instructions&labels=~docs].

Getting Started

$ pip install fyreside
$ fyreside_run

 Copyright 2016, emsenn.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fyreside 0.0.4 documentation

Playing Fyreside

Warning

This game is NEW. There are certainly a lot of balance issues

	with the cards. If you notice something glaring (too powerful,

	costs too much many, whatever), please
let me know [https://git.io/fyresidecardbalance].

Getting Started

This section will show a couple different ways to connect to your host’s
Fyreside section, and walk you through some of the basic gameplay concepts.

Logging In

Because of how Fyreside is built, you have to pick a client before you can
actually log into the game. Unlike most games, where you have to use whatever
software they’ve made in order to play, Fyreside works with existing
software, so more people can play.

Picking a Client

PHudBase WebMud

For now, the easiest way to log into someone’s Fyreside session is by using
the PHudBase WebMud client [http://www.phudbase.com/wm_client/]. Your host
should have given you a Host (looks something like 45.37.188.218) and
Port (looks something like 5787). (Those are actually the Host and
Port of the Fyreside development testing server, if you want to try and
connect. It’s not always, up, though.)

tiny-fugue

My personal client of choice.

telnet

There’s always telnet. (unless you’re on Windows.)

Making An Account

Once you’ve connected, you should see some output similar to this:

[image: _images/fyreside-splash.png]
Go ahead and give it a name, and password (probably don’t use password123.):

[image: _images/fyreside-account-creation.png]
You’ll see the game suggests we poke around the help command for a while
first, but since you’re here, we’ll dive straight into gameplay:

Your First Play

[image: _images/fyreside-gameplay-draw-play.png]
I started by drawing seven cards with the draw command. Then I checked who
was currently online. It was just some sap named Womble, so I hit them with
my fireball, using the play command. (All of these commands have detailed
in-game help you can find by typing -h after the command.)

[image: _images/fyreside-chatting.png]
This last screenshot shows the basic syntax for talking to other players in
Fyreside - something you’ll be doing a lot of. In essence, you type the name
of the channel you want to talk on, then your message, or you can use tell
to privately message a player. From here, you’re ready to play Fyreside.
Familiarize yourself with your commands, look for help when you need
it, and use the info command to learn more about the cards in your hand.

When you feel comfortable with the core mechanics, or if you’re the sort who
reads the manual when you buy a new toaster, the rest of this document
explains game concepts like Cards and Players in detail.

The Player

The most up-to-date information on players is the documentation in their
source code:

	
class fyreside.Player(**kwargs)[source]

	Bases: qtmud.Client

	
armor

	

	
health

	This is a measure of your health. Unlike armor, your health can
only reach a certain maximum value - for now, that’s 20.

	
mana

	Mana is gained by speaking through the talker, and is used to
play cards. From in-game, you can check your mana with the
score cmd.

	
receive_armor(amount, dealer=None, card=None)[source]

	Cards call this function to add to a player’s armor.

	
receive_damage(amount, dealer=None, card=None)[source]

	Cards call this function when they want to damage a player. It
first subtracts from the player’s armor, and if damage is left over,
their health.

	
receive_mana(amount, dealer=None, card=None)[source]

	Cards use this to add to (or subtract from) a player’s mana pool.

	
score

	

Commands

Players interact with Fyreside by issuing commands. Here’s a list of all
the commands, and what they do.

	fyreside.cmds.deck
	Shows the player how many cards are in the deck.

	fyreside.cmds.draw
	Draws a card from fyreside.DECK into the player’s hand.

	fyreside.cmds.hand
	Sends a list of the cards in the player’s hands to them.

	fyreside.cmds.info
	Shows a card’s info

	fyreside.cmds.play
	Command for playing a card from the player’s hand, optionally at a target.

	fyreside.cmds.score
	Shows the player their current statistics.

	There
	

their documentation [https://qtmud.rtfd.io], where you can hopefully find
the details. Or, of course, check the in-game help by typing the command you
want to use followed by -h, such as talker -h.

	
fyreside.cmds.deck(player, *, H=False, h=False)[source]

	Shows the player how many cards are in the deck.

	Parameters:	
	player – The player issuing the command. (That’d be you.)
This isn’t part of the command you enter.

	H – Shows the player this docstring

	h – Shows the player a brief help

	
fyreside.cmds.draw(player, amount=1, *, H=False, h=False)[source]

	Draws a card from fyreside.DECK into the player’s hand.

	Parameters:	
	player – The player issuing the command. (That’d be you.)
This isn’t part of the command you enter.

	H – Shows the player this docstring

	h – Shows the player a brief help

	
fyreside.cmds.hand(player, *, H=False, h=False)[source]

	Sends a list of the cards in the player’s hands to them.

	Parameters:	
	player – The player issuing the command. (That’d be you.)
This isn’t part of the command you enter.

	H – Shows the player this docstring

	h – Shows the player a brief help

Pretty straightforward - shows the player their hand.

	
fyreside.cmds.info(player, *card, H=False, h=False)[source]

	Shows a card’s info

	Parameters:	
	player – The client issuing the command. (That’d be you.)
This isn’t part of the command you enter.

	H – Shows the client this docstring.

	h – Shows the client a brief help.

	
fyreside.cmds.play(player, *card, H=False, h=False, target='')[source]

	Command for playing a card from the player’s hand, optionally at a
target.

	param player:	The client issuing the command. (That’d be you.)
This isn’t part of the command you enter.

	param H:	Shows the client this docstring.

	param h:	Shows the client a brief help.

	param card:	The name of the card to be played.

	param target:	The name of the player the card will be
targeted at.

	
fyreside.cmds.score(player, *, H=False, h=False, t=False, top=None)[source]

	Shows the player their current statistics.

	Parameters:	
	player – The player issuing the command. (That’d be you.)
This isn’t part of the command you enter.

	H – Shows the player this docstring

	h – Shows the player a brief help

Cards

The table below outlines all the “finished” cards - these are included in the
deck, but aren’t necessarily balanced. If you have a
suggestion for how any card could be changed, (or an idea for a card we
don’t have!) don’t hesitate to
submit an issue [https://github.com/emsenn/fyreside/issues].

Note

It’s impossible to provide stable documentation on the specific

	attributes of each card. Cards are able to have their values changes

	through the course of gameplay. If you want to see the starting
values of a card, however, you can check the [source] link
next to each card’s documentation.

How Cards Work

As with the rest of Fyreside, the best way to learn how it works is by looking
at the documentation for the code itself.

	
class fyreside.cards.Card(**kwargs)[source]

	Bases: object [https://docs.python.org/library/functions.html#object]

The base class all other cards build off of.

	Parameters:	kwargs – If any arguments are passed when Card() is called,
they’ll be passed on as arguments to Card.update()

	
ability = None

	A short text description of what the card’s play method does.

	
categories = None

	A list of the categories the card falls into. Might be something
like Spell or Creature, might also be something like Ork or
Mechanical.

	
consumed = None

	If this is set to True, the card will be consumed when it’s played.

	
cost = None

	How many mana it takes to play this
card.

	
name = None

	The card’s name can be used to reference the card within the
game. If a name is more than one word, the last word can be used
as an abbreviation.

	
owner = None

	The player who ‘owns’ the card. Ownership is an arbitrary game
concept, and doesn’t necessarily reflect the player whose hand the
card is in.

	
rarity = None

	Rarity defines how many of the card will be placed into the deck
when the Fyreside game was load <fyreside.load>`ed. ``0`()
means the card won’t be in the deck. In my head, rarity works out to:

	rarity
	Descriptor

	1
	Unique

	2
	Rare

	3
	Uncommon

	4
	Common

	5
	Basic

	
series = None

	The run of cards this card is a part of. To be used in the future
people can pick what groups of cards they want in their deck.

	
stats = None

	Cards which have concrete in-game attributes like “damage” store
them inside the stats dict.

	
update(**kwargs)[source]

	for attr, value in kwargs.items(): self.__dict__[attr] = value

List of Cards

Cards in Fyreside are broken up into different
series; groups of cards that are
thematically similar. Regardless of series, the cards all share the same
attributes. Like with most of Fyreside, the source’s documentation is the best
resource for learning about them.

Each series of cards should follow the same rough format:

5 mana potions, 5 health potions, 5 score potions

Note

It’s pretty easy to make your own cards! Check out our

Development tutorial!

Basic

	nosignatures:	fyreside.cards.ConvenientPortal
fyreside.cards.Fireball
fyreside.cards.Grunt
fyreside.cards.HamfistedOgre
fyreside.cards.Lightning
fyreside.cards.MysticGiant
fyreside.cards.PetulantChild
fyreside.cards.RecklessEngineer
fyreside.cards.ScoutBalloon

	
class fyreside.cards.ConvenientPortal[source]

	Bases: fyreside.cards.Card

Steals a random card from its target.

New in version 0.0.1.

	
play(player, target)[source]

	

	
class fyreside.cards.Fireball[source]

	Bases: fyreside.cards.Card

Does a small amount of damage to its target

New in version 0.0.2.

	
play(player, target)[source]

	

	
class fyreside.cards.Grunt[source]

	Bases: fyreside.cards.Card

Boosts the target’s armor.

New in version 0.0.1.

This was the first Fyreside card.

	
play(player)[source]

	

	
class fyreside.cards.HamfistedOgre[source]

	Bases: fyreside.cards.Card

Does a fair amount of damage to its target - and half that to whoever
plays it.

New in version 0.0.3.

	
play(player, target)[source]

	

	
class fyreside.cards.Lightning[source]

	Bases: fyreside.cards.Card

Damages one player, and a second random player for half that.

New in version 0.0.5.

	
play(player, target)[source]

	

	
class fyreside.cards.MysticGiant[source]

	Bases: fyreside.cards.Card

Heavily armors the player. Costs less the more cards you’ve played.

New in version 0.0.2.

	
cost

	

	
play(player)[source]

	

	
class fyreside.cards.PetulantChild[source]

	Bases: fyreside.cards.Card

Fully heals its target, but gets more expensive each time it’s played.

	
play(player, target)[source]

	

	
class fyreside.cards.RecklessEngineer[source]

	Bases: fyreside.cards.Card

Gives its target four armor, then takes away two health.

Warning

This card is broken atm, and won’t show up in the deck.

	
play(player, target=None)[source]

	

	
class fyreside.cards.ScoutBalloon[source]

	Bases: fyreside.cards.Card

Reports the stats & hand of every player.

New in version 0.0.3.

	
play(player)[source]

	

Battlesickle

Definitely not based on existing intellectual property.

	nosignatures:	fyreside.cards.BasikOrk
fyreside.cards.OrkBomber
fyreside.cards.OrkFurnace
fyreside.cards.OrkGeneral
fyreside.cards.OrkGunner
fyreside.cards.OrkRecruiter
fyreside.cards.OrkSergeant
fyreside.cards.RetirementParty

	
class fyreside.cards.BasikOrk[source]

	Bases: fyreside.cards.Card

Cheap card that attacks a random player.

New in version 0.0.2.

	
play(player)[source]

	

	
class fyreside.cards.OrkBomber[source]

	Bases: fyreside.cards.Card

https://github.com/emsenn/fyreside/issues/11

New in version 0.0.5.

	
play(player)[source]

	

	
class fyreside.cards.OrkFurnace[source]

	Bases: fyreside.cards.Card

https://github.com/emsenn/fyreside/issues/11

	
play(player)[source]

	

	
class fyreside.cards.OrkGeneral[source]

	Bases: fyreside.cards.Card

https://github.com/emsenn/fyreside/issues/11

New in version 0.0.5.

	
play(player)[source]

	

	
class fyreside.cards.OrkGunner[source]

	Bases: fyreside.cards.Card

https://github.com/emsenn/fyreside/issues/11

New in version 0.0.5.

	
play(player)[source]

	

	
class fyreside.cards.OrkRecruiter[source]

	Bases: fyreside.cards.Card

https://github.com/emsenn/fyreside/issues/11

	
play(player)[source]

	

	
class fyreside.cards.OrkSergeant[source]

	Bases: fyreside.cards.Card

https://github.com/emsenn/fyreside/issues/11

	
play(player)[source]

	

	
class fyreside.cards.RetirementParty[source]

	Bases: fyreside.cards.Card

https://github.com/emsenn/fyreside/issues/11

	
play(player)[source]

	

Clockwork

Victorian steampunk themed cards.

	nosignatures:	fyreside.cards.ClockworkWeasel

	
class fyreside.cards.ClockworkWeasel[source]

	Bases: fyreside.cards.Card

Sneakily reports its target’s hand.

New in version 0.0.2.

	
play(player, target)[source]

	

Miracles

These cards are roughly inspired by stories from Abrahmic religions, or

	nosignatures:	fyreside.cards.GreatFlood
fyreside.cards.NutritiousSeaweed

	
class fyreside.cards.GreatFlood[source]

	Bases: fyreside.cards.Card

Puts a bunch of Nutritious Seaweed in the deck.

New in version 0.0.5.

	
play(player)[source]

	

	
class fyreside.cards.NutritiousSeaweed[source]

	Bases: fyreside.cards.Card

https://github.com/emsenn/fyreside/issues/11

New in version 0.0.5.

	
play(player)[source]

	

Snacks

These cards are cheap, plentiful, and beneficial to everyone. But, they’re
consumed after they’re used, so like real snacks, save them for when you need
them.

	nosignatures:	fyreside.cards.Soda
fyreside.cards.Spam

	
class fyreside.cards.Soda[source]

	Bases: fyreside.cards.Card

+1 health to everyone, +that much armor to the player. Consumed!

New in version 0.0.5.

	
play(player)[source]

	

	
class fyreside.cards.Spam[source]

	Bases: fyreside.cards.Card

+1 health to everyone, +that much mana to the player. Consumed!

	
play(player)[source]

	

As Seen On TV

Cards in this series are inspired by whatever I was watching on TV when working
on Fyreside.

	nosignatures:	fyreside.cards.Pablo
fyreside.cards.SecretSquirrel

	
class fyreside.cards.Pablo[source]

	Bases: fyreside.cards.Card

Destroys armor and mana of one player. Gives some armor to
everyone else.

	
play(player)[source]

	Builds a list of connected players, shuffles it, and picks one
to be the victim. That victim has their armor and mana zeroed, while
every other player

	
class fyreside.cards.SecretSquirrel[source]

	Bases: fyreside.cards.Card

Sneakily reports the hand & stats of its target.

New in version 0.0.2.

	
play(player, target)[source]

	

 Copyright 2016, emsenn.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Fyreside 0.0.4 documentation

Development

Todo

Instructions for expanding Fireside will be here by 0.1.0!

	
fyreside.DECK = []

	built from the classes in fyreside.cards when load() is
called.

	
fyreside.connected_players = []

	The currently connected players.

	
fyreside.load()[source]

	Adds Fyreside subscriptions to
qtmud.active_subscribers and builds DECK from the classes
in fyreside.cards.

	
fyreside.player_hands = {}

	All the hands currently held by different players, in the format of
{ player : [list, of, cards] }

	
fyreside.search_connected_players_by_name(name, singular=False)[source]

	

	
fyreside.search_hand_by_categories(player, category='', categories=[])[source]

	

	
fyreside.search_hand_by_name(player, name='')[source]

	Searches player’s hands for any cards whose name matches text,
or whose name has one word matching with text if text is one word.

	param player:	the player whose hand will be searched

	
fyreside.start()[source]

	

fyreside.subscriptions module

	
fyreside.subscriptions.armor(player, amount=0)[source]

	

	
fyreside.subscriptions.broadcast(channel, speaker, message)[source]

	

	
fyreside.subscriptions.client_disconnect(client)[source]

	

	
fyreside.subscriptions.client_login_parser(client, line)[source]

	

	
fyreside.subscriptions.death(departed)[source]

	

	
fyreside.subscriptions.discard(player, cards=None, all=False)[source]

	

	
fyreside.subscriptions.draw(player, count=1)[source]

	

	
fyreside.subscriptions.heal(player, amount=0, full=False)[source]

	

fyreside.txt module

Future

Here are all the todo lists in the Documentation:

Todo

Instructions for expanding Fireside will be here by 0.1.0!

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/fyreside/checkouts/latest/docs/development.rst, line 5.)

Changelog

	Changelog
	%%version%% (unreleased)

	0.0.3 (2016-10-04)
	New

	Changes

	Fix

	Other

	0.0.2 (2016-10-02)

	0.0.1 (2016-10-02)
	Fix

	Other

Reference

GitHub Issues Shortlinks:

	https://git.io/fyresidecardbalance

	
	https://github.com/emsenn/fyreside/issues/new?labels=~cardbalance

 Copyright 2016, emsenn.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Fyreside 0.0.4 documentation

 	Development

Changelog

%%version%% (unreleased)

	Merge branch ‘release/0.0.3’ into develop. [emsenn]

0.0.3 (2016-10-04)

New

	Documented Cards. [emsenn]

Some real basic documentation of cards, and some shuffling of other documentation.

	Sphinx & GitHub Issues Integration. [emsenn]

``https://github.com/sloria/sphinx-issues``_

Usage:

This idea was originally presented in :issue:`2` by :user:`emsenn`.

Changes

	Updated Changelog. [emsenn]

Fix

	Uhm Didn’t Attach Files? PEBUAK. [emsenn]

	Convenient Portal Card Generation Bug Fixed. [emsenn]

The Convenient Portal Card made a new card anytime someone played it against someone who had an empty hand. This fixes that.

Also clients can now refer to the cards in their hand general as a card, so you can play card or play card 3.

Also fixed a typo in the info command and helped it display misuse more properly.

Other

	Merge branch ‘master’ into develop. [emsenn]

	Merge branch ‘master’ of ssh://github.com/emsenn/fireside. [emsenn]

	Update README.md. [emsenn]

	Merge pull request #1 from gitter-badger/gitter-badge. [emsenn]

Add a Gitter chat badge to README.md

	Add Gitter badge. [The Gitter Badger]

	Merge branch ‘release/0.0.2’ [emsenn]

	Merge branch ‘release/0.0.1’ [emsenn]

	Merge branch ‘release/0.0.2’ into develop. [emsenn]

0.0.2 (2016-10-02)

	Merge branch ‘release/0.0.1’ into develop. [emsenn]

0.0.1 (2016-10-02)

Fix

	Fixed Documentation Build Errors. [emsenn]

Other

	Initial commit. [emsenn]

 Copyright 2016, emsenn.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Fyreside 0.0.4 documentation

 Python Module Index

 f

 			

 		
 f	

 	[image: -]
 	
 fyreside	

 	
 	
 fyreside.cmds	

 	
 	
 fyreside.subscriptions	

 	
 	
 fyreside.txt	

 Copyright 2016, emsenn.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Fyreside 0.0.4 documentation

Index

 A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | U

A

 	

 	ability (fyreside.cards.Card attribute)

 	armor (fyreside.Player attribute)

 	

 	armor() (in module fyreside.subscriptions)

B

 	

 	BasikOrk (class in fyreside.cards)

 	

 	broadcast() (in module fyreside.subscriptions)

C

 	

 	Card (class in fyreside.cards)

 	categories (fyreside.cards.Card attribute)

 	client_disconnect() (in module fyreside.subscriptions)

 	client_login_parser() (in module fyreside.subscriptions)

 	ClockworkWeasel (class in fyreside.cards)

 	

 	connected_players (in module fyreside)

 	consumed (fyreside.cards.Card attribute)

 	ConvenientPortal (class in fyreside.cards)

 	cost (fyreside.cards.Card attribute)

 	

 	(fyreside.cards.MysticGiant attribute)

D

 	

 	death() (in module fyreside.subscriptions)

 	DECK (in module fyreside)

 	deck() (in module fyreside.cmds)

 	

 	discard() (in module fyreside.subscriptions)

 	draw() (in module fyreside.cmds)

 	

 	(in module fyreside.subscriptions)

F

 	

 	Fireball (class in fyreside.cards)

 	fyreside (module)

 	fyreside.cmds (module)

 	

 	fyreside.subscriptions (module)

 	fyreside.txt (module)

G

 	

 	GreatFlood (class in fyreside.cards)

 	

 	Grunt (class in fyreside.cards)

H

 	

 	HamfistedOgre (class in fyreside.cards)

 	hand() (in module fyreside.cmds)

 	

 	heal() (in module fyreside.subscriptions)

 	health (fyreside.Player attribute)

I

 	

 	info() (in module fyreside.cmds)

L

 	

 	Lightning (class in fyreside.cards)

 	

 	load() (in module fyreside)

M

 	

 	mana (fyreside.Player attribute)

 	

 	MysticGiant (class in fyreside.cards)

N

 	

 	name (fyreside.cards.Card attribute)

 	

 	NutritiousSeaweed (class in fyreside.cards)

O

 	

 	OrkBomber (class in fyreside.cards)

 	OrkFurnace (class in fyreside.cards)

 	OrkGeneral (class in fyreside.cards)

 	OrkGunner (class in fyreside.cards)

 	

 	OrkRecruiter (class in fyreside.cards)

 	OrkSergeant (class in fyreside.cards)

 	owner (fyreside.cards.Card attribute)

P

 	

 	Pablo (class in fyreside.cards)

 	PetulantChild (class in fyreside.cards)

 	play() (fyreside.cards.BasikOrk method)

 	

 	(fyreside.cards.ClockworkWeasel method)

 	(fyreside.cards.ConvenientPortal method)

 	(fyreside.cards.Fireball method)

 	(fyreside.cards.GreatFlood method)

 	(fyreside.cards.Grunt method)

 	(fyreside.cards.HamfistedOgre method)

 	(fyreside.cards.Lightning method)

 	(fyreside.cards.MysticGiant method)

 	(fyreside.cards.NutritiousSeaweed method)

 	(fyreside.cards.OrkBomber method)

 	(fyreside.cards.OrkFurnace method)

 	(fyreside.cards.OrkGeneral method)

 	(fyreside.cards.OrkGunner method)

 	(fyreside.cards.OrkRecruiter method)

 	(fyreside.cards.OrkSergeant method)

 	(fyreside.cards.Pablo method)

 	(fyreside.cards.PetulantChild method)

 	(fyreside.cards.RecklessEngineer method)

 	(fyreside.cards.RetirementParty method)

 	(fyreside.cards.ScoutBalloon method)

 	(fyreside.cards.SecretSquirrel method)

 	(fyreside.cards.Soda method)

 	(fyreside.cards.Spam method)

 	(in module fyreside.cmds)

 	

 	Player (class in fyreside)

 	player_hands (in module fyreside)

R

 	

 	rarity (fyreside.cards.Card attribute)

 	receive_armor() (fyreside.Player method)

 	receive_damage() (fyreside.Player method)

 	

 	receive_mana() (fyreside.Player method)

 	RecklessEngineer (class in fyreside.cards)

 	RetirementParty (class in fyreside.cards)

S

 	

 	score (fyreside.Player attribute)

 	score() (in module fyreside.cmds)

 	ScoutBalloon (class in fyreside.cards)

 	search_connected_players_by_name() (in module fyreside)

 	search_hand_by_categories() (in module fyreside)

 	search_hand_by_name() (in module fyreside)

 	

 	SecretSquirrel (class in fyreside.cards)

 	series (fyreside.cards.Card attribute)

 	Soda (class in fyreside.cards)

 	Spam (class in fyreside.cards)

 	start() (in module fyreside)

 	stats (fyreside.cards.Card attribute)

U

 	

 	update() (fyreside.cards.Card method)

 Copyright 2016, emsenn.
 Created using Sphinx 1.3.5.

 _modules/fyreside.html

 Navigation

 		
 index

 		
 modules |

 		Fyreside 0.0.4 documentation »

 		Module code »

 Source code for fyreside

from inspect import getmembers, isfunction, isclass

import qtmud
import qtmud.subscriptions

from fyreside import cards, cmds, services, subscriptions, txt

__version__ = '0.0.4'

connected_players = list()
""" The currently connected players. """
player_hands = dict()
""" All the hands currently held by different players, in the format of
``{ player : [list, of, cards] }``"""
DECK = list()
""" built from the classes in :mod:`fyreside.cards` when :func:`load` is
called. """

[docs]class Player(qtmud.Client):
 def __init__(self, **kwargs):
 super(Player, self).__init__(**kwargs)
 self.max_hand = 7
 self.max_health = 20
 self.history = list()
 self.hand = list()
 self._health = 20
 self._mana = 10
 self._armor = 0
 self.word_count = 0
 self._score = 0

 @property
 def armor(self):
 return self._armor

 @armor.setter
 def armor(self, value):
 if value > self._armor:
 self.score += value - self._mana
 self._armor = value

 @property
 def health(self):
 """ This is a measure of your health. Unlike armor, your health can
 only reach a certain maximum value - for now, that's 20.
 """
 return self._health

 @health.setter
 def health(self, value):
 if value > self._health:
 self.score += value - self._health
 self._health = int(value)
 if self._health > self.max_health:
 qtmud.schedule('send', recipient=self,
 text='Your health is at the max.')
 self._health = self.max_health
 elif self._health <= 0:
 qtmud.schedule('death', departed=self)
 self._health = 0

 @property
 def mana(self):
 """ Mana is gained by speaking through the `talker`, and is used to
 play cards. From in-game, you can check your mana with the
 :func:`score <fyreside.cmds.score>` cmd. """
 return self._mana

 @mana.setter
 def mana(self, value):
 value = int(value)
 if value > self._mana:
 self.score += value - self._mana
 self._mana = int(value)

 @property
 def score(self):
 return qtmud.client_accounts[self.name]['score']

 @score.setter
 def score(self, value):
 qtmud.client_accounts[self.name]['score'] = int(value)
 qtmud.save_client_accounts()
 qtmud.schedule('send', recipient=self,
 text='Your score is now `{}`.'.format(self.score))

[docs] def receive_damage(self, amount, dealer=None, card=None):
 """ Cards call this function when they want to damage a player. It
 first subtracts from the player's armor, and if damage is left over,
 their health.
 """
 _amount = -amount
 if self.armor > 0:
 self.armor += _amount
 _amount = 0
 if self.armor < 0:
 _amount = abs(self.armor)
 self.armor = 0
 self.health += _amount
 output = 'You receive `{amount} damage`'
 if dealer:
 output += ' from `{dealer.name}`'
 if card:
 output += '\'s `{card.name}`'
 qtmud.schedule('send', recipient=dealer,
 text='You did {} damage to {}'.format(amount,
 self.name))
 dealer.score += amount
 output += ('. You now have `{self.health} health` and `{self.armor} '
 'armor.`')
 qtmud.schedule('send', recipient=self, text=output.format(**locals()))

[docs] def receive_armor(self, amount, dealer=None, card=None):
 """ Cards call this function to add to a player's armor.
 """
 self.armor += int(amount)
 self.score += int(amount)
 output = 'You receive `{amount} armor`'
 if dealer:
 output += ' from `{dealer.name}`'
 if card:
 output += '\'s `{card.name}`'
 qtmud.schedule('send', recipient=dealer,
 text='You give {} armor to {}'.format(amount,
 self.name))
 output += '. You now have `{self.armor}` armor.'
 qtmud.schedule('send', recipient=self, text=output.format(**locals()))

[docs] def receive_mana(self, amount, dealer=None, card=None):
 """ Cards use this to add to (or subtract from) a player's mana pool.
 """
 self.armor += amount
 output = 'You receive `{amount} mana`'
 if dealer:
 output += ' from `{dealer.name}`'
 if card:
 output += '\'s `{card.name}`'
 qtmud.schedule('send', recipient=dealer,
 text='You give {} mana to {}'.format(amount,
 self.name))
 output += '. You now have `self.armor` mana.'
 qtmud.schedule('send', recipient=self, text=output.format(**locals()))

[docs]def search_connected_players_by_name(name, singular=False):
 matches = [p for p in connected_players if p.name.lower() == name.lower()]
 if singular:
 if len(matches) == 1:
 return matches[0]
 else:
 return None
 return matches

[docs]def search_hand_by_categories(player, category='', categories=[]):
 matches = list()
 if category:
 categories.append(category)
 for card in player.hand:
 for category in categories:
 if category in card.categories:
 if card not in matches:
 matches.append(card)
 if category not in card.categories:
 if card in matches:
 matches.pop(matches.index(card))
 return matches

[docs]def search_hand_by_name(player, name=''):
 """ Searches player's hands for any cards whose name matches text,
 or whose name has one word matching with text if text is one word.

 :param player: the player whose hand will be searched

 """
 matches = list()
 digit = None
 if name[-1].isdigit():
 digit = name.split(' ')[-1]
 name = ' '.join(name.split(' ')[0:-1])
 if name == 'card':
 matches += player.hand
 else:
 for card in player.hand:
 if name == card.name.lower() or (
 len(name.split(' ')) == 1 and name ==
 card.name.split(' ')[-1].lower()):
 matches.append(card)
 if matches and digit:
 try:
 matches = [matches[int(digit) - 1]]
 except IndexError:
 raise SyntaxWarning('You have that card, but not that many.')
 return matches

[docs]def load():
 """ Adds Fyreside :mod:`subscriptions <fyreside.subscriptions>` to
 :attr:`qtmud.active_subscribers` and builds :attr:`DECK` from the classes
 in :mod:`fyreside.cards`.
 """
 global DECK
 qtmud.log.info('load()ing Fyreside')
 qtmud.log.debug('replacing qtmud.SPLASH')
 qtmud.SPLASH = txt.SPLASH.format(**globals())
 qtmud.log.debug('removing old client_login_parser')
 qtmud.subscribers.pop('client_login_parser')
 qtmud.log.info('adding fyreside.subscriptions to qtmud.subscribers')
 for s in getmembers(subscriptions):
 if isfunction(s[1]):
 if not s[1].__name__ in qtmud.subscribers:
 qtmud.subscribers[s[1].__name__] = list()
 qtmud.subscribers[s[1].__name__].append(s[1])
 for card in [c[1]() for c in getmembers(cards) if isclass(c[1])]:
 for _ in range(card.rarity):
 DECK.append(card.__class__())
 qtmud.log.info('Built the Fireside deck - {} cards total.'
 ''.format(len(DECK)))
 return True

[docs]def start():
 return True

 © Copyright 2016, emsenn.
 Created using Sphinx 1.3.5.

_modules/fyreside/subscriptions.html

 Navigation

 		
 index

 		
 modules |

 		Fyreside 0.0.4 documentation »

 		Module code »

 		fyreside »

 Source code for fyreside.subscriptions

import random
import re
import types
from datetime import datetime
from inspect import getmembers, isfunction

import qtmud

import fyreside
from fyreside import txt

[docs]def armor(player, amount=0):
 player.armor += amount
 if player.armor < 0:
 player.armor = 0
 return True

[docs]def broadcast(channel, speaker, message):
 if hasattr(speaker, 'word_count'):
 if message:
 speaker.word_count += len(message.split(' '))
 if speaker.word_count >= 50:
 speaker.word_count += -50
 speaker.mana += 1
 qtmud.schedule('send', recipient=speaker,
 text='You gain a `mana` point.')
 return True

[docs]def client_disconnect(client):
 qtmud.log.debug('disconnecting {} from Fireside.'.format(client.name))
 if hasattr(client, 'hand'):
 qtmud.schedule('discard', player=client, all=True)
 try:
 fyreside.connected_players.remove(client)
 # If the player hadn't gotten logged in yet, this'll trigger.
 except ValueError:
 pass
 return True

[docs]def client_login_parser(client, line):
 output = ''
 if not hasattr(client, 'login_stage'):
 client.name = re.sub(r"\s+", '-', re.sub(r"[^\w\s]", '', line))
 if client.name in qtmud.client_accounts.keys():
 output += ('There\'s a player name {}. If you\'re them, '
 'type your password and press <enter>.'
 ''.format(client.name))
 client.login_stage = 1
 elif line:
 output += ('Look\'s like you\'re a new player. Fantastic!\n'
 'Before you start, you should know:\n\n{}\n\n'
 'Now that that\'s out of the way, what would you like '
 'your password to be, {}?'.format(txt.DISCLAIMER,
 client.name))
 client.login_stage = 0
 else:
 output += ('Your player name can\'t be blank. Ideally, it\'d be '
 'lowercase and one word, without special characters or '
 'numbers, *but* we don\'t actually place any limits '
 '(except no spaces) on it.')
 qtmud.schedule('send', recipient=client, text=output)
 return
 elif client.login_stage == 0:
 qtmud.client_accounts[client.name] = {'password': line,
 'creation': datetime.now(),
 'hiscore': 0, 'score': 0}
 qtmud.save_client_accounts()
 output += ('Alright, {}, you can `use that password next time you log '
 'in!`\n\n'.format(client.name))
 elif client.login_stage == 1:
 if line != qtmud.client_accounts[client.name]['password']:
 output += ('That isn\'t the right password. Let\'s start over:\n\n'
 'What\'s your [desired] username?')
 client.__dict__.pop('login_stage')
 qtmud.schedule('send', recipient=client, text=output)
 return
 output += 'That\'s your password! You\'re logged back in!\n\n'
 player = fyreside.Player(**client.__dict__)
 qtmud.active_services['mudsocket'].replace_client_object(client, player)
 for channel in ['fyreside', 'one']:
 qtmud.active_services['talker'].tune_channel(client=player,
 channel=channel)
 for command, function in [m for m in getmembers(fyreside.cmds) if
 isfunction(m[1])]:
 player.commands[command] = types.MethodType(function, player)
 qtmud.connected_clients.append(player)
 fyreside.connected_players.append(player)
 output += txt.ARRIVAL
 player.input_parser = 'client_command_parser'
 qtmud.schedule('send', recipient=player, text=output)

[docs]def death(departed):
 qtmud.log.debug('{} killed.'.format(departed.name))
 qtmud.schedule('send', recipient=departed,
 text='You have been killed! Your stats are being reset, '
 'and if your score was higher than your previous '
 'hiscore, it\'s been recorded. `NOTE`: death is a new '
 'feature, and is likely buggy.')
 qtmud.schedule('discard', player=departed, all=True)
 qtmud.schedule('heal', player=departed, full=True)
 departed.armor = 0
 departed.max_hand = 7
 departed.max_health = 20
 if departed.score > qtmud.client_accounts[departed.name]['hiscore']:
 qtmud.client_accounts[departed.name]['hiscore'] = departed.score
 departed.score = 0

[docs]def discard(player, cards=None, all=False):
 if all is True:
 cards = [c for c in player.hand]
 for card in cards:
 qtmud.log.debug('moving {} from {}\'s hand to the deck.'
 ''.format(card.name, player.name))
 player.hand.remove(card)
 fyreside.DECK.append(card)
 return

[docs]def draw(player, count=1):
 random.shuffle(fyreside.DECK)
 drawn_cards = list()
 free_hand = player.max_hand - len(player.hand)
 if count > free_hand:
 count = free_hand
 for c in range(count):
 try:
 drawn_cards.append(fyreside.DECK.pop())
 except Exception as err:
 qtmud.schedule('send', recipient=player,
 text='The deck is empty! Wait for someone to play '
 'a card before drawing something.')
 if drawn_cards:
 for card in drawn_cards:
 player.hand.append(card)
 card.owner = player
 fyreside.player_hands[player.name] = player.hand
 qtmud.schedule('send', recipient=player,
 text='Drew {} card[s]'.format(', '.join([c.name for c in
 drawn_cards])))
 return True

[docs]def heal(player, amount=0, full=False):
 if full is True:
 player.health = 20
 else:
 player.health += amount
 if player.health > 20:
 player.health = 20

 © Copyright 2016, emsenn.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/up-pressed.png

_images/fyreside-splash.png
Fyreside ©.0.4

built using qtMUD 0.6.11

Fyreside is a talker-style MUD where you participate in a real-time card game.
- gain mana for speaking (try help talker)

- draw cards from a deck every player shares

- spend mana to play cards.

- check your score

To get started, type the name you'd like to use, and press <enter>

_modules/fyreside/cards.html

 Navigation

 		
 index

 		
 modules |

 		Fyreside 0.0.4 documentation »

 		Module code »

 		fyreside »

 Source code for fyreside.cards

import random

import qtmud

import fyreside

[docs]class Card(object):
 """ The base class all other cards build off of.

 :param kwargs: If any arguments are passed when Card() is called,
 they'll be passed on as arguments to Card.update()
 """

 # TODO add: category setter which lower()s
 def __init__(self, **kwargs):
 self.name = 'Basic Card'
 """ The card's name can be used to reference the card within the
 game. If a ``name`` is more than one word, the last word can be used
 as an abbreviation."""
 self.owner = None
 """ The player who 'owns' the card. Ownership is an arbitrary game
 concept, and doesn't necessarily reflect the player whose hand the
 card is in."""
 self.rarity = 0
 """ Rarity defines how many of the card will be placed into the deck
 when the Fyreside game was :func:`load <fyreside.load>`ed. ``0``
 means the card won't be in the deck. In my head, rarity works out to:

 ============ ============
 ``rarity`` Descriptor
 ============ ============
 1 Unique
 2 Rare
 3 Uncommon
 4 Common
 5 Basic
 ============ ============
 """
 self.cost = 0
 """ How many :attr:`mana <fyreside.Player.mana>` it takes to play this
 card."""
 self.stats = dict()
 """ Cards which have concrete in-game attributes like "damage" store
 them inside the stats dict. """
 self.ability = None
 """ A short text description of what the card's play method does. """
 self.consumed = False
 """ If this is set to True, the card will be consumed when it's played.
 """
 self.series = 'beta'
 """ The run of cards this card is a part of. To be used in the future
 people can pick what groups of cards they want in their deck. """
 self.categories = list()
 """ A list of the categories the card falls into. Might be something
 like Spell or Creature, might also be something like Ork or
 Mechanical. """
 self.update(**kwargs)

[docs] def update(self, **kwargs):
 """ ``for attr, value in kwargs.items(): self.__dict__[attr] = value``
 """
 for attr, value in kwargs.items():
 self.__dict__[attr] = value

[docs]class BasikOrk(Card):
 """ Cheap card that attacks a random player.

 .. versionadded:: 0.0.2
 """
 def __init__(self):
 super(BasikOrk, self).__init__()
 self.update(name='Basik Ork', rarity=5, cost=1, series='BattleSickle',
 categories=['ork', 'creature'], stats={'damage': 2},
 ability='Attacks a `random` player.')

[docs] def play(self, player):
 victim = random.choice(fyreside.connected_players)
 victim.receive_damage(amount=self.stats['damage'], dealer=player)

class CaptainAhab(Card):
 """ Elemental Series Water Hero.

 .. versionadded:: 0.0.5
 """

 def __init__(self):
 super(CaptainAhab, self).__init__()
 self.update(name='Captain Ahab', rarity=1, cost=10, series='Elementary',
 categories=['water', 'hero'],
 ability='Passively doubles the strength of water spells, '
 'then raises your maximum hand size by 1 if you '
 'play him.')

 def play(self, player):
 player.max_hand += 1
 qtmud.schedule('send', recipient=player,
 text='Before diving into the deck, Captain Ahab turns '
 'to you and solemnly says, "You\'re going to need '
 'a bigger boat." (+1 to maximum hand size)')

[docs]class ClockworkWeasel(Card):
 """ Sneakily reports its target's hand.

 .. versionadded:: 0.0.2
 """
 def __init__(self):
 super(ClockworkWeasel, self).__init__()
 self.update(name='Clockwork Weasel', rarity=4, cost=1,
 series='Clockwork', categories=['clockwork', 'creature'],
 ability='Secretly tells you an opponent\'s hand.')

[docs] def play(self, player, target):
 output = ''
 spied_hand = '\n'.join([c.name for c in target.hand])
 output += ('You send your clockwork weasel scurrying toward `{}` '
 'and after a moment, the weasel returns, showing you the '
 'cards they have in their hand:\n{}'.format(target.name,
 spied_hand))

 qtmud.schedule('send', recipient=player, text=output)

[docs]class ConvenientPortal(Card):
 """ Steals a random card from its target.

 .. versionadded:: 0.0.1
 """
 def __init__(self):
 super(ConvenientPortal, self).__init__()
 self.update(name='Convenient Portal', rarity=4, cost=3, series='Basic',
 categories=['spell'],
 ability='Steal a random `card` from `target`\'s hand.')

[docs] def play(self, player, target):
 if target.hand:
 random.shuffle(target.hand)
 card = target.hand.pop()
 player.hand.append(card)
 card.owner = player
 qtmud.schedule('send', recipient=player,
 text='You steal their `{}`'.format(card.name))
 qtmud.schedule('send', recipient=target,
 text='`{}` steals your `{}`!'.format(player.name,
 card.name))
 else:
 # TODO replace with raising Exception
 random.shuffle(fyreside.DECK)
 card = fyreside.DECK.pop()
 card.cost += -2
 player.hand.append(card)
 card.owner = player
 qtmud.schedule('send', recipient=player,
 text='They didn\'t have any cards, '
 'so we drew this {} and gave it `-2` '
 'cost.'.format(card.name))

class Prometheus(Card):
 def __init__(self):
 super(Prometheus, self).__init__()
 self.update(name='Prometheus', rarity=1, cost=6, series='Elementary',
 categories=['fire', 'hero'],
 ability='Boosts fire damage, or max health when played.')

 def tweak_damage(self, damage):
 return int(damage * 2)

 def play(self, player):
 player.max_health += 1
 qtmud.schedule('send', recipient=player,
 text='Prometheus adds kindling to your soul. +1 max '
 'health.')

[docs]class Fireball(Card):
 """ Does a small amount of damage to its target

 .. versionadded:: 0.0.2
 """
 def __init__(self):
 super(Fireball, self).__init__()
 self.update(name='Fireball', rarity=5, cost=2, series='Elementary',
 categories=['fire', 'spell'],
 stats={'damage': 3})

[docs] def play(self, player, target):
 damage = self.stats['damage']
 fire_heroes = fyreside.search_hand_by_categories(player,
 categories=['hero',
 'fire'])
 if fire_heroes:
 for hero in fire_heroes:
 if hasattr(hero, 'tweak_damage'):
 damage = hero.tweak_damage(damage)
 target.receive_damage(amount=damage, dealer=player)

[docs]class GreatFlood(Card):
 """ Puts a bunch of Nutritious Seaweed in the deck.

 .. versionadded:: 0.0.5
 """
 def __init__(self):
 super(GreatFlood, self).__init__()
 self.update(name='Great Flood', rarity=2, cost=12, series='Miracles',
 categories=['water', 'spell'],
 ability='Fills the deck with as many seaweed as you have '
 'mana.')

[docs] def play(self, player):
 mana = player.mana
 for _ in range(mana):
 fyreside.DECK.append(NutritiousSeaweed())
 qtmud.schedule('broadcast', channel='Fyreside', speaker=player,
 message=('A great flood has filled the deck with {}'
 'nutritious seaweed.'.format(mana)))

[docs]class Grunt(Card):
 """ Boosts the target's armor.

 .. versionadded:: 0.0.1

 This was the first Fyreside card.
 """
 def __init__(self):
 super(Grunt, self).__init__()
 self.update(name='Grunt', rarity=5, cost=1, series='Basic',
 categories=['creature'], stats={'armor': 2},
 ability='Slightly boosts the player\'s armor.')

[docs] def play(self, player):
 player.receive_armor(amount=self.stats['armor'], dealer=player,
 card=self)

[docs]class HamfistedOgre(Card):
 """ Does a fair amount of damage to its target - and half that to whoever
 plays it.

 .. versionadded:: 0.0.3
 """
 def __init__(self):
 super(HamfistedOgre, self).__init__()
 self.update(name='Hamfisted Ogre', rarity=3, cost=4, series='Basic',
 categories=['creature'],
 stats={'damage': 6})
 self.ability = ('Does {} to its target, but half as much to its '
 'owner!'.format(self.stats['damage']))

[docs] def play(self, player, target):
 damage = self.stats['damage']
 target.receive_damage(amount=damage, dealer=player)
 player.receive_damage(amount=damage / 2, dealer=player)

[docs]class Lightning(Card):
 """ Damages one player, and a second random player for half that.

 .. versionadded:: 0.0.5
 """

 def __init__(self):
 super(Lightning, self).__init__()
 self.update(name='Lightning', rarity=5, cost=4, series='Basic',
 categories=['electric', 'spell'],
 stats={'damage': 2})
 self.ability = 'Damages `target` and a random player for half that.'

[docs] def play(self, player, target):
 damage = self.stats['damage']
 sucker = random.choice(fyreside.connected_players)
 target.receive_damage(amount=damage, dealer=player, card=self)
 sucker.receive_damage(amount=int(damage / 2), dealer=player, card=self)

[docs]class MysticGiant(Card):
 """ Heavily armors the player. Costs less the more cards you've played.

 .. versionadded:: 0.0.2
 """
 def __init__(self):
 super(MysticGiant, self).__init__()
 self.update(name='Mystic Giant', rarity=2, series='Basic',
 categories=['creature'],
 stats={'armor': 20})
 self._cost = 35
 return

 @property
 def cost(self):
 if self.owner:
 return self._cost - len(self.owner.history)
 return self._cost

 @cost.setter
 def cost(self, value):
 self._cost = value

[docs] def play(self, player):
 armor = self.stats['armor']
 output = ('The mystic giant puts you on his shoulders, protecting you '
 'from harm. (+{} armor)'.format(armor))
 player.receive_armor(amount=armor, dealer=player, card=self)
 qtmud.schedule('send', recipient=player, text=output)

[docs]class NutritiousSeaweed(Card):
 """ https://github.com/emsenn/fyreside/issues/11

 .. versionadded:: 0.0.5
 """

 def __init__(self):
 super(NutritiousSeaweed, self).__init__()
 self.update(name='Nutritious Seaweed', rarity=0, cost=0,
 series='Miracles', categories=['food'],
 ability='Restores 1 health and is destroyed.')

[docs] def play(self, player):
 player.health += 1
 qtmud.schedule('send', recipient=player,
 text='You eat the seaweed and its card.')
 self.consumed = True

[docs]class OrkBomber(Card):
 """ https://github.com/emsenn/fyreside/issues/11

 .. versionadded:: 0.0.5
 """
 def __init__(self):
 super(OrkBomber, self).__init__()
 self.update(name='Ork Bomber', rarity=2, cost=1, series='BattleSickle',
 categories=['ork', 'creature'], stats={'damage': 6},
 ability='Randomly attacks a player.')

[docs] def play(self, player):
 victim = random.choice(fyreside.connected_players)
 victim.receive_damage(amount=self.stats['damage'], dealer=player)

[docs]class OrkFurnace(Card):
 """ https://github.com/emsenn/fyreside/issues/11 """

 def __init__(self):
 super(OrkFurnace, self).__init__()
 self.update(name='', rarity=0, cost=0)

[docs] def play(self, player):
 return

[docs]class OrkGeneral(Card):
 """ https://github.com/emsenn/fyreside/issues/11

 .. versionadded:: 0.0.5
 """

 def __init__(self):
 super(OrkGeneral, self).__init__()
 self.update(name='', rarity=0, cost=0)

[docs] def play(self, player):
 return

[docs]class OrkGunner(Card):
 """ https://github.com/emsenn/fyreside/issues/11

 .. versionadded:: 0.0.5
 """

 def __init__(self):
 super(OrkGunner, self).__init__()
 self.update(name='Ork Gunner', rarity=3, cost=1, series='BattleSickle',
 categories=['ork', 'creature'], stats={'damage': 4},
 ability='Randomly attacks a player.')

[docs] def play(self, player):
 victim = random.choice(fyreside.connected_players)
 victim.receive_damage(amount=self.stats['damage'], dealer=player)

[docs]class OrkRecruiter(Card):
 """ https://github.com/emsenn/fyreside/issues/11 """

 def __init__(self):
 super(OrkRecruiter, self).__init__()
 self.update(name='', rarity=0, cost=0)

[docs] def play(self, player):
 return

[docs]class OrkSergeant(Card):
 """ https://github.com/emsenn/fyreside/issues/11 """

 def __init__(self):
 super(OrkSergeant, self).__init__()
 self.update(name='', rarity=0, cost=0)

[docs] def play(self, player):
 return

[docs]class Pablo(Card):
 """ Destroys `armor` and `mana` of one player. Gives some armor to
 everyone else.
 """
 def __init__(self):
 super(Pablo, self).__init__()
 self.update(name='Pablo', rarity=1, cost=7, series='As Seen On TV',
 categories=['hero'], stats={'armor': 2},
 ability='Destroys the `armor` and `mana` of one player, but'
 'gives a few armor to everyone else. Pablo can\'t '
 'his owner.')

[docs] def play(self, player):
 """ Builds a list of connected players, shuffles it, and picks one
 to be the `victim`. That victim has their armor and mana zeroed, while
 every other player
 """
 players = fyreside.connected_players
 random.shuffle(players)
 victim = players.pop()
 if victim == self.owner:
 _victim = players.pop()
 players.append(victim)
 victim = _victim
 victim.receive_damage(amount=victim.armor, dealer=player, card=self)
 victim.receive_mana(amount=-victim.mana, dealer=player, card=self)
 for p in players:
 p.receive_armor(amount=self.stats['armor'], dealer=player,
 card=self)

[docs]class PetulantChild(Card):
 """ Fully heals its target, but gets more expensive each time it's played.
 """
 def __init__(self):
 super(PetulantChild, self).__init__()
 self.update(name='Petulant Child', rarity=5, cost=0, series='Basic',
 categories=['spell'],
 ability=('Completely restore\'s `target`\'s health, '
 'but its own cost goes up by one each time.'))

[docs] def play(self, player, target):
 if not target:
 target = player
 target.health = target.max_health
 qtmud.schedule('send', recipient=player,
 text=('You use your {} to heal {}'.format(self.name,
 target.name)))
 qtmud.schedule('send', recipient=target,
 text=('{} heals you with their {}.'
 ''.format(player.name,
 self.name)))
 self.cost += 1

[docs]class RecklessEngineer(Card):
 """ Gives its target four armor, then takes away two health.

 .. warning:: This card is broken atm, and won't show up in the deck.
 """

 def __init__(self):
 super(RecklessEngineer, self).__init__()
 self.update(name='Reckless Engineer', rarity=0, cost=4, series='Basic',
 categories=['creature'],
 stats={'repair': 4, 'damage': 2},
 ability=('Gives `target` 4 armor... then takes away 2 '
 'health.'))

[docs] def play(self, player, target=None):
 if not target:
 target = player
 repair, damage = self.stats['repair'], self.stats['damage']
 target.receive_armor(amount=repair, dealer=player, card=self)
 target.health += -damage
 qtmud.schedule('send', recipient=target,
 text=('While `{self.name}` was adding to your armor, it '
 'did `{damage}` damage directly to your health, '
 'so now you have `{target.health} health` and '
 '`{target.armor} armor`.'.format(**locals())))

[docs]class RetirementParty(Card):
 """ https://github.com/emsenn/fyreside/issues/11 """

 def __init__(self):
 super(RetirementParty, self).__init__()
 self.update(name='', rarity=0, cost=0)

[docs] def play(self, player):
 return

[docs]class ScoutBalloon(Card):
 """ Reports the stats & hand of every player.

 .. versionadded:: 0.0.3
 """
 def __init__(self):
 super(ScoutBalloon, self).__init__()
 self.update(name='Scout Balloon', rarity=4, cost=6, series='Basic',
 categories=['creature'],
 ability='Find the stats & hand of every player.')

[docs] def play(self, player):
 reports = list()
 for target in fyreside.connected_players:
 hand_string = ', '.join([c.name for c in target.hand])
 reports.append('{target.name} has {target.health} health, '
 '{target.armor} armor, {target.mana} mana, '
 'and the following cards in their hand:'
 '{hand_string}.'.format(**locals()))
 qtmud.schedule('send', recipient=player,
 text='{} releases a scout balloon.'
 ''.format(player.name))
 qtmud.schedule('send', recipient=player,
 text='You receive the following reports from your '
 'scout balloon:\n{}'
 ''.format(' \n'.join(reports)))

[docs]class SecretSquirrel(Card):
 """ Sneakily reports the hand & stats of its target.

 .. versionadded:: 0.0.2
 """
 def __init__(self):
 super(SecretSquirrel, self).__init__()
 self.update(name='Secret Squirrel', rarity=4, cost=4, series='Basic',
 categories=['creature'],
 ability='Sneakily report stats & hand of a `target`')

[docs] def play(self, player, target):
 hand_string = ', '.join([c.name for c in target.hand])
 output = ('{target.name} has {target.health} health, {target.armor} '
 'armor, {target.mana} mana, and the following cards in '
 'their hand: {hand_string}.'.format(**locals()))
 qtmud.schedule('send', recipient=player, text=output)

[docs]class Soda(Card):
 """ +1 health to everyone, +that much armor to the player. Consumed!

 .. versionadded:: 0.0.5
 """

 def __init__(self):
 super(Soda, self).__init__()
 self.update(name='Soda', rarity=5, cost=5, series='Snacks',
 categories=['food'],
 stats={'armor': 1, 'healing': 1},
 ability=('Sends a bottle of soda to every player, giving '
 'them one health. Then gives you 1 armor for '
 'every player who received soda.'))

[docs] def play(self, player):
 target_count = 0
 for target in fyreside.connected_players:
 if not target == player:
 healing = self.stats['healing']
 qtmud.schedule('send', recipient=target,
 text=('`{}` sends you some soda:\n\n{}\n'
 'Your `health` goes up by `{}` and is now '
 '`{}`'.format(player.name,
 fyreside.txt.SODA, healing,
 player.health)))
 target.health += 1
 target_count += 1
 player.armor += target_count * self.stats['armor']
 qtmud.schedule('send', recipient=player,
 text=('Share your soda with `{}` players, so you\'ve '
 'gained that much armor'.format(target_count)))
 self.consumed = True

[docs]class Spam(Card):
 """ +1 health to everyone, +that much mana to the player. Consumed! """
 def __init__(self):
 super(Spam, self).__init__()
 self.update(name='Spam', rarity=5, cost=6, series='Snacks',
 categories=['food'],
 stats={'armor': 1},
 ability=('Sends a message to every player, and gives you '
 'one armor for every player it hits.'))

[docs] def play(self, player):
 target_count = 0
 for target in fyreside.connected_players:
 if not target == player:
 qtmud.schedule('send', recipient=target,
 text=('`{}` sends you some SPAM:\n\n{}'
 ''.format(player.name,
 fyreside.txt.SPAM)))
 target_count += 1
 target.receive_armor(amount=1, dealer=player, card=self)
 player.receive_mana(amount=target_count, dealer=player, card=self)
 qtmud.schedule('send', recipient=player,
 text=('Hit {} players with your SPAM, so you\'ve '
 'gained that much mana'.format(target_count)))
 self.consumed = True

 © Copyright 2016, emsenn.
 Created using Sphinx 1.3.5.

_static/fyreside-chatting.png
- one Sorry, buddy! Just showing some folks how the game is played.

> one Sorry, buddy! Just showing some folks how the game is played.

(one) emsenn: Sorry, buddy! Just showing some folks how the game is played.
(one) Womble: Oh! Okay. why don't you tell them I said hi?

- tell womble That's not a bad idea!
> tell womble That's not a bad idea!
You tell Womble: That's not a bad idea!

_modules/fyreside/cmds.html

 Navigation

 		
 index

 		
 modules |

 		Fyreside 0.0.4 documentation »

 		Module code »

 		fyreside »

 Source code for fyreside.cmds

import qtmud

import fyreside

[docs]def deck(player, *, H=False, h=False):
 """ Shows the player how many cards are in the deck.

 :param player: The player issuing the command. (That'd be you.)
 This isn't part of the command you enter.
 :param H: Shows the player this docstring
 :param h: Shows the player a brief help
 """
 output = ''
 brief = ('score [-Hh]\n\n'
 'Shows you how many cards are in the deck.')
 if H:
 output += score.__doc__
 if h:
 output += brief
 else:
 output += 'There are {} cards in the deck.'.format(len(fyreside.DECK))
 if output:
 qtmud.schedule('send', recipient=player, text=output)

[docs]def draw(player, amount=1, *, H=False, h=False):
 """ Draws a card from :attr:`fyreside.DECK` into the player's hand.

 :param player: The player issuing the command. (That'd be you.)
 This isn't part of the command you enter.
 :param H: Shows the player this docstring
 :param h: Shows the player a brief help

 """
 output = ''
 brief = ('draw [-Hh] [amount]\n\n'
 'Draws a card from the deck.')
 if H:
 output += hand.__doc__
 if h:
 output += brief
 elif len(player.hand) >= player.max_hand:
 output += 'Can\'t draw any more cards, hand full.'
 else:
 qtmud.schedule('draw', player=player, count=int(amount))
 qtmud.schedule('send', recipient=player, text=output)

[docs]def hand(player, *, H=False, h=False):
 """ Sends a list of the cards in the player's hands to them.

 :param player: The player issuing the command. (That'd be you.)
 This isn't part of the command you enter.
 :param H: Shows the player this docstring
 :param h: Shows the player a brief help

 Pretty straightforward - shows the player their hand.
 """
 output = ''
 brief = ('hand [-Hh]\n\n'
 'Shows you the cards in your hand.')
 if H:
 output += hand.__doc__
 if h:
 output += brief
 else:
 output += ('You have {} of a maximum {} cards in your hand:\n'
 '{}'.format(len(player.hand), player.max_hand,
 ', '.join([c.name for c in player.hand])))
 if output:
 qtmud.schedule('send', recipient=player, text=output)

[docs]def info(player, *card, H=False, h=False):
 """ Shows a card's info

 :param player: The client issuing the command. (That'd be you.)
 This isn't part of the command you enter.
 :param H: Shows the client this docstring.
 :param h: Shows the client a brief help.
 """
 output = ''
 brief = ('info [-Hh] card\n\n'
 'Shows you the info about card.')
 if H:
 output += info.__doc__
 if h:
 output += brief
 elif card:
 card = ' '.join(card)
 cards = fyreside.search_hand_by_name(player, card)
 if len(cards) == 1:
 card = cards[0]
 output += ('--- {card.name} ---\n'
 'COST {card.cost:.>5}\n'
 'RARITY.... {card.rarity:.>5}\n'.format(**locals()))
 if card.stats:
 for stat in card.stats:
 output += ('{:.<10} {:.>5}\n'.format(stat.upper(),
 card.stats[stat]))
 if card.ability:
 output += card.ability+'\n'
 if len(cards) == 0:
 output += 'Couldn\'t find {} in your hand'.format(card)
 if len(cards) > 1:
 output += ('More than one match found: {}'
 ''.format(', '.join([c.name for c in cards])))
 else:
 output += brief
 if output:
 qtmud.schedule('send', recipient=player, text=output)

[docs]def play(player, *card, H=False, h=False, target=''):
 """ Command for playing a card from the player's hand, optionally at a
 target.

 :param player: The client issuing the command. (That'd be you.)
 This isn't part of the command you enter.
 :param H: Shows the client this docstring.
 :param h: Shows the client a brief help.
 :param card: The name of the card to be played.
 :param target: The name of the player the card will be
 targeted at.
 """
 valid = False
 output = ''
 brief = ('play [-Hh] [--target=`target`[,`target 2`[, ...]] <`card`>\n\n'
 'examples:\n'
 '----\n'
 'play grunt\n'
 'play petulant child\n'
 'play ork --target=emsenn\n\n'
 'Plays `card` in in your hand, optionally at `target`.')
 if H:
 output += play.__doc__
 if h:
 output += brief
 elif card:
 card = ' '.join(card)
 cards = fyreside.search_hand_by_name(player, card)
 if len(cards) == 1:
 card = cards[0]
 if target in ['me', 'self']:
 target = player
 else:
 targets = fyreside.search_connected_players_by_name(target)
 if len(targets) == 1:
 target = targets[0]
 else:
 target = None
 if player.mana >= card.cost:
 try:
 card.play(player=player, target=target)
 valid = True
 except TypeError as err:
 card.play(player=player)
 valid = True
 except AttributeError as err:
 output += ('Invalid target. Please define a target with'
 ' `--target=[player name]`.')
 qtmud.log.debug('{}\'s play command failed: {}'
 ''.format(player.name, err), exc_info=True)
 if valid:
 player.hand.remove(card)
 if not card.consumed:
 fyreside.DECK.append(card)
 player.history.append(card.name)
 player.mana += -card.cost
 card.owner = None
 output += ('After your play succeeded, you shuffled {} '
 'back into the deck.'.format(card.name))
 else:
 output += ('Don\'t have enough mana.')
 elif len(cards) == 0:
 output += ('You don\'t have that card.')
 elif len(cards) > 1:
 output += ('More than one match found, try using numbers like '
 '`{} 1`:\n{}'.format(
 cards[0].name.split(' ')[-1].lower(),
 '\n'.join([c.name for c in cards])))
 else:
 output += 'Shouldn\'t end up in this part of the loop...'
 else:
 output += brief
 qtmud.schedule('send', recipient=player, text=output)

[docs]def score(player, *, H=False, h=False, t=False, top=None):
 """ Shows the player their current statistics.

 :param player: The player issuing the command. (That'd be you.)
 This isn't part of the command you enter.
 :param H: Shows the player this docstring
 :param h: Shows the player a brief help
 """
 output = ''
 brief = ('score [-Hh]\n\n'
 'Tells you your score.')
 if H:
 output += score.__doc__
 if h:
 output += brief
 elif t or top:
 scores = sorted(zip([qtmud.client_accounts[p]['hiscore'] for p in
 qtmud.client_accounts],
 [p for p in qtmud.client_accounts]), reverse=True)
 if not top:
 top = 5
 for _ in range(top):
 try:
 output += (
 '`{}`) {} - `{}`\n'.format(_, scores[_][0], scores[_][1]))
 except IndexError:
 qtmud.log.debug(
 'fewer scores available than requested in score '
 'command filed by {}'.format(player.name))

 else:
 output += ('HEALTH/max: {player.health}/{player.max_health}\n'
 'MANA: {player.mana}\n'
 'ARMOR: {player.armor}\n'
 'SCORE: {player.score}\n'
 '\n'.format(**locals()))
 if output:
 qtmud.schedule('send', recipient=player, text=output)

 © Copyright 2016, emsenn.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/fyreside-gameplay-draw-play.png
Welcome to Fyreside! If you're feeling lost, try the help command, or just jump into the
conversation with: one hey folks

- draw 7
> draw 7

Drew Convenient Portal, Spam, Fireball, Convenient Portal, Clockwork Weasel, Petulant
Child, Lightning cardls]

~ who
> who
The following clients are currently connected:
emsenn
vomble

- play fireball --target=Womble

> play fireball --target=Womble

You did 3 damage to Womble

Your score is now 3.

After your play succeeded, you shuffled Fireball back into the deck.
(one) Womble: Hey! What's the big idea?!

_static/comment-bright.png

_static/file.png

_static/fyreside-account-creation.png
To get started, type the name you'd like to use, and press <enter>

~ emsenn
> emsenn
Look's like you're a new player. Fantasti
Before you start, you should kn

This game, and the engine it's built on, are both in early alpha. If you stumble upon
any bugs, PLEASE report them at https://github.com/emsenn/fyreside/issues

Now that that's out of the way, what would you like your password to be, emsenn?

~ password123

> password123

You tune into the fyreside channel

You tune into the one channel

Alright, emsenn, you can use that password next time you log in!

Welcome to Fyreside! If you're feeling lost, try the help command, or just jump into the
conversation with: one hey folks

_static/up.png

_images/fyreside-chatting.png
- one Sorry, buddy! Just showing some folks how the game is played.

> one Sorry, buddy! Just showing some folks how the game is played.

(one) emsenn: Sorry, buddy! Just showing some folks how the game is played.
(one) Womble: Oh! Okay. why don't you tell them I said hi?

- tell womble That's not a bad idea!
> tell womble That's not a bad idea!
You tell Womble: That's not a bad idea!

_images/fyreside-gameplay-draw-play.png
Welcome to Fyreside! If you're feeling lost, try the help command, or just jump into the
conversation with: one hey folks

- draw 7
> draw 7

Drew Convenient Portal, Spam, Fireball, Convenient Portal, Clockwork Weasel, Petulant
Child, Lightning cardls]

~ who
> who
The following clients are currently connected:
emsenn
vomble

- play fireball --target=Womble

> play fireball --target=Womble

You did 3 damage to Womble

Your score is now 3.

After your play succeeded, you shuffled Fireball back into the deck.
(one) Womble: Hey! What's the big idea?!

_images/fyreside-account-creation.png
To get started, type the name you'd like to use, and press <enter>

~ emsenn
> emsenn
Look's like you're a new player. Fantasti
Before you start, you should kn

This game, and the engine it's built on, are both in early alpha. If you stumble upon
any bugs, PLEASE report them at https://github.com/emsenn/fyreside/issues

Now that that's out of the way, what would you like your password to be, emsenn?

~ password123

> password123

You tune into the fyreside channel

You tune into the one channel

Alright, emsenn, you can use that password next time you log in!

Welcome to Fyreside! If you're feeling lost, try the help command, or just jump into the
conversation with: one hey folks

_static/comment-close.png

_static/fyreside-splash.png
Fyreside ©.0.4

built using qtMUD 0.6.11

Fyreside is a talker-style MUD where you participate in a real-time card game.
- gain mana for speaking (try help talker)

- draw cards from a deck every player shares

- spend mana to play cards.

- check your score

To get started, type the name you'd like to use, and press <enter>

_static/down.png

_static/plus.png

_static/down-pressed.png

_static/comment.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Fyreside 0.0.4 documentation »

 All modules for which code is available

		fyreside

		fyreside.cards

		fyreside.cmds

		fyreside.subscriptions

 © Copyright 2016, emsenn.
 Created using Sphinx 1.3.5.

