

 Navigation

 	
 index

 	
 next |

 	fw4spl-doc 0 documentation

FW4SPL documentation

	Introduction

	Installation

	Software Architecture Description (SAD)

	Coding style

	Doxygen [http://fw4spl-org.github.io/fw4spl-dox/]

	Frequently Asked Questions (FAQ)

	How to use CMake with Fw4spl

	Contributors

	Tutorials

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

Introduction

	Repositories

	fw4spl
	Features

	Application

	Tutorials

	fw4spl-ext
	Features

	Application

	Proofs of concept

	Examples

	fw4spl-ar
	Features

	Applications

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Introduction

Repositories

	The fw4spl project is organized organized around three repositories :

	
	fw4spl [https://github.com/fw4spl-org/fw4spl]: main repository, contains the core libraries and bundles.

	fw4spl-ext [https://github.com/fw4spl-org/fw4spl-ext]: extension of fw4spl repository, contains additional functionalities and proofs of concept

	fw4spl-ar [https://github.com/fw4spl-org/fw4spl-ar]: extension of fw4spl, contains functionalities for augmented reality (video tracking)

	Each of this repository needs the associated deps repository

	
	fw4spl-deps [https://github.com/fw4spl-org/fw4spl-deps]

	fw4spl-ext-deps [https://github.com/fw4spl-org/fw4spl-ext-deps]

	fw4spl-ar-deps [https://github.com/fw4spl-org/fw4spl-ar-deps]

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Introduction

fw4spl

This repository contains the core libraries and bundles.

Features

	
	Reader/Writer

	
	VTK (images and meshes)

	DICOM

	ITK

	atoms (in-houte data format)

	
	Visualisation

	
	2D and 3D multi-planar reconstruction

	volume rendering

	3D meshes

Application

VRRender is an application containing all the previous features.

[image: ../../_images/SDB.png]
Main VRRender view.

[image: ../../_images/MPR.png]
MPR view of a medical 3D image.

[image: ../../_images/3D.png]
3D view of surfacic meshes.

[image: ../../_images/VR.png]
Volume rendering

[image: ../../_images/VR-3D.png]
Volume rendering mixed with 3D surfacic meshes.

Tutorials

You can find some tutorials to explain fw4spl concept.

	Name
	Concept

	Tuto01Basic
	Basic application

	Tuto02DataServiceBasic
	Simple image reading and rendering

	Tuto02DataServiceBasicCtrl
	Simple image reading and rendering without XML configuration

	Tuto03DataService
	Image reading and rendering with signal communication

	Tuto04SignalSlot
	Scene point of view synchronisation with signal communication

	Tuto05Mesher
	Simple mesher from a 3D image

	Tuto06Filter
	Simple image filter

	Tuto08GenericScene
	Scene with multi-object rendering

	Tuto09MesherWithGenericScene
	Scene with multi-object rendering and simple mesher

	Tuto10MatrixTransformInGS
	Example of matrix transformation

	Tuto11LaunchBasicConfig
	Example to launch XML config in application

	Tuto12Picker
	Example of scene picker

	Tuto13Scene2D
	Example using the ``scene2d``bundle

	Tuto14MeshGenerator
	Mesh features (point/cell color, normals, ...)

	Tuto15Multithread
	Example of multi-threading using fw4spl worker

	Tuto15MultithreadCtrl
	Second example of multi-threading using fw4spl worker

	TutoGui
	Example of fw4spl gui feature (toolbar, menu, action)

	TutoPython
	Example of pyhton binding in fw4spl

	TutoTrianConverterCtrl
	Utility converting .trian meshes to .vtk

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Introduction

fw4spl-ext

This repository contains additional functionalities and proofs of concept.

Features

	
	additional DICOM reader/writer

	
	PACS connection

	3D mesh segmentation reader/writer

	DICOM filter for reader

	navigation along a spline

	timeline

	network communication via openigtlink

Application

VRRenderExt is an application containing the VRRender features and also the additional fw4spl-ext features.

Proofs of concept

	Name
	Concept

	PoC06Scene2DTF
	Simple use of scene2d bundle

	PoC07TimeLine
	Timeline use with consumer/producer

	PoC08Igtl
	Network communication with openigtlink

Examples

	Name
	Concept

	Ex01VolumeRendering
	Example of volume rendering using transfer function

	Ex02ImageMix
	Example of image blend

	Ex03Registration
	Example of simple rigid image-mesh registration

	Ex04ImagesRegistration
	Example of simple rigid image-image registration

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Introduction

fw4spl-ar

This repository contains functionalities for augmented reality.

Features

	video calibration

	optical tag tracking

Applications

ARCalibration

ARCalibration is an application dedicated to the camera calibration.

[image: ../../_images/calibration.png]
Mono camera intrinsic calibration.

[image: ../../_images/calibrationExt.png]
Stereo camera extrinsic calibration.

VideoTracking

VideoTracking is a basic application for optical tag tracking.

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

Installation

	Latest Release Version

	Installation for Windows
	Prerequisites for Windows users

	FW4SPL installation

	Launch an application

	Recommended software

	Installation for Linux
	Prerequisites for Linux users

	FW4SPL installation

	Launch an application

	Extensions

	Recommended software

	Installation for MacOSX
	Prerequisites for MacOSX users

	FW4SPL installation

	Launch an application

	Extension

	Recommended softwares

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Installation

Latest Release Version

The last release of the project is:

	fw4spl_0.10.2.3

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Installation

Installation for Windows

Prerequisites for Windows users

If not already installed:

	Install Mercurial [http://mercurial.selenic.com/wiki/]

	Optionally you can install TortoiseHg [http://tortoisehg.bitbucket.org/]

	Install Visual Studio 2013 Community [https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx]

	Install Python 2.7 [https://www.python.org/downloads/]

	Install CMake [http://www.cmake.org/download/]

	Install jom [http://wiki.qt.io/Jom]

	Install ninja [https://github.com/martine/ninja/releases]

Qt is an external library used in FW4SPL. For the successful compilation of Qt for FW4SPL, please see the following requirements:

	http://wiki.qt.io/Building_Qt_5_from_Git

FW4SPL installation

Good practice in FW4SPL recommend to separate source files, build and install folders.
So to prepare the development environment:

	Create a development folder (Dev)

	Create a build folder (Dev\Build)

	Add a sub folder for Debug and Release.

	Create a source folder (Dev\Src)

	Create a install folder (Dev\Install)

	Add a sub folder for Debug and Release.

To prepare the third party environment:

	Create a third party folder (BinPkgs)

	Create a build folder (BinPkgs\Build)

	Add a sub folder for Debug and Release.

	Create a source folder (BinPkgs\Src)

	Create an install folder (BinPkgs\Install)

	Add a sub folder for Debug and Release.

	Set environment for a x64 version.
For compile BinPkgs and sources, you must use the ‘VS2013 x64 Native Tools Command Prompt’

Dependencies

Warning

Be sure to be in the ‘VS2013 x64 Native Tools Command Prompt’

	Clone [http://git-scm.com/book/en/v2/Git-Basics-Getting-a-Git-Repository#Cloning-an-Existing-Repository] the three following repositories in the (BinPkgs) source folder:

	fw4spl-deps [https://github.com/fw4spl-org/fw4spl-deps.git]

	fw4spl-ar-deps [https://github.com/fw4spl-org/fw4spl-ar-deps.git]

	fw4spl-ext-deps [https://github.com/fw4spl-org/fw4spl-ext-deps.git]

	Update the cloned repositories to the used version.

Note

Make sure that CMake is set as environment variable.

	Call the cmake-gui

	During Configure, choose the generator ‘NMake Makefiles JOM’.

Note

make sure the generator JOM are set in your PATH.

	Set the following arguments:

	ADDITIONAL_PROJECTS: set the source location of fw4spl-ar-deps and fw4spl-ext-deps

	CMAKE_INSTALL_PREFIX: set the install location.

	CMAKE_BUILD_TYPE: set to Debug or Release

	Generate the code.

	Compile the FW4SPL dependencies with jom in the console (e.g. jom all, jom qt, etc).

Source

Warning

Be sure to be in the ‘VS2013 x64 Native Tools Command Prompt’

	Clone [http://git-scm.com/book/en/v2/Git-Basics-Getting-a-Git-Repository#Cloning-an-Existing-Repository] the three following repositories in the (Dev) source folder:

	fw4spl [https://github.com/fw4spl-org/fw4spl.git]

	fw4spl-ar [https://github.com/fw4spl-org/fw4spl-ar.git]

	fw4spl-ext [https://github.com/fw4spl-org/fw4spl-ext.git]

	Update the cloned repositories to the used version.

Note

Make sure that CMake is in your PATH.

	Call the cmake-gui.

	During Configure, choose the generator (‘NMake Makefiles JOM’ for compile BinPkgs or ‘Ninja’ for compile FW4SPL sources)

Note

make sure the generator Ninja and JOM are set in your PATH.

	Set the following arguments:

	ADDITIONAL_PROJECTS: set the source location of fw4spl-ar and fw4spl-ext

	CMAKE_INSTALL_PREFIX: set the install location.

	EXTERNAL_LIBRARIES: set the install path of the third part libraries.

	CMAKE_BUILD_TYPE: set to Debug or Release

	PROJECT_TO_BUILD set the name of the application to build (See DevSrcApps)

Note

If PROJECT_TO_BUILD is empty, all application will be compile

	PROJECT_TO_INSTALL set the name of the application to install

Note

If PROJECT_TO_BUILD is empty, all application will be compile

Warning

Make sure the arguments concerning the compiler (advanced arguments) point to Visual Studio.

	Generate the code.

	Compile the FW4SPL source code with ninja in the console.

Note

it is possible to generate eclipse project with CMake. You just have to check ECLIPSE_PROJECT.

Launch an application

After an successful compilation the application can be launched with the launcher.exe from FW4SPL.
Therefore the profile.xml of the application in the build folder has to be passed as argument.

Note

Make sure that the external libraries directory is set to the path (set PATH=<FW4SPL Binpkgs path>\Debug\bin;<FW4SPL Binpkgs path>\Debug\x64\vc12\bin;%PATH%).

[image: ../../_images/launchApp.png]

Recommended software

The following programs may be helpful for your developments:

	Eclipse CDT [https://eclipse.org/cdt/]: Eclipse is a multi-OS Integrated Development Environment (IDE) for computer programming.

	Notepad++ [http://notepad-plus-plus.org/]: Notepad++ is a free source code editor, which is designed with syntax highlighting functionality.

	ConsoleZ [https://github.com/cbucher/console/wiki/Downloads]: ConsoleZ is an alternative command prompt for Windows, adding more capabilities to the default Windows command prompt. To compile FW4SPL with the console the windows command prompt has to be set in the tab settings.

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Installation

Installation for Linux

Prerequisites for Linux users

If not already installed:

	Install git [https://git-scm.com/]

	Install gcc [https://gcc.gnu.org/] The minimal version required is 4.8 or clang [http://clang.llvm.org/] The minimal version required is 3.5

	Install Python 2.7 [https://www.python.org/downloads/]

	Install CMake [http://www.cmake.org/download/] The minimal version required is 3.0

	Install Ninja [https://martine.github.io/ninja/]

Depending on which linux distribution you use, for example on Debian you can do:

$ apt-get install build-essential ninja-build python2.7 git

Qt is an external library used in FW4SPL. For the successful compilation of Qt with FW4SPL, please see the following requirements:

	http://wiki.qt.io/Building_Qt_5_from_Git

FW4SPL installation

FW4SPL works with data separation for source, build and install data.
To prepare the development environment:

	Create your “Dev” directory

$ mkdir Dev

	Create into “Dev” the source, build and install directories

$ mkdir Dev/Src Dev/Build Dev/Install

	Create sub-folders to separate Debug and Release compilations

$ mkdir Dev/Build/Debug Dev/Build/Release Dev/Install/Debug Dev/Install/Release

To prepare the third party environment:

	Create a third party folder (Deps)

$ mkdir Deps

	Create into “Deps” the source, build and install directories

$ mkdir Deps/Src Deps/Build Deps/Install

	Create sub-folders to separate Debug and Release compilations

$ mkdir Deps/Build/Debug Deps/Build/Release Deps/Install/Debug Deps/Install/Release

Build tools

FW4SPL is a CMake project. That means, for each build target there is a CMakeLists that provides build parameters.
To configure you project you can use the cmake command from the build folder with the sources as arguments:

$ cd Dev/Build/Debug
$ ccmake ../../Src/fw4spl

if you want to use Ninja as build to tools, use the option -G Ninja, as following:

$ ccmake -G Ninja ../../Src/fw4spl

It is the same process for Deps and FW4SPL sources. It is recommended to use make to compile the deps.

Dependencies

	Clone the repository into your source directory of Deps

$ cd Deps/Src
$ git clone https://github.com/fw4spl-org/fw4spl-deps.git fw4spl-deps

	Get into fw4spl-deps folder and update to the latest stable version

$ cd fw4spl-deps
$ git checkout fw4spl_0.10.2.3

	Get into your Build directory (Debug or Release) : here an example if you want to compile in DEBUG

$ cd Deps/Build/Debug

	Call ccmake and point to the sources

$ ccmake ../../Src/fw4spl-deps

To build the dependencies, you must configure the project with cmake into the Build folder

$ cd ~/Dev/Deps/Build
$ cmake ../Src/fw4spl-deps -DCMAKE_INSTALL_PREFIX=../Install -DCMAKE_BUILD_TYPE=Debug

Or open cmake gui editor, see Build tools instructions.

$ ccmake ../Src/fw4spl-deps

Some CMake variables have to be change:

	CMAKE_INSTALL_PREFIX: set the install location.

	CMAKE_BUILD_TYPE: set the build type ‘Debug’ or ‘Release’

[image: ../../_images/osx_cmake_binpkgs.png]
Press configure ([c]) and generate ([g]) makefiles.

	Compile the FW4SPL dependencies with make in the console, it will automaticaly download, build and install each dependencies.

$ make all

Warning

Do NOT use ninja to compile the dependencies, it cause conflict with qt compilation.

Source

	Clone fw4spl repository into your source directory

$ cd Dev/Src
$ git clone https://github.com/fw4spl-org/fw4spl.git fw4spl

	Get into fw4spl folder and update to the latest stable version

$ cd fw4spl
$ git checkout fw4spl_0.10.2.3

	Get into your Build directory (Debug or Release) : here an example if you want to compile in DEBUG

$ cd Dev/Build/Debug

	Call ccmake and point to the sources

To use make :

$ ccmake ../../Src/fw4spl

To use ninja :

$ ccmake -G Ninja ../../Src/fw4spl

	Change the following cmake arguments

	CMAKE_INSTALL_PREFIX: set the install location (Dev/Install/Debug or Release)

	CMAKE_BUILD_TYPE: set to DEBUG or RELEASE.

	EXTERNAL_LIBRARIES: set the install path of the third part libraries.(ex : Deps/Install/Debug)

	PROJECT_TO_BUILD: set the list of the projects you want to build (ex: VRRender, Tuto01Basic ...), each project should be separated by ”;”.

Note

	If PROJECT_TO_BUILD is empty, all application will be compiled

	If PROJECT_TO_INSTALL is empty, no application will be installed

[image: ../../_images/osx_cmake_fw4spl.png]
Press configure ([c]) and generate ([g]) makefiles.

Then, build dependencies with ninja.

$ ninja all

Launch an application

To build a specific or several applications the CMake argument PROJECTS_TO_BUILD can be set.
Use ; so separate each application name.

After an successful compilation the application can be launched with the launcher program from FW4SPL.
Therefore the profile.xml of the application in the build folder has to be passed as argument to the launcher call in the console.

$ bin/launcher Bundles/MyApplication_Version/profile.xml

Example:

$ cd /Dev/Build
$ bin/launcher Bundles/VRRender_0-9/profile.xml

Extensions

fw4spl has two extension repositories:

	fw4spl-ext [https://github.com/fw4spl-org/fw4spl-ext/]: contains additional functionalities and proofs of concept

	fw4spl-ar [https://github.com/fw4spl-org/fw4spl-ar/]: contains functionalities for augmented reality (video tracking, calibration)

Dependencies

If you want to use this extension, you need to clone the deps repositories:

	fw4spl-ext-deps [https://github.com/fw4spl-org/fw4spl-ext-deps.git]: contains the scripts to compile the external libraries used by fw4spl-ext

$ cd ~/Dev/Deps/Src
$ git clone https://github.com/fw4spl-org/fw4spl-ext-deps.git fw4spl-ext-deps
$ cd fw4spl-ext-deps
$ git checkout fw4spl_0.10.2.3

	fw4spl-ar-deps [https://github.com/fw4spl-org/fw4spl-ar-deps.git]: contains the scripts to compile the external libraries used by fw4spl-ar

$ cd ~/Dev/Deps/Src
$ git clone https://github.com/fw4spl-org/fw4spl-ar-deps.git fw4spl-ar-deps
$ cd fw4spl-ar-deps
$ git checkout fw4spl_0.10.2.3

You must re-edit cmake configuration to add this repository:

$ cd ~/Dev/Deps/Build
$ ccmake .

Modify ADDITIONAL_DEPS: set the source location of fw4spl-ar-deps and fw4spl-ext-deps separated by ‘;’

~/Dev/Deps/Src/fw4spl-ext-deps/;~/Dev/Deps/Src/fw4spl-ar-deps/

Source

If you want to use fw4spl extension, you need this repositories:

	fw4spl-ext [https://github.com/fw4spl-org/fw4spl-ext.git]: extension of fw4spl repository, contains additional functionalities and proofs of concept

$ cd Dev/Src
$ git clone https://github.com/fw4spl-org/fw4spl-ext.git fw4spl-ext
$ cd fw4spl-ext
$ git checkout fw4spl_0.10.2.3

	fw4spl-ar [https://github.com/fw4spl-org/fw4spl-ar.git]: another extension of fw4spl, contains functionalities for augmented reality (video tracking)

$ cd ../../Build
$ ccmake .

Modify ADDITIONAL_PROJECTS: set the source location of fw4spl-ar and fw4spl-ext separated by ‘;’

~/Dev/Src/fw4spl-ext/;~/Dev/Src/fw4spl-ar/

Recommended software

The following programs may be helpful for your developments:

	Eclipse CDT [https://eclipse.org/cdt/]

	QtCreator [https://www.qt.io/download-open-source/#section-2]

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Installation

Installation for MacOSX

Prerequisites for MacOSX users

If not already installed:

	Install Xcode [https://itunes.apple.com/fr/app/xcode/id497799835?mt=12]

	Install git [https://git-scm.com/downloads]

	Install Python 2.7 [https://www.python.org/downloads/]

	Install CMake [http://www.cmake.org/download/]

	Install Ninja [https://github.com/martine/ninja/releases] : to use instead of make.

For an easy install, you can use the Hombrew project [http://brew.sh/] to install missing packages.

$ brew install git
$ brew install python
$ brew install cmake
$ brew install ninja

FW4SPL installation

FW4SPL works with data separation for source, build and install data.
To prepare the development environment:

	Create a development folder (Dev)

$ mkdir Dev

	
	Create the build, source and install folder

	
	Dev/Build

	Dev/Src

	Dev/Install

$ mkdir Dev/Build Dev/Src Dev/Install

To prepare the third party environment:

	Create a third party folder (Deps)

$ mkdir Dev/Deps

	
	Create the build, source and install folder

	
	Dev/Deps/Build

	Dev/Deps/Src

	Dev/Deps/Install

$ mkdir Dev/Deps/Build Dev/Deps/Src Dev/Deps/Install

Build tools

FW4SPL is a CMake project. That means, for each build target there is a CMakeLists that provides build parameters.
To configure you project you can use the cmake command from the build folder with the sources as arguments:

$ ccmake /PATH/TO/fw4spl

if you want to use Ninja as build to tools, use the option -G Ninja, as following:

$ ccmake -G Ninja /PATH/TO/fw4spl

It is the same process for BinPkgs and FW4SPL sources. It is recommended to use make to compile the deps.

Dependencies

For the third party libraries the following repository have to be cloned [http://git-scm.com/book/en/v2/Git-Basics-Getting-a-Git-Repository#Cloning-an-Existing-Repository] in the (Deps) source folder:

	fw4spl-deps [https://github.com/fw4spl-org/fw4spl-deps.git]: contains the scripts to compile the external libraries used by fw4spl (Boost, VTK, ITK, Qt, …​)

$ cd ~/Dev/Deps/Src
$ git clone https://github.com/fw4spl-org/fw4spl-deps.git fw4spl-deps
$ cd fw4spl-deps
$ git checkout fw4spl_0.10.2.3

To build the dependencies, you must configure the project with cmake into the Build folder

$ cd ~/Dev/Deps/Build
$ cmake ../Src/fw4spl-deps -DCMAKE_INSTALL_PREFIX=../Install -DCMAKE_BUILD_TYPE=Debug

Or open cmake gui editor, see Build tools instructions.

$ ccmake ../Src/fw4spl-deps

Some CMake variables have to be change:

	CMAKE_INSTALL_PREFIX: set the install location.

	CMAKE_BUILD_TYPE: set the build type ‘Debug’ or ‘Release’

[image: ../../_images/osx_cmake_binpkgs.png]
Press configure ([c]) and generate ([g]) makefiles.

Then, compile the FW4SPL dependencies with make

$ make all
$ make install_tool

Warning

Do NOT use ninja to compile the dependencies, it cause conflict with qt compilation.

Source

For the FW4SPL source code the following repository have to be cloned [http://git-scm.com/book/en/v2/Git-Basics-Getting-a-Git-Repository#Cloning-an-Existing-Repository] in the (Dev) source folder:

	fw4spl [https://github.com/fw4spl-org/fw4spl.git]: main repository, contains the core libraries and bundles.

$ cd ~/Dev/Src
$ git clone https://github.com/fw4spl-org/fw4spl.git fw4spl
$ cd fw4spl
$ git checkout fw4spl_0.10.2.3

Note

For the source compilation we use ninja instead of make. But if you prefer to use make, replace all the ninja command with make and remove -G Ninja in the cmake command.

To build fw4spl, you must configure the project with cmake into the Build folder

$ cd ~/Dev/Build
$ cmake ../Src/fw4spl -DCMAKE_INSTALL_PREFIX=../Install -DCMAKE_BUILD_TYPE=Debug -DEXTERNAL_LIBRARIES=../Deps/Install -G Ninja

Or open cmake gui editor, see Build tools instructions.

$ ccmake ../Src/fw4spl -G Ninja

Some CMake variables have to be change:

	CMAKE_INSTALL_PREFIX: set the install location.

	EXTERNAL_LIBRARIES: set the install path of the third part libraries.

	CMAKE_BUILD_TYPE: set to Debug or Release

You can re-edit cmake configuration :

$ ccmake .

	PROJECT_TO_BUILD set the name of the application to build (See DevSrcApps)

	PROJECT_TO_INSTALL set the name of the application to install

Note

	If PROJECT_TO_BUILD is empty, all application will be compiled

	If PROJECT_TO_INSTALL is empty, no aplication will be installed

[image: ../../_images/osx_cmake_fw4spl.png]
Press configure ([c]) and generate ([g]) makefiles.

Then, build dependencies with ninja.

$ ninja all

Launch an application

To build a specific or several applications the CMake argument PROJECTS_TO_BUILD can be set.
Use ; so separate each application name.

After an successful compilation the application can be launched with the launcher program from a terminal.
Therefore the profile.xml of the application in the build folder has to be passed as argument to the launcher:

$ bin/launcher Bundles/MyApplication_Version/profile.xml

Example:

$ cd ~/Dev/Build
$ bin/launcher Bundles/VRRender_0-9/profile.xml

Note

To generate the projects in release, change CMake argument CMAKE_BUILD_TYPE to Release for fw4spl and fw4spl-deps

Warning

Do NOT compile debug and release in the same Build and Install folder

Extension

fw4spl has two extension repositories:

	fw4spl-ext [https://github.com/fw4spl-org/fw4spl-ext/]: contains additional functionalities and proofs of concept

	fw4spl-ar [https://github.com/fw4spl-org/fw4spl-ar/]: contains functionalities for augmented reality (video tracking, calibration)

Dependencies

If you want to use this extension, you need to clone the deps repositories:

	fw4spl-ext-deps [https://github.com/fw4spl-org/fw4spl-ext-deps.git]: contains the scripts to compile the external libraries used by fw4spl-ext

$ cd ~/Dev/Deps/Src
$ git clone https://github.com/fw4spl-org/fw4spl-ext-deps.git fw4spl-ext-deps
$ cd fw4spl-ext-deps
$ git checkout fw4spl_0.10.2.3

	fw4spl-ar-deps [https://github.com/fw4spl-org/fw4spl-ar-deps.git]: contains the scripts to compile the external libraries used by fw4spl-ar

$ cd ~/Dev/Deps/Src
$ git clone https://github.com/fw4spl-org/fw4spl-ar-deps.git fw4spl-ar-deps
$ cd fw4spl-ar-deps
$ git checkout fw4spl_0.10.2.3

You must re-edit cmake configuration to add this repository:

$ cd ~/Dev/Deps/Build
$ ccmake .

Modify ADDITIONAL_DEPS: set the source location of fw4spl-ar-deps and fw4spl-ext-deps separated by ‘;’

~/Dev/Deps/Src/fw4spl-ext-deps/;~/Dev/Deps/Src/fw4spl-ar-deps/

Source

If you want to use fw4spl extension, you need this repositories:

	fw4spl-ext [https://github.com/fw4spl-org/fw4spl-ext.git]: extension of fw4spl repository, contains additional functionalities and proofs of concept

$ cd Dev/Src
$ git clone https://github.com/fw4spl-org/fw4spl-ext.git fw4spl-ext
$ cd fw4spl-ext
$ git checkout fw4spl_0.10.2.3

	fw4spl-ar [https://github.com/fw4spl-org/fw4spl-ar.git]: another extension of fw4spl, contains functionalities for augmented reality (video tracking)

$ cd ../../Build
$ ccmake .

Modify ADDITIONAL_PROJECTS: set the source location of fw4spl-ar and fw4spl-ext separated by ‘;’

~/Dev/Src/fw4spl-ext/;~/Dev/Src/fw4spl-ar/

Recommended softwares

The following programs may be helpful for your developments:

	
	IDE:

	
	Qt creator [http://www.qt.io/download-open-source/#section-6]

	Eclipse CDT [https://eclipse.org/cdt/].

	
	Versioning tools:

	
	SourceTree [http://www.sourcetreeapp.com/]

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

Software Architecture Description (SAD)

	General
	Introduction

	Annexes

	Object-Service concept
	Introduction

	Object

	Service

	Object and service factories

	Object-Service registry

	Object-Service concept example

	Signal-slot communication
	Overview

	FW4SPL implementation

	Slots

	Signals

	Manage slots or signals in a class

	Signals and slots used in objects and services

	Object signals

	Proxy

	App-config
	Dynamic program with factories

	Dynamic program with application configuration

	Example

	Activities
	Activity series

	Example

	Multithreading
	Overview

	Worker and Timer

	Mutex

	Multithreading and communication

	Object-Service and Multithreading

	Serialization
	Overview

	Atom objects

	Convert a fwData::Object

	Serialize an Atoms object to JSON format

	Conclusion

	Medical patient folder

	Component-based software
	Definitions and characteristics

	Component-based implementation

	Manager and updater services
	Concepts

	Implementation

	Graphical User Interface
	Overview

	Backend

	Configuration

	Multi-threading

	Generic Scene
	Overview

	Components

	Configuration

	Data file migration
	Overview

	Definitions

	Data Version

	Context version

	Migration

	Graph

	Structure

	Usage

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Software Architecture Description (SAD)

General

Introduction

The framework FW4SPL (FrameWork for Software Production) is an open-source
framework, developed by IRCAD (research institute against cancer and disease).
The principle of FW4SPL is the fast and easy creation of applications, mainly
in the medical field. Therefore it provides features like digital image
processing in 2D and 3D, visualization or simulation of medical interactions.
To build an application with FW4SPL there are no programming skills required.
By writing a simple XML the users can design their own application.

FW4SPL is built on component-based architecture composed of C++ libraries.
The three main concepts of the architecture, explained in the following sections, are:

	object-service concept

	component approach

	signal-slot communication

The framework is multi-platform and runs under Windows, Linux and MacOS.
The programming language of the framework is C++.
This document will introduce the general architecture of FW4SPL.

Annexes

	Srclib list: this document lists all libraries with a brief description.

	Object list: this document lists all data with a brief description.

	Service list: this document lists all services and bundles with a brief description.

	Third party: this document contains a description of libraries used to
support this architecture and its functions.

	OSR diagram: this document introduces how to represent an application
configuration as a diagram.

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Software Architecture Description (SAD)

Object-Service concept

Introduction

Inside the Object Oriented Programming (OOP) paradigm, an object is an instance of a class
which contains all its data and methods (such as reading, writing, visualizations, image analysis, etc.).
This philosophy works well, provided that the classes do not change with time.
However, in this situation, the maintenance of source code is difficult.

In order to make this maintenance easier, FW4SPL architecture relies on an Object-Service
paradigm where data and their methods are separated into different code units.

Object

Objects represent data used in the framework.
They can be simple (boolean, integer, string, etc.) or advanced structures
(image, mesh, video, patient, etc.) without depending on the input data format.
For example, an input image could have one of several formats such as Jpeg or Dicom but the FW4SPl object will be the same.

Moreover, these object classes contain only data features and their corresponding getter/setter methods.

For instance, the Image object:

	contains a buffer pointer, a buffer size, the image’s dimension and origin,

	has public setter/getter methods to access these members,

	does not have methods such as reading or writing a buffer

The fwData library contains the standard simple and advanced data.
It is the FW4SPL’s main data library. There is also the fwMedData library which
contains several structures to store medical data.
A data list with a brief description is available in the appendixes.

Creating data

New data must be created as described below.

In the header file (MyData.hpp):

class MyData : public ::fwData::Object
{

public :
 fwCoreClassDefinitionsWithFactoryMacro((MyData)(::fwData::Object),
 (()), ::fwData::factory::New< MyData >) ;

 // Private constructor, required for data factory
 MyData(::fwData::Object::Key key);

 /// Destructor, required for all data
 virtual ~MyData();

 /// Defines shallow copy, required for all data
 void shallowCopy(const Object::csptr& _source);

 /// Defines deep copy, required for all data
 void cachedDeepCopy(const Object::csptr& _source,
 DeepCopyCacheType &cache);

};

In the source file (MyData.cpp), this line must also be added to declare
MyClass as data of the framework architecture :

fwDataRegisterMacro(MyData);

Service

A service represents a functionality which uses or modifies data. A service
is always associated with a data. For example, image data can have a reader
service, a writer service, a visualization service or a processing operator.

Service type

Some service categories exist in FW4SPL. These categories are called service
types and are represented by an abstract class. The basic service types are:

	io::IReader: base interface for reader services.

	io::IWriter: base interface for writer services.

	fwGui::IActionSrv: base interface to manage action from a button or a
menu in the GUI.

	gui::editor::IEditor: base interface to create new widget in the GUI.

	fwRender::IRender: base interface to create new visualization widgets in
the GUI.

	fwServices::IController: Does nothing in particular but can be considered as
a default service type to be implemented by unclassified services.

All services require a type association and must inherit from an abstract
type service.

Service methods

Several methods exist to manipulate a service. The main methods are:
configure, start, stop, and update.

	configure: parses the service parameters and analyzes its
configuration. For example, this method is used to configure an image file
path on the file system for an image reader service.

	start: initializes and launches the service (be careful,
starting and instantiating a service is not the same thing. For
example, for a visualization service, the start method instantiates all GUI
widgets necessary to visualize the data but the service itself is
instantiated before.).

	stop: stops the service. For example, for a visualization
service, this method detaches and destroys all GUI widgets previously
instantiated earlier in the start method.

	update method is called to perform an action on the data associated with the
service. For example, for an image reader service, the service reads the
image, converts it and loads it into the associated data.

These methods are mandatory, but can be empty. This is because some services do
not need a start/stop process, an update process or to listen to object
modifications.

Service states

These methods must follow a calling sequence. For example, it is not possible to
stop a service before starting it. To secure the process, a state machine
has been implemented to control the calling sequence.

The calling sequence to manage a service is:

MyData::sptr myData = MyData::New();
MyService::sptr mySrv = MyService::New();
mySrv->setObject(myData);

mySrv->setConfiguration(...); // set parameters
mySrv->configure(); // check parameters
mySrv->start(); // start the service
mySrv->update(); // update the service
mySrv->stop(); // stop the service

Create a service

A new service must be created as described below.

In the header file (MyService.hpp):

class MyService : public AbstractServiceType
{
public:

 // Macro to define few important parameters/functions
 // used by the architecture
 fwCoreServiceClassDefinitionsMacro((MyService)(AbstractServiceType));

 // Service constructor
 MyService() throw() ;

 // Service destructor.
 virtual ~MyService() throw() ;

protected:

 // To configure the service
 void configuring() throw(fwTools::Failed);

 // To start the service
 void starting() throw(::fwTools::Failed);

 // To stop the service
 void stopping() throw(::fwTools::Failed);

 // To update the service
 void updating() throw(::fwTools::Failed);
};

In the source file (MyService.cpp), this line must be also added to declare
MyService as a service of the framework architecture:

fwServicesRegisterMacro(AbstractServiceType, MyService, MyData);

Note

When a new service is created, the following functions must be overloaded
from IService class : configuring, starting, stopping and
updating. The top level functions from IService class check the
service state before any call to the redefined method.

Object and service factories

To instantiate an object or a service, the architecture requires the use of a
factory system. In class-based programming, the factory method pattern is a
creational pattern which uses factory methods to deal with the problem of
creating classes without specifying the exact class that will be created. This
is done by creating classes via a factory method, which is either specified in
an interface (abstract class) and implemented in child classes (concrete
classes) or implemented in a base class (optionally as a template method),
which can be overridden when inherited in derivative classes; rather than by a
constructor.[#]_

	[1]	http://en.wikipedia.org/wiki/Factory_method_pattern

Object factory

The fwData library has a factory to register and create all objects.
The registration is managed by two macros:

// in .hpp file
fwCoreClassDefinitionsWithFactoryMacro((MyData)(::fwData::Object),
 (()), ::fwData::factory::New< MyData >);

// in .cpp file
fwDataRegisterMacro(MyData);

Then, there are only two ways to build data in the framework:

// Direct creation
MyData::sptr obj = MyData::New();

// Factory creation (here obj is an object of type
// MyData, it is possible to cast it)
::fwData::Object::sptr obj = ::fwData::factory::New("MyData");

Service factory

The fwService library has a factory to register and create all
services. The registration is managed by two macros:

// in .hpp file
fwCoreServiceClassDefinitionsMacro ((MyService)(AbstractServiceType));

// in .cpp file
fwServicesRegisterMacro(AbstractServiceType, MyService, MyData);

Then, there is only one way to build a service in the framework:

::fwServices::registry::ServiceFactory::sptr srvFactory
 = ::fwServices::registry::ServiceFactory::getDefault();

// Factory creation (here srv is a service of type MyService,
// it is possible to cast it)
::fwServices::IService::sptr srv = srvFactory->create("MyService");

Object-Service registry

The FW4SPL architecture is standardized thanks to:

	Abstract classes fwData::Object and fwService::IService.

	The two factory systems.

In an application, one of the problems is managing the life cycle of a large number of object instances and their services. This problem is solved by the class fwServices::registry::ObjectService which maintains the relationship
between objects and services. This class concept is very simple :

// OSR is a singleton
class ObjectService
{
 // relation map beetwen an object and his associated services
 map < Object *, vec < IService > > osr;

 // Associates a service to an object
 // manages in the function the association: srv->setObject(obj);
 void registerService (Object * obj , IService * srv);

 // Dissociates a service to his object
 void unregisterService (IService * srv);

 // ...
}

// Some helpers exist : below, add method is used to combine
// factory system with service registration
::fwServices::IService::sptr add(::fwData::Object::sptr obj,
 std::string serviceType, std::string _implementationId)

This registry manages the object-service relationships and guarantees the non-destruction of an object while some services are still working on it.

Object-Service concept example

To conclude, the generic object-service concept is illustrated with this
example:

// Create an object
::fwData::Object::sptr obj = ::fwData::factory::New("::fwData::Image");

// Create a reader and a view for this object
::fwServices::IService::sptr reader
 = ::fwServices::add(obj, "::io::IReader", "MyCustomImageReader");
::fwServices::IService::sptr view
 = ::fwServices::add(obj, "::fwRender::IRender", "MyCustomImageView");

// Configure and start services
reader->setConfiguration (/* ... */);
reader->configure();
reader->start();

view->setConfiguration (/* ... */);
view->configure();
view->start();

// Execute services
reader->update(); // Read image on filesystem
view->update(); // Refresh visualization with the new image buffer

// Stop services
reader->stop();
view->stop();

// Destroy services
::fwServices::registry::ObjectService::unregisterService(reader);
::fwServices::registry::ObjectService::unregisterService(view);

This example shows the code to create a small application to read an image
and visualize it. You can easily transform this code to build an application
which reads and displays a 3D mesh by changing object and services
implementation strings only.

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Software Architecture Description (SAD)

Signal-slot communication

Overview

“Signals and slots” is a language construct introduced in Qt [1]
for communication between objects.

	[1]	http://wiki.qt.io/Qt_signal-slot_quick_start

The concept is that objects and services(explained in 2.3) can send signals containing event information which can be
received by other services using special functions known as slots.

FW4SPL implementation

In the FW4SPL architecture, the library fwCom provides a set of tools
dedicated to communication. These communications are based on the signal and
slot concept.

fwCom provides the following features :

	function and method wrapping

	direct slot calling

	asynchronous slot calling

	ability to work with multiple threads

	auto-disconnection of slot and signals

	arguments loss between slots and signals

Slots

Slots are wrappers for functions and class methods that can be attached
to a fwThread::Worker. The purpose of this class is to provide
synchronous and asynchronous mechanisms for method and function calling.

Slots have a common base class : SlotBase. This allows the storage of them in
the same container. Slots are designed such that they can be called, even where only the argument type is known.

Examples :

A slot wrapping the function sum, which is a function with
the signature int (int, int) :

::fwCom::Slot< int (int, int) >::sptr slotSum = ::fwCom::newSlot(&sum);

A slot wrapping the function start with signature void() of
the object a which class type is A :

::fwCom::Slot< void() >::sptr slotStart = ::fwCom::newSlot(&A::start, &a);

Execution of the slots using the run method :

slotSum->run(40,2);
slotStart->run();

Execution of the slots using the method call, which returns the result
of the execution :

int result = slotSum->call(40,2);
slotStart->call();

A slot declaration and execution, through a SlotBase :

::fwCom::Slot< size_t (std::string) > slotLen
 = ::fwCom::Slot< size_t (std::string) >::New(&len);
::fwCom::SlotBase::sptr slotBaseLen = slotLen;
::fwCom::SlotBase::sptr slotBaseSum = slotSum;
slotBaseSum->run(40,2);
slotBaseSum->run<int, int>(40,2);

// This one needs the explicit argument type
slotBaseLen->run<std::string>("R2D2");
result = slotBaseSum->call<int>(40,2);
result = slotBaseSum->call<int, int, int>(40,2);
result = slotBaseLen->call<size_t, std::string>("R2D2");

Signals

Signals allow to perform grouped calls on slots. For this purpose, a signal
class provides a mechanism to connect slots.

Examples:

The following instruction declares a signal with a void signature.

::fwCom::Signal< void() >::sptr sig = ::fwCom::Signal< void() >::New();

The connection between a signal and a slot of the same information type:

sig->connect(slotStart);

The following instruction will trigger the execution of all
slots connected to this signal:

sig->emit();

It is possible to connect multiple slots with the same information type to
the same signal and trigger their simultaneous execution.

Signals can take several arguments as a signature which will trigger their connected slots
by passing the right arguments.

In the following example a signal is declared of type void(int, int). The signal is connected
to two different types of slot, void (int) and int (int, int).

using namespace fwCom;
Signal< void(int, int) >::sptr sig2 = Signal< void(int, int) >::New();
Slot< int(int, int) >::sptr slot1 = Slot< int(int, int) >::New(...);
Slot< void(int) >::sptr slot2 = Slot< void(int) >::New(...);

sig2->connect(slot1);
sig2->connect(slot2);

sig2->emit(21, 42);

Here 2 points need to be highlighted :

	A signal cannot return a value. Consequently their return type is void.
Thus, the return value of a slot, triggered by a signal, equally cannot be retrieved.

	To successfully trigger a slot using a signal, the minimum requirement as to the number of arguments or
fitting argument types has to be given by the signal. In the last example the slot slot2 only
requires one argument of type int, but the signal is emitting two arguments of type int.
Because the signal signature fulfills the slot’s argument number and argument type, the signal
can successfully trigger the slot slot2. The slot slot2 takes the first emitted argument which
fits its parameter (here 21, the second argument is ignored).

Disconnection

The disconnect method is called between one signal and one slot, to stop their existing connection.
A disconnection assumes a signal slot connection. Once a signal slot connection is disconnected, it
cannot be triggered by this signal. Both connection and disconnection of a signal slot connection can be
done at any time.

sig2->disconnect(slot1);
sig2->emit(21, 42); // do not trigger slot1 anymore

The instructions above will cause the execution of slot2. Due to the disconnection between sig2 and slot1,
the slot slot1 is not triggered by sig2.

Connection handling

The connection between a slot and a signal returns a connection handler:

::fwCom::Connection connection = signal->connect(slot);

Each connection handler provides a mechanism which allows a
signal slot connection to be disabled temporarily. The slot stays connected to the signal, but it will
not be triggered while the connection is blocked :

::fwCom::Connection::Blocker lock(connection);
signal->emit();
// 'slot' will not be executed while 'lock' is alive or until lock is
// reset

Connection handlers can also be used to disconnect a slot and a signal
:

connection.disconnect();
// slot is not connected anymore

Auto-disconnection

Slots and signals can handle an automatic disconnection :

	on slot destruction : every signal slot connection to this slot will be destroyed

	on signal destruction : every slot connection to the signal will be destroyed

All related connection handlers will be invalidated when an automatic
disconnection occurs.

Manage slots or signals in a class

The library fwCom provides two helper classes to manage signals or slots in
a structure.

HasSlots

The class HasSlots offers mapping between a key (string defining the slot name)
and a slot. HasSlots allows the management of many slots using a map. To use
this helper in a class, the class must inherit from HasSlots and must register the slots
in the constructor:

struct ThisClassHasSlots : public HasSlots
{
 typedef Slot< int()> GetValueSlotType;

 ThisClassHasSlots()
 {
 newSlot("sum", &SlotsTestHasSlots::getValue, this);
 }

 int sum(int a, int b)
 {
 return a+b;
 }

 int getValue()
 {
 return 4;
 }
};

Then, slots can be used as below :

ThisClassHasSlots obj;
obj.slot("sum")->call<int>(5,9);
obj.slot< ThisClassHasSlots::GetValueSlotType >("getValue")->call();

HasSignals

The class HasSignals provides mapping between a key (string defining the signal name) and a signal.
HasSignals allows the management of many signals using a map, similar to HasSlots. To use this helper in a class, the class must inherit from
HasSignals as seen below and must register signals in the constructor:

struct ThisClassHasSignals : public HasSignals
{
 typedef ::fwCom::Signal< void()> SignalType;

 ThisClassHasSignals()
 {
 newSignal< SignalType >("sig");
 }
};

Then, signals can be used as below:

ThisClassHasSignals obj;
Slot< void()>::sptr slot = ::fwCom::newSlot(&anyFunction)
obj.signal("sig")->connect(slot);
obj.signal< SignalsTestHasSignals::SignalType >("sig")->emit();
obj.signal("sig")->disconnect(slot);

Signals and slots used in objects and services

Slots are used in both objects and services, whereas signals are only used in services. The abstract
class fwData::Object inherits from the HasSignals class as a basis to use signals :

class Object : public ::fwCom::HasSignals
{
 /// Key in m_signals map of signal m_sigObjectModified
 static const ::fwCom::Signals::SignalKeyType s_MODIFIED_SIG;
 //...

 /// Type of signal m_sigObjectModified
 typedef ::fwCom::Signal< void (CSPTR(::fwServices::ObjectMsg)) >
 ObjectModifiedSignalType;

 /// Signal that emits an ObjectMsg when an object is modified
 ObjectModifiedSignalType::sptr m_sigObjectModified;

 Object()
 {
 m_sigObjectModified = newSignal< ObjectModifiedSignalType >(s_MODIFIED_SIG);
 //...
 }
}

Moreover the abstract class fwService::IService inherits from the HasSlots class and the HasSignals class, as a basis to communicate through signals and slots. Actually, the methods start(), stop(), swap() and update() are all slots. Here is an extract with update():

class IService : public ::fwCom::HasSlots, public ::fwCom::HasSignals
{
 typedef ::boost::shared_future< void > SharedFutureType;

 /// Key in m_slots map of slot m_slotUpdate
 static const ::fwCom::Slots::SlotKeyType s_UPDATE_SLOT;

 /// Type of signal m_slotUpdate
 typedef ::fwCom::Slot<SharedFutureType()> UpdateSlotType;

 /// Slot to call update method
 UpdateSlotType::sptr m_slotUpdate;

 IService()
 {
 //...
 m_slotUpdate = newSlot(s_UPDATE_SLOT, &IService::update, this) ;
 //...
 }

 //...
}

To automatically connect object signals and service slots, it is possible to override the method
IService::getObjSrvConnections(). Please note that to be effective the attribute “autoconnect”
of the service must be set to “yes” in the xml configuration (see App-config).
The default implementation of this method connect the s_MODIFIED_SIG object signal to the
s_UPDATE_SLOT slot.

IService::KeyConnectionsType IService::getObjSrvConnections() const
{
 KeyConnectionsType connections;
 connections.push_back(std::make_pair(::fwData::Object::s_MODIFIED_SIG, s_UPDATE_SLOT));
 return connections;
}

Object signals

Objects have signals that can be used to inform of modifications.
The base class ::fwData::Object has the following signals available.

	Objects
	Available messages

	Object
	{modified, addedFields, changedFields, removedFields}

Thus all objects in FW4SPL can use the previous signals. Some object classes define extra signals.

	Objects
	Available messages

	Composite
	{addedObjects, changedObjects, removedObjects}

	Graph
	{updated}

	Image
	{bufferModified, landmarkAdded, landmarkRemoved, landmarkDisplayed, distanceAdded, distanceRemoved, distanceDisplayed, sliceIndexModified, sliceTypeModified, visibilityModified, transparencyModified}

	Mesh
	{vertexModified, pointColorsModified, cellColorsModified, pointNormalsModified, cellNormalsModified, pointTexCoordsModified, cellTexCoordsModified}

	ModelSeries
	{reconstructionsAdded, reconstructionsRemoved}

	PlaneList
	{planeAdded, planeRemoved, visibilityModified}

	Plane
	{selected}

	PointList
	{pointAdded, pointRemoved}

	Reconstruction
	{meshModified, visibilityModified}

	ResectionDB
	{resectionAdded, safePartAdded}

	Resection
	{reconstructionAdded, pointTexCoordsModified}

	Vector
	{addedObjects, removedObjects}

	...
	...

Proxy

The class ::fwServices::registry::Proxy is a communication element and singleton in the architecture.
It defines a proxy for
signal/slot connections. The proxy concept is used to declare
communication channels: all signals registered in a proxy’s channel are
connected to all slots registered in the same channel. This concept is
useful to create multiple connections or when the slots/signals have not yet been created (possible in dynamic programs).

The following shows an example where one signal is connected to several slots:

const std::string CHANNEL = "myChannel";

::fwServices::registry::Proxy::sptr proxy
 = ::fwServices::registry::Proxy::getDefault();

::fwCom::Signal< void() >::sptr sig = ::fwCom::Signal< void() >::New();

::fwCom::Slot< void() >::sptr slot1 = ::fwCom::newSlot(&myFunc1);
::fwCom::Slot< void() >::sptr slot2 = ::fwCom::newSlot(&myFunc2);
::fwCom::Slot< void() >::sptr slot3 = ::fwCom::newSlot(&myFunc3);

proxy->connect(CHANNEL, sig);

proxy->connect(CHANNEL, slot1);
proxy->connect(CHANNEL, slot2);
proxy->connect(CHANNEL, slot3);

sig->emit(); // All slots are called

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Software Architecture Description (SAD)

App-config

Dynamic program with factories

As shown in the Object-Service concept example, it is easy to change an application’s
behaviour by simply changing the appropriate data and services. For example changing an image visualisation application
to a 3D model visualisation application. Unfourtunely, this is limited to applications based on one service and one data,
and thus would impossible to apply on applications containing multiple services and object.

To overcome this, the FW4SPL architecture provides a dynamic management of configurations to allow the use of multiple objects and services.

The xml configuration for an application is defined with the extension ::fwServices::registry::AppConfig.

Dynamic program with application configuration

In the fwServices library, an application configuration parser
allows to parse XML files and creates and manages objects, services and
communications.

// The parser
void main (int argc , char * argv [])
{
 string xmlAppConfigPath = argv [1];

 ::fwServices::AppConfigManager::sptr acm
 = ::fwServices::AppConfigManager::New();

 acm->setConfig(xmlAppConfigPath);
 acm->create(); // Creates objects and services from config.
 acm->start(); // Starts services specified in config.
 acm->update(); // Updates services specified in config.

 acm->stop(); // Stops services specified in config.
 acm->destroy(); // Destroy all services and then data.
}

The following part corresponds to the configuration XML file of the previous Object-Service concept example.

<object uid="image" type ="::fwData::MyData">

 <service uid="frame" impl="DefaultFrame" type="IFrame" >
 <!-- service configuration -->
 </service>

 <service uid="view" impl="MyCustomImageView"
 type="::fwRender::IRender" >
 <!-- service configuration -->
 </service>

 <service uid="reader" impl="MyCustomImageReader"
 type="::io::IReader" >
 <!-- service configuration -->
 </service>

 <!-- view listen now image modification -->
 <connect>
 <signal>image/objectModified</signal>
 <slot>view/receive</slot>
 </connect>

 <start uid="frame" />
 <start uid="view"/>
 <start uid="reader"/>

 <!-- Read the image on filesystem and notify
 the view to refresh is content -->
 <update uid ="reader"/>

</ object >

This simple example shows how it is possible to build an application with several objects and services
using only a program and its configurations files.

Example

<extension implements="::fwServices::registry::AppConfig">
 <id>myAppConfigId</id>
 <parameters>
 <param name="appName" default="my Application" />
 <param name="appIconPath" />
 </parameters>
 <desc>Image Viewer</desc>
 <config>

 <object type="::fwData::Composite">

 <!--
 Description service of the GUI:
 The ::gui::frame::SDefaultFrame service automatically positions the various
 containers in the application main window.
 Here, it declares a container for the 3D rendering service.
 -->
 <service uid="myFrame" impl="::gui::frame::SDefaultFrame">
 <gui>
 <frame>
 <name>${appName}</name>
 <icon>${appIconPath}</icon>
 <minSize width="800" height="600" />
 </frame>
 </gui>
 <registry>
 <!-- Associate the container for the rendering service. -->
 <view sid="myRendering" />
 </registry>
 </service>

 <item key="myImage">
 <object uid="myImageUid" type="::fwData::Image">
 <!--
 Reading service:
 The <file> tag defines the path of the image to load. Here, it is a relative
 path from the repository in which you launch the application.
 -->
 <service uid="myReaderPathFile" impl="::ioVTK::SImageReader">
 <file>./TutoData/patient1.vtk</file>
 </service>

 <!--
 Visualization service of a 3D medical image:
 This service will render the 3D image.
 -->
 <service uid="myRendering" impl="::vtkSimpleNegato::SRenderer" />
 </object>
 </item>

 <!--
 Definition of the starting order of the different services:
 The frame defines the 3D scene container, so it must be started first.
 The services will be stopped the reverse order compared to the starting one.
 -->
 <start uid="myFrame" />
 <start uid="myReaderPathFile" />
 <start uid="myRendering" />

 <!--
 Definition of the service to update:
 The reading service load the data on the update.
 The render update must be called after the reading of the image.
 -->
 <update uid="myReaderPathFile" />
 <update uid="myRendering" />

 </object>

 </config>
</extension>

id

The id is the configuration identifier, and is thus unique to each configuration.

parameters (optional)

The parameters is a list of the parameters used by the configuration.

	param:

	defines the parameter

	name:

	parameter name, used as ${paramName} in the configuration. It will be replaced by the string
defined by the service, activity or application that launchs the configuration.

	default (optional):

	default value for the parameter, it is used if the value is not given by the config launcher.

desc (optional)

The description of the application.

config

The config tag includes the services and objects to launch.

object

It defines an object of the AppConfig. We usually use a ::fwData::Composite in order to add sub-objects.
An object can contain a list of services. Some object objects can have a specific configuration :
::fwData::TransformationMatrix3D, ::fwData::Float, ::fwData::List, ...

	uid (optional):

	Unique identifier of the object (::fwTools::fwID). If it is not defined, it will be automatically generated.

	type:

	Object type (ex: ::fwData::Image, ::fwData::Composite)

	src (optional, “new” by default)

	Defines if the object should be created (new) or if it already exists in the application (ref).
In the last case, the uid must be the same as the first declaration of this object (with new).

	service:

	It represents a service working on the object

	uid (optional):

	Unique identifier of the service. If it is not defined, it will be automatically generated.

	impl:

	Service implementation type (ex: ::ioVTK::SImageReader)

	type (optional):

	Service type (ex: ::io::IReader)

	autoConnect (optional, “no” by default):

	Defines if the service receives the signals of the working object

	worker (optional):

	Allows to run the service in another worker (see Multithreading)

Some services needs a specific configuration, it is usually described in the doxygen of the method configuring().

	matrix (optional):

	It works only for ::fwData::TransformationMatrix3D objects. It defines the value of the matrix.

<object uid="matrix" type="::fwData::TransformationMatrix3D">
 <matrix>
 <![CDATA[
 1 0 0 0
 0 1 0 0
 0 0 1 0
 0 0 0 1
]]>
 </matrix>
</object>

	value (optional):

	Only these objects contain this tag : ::fwData::Boolean, ::fwData::Integer, ::fwData::Float and ::fwData::String. It
allows to define the value of the object.

<object type="::fwData::Integer">
 <value>42</value>
</object>

	item (optional):

	It defines a sub-object of a composite. It can only be used if the parent object is a ::fwData::Composite.

	key:

	key of the object in the composite

	object:

	The ‘item’ tag can only contain ‘object’ tags that represents the composite sub-object

<item key="myImage">
 <object uid="myImageUid" type="::fwData::Image" />
</item>

	colors (optional):

	Only ::fwData::TransferFunction contains this tag. It allows to fill the transfer function values.

<object type="::fwData::TransferFunction">
 <colors>
 <step color="#ff0000ff" value="1" />
 <step color="#ffff00ff" value="500" />
 <step color="#00ff00ff" value="1000" />
 <step color="#00ffffff" value="1500" />
 <step color="#0000ffff" value="2000" />
 <step color="#000000ff" value="4000" />
 </colors>
</object>

	connect (optional):

	allows to connect a signal to one or more slot(s). The signal and slots must be compatible.

<connect>
 <signal>object_uid/signal_name</signal>
 <slot>service_uid/slot_name</slot>
</connect>

	proxy (optional):

	Allows to connect one or more signal(s) to one or more slot(s). The signals and slots must be compatible.

	channel:

	Name of the channel use for the proxy.

<proxy channel="myChannel">
 <signal>object_uid/signal_name</signal>
 <slot>service_uid/slot_name</slot>
</proxy>

	start:

	defines the service to start when the AppConfig is launched. The services will be automatically stopped in
the reverse order when the AppConfig is stopped.

<start uid="service_uid" />

	update:

	defines the service to update when the AppConfig is launched.

<update uid="service_uid" />

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Software Architecture Description (SAD)

Activities

An activity is defined by the extension ::fwActivities::registry::Activities. It is used to launch an
AppConfig with the selected data, it will create a new data ::fwMedData::ActivitySeries that
inherits from a fwMedData::Series.

The service ::activities::action::SActivityLauncher allows to launch an activity. Its role is to create
the specific Activity associated with the selected data.

This action should be followed by the service guiQt::editor::DynamicView : this service listens the action
signals and launchs the activity in a new tab.

	::activities::action::SActivityLauncher uses the selected data to generate the activity.

	::guiQt::editor::DynamicView displays the activity in the application.

	::fwData::Vector contains the set of selected data .

Activity series

The ::fwMedData::ActivitySeries has a ::fwData::Composite that contains all the data required by the activity.

class FWMEDDATA_CLASS_API ActivitySeries : public ::fwMedData::Series
{
public:

 /// Constructor
 FWMEDDATA_API ActivitySeries();

 /// Destructor
 FWMEDDATA_API virtual ~ActivitySeries();

 /// Defines shallow copy
 FWMEDDATA_API void shallowCopy(const ::fwData::Object::csptr &_source);

 /// Defines deep copy
 FWMEDDATA_API void cachedDeepCopy(const ::fwData::Object::csptr &_source, DeepCopyCacheType &cache);

 /**
 * @brief Data container
 * @{ */
 ::fwData::Composite::sptr getData () const;
 void setData(const ::fwData::Composite::sptr & val);
 /** @} */

 /**
 * @brief Activity configuration identifier
 * @{ */
 const std::string &getActivityConfigId () const;
 void setActivityConfigId (const std::string &val);
 /** @} */

protected:

 /// Activity configuration identifier
 ConfigIdType m_activityConfigId;

 /// Data container
 ::fwData::Composite::sptr m_data;
};

Example

<extension implements="::fwActivities::registry::Activities">
 <id>myActivityId</id>
 <title>3D Visu</title>
 <desc>Activity description ...</desc>
 <icon>Bundles/media_0-1/icons/icon-3D.png</icon>
 <requirements>
 <requirement name="param1" type="::fwData::Image" /> <!-- defaults : minOccurs = 1, maxOccurs = 1-->
 <requirement name="param2" type="::fwData::Mesh" maxOccurs="3" container="composite">
 <key>Item1</key>
 <key>Item2</key>
 <key>Item3</key>
 </requirement>
 <requirement name="imageSeries" type="::fwMedData::ImageSeries" minOccurs="0" maxOccurs="2" />
 <requirement name="modelSeries" type="::fwMedData::ModelSeries" minOccurs="1" maxOccurs="1" />
 <!-- ...-->
 </requirements>
 <builder>::fwActivities::builder::ActivitySeries</builder>
 <validator>::fwActivities::validator::ImageProperties</validator><!-- pour fw4spl_0.9.2 -->
 <appConfig id="myAppConfigId">
 <parameters>
 <parameter replace="registeredImageUid" by="@values.param1" />
 <parameter replace="orientation" by="frontal" />
 <!-- ...-->
 </parameters>
 </appConfig>
</extension>

The activity parameters are (in the following order):

id

The activity unique identifier.

title

The activity title that will be displayed on the tab.

desc

The description of the activity. It is displayed by the SActivityLauncher when several activity can be launched
with the selected data.

icon

The path to the activity icon. It is displayed by the SActivityLauncher when several activity can be launched
with the selected data.

[image: ../../_images/SActivityLauncher.png]

requirements

The list of the data required to launch the activity. This data must be selected in the vector (::fwData::Vector).

	requirement:

	A required data.

	name:

	Key used to add the data in the activity Composite.

	type:

	The data type (ex: ::fwMedData::ImageSeries).

	minOccurs (optional, “1” by default):

	The minimum number of occurrences of this type of object in the vector.

	maxOccurs (optional, “1” by default):

	The maximum number of occurrences of this type of object in the vector.

	container (optional, “vector” or “composite”, default: composite):

	Container used to contain the data if minOccurs or maxOccurs are not “1”.
If the container is “composite”, you need to specify the “key” of each object in the composite.

builder

Implementation of the activity builder. The default builder is ::fwActivities::builder::ActivitySeries :
it creates the ::fwMedData::ActivitySeries and adds the required data in its composite with de defined key.

The builder ::fwActivities::builder::ActivitySeriesInitData allows, in addition to what the default builder does,
to create data when minOccurs == 0 and maxOccurs == 0.

validators (optional)

It defines the list of validators. If you need only one validator, you don’t need the “validators” tag (only “validator”).

	validator (optional):

	It allows to validate if the selected required objects are correct for the activity.

For example, the validator ::fwActivities::validator::ImageProperties checks that all the selected images
have the same size, spacing and origin.

appConfig

It defines the AppConfig to launch and its parameters

	id:

	Identifier of the AppConfig

	parameters:

	List of the parameters required by the AppConfig

	parameter:

	Defines a parameter

	replace:

	Name of the parameter as defined in the AppConfig

	by:

	Defines the string that will replace the parameter name. It should be a simple string (ex.
frontal) or define a sesh@ path (ex. @values.myImage). The root object of the sesh@ path is the
composite contained in the ActivitySeries.

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Software Architecture Description (SAD)

Multithreading

Overview

The multithreading paradigm has become more popular as efforts to further
exploit instruction level parallelism have stalled since the late 1990s. This
allowed the concept of throughput computing to re-emerge to prominence from the
more specialized field of transaction processing:

	Even though it is very difficult to further speed up a single thread or
single program, most computer systems are actually multi-tasking among
multiple threads or programs.

	Techniques that would allow speedup of the overall system throughput of all
tasks would be a meaningful performance gain.

Some advantages include:

	If a thread gets a lot of cache misses, the other thread(s) can continue,
taking advantage of the unused computing resources, which thus can lead to
faster overall execution, as these resources would have been idle if only a
single thread was executed.

	If a thread cannot use all the computing resources of the CPU (because
instructions depend on each other’s result), running another thread can avoid
leaving these idle.

	If several threads work on the same set of data, they can actually share
their cache, leading to better cache usage or synchronization of its values.

Some criticisms of multithreading include:

	Multiple threads can interfere with each other when sharing hardware
resources such as caches or translation look aside buffers (TLBs).

	Execution times of a single thread are not improved but can be degraded, even
when only one thread is executing. This is due to slower frequencies and/or
additional pipeline stages that are necessary to accommodate thread-switching
hardware.

	Hardware support for multithreading is more visible to software, thus
requiring more changes to both application programs and operating systems
than multiprocessing.

	Thread scheduling is also a major problem in multithreading.

Michael K. Gschwind, et al. [1]

	[1]	Michael K. Gschwind, Valentina Salapura. 2011. Using Register Last Use Infomation to Perform Decode-Time Computer Instruction Optimization US 20130086368 A1 [Patent]. http://www.google.com/patents/US20130086368

Worker and Timer

In the FW4SPL architecture, the library fwThread provides few tools to execute
asynchronous tasks on different threads.

In this library, the class Worker creates and manages a task loop. The default
implementation creates a loop in a new thread. Some tasks can be posted on the
worker and will be executed on the managed thread. When the worker is stopped,
it waits for the last task to be processed and stops the loop.

::fwThread::Worker::sptr worker = ::fwThread::Worker::New();

::boost::packaged_task<void> task(::boost::bind(&myFunction));
::boost::future< void > future = task.get_future();
::boost::function< void () > f = moveTaskIntoFunction(task);

worker->post(f);

future.wait();
worker->stop();

The Timer class provides single-shot or repetitive timers. A Timer triggers a
function once after a delay, or periodically, inside the worker loop. The delay
or the period is defined by the duration attribute.

::fwThread::Worker::sptr worker = ::fwThread::Worker::New();

::fwThread::Timer::sptr timer = worker->createTimer();

timer->setFunction(::boost::bind(&myFunction));

::boost::chrono::milliseconds duration
 = ::boost::chrono::milliseconds(100) ;
timer->setDuration(duration);

timer->start();
//...
timer->stop();

worker->stop();

Mutex

The namespace fwCore::mt provides common foundations for multithreading in
FW4SPL, especially tools to manage mutual exclusions. In computer science,
mutual exclusion refers to the requirement of ensuring that two concurrent
threads are not in a critical section at the same time, it is a basic
requirement in concurrency control, to prevent race conditions. Here, a
critical section refers to a period when the process accesses a shared
resource, such as shared memory. A lock system is designed to enforce a mutual
exclusion concurrency control policy.

Currently, FW4SPL uses Boost Thread library which allows the use of multiple
execution threads with shared data, keeping the C++ code portable.
fwCore::mt defines a few typedef over Boost:

namespace fwCore
{
namespace mt
{

typedef ::boost::mutex Mutex;
typedef ::boost::unique_lock< Mutex > ScopedLock;

typedef ::boost::recursive_mutex RecursiveMutex;
typedef ::boost::unique_lock< RecursiveMutex > RecursiveScopedLock;

/// Defines a single writer, multiple readers mutex.
typedef ::boost::shared_mutex ReadWriteMutex;
/**
* @brief Defines a lock of read type for read/write mutex.
* @note Multiple read lock can be done.
*/
typedef ::boost::shared_lock< ReadWriteMutex > ReadLock;
/**
* @brief Defines a lock of write type for read/write mutex.
* @note Only one write lock can be done at once.
*/
typedef ::boost::unique_lock< ReadWriteMutex > WriteLock;
/**
* @brief Defines an upgradable lock type for read/write mutex.
* @note Only one upgradable lock can be done at once but there
 may be multiple read lock.
*/
typedef ::boost::upgrade_lock< ReadWriteMutex > ReadToWriteLock;
/**
* @brief Defines a write lock upgraded from ReadToWriteLock.
* @note Only one upgradable lock can be done at once but there
 may be multiple read lock.
*/
typedef ::boost::upgrade_to_unique_lock< ReadWriteMutex >
 UpgradeToWriteLock;

} //namespace mt
} //namespace fwCore

Multithreading and communication

Asynchronous call

Slots are able to work with fwThread::Worker. If a Slot has a Worker, each
asynchronous execution request will be run in its worker, otherwise
asynchronous requests can not be satisfied without specifying a worker.

Setting worker example:

::fwCom::Slot< int (int, int) >::sptr slotSum
 = ::fwCom::newSlot(&sum);
::fwCom::Slot< void () >::sptr slotStart
 = ::fwCom::newSlot(&A::start, &a);

::fwThread::Worker::sptr w = ::fwThread::Worker::New();
slotSum->setWorker(w);
slotStart->setWorker(w);

asyncRun method returns a boost::shared_future< void >, that makes it possible
to wait for end-of-execution.

::boost::future< void > future = slotStart->asyncRun();
// do something else ...
future.wait(); //ensures slotStart is finished before continuing

asyncCall method returns a boost::shared_future< R > where R is the return
type. This allows facilitates waiting for end-of-execution and retrieval of the computed value.

::boost::future< int > future = slotSum->asyncCall();
// do something else ...
future.wait(); //ensures slotStart is finished before continuing
int result = future.get();

In this case, the slots asynchronous execution has been weakened. For an async call/run
pending in a worker queue, it means that :

	if the slot is detroyed before the execution of this call, it will be
canceled.

	if slot’s worker is changed before the execution of this call, it will also
be canceled.

Asynchronous emit

As slots can work asynchronously, triggering a Signal with asyncEmit results in
the execution of connected slots in their worker :

sig2->asyncEmit(21, 42);

The instruction above has the consequence of running each connected slot in its
own worker.

Note: Each connected slot must have a worker set to use asyncEmit.

Object-Service and Multithreading

Object

The architecture allows the writing of thread safe functions which manipulate objects
easily. Objects have their own mutex (inherited from fwData::Object) to
control concurrent access from different threads. This mutex is available using the following method:

::fwCore::mt::ReadWriteMutex & getMutex();

The namespace fwData::mt contains several helpers to lock objects for
multithreading:

	ObjectReadLock: locks an object mutex on read mode.

	ObjectReadToWriteLock: locks an object mutex on upgradable mode.

	ObjectWriteLock: locks an object mutex on exclusive mode.

The following example illustrates how to use these helpers:

::fwData::String::sptr m_data = ::fwData::String::New();
{
 // lock data to write
 ::fwData::mt::ObjectReadLock readLock(m_data);
} // helper destruction, data is no longer locked

{
 // lock data to write
 ::fwData::mt::ObjectWriteLock writeLock(m_data);

 // unlock data
 writeLock.unlock();

 // lock data to read
 ::fwData::mt::ObjectReadToWriteLock updrageLock(m_data);

 // unlock data
 updrageLock.unlock();

 // lock again data to read
 updrageLock.lock();

 // lock data to write
 updrageLock.upgrade();

 // lock data to read
 updrageLock.downgrade();

} // helper destruction, data is no longer locked

Services

The service architecture allows the writing of a thread-safe service by
avoiding the requirement of explicit synchronization. Each service has an associated
worker in which service methods are intended to be executed.

Specifically, all inherited IService methods (start, stop,
update, receive, swap) are slots. Thus, the whole service life
cycle can be managed in a separate thread.

Since services are designed to be managed in an associated worker, the worker
can be set/updated by using the inherited method :

// Initializes m_associatedWorker and associates
// this worker to all service slots
void setWorker(::fwThread::Worker::sptr worker);

// Returns associate worker
::fwThread::Worker::sptr getWorker() const;

Since the signal-slot communication is thread-safe and
IService::receive(msg) method is a slot, it is possible to attach a service
to a thread and send notifications to execute parallel tasks.

Note

Some services use or require GUI backend elements. Thus, they can’t be used
in a separate thread. All GUI elements must be created and managed in the
application main thread/worker.

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Software Architecture Description (SAD)

Serialization

Overview

Serialization is the process to save plain C++ structures from memory to hard
drive. In fw4spl, fwAtoms library provides tools to serialize all data (and
especially Object that extend ::fwData::Object) to a JSON format [1]. Of
course, this process is also available for loading data from JSON format to
plain C++ structures.

	[1]	Introducing JSON. http://json.org/

To achieve this serialization, fwAtoms provides basic structures (which extend
::fwAtoms::Base) to manage better plain C++ structure evolution. Thus, there
are two main steps in the serialization process:

	Converting a ::fwData::Object into a ::fwAtoms::Object

	Serializing a ::fwAtoms::Base in a JSON format

Atom objects

The basic structures provided by fwAtoms library are a set of restricted C++
type. All these structures extend ::fwAtoms::Base and cover all basic types
and containers:

	type
	brief

	::fwAtoms::Base
	Base class of all atoms

	::fwAtoms::String
	Atom to represent string types

	::fwAtoms::Numeric
	Atom to represent numeric types (floating number or integer)

	::fwAtoms::Boolean
	Atom to represent a boolean value

	::fwAtoms::Map
	Atom to represent an associative container (std::string to ::fwAtoms::Base)

	::fwAtoms::Sequence
	Atom to represent a sequence of object like vector or list

	::fwAtoms::Object
	Atom to represent a C++ object with attributes

	::fwAtoms::Blob
	Atom to represent binary information like buffers

For instance, consider the following C++ class:

class SimpleClass
{
 bool m_myBoolean;
};

class ComplexClass
{
 std::string m_myString;
 float m_myFloat;
 SimpleClass* m_mySimpleClass;
};

It’s Atom equivalent is (simplified code):

fwAtoms::Object
{
 metaInfos
 {
 "CLASSNAME_METAINFO" : "SimpleClass"
 "ID_METAINFO" : "<ID of the object>"
 }

 attributes
 {
 "myBoolean" : ::fwAtoms::Boolean
 }
}

fwAtoms::Object
{
 metaInfos
 {
 "CLASSNAME_METAINFO" : "ComplexClass"
 "ID_METAINFO" ; "<ID of the object>"
 }

 attributes
 {
 "myString" : ::fwAtoms::String
 "myFloat" : ::fwAtoms::Numeric
 "mySimpleClass" : ::fwAtoms::Object("SimpleClass")
 }
}

The main advantage of this representation is the ability to change easily the
form of a class. In fact, all plain C++ objects are represented as
Atoms::Object with a map of attributes. Thus, adding, removing or changing
the content of an attribute is easy. Moreover, because of these restricted
types, atom parsing is also made easier. The main difficulty is how to convert
plain C++ object using this set of restricted types.

Convert a fwData::Object

As explained earlier, all objects in fw4spl inherit from the ::fwData::Object
class. To convert a C++ object in Atom, it must inherit from this class. To
allow this conversion, some work must be done.

The first thing is to update the header file of the structure and add these lines :

// Before all namespace
fwCampAutoDeclareDataMacro((<namespace elem>)
 (<namespace elem>)(<class name>), <method export macro>);

// In the public class part
fwCampMakeFriendDataMacro((<namespace elem>)
 (<namespace elem>)(<class name>));

These two functions allow the declaration of the class to the conversion process.

Next, the conversion systems must know the class information including
attributes, base class, library location and data version. This is achieved by
creating a class which defines these properties.

Example

This can be illustrated by taking the previous class and creating these two files:

Header file of the newly created class: ComplexClass.hpp

// Reference class

fwCampAutoDeclareDataMacro((fwData)(ComplexClass), FWDATA_API);

namespace fwData
{
class ComplexClass : public ::fwData::Object
{
 fwCampMakeFriendDataMacro((fwData)(ComplexClass));

 std::string m_myString;
 float m_myFloat;
 ::fwData::SimpleClass* m_mySimpleClass;
};
}

Header file of serialization class :

// hpp binding file
#include <fwCamp/macros.hpp>
#include <fwData/ComplexClass.hpp>
#include "fwDataCamp/config.hpp"

fwCampDeclareAccessor((fwData)(ComplexClass), (fwData)(SimpleClass));

Source file of serialization class :

// cpp binding file
// include previous cpp file

#include <fwCamp/UserObject.hpp>

fwCampImplementDataMacro((fwData)(ComplexClass))
{
 builder
 .tag("object_version", "1")
 .tag("lib_name", "fwData")
 .base< ::fwData::Object>()
 .property("myString" , &::fwData::ComplexClass::m_myString)
 .property("myFloat" , &::fwData::ComplexClass::m_myFloat)
 .property("mySimpleClass" , &::fwData::ComplexClass::m_mySimpleClass)
 ;
}

In a header file, the method fwCampDeclareAccessor is necessary when an object
has a pointer or a smart pointer to another object.

In a source file, fwCampImplementDataMacro declares the properties of the bound
object with an object called a builder: it provides several methods to
describe the object to bind.

	method
	brief

	tag(key, value)
	Register a tag in the atom meta information.

	base<BaseClass>()
	Identify the base class of the bound object

	property(arg1, arg2)
	Set property of the object and how to access it

Most of the work is completed when the header file of the relevant class has been updated and a binding class created. The last step is to register the binding class in the conversion system using the following line in the library containing binding classes:

localDeclarefwDataComplexClass();

In fw4spl, data are located in fwData library whereas data binding classes are located in fwDataCamp library. The above line registering a binding class can be found in fwDataCamp autoload.hpp files.

Serialization file example

For more information about serialization see:

	location
	brief

	Srclib/core/fwData/include/
	fwData header files with serialization macros

	Srclib/core/fwDataCamp
	Serialization description of all fw4spl data

	Srclib/core/fwDataCamp/include/fwDataCamp/autoload.hpp
	Auto loading data bindings in the system

fwData::Object to fwAtoms::Object conversion

The requirements to convert an fwData::Object into an fwAtoms::Object are in the
fwAtomConversion library.

Two functions are necessary to achieve this conversion:

//Convert a fwData::Object into fwAtoms::Object
SPTR(::fwAtoms::Object) convert(const SPTR(::fwData::Object) &data);

//Convert a fwAtoms::Object into fwData::Object
SPTR(::fwData::Object) convert(const SPTR(::fwAtoms::Object) &atom);

Serialize an Atoms object to JSON format

When a fw4spl data is converted into Atoms, it can be saved in JSON format. Both an Atom reader and Atom writer are available in the fwAtomsBoostIO
fw4spl library: simply instantiate one of these classes with an Atom object
and call the read or write method.

To serialize atoms into JSON, a visitor pattern is used. An example can be
found in the fwAtomsBoostIO/Reader.cpp file.

Conclusion

Accordingly, you have now the requirements to serialize data in the framework and a basic knowledge about the mechanism behind it. To conclude, this is a diagram of the serialization mechanism:

[image: ../../_images/serialization.png]

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Software Architecture Description (SAD)

Medical patient folder

DICOM is a software integration standard that is used in Medical Imaging. All modern medical imaging systems (aka Imaging Modalities) equipment like X-Rays,
Ultrasounds, CT (Computed Tomography), and MRI (Magnetic Resonance Imaging) support DICOM and use it extensively. The core of DICOM is a file format and a networking protocol.

All Medical Images are saved in DICOM format. Medical Imaging Equipment creates DICOM files. Doctors use DICOM Viewers, computer software applications that can display DICOM images.

DICOM files contain more than just images. Every DICOM file holds patient information (name, ID, sex and birth date), important acquisition data (e.g., type of equipment used and its settings), and the context of the imaging study that is used to link the image to the medical treatment it was part of.

Roni Z. 2011. Introduction to DICOM [1]:

	[1]	Roni Z. 2011. Introduction to DICOM. Introduction. http://dicomiseasy.blogspot.fr/2011/10/introduction-to-dicom-chapter-1.html

The objects representing the medical patient data In FW4SPL are aligned with the DICOM standard. In the library fwMedData several structures and values have been retrieved:

	Patient: name, primary hospital identification number, birth date and sex.

	Study: unique identifier of the study, study date and time, referring
physician, institution-generated description, age of the patient.

	Equipment: institution where the equipment that produced the composite
instances is located.

	Series: unique identifier of the series, type of equipment that
originally acquired the data used to create this series, series date and
time, series description, name of the physician(s) administering the series.

In FW4SPL, the class Series is the main structure and contains pointers
to Patient, Study and Equipment structure. The class SeriesDB is a
container holding several instances of the Series class.

To specify an object of type Series, the library fwMedData holds the following classes inherited from Series:

	ImageSeries which corresponds to the image series of DICOM (CT images, MRI images,
etc).

	ModelSeries which corresponds to the meshes series of DICOM and also represents
3D patient models.

The fwMedData library also provides a custom series called ActivitySeries. An ActivitySeries is a Series linked to an
activity (sub part an application). Hence it is possible to save the state of all the objects used in the activity.
Further application specific parameters which are not referred to an object can also be saved in an ActivitySeries.
Application parameters in relation to the patient can be the view point on an organ,
landmarks, calculated distances between organ points, etc.

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Software Architecture Description (SAD)

Component-based software

The FW4SPL is also a component-based architecture.

Component-based software engineering (CBSE) (also known as component-based development (CBD)) is a
branch of software engineering that emphasizes the separation of concerns in
respect of the wide-ranging functionality available throughout a given software
system. It is a reuse-based approach to defining, implementing and composing
loosely coupled independent components into systems. This practice aims to
bring about an equally wide-ranging degree of benefits in both the short-term
and the long-term for the software itself and for organizations that sponsor
such software. Excerpt from “Component-based software engineering” [1] on Wikipedia

	[1]	Component-based software engineering http://en.wikipedia.org/wiki/Component-based_software_engineering

Definitions and characteristics

An individual software component is a software package that encapsulates a set
of related code: resources, objects, services, XML configuration, etc.

All the architecture is placed into separate components so that all of the data
and functions inside each component are semantically related. Because of this
principle, it is often said that components are modular and cohesive.

Components communicate with each other via interfaces. When a component offers
services to the rest of the system, it adopts a provided interface which
specifies services that other components can use. The generic architecture
provided by classes Object/IService and the factory system make this
interfacing easier.

Re-usability is an important characteristic of a high-quality software
component. Programmers should design and implement software components in such
a way that many different programs can reuse them.

Component-based implementation

Implementation requires a dynamic structure which represents the component
and a software launcher which loads and manages these components.
A component, called a bundle, is just a simple folder that contains :

	the component description file (plugin.xml) to describe the content of the
dynamic library

	the dynamic library, the type of which (.so, .dll, .dylib) differs between
operating systems

	other shared resources (icons, XSD file, media files, ...)

The software launcher uses the library fwRuntime to parse the software
description file (profile.xml) and load required dynamic libraries:

./launcher.exe mySoftware/profile.xml

The component description file (plugin.xml) is used to describe the content of
the dynamic library. This file reveals which concepts and concept implementations are proposed by the component.
These terms are identified in the file by keywords:

	Extension point: the concept

	Extension: a concept implementation (there can be many implementations one of a single concept)

In some cases, the Extension point is represented by an abstract class in a
component, and the Extension by the class that it inherits from the abstract class of another component.

One example is the service concept. The component description file
of servicesReg introduces the concept of service and incorporates the class IService into the dynamic library:

<plugin id="serviceReg">

 <library name="servicesReg" />

 <extension-point id="::fwServices::registry::ServiceFactory" />

</plugin>

And in another component, a new service is proposed in the dynamic library and
the information is shared in the description file.

<plugin id="myBundle">

 <library name ="myBundle" />

 <! -- myBundle requires the bundle servicesReg to run -->
 <requirement id="servicesReg" />

 <! -- Need code related to ::io::IReader -->
 <requirement id="io" />

 <extension implements =" ::fwServices::registry::ServiceFactory ">
 <! -- service type -->
 <type>::io::IReader</type>
 <! -- the service name available in this component library -->
 <service>::myBundle::myReader</service>
 <! -- the object type associated to the service -->
 <object>::fwData::myData</object>
 <desc>Description of my reader</desc>
 </extension>

</plugin>

Even if it is often the case, concepts are not limited to class level.
A lot a concepts can be defined : service configurations, operator
parameters, etc.

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Software Architecture Description (SAD)

Manager and updater services

Concepts

In the FW4SPL architecture, there is an object container which is often used:
::fwData::Composite. This container is also an Object and represents a map
which associates a string with an Object. The architecture provides two main
services to manage a Composite: a composite updater and a service manager.

Updater

The updater service extends service type ::ctrlSelection::IUpdaterSrv and
the work on a selection composite. This kind of service listens specific events
from objects identified by their UID. When it receives an event, it performs an
operation on an object in the selection composite and notifies composite
listeners.

Available operations on composite are:

	Adding an object

	Swapping an object

	Removing an object

	Removing an object if present

	Adding or swapping an object

	Doing nothing

There are few generic updater services which listen all events sent by Objects,
and few other which work with particular Object events.

Manager

The manager services extend service type ::ctrlSelection::IManagerSrv and
react to updater messages. This kind of service manages services on identified
data if they are present in a composite. There are few manager services,
but the most common is ::ctrlSelection::manager::SwapperSrv. This service
manages other services on objects stored in the composite. When this
manager gets notified, it can perform an action defined in the manager
configuration on the concerned object such as :

	starting the services of the concerned object

	stopping the services of the concerned object

	create communication connection between new objects and/or new services

Implementation

Updater

An updater implementation must inherit from the ::ctrlSelection::IUpdaterSrv service.

In the example below, an updater is used to manage a ::fwData::Reconstruction object identified with
the reconstruction key in a selection composite. This ::fwData::Reconstruction is stored in a
::fwMedData::ModelSeries and we used a specific updater to listen signals and manage the structure.

The updater provites slots to react on object/service signals.

Example

For example, the updater ::ctrlSelection::SObjFromSlots provides the following slots :

	add(object): add the given object in the composite with the configured key

	swapObj(object): swap the given object in the composite with the configured key

	addOrSwap(object): if the configured key exists in the composote, the object is swapped, else it is added

	remove(): remove the object with the configured key from the composite

	removeIfPresent(): remove the object if the configured key exists in the composite

Updater configuration example:

<object id="model_uid" type="::fwMedData::ModelSeries">
 <service uid="${GENERIC_UID}_listOrganEditor" impl="::uiMedData::editor::SModelSeriesList"
 type="::gui::editor::IEditor" autoConnect="yes" />
</object>

<object type="::fwData::Composite">
 <service uid="myUpdater" impl="::ctrlSelection::updater::SObjFromSlot" type="::ctrlSelection::IUpdaterSrv">
 <compositeKey>reconstruction</compositeKey><!-- key of the updated object -->
 </service>
</object>

<!-- connect updater to listen the reconstruction selection -->
<connect>
 <signal>listOrganEditor/reconstructionSelected</signal>
 <slot>myUpdater/addOrSwap</slot>
</connect>

Manager

Managers inherit from ::ctrlSelection::IManagerSrv. As explained earlier, they manage tasks or services on objects
which appear or disappear from the composite on which they are working.

Example

For instance, the XML configuration below manages a GUI to configure rendering options of a reconstruction from a
reconstruction list thanks to the ::ctrlSelection::manager::SwapperSrv service. In this configuration, the manager
updates the services attached to the rec object each time it is added, removed or swapped.

Manager configuration example

<object type="::fwData::Composite">
 <service uid="manager_uid" impl="::ctrlSelection::manager::SwapperSrv"
 type="::ctrlSelection::IManagerSrv" autoConnect="yes" >
 <mode type="dummy" />
 <config>
 <object id="rec" type="::fwData::Reconstruction">
 <service uid="organMaterialEditor" impl="::uiReconstruction::OrganMaterialEditor"
 type="::gui::editor::IEditor" />
 <service uid="representationEditor" impl="::uiReconstruction::RepresentationEditor"
 type="::gui::editor::IEditor" />
 </object>
 </config>
 </service>
</object>

	mode

	The mode must be “stop”, “dummy” or “startAndUpdate”.
The mode “stop”, used by default, starts the services when their attached object is added in the compsite
and stop and unregister the services when the object is deleted.
The mode “dummy” doesn’t stop the services when its attached object is deleted but swap it on a dummy object.
The mode “startAndUpdate” start and update the services when its attached object is added in the composite.

	object

	It defines the objects and their services to manage.

	id: the key of the object in the composite

	type: the type of the object

The services are declared as same as in the AppConfig.

	connect (optional):

	It allows to connect a signal to one or more slot(s). The signal and slots must be compatible.
The signal uid is optional, if it is not defines, the signal is from the current managed object.

<object type="::fwData::Composite">
 <service uid="manager_uid" impl="::ctrlSelection::manager::SwapperSrv"
 type="::ctrlSelection::IManagerSrv" autoConnect="yes" >
 <mode type="dummy" />
 <config>
 <object id="rec" type="::fwData::Reconstruction">

 <!-- services -->

 <connect>
 <signal>object_uid/signal_name</signal>
 <slot>service_uid/slot_name</slot>
 </connect>

 <connect>
 <signal>signal_name</signal><!-- signal from recontruction "rec" -->
 <slot>service_uid/slot_name</slot>
 </connect>
 </object>
 </config>
 </service>
<object>

	proxy (optional):

	It allows to connect one or more signal(s) to one or more slot(s). The signals and slots must be compatible.
The signal uid is optional, if it is not defines, the signal is from the current managed object.

	channel:

	Name of the channel use for the proxy.

<object type="::fwData::Composite">
 <service uid="manager_uid" impl="::ctrlSelection::manager::SwapperSrv"
 type="::ctrlSelection::IManagerSrv" autoConnect="yes" >
 <mode type="dummy" />
 <config>
 <object id="rec" type="::fwData::Reconstruction">

 <!-- services -->

 <proxy channel="myChannel">
 <signal>object_uid/signal_name</signal>
 <slot>service_uid/slot_name</slot>
 </proxy>

 <proxy channel="myOtherChannel">
 <signal>signal_name</signal><!-- signal from recontruction "rec" -->
 <slot>service_uid/slot_name</slot>
 </proxy>
 </object>
 </config>
 </service>
<object>

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Software Architecture Description (SAD)

Graphical User Interface

Overview

Graphical User Interface (GUI) is the process of displaying the graphical
components of an application. In fw4spl, the fwGui library provides abstract
tools to display components like windows, buttons, textfield, aso.

The software architecture provides a way of selecting different backends in order to manage the GUI components. As a result, the fwGuiQt library has been created to display components created using the Qt soup. Presently, this
backend is the only one supported by the applications.

Backend

When creating an application, we need to specify which gui backend we want to use. To do so,
the chosen gui bundle must be activated and started in the profile.xml of the application. The
main gui bundle for any application is guiQt. The gui bundle must be activated regardless
of the chosen backend.

<activate id="gui" version="0-1" />
<activate id="guiQt" version="0-1" />

<!-- ... -->

<start id="guiQt" />

Warning : The gui backend bundle must be started before any other bundle in the profile.xml.

Configuration

Frames

The frame is the main component of a GUI. The main service used to represent a general frame is ::fwGui::IFrameSrv. The service ::gui::frame::DefaultFrame is the default implementation for the main application frame. Every backend must provide its own implementation of this service.

The DefaultFrame service is configurable with different parameters :

	Application name

	Application icon

	Minimum window size

	GUI elements (toolbar, menubar, aso.)

<service uid="mainFrame" type="::fwGui::IFrameSrv"
 impl="::gui::frame::DefaultFrame" autoConnect="no" >
 <gui>
 <frame>
 <name>Application name</name>
 <icon>path_to_application_icon</icon>
 <minSize width="800" height="600"/>
 </frame>
 <menuBar />
 <toolBar >
 <toolBitmapSize height= "32" width="32" />
 </toolBar>
 </gui>
 <registry>
 <menuBar sid="menuBar" start="yes" />
 <toolBar sid="toolBar" start="yes" />
 <view sid="view" start="yes" />
 </registry>
</service>

Menus and actions

The menu bar is used to organize application action groups. The main service used to display that kind of bar is ::fwGui::IMenuBarSrv. The service ::gui::aspect::DefaultMenuBarSrv is the default implementation. Every backend must provide its own implementation of this service.

The configuration is used to associate a menu label with the service representing the menu.

<service uid="menuBar" type="::fwGui::IMenuBarSrv"
 impl="::gui::aspect::DefaultMenuBarSrv" autoConnect="no" >
 <gui>
 <layout>
 <menu name="First Menu"/>
 <menu name="Second Menu"/>
 </layout>
 </gui>
 <registry>
 <menu sid="firstMenu" start="yes" />
 <menu sid="secondMenu" start="yes" />
 </registry>
</service>

The main service used to display a menu is ::fwGui::IMenuSrv. The service ::gui::aspect::DefaultMenuSrv is the default implementation. Every backend must provide its own implementation of this service.

The configuration is used to associate an action name and the service performing the action. An action can be configured with a shortcut, a style (default, check, radio) and/or an icon. Several special actions can also be
specified (QUIT, ABOUT, aso.).

<service uid="myMenu" type="::fwGui::IMenuSrv"
 impl="::gui::aspect::DefaultMenuSrv" autoConnect="no" >
 <gui>
 <layout>
 <menuItem name="First Item" icon="icon_path" />
 <menuItem name="Checked Item" style="check" />
 <separator />
 <menuItem name="Quit" shortcut="Ctrl+Q" specialAction="QUIT" />
 </layout>
 </gui>
 <registry>
 <menuItem sid="actionFirstItem" start="no" />
 <menuItem sid="actionCheckedItem" start="no" />
 <menuItem sid="actionQuit" start="no" />
 </registry>
</service>

A menu can also be displayed using a tool bar. The main service used to display a tool bar is ::fwGui::IToolBarSrv. The service ::gui::aspect::DefaultToolBarSrv is the default implementation. Every backend must provide its own implementation of this service.

The configuration of a tool bar is the same as the one used to describe a menu.

Layouts

The layouts are used to organize the different parts of a GUI. The main service used to manage layouts is ::fwGui::IGuiContainerSrv. The service ::gui::view::DefaultView is the default implementation. Every backend must provide its own implementation of this service.

Several types of layout can be used :

	Line layout

	Cardinal layout

	Tab layout

Every layout can be configured with a set of parameters (orientation, alignment, aso.).

<service uid="subView" type="::gui::view::IView"
 impl="::gui::view::DefaultView" autoConnect="no" >
 <gui>
 <layout type="::fwGui::LineLayoutManager" >
 <orientation value="horizontal" />
 <view caption="view1" />
 <view caption="view2" />
 </layout>
 </gui>
 <registry>
 <view sid="subView1" start="yes" />
 <view sid="subView2" start="yes" />
 </registry>
</service>

Multi-threading

The fwGui library has been designed to support multi-thread application. When a GUI component needs to be accessed, the function call must be encapsulated in a lambda declaration as shown in this example:

::fwGui::registry::Worker::get()->postTask<void>(
[&] {
 //TODO Write function calls
}
).wait();

This encapsulation is required because all access to GUI components must be performed in the thread containing the GUI. It moves the function calls from the current thread, to the GUI thread.

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Software Architecture Description (SAD)

Generic Scene

Overview

A generic scene in FW4SPL is visualization feature to visualize several elements like meshes or images in a scene.
The scene is based on VTK. The main task of the generic scene is to manage all visualization services of the different
elements contained in the scene. The generic scene is universal and therefore applicable for divers visualization tasks.

As used in FW4SPL, the scene generic configures a VTK scene with a simple xml configuration. Hence, FW4SPL is mainly
used for medical assignments, the generic scene can be seen as fusion of a negatoscope and the 3D model visualization.

Components

Manager

The SRender is the manager service of the VTK scene. This service works on an object of type
fwData::Composite that contains all objects to display.

The manager retrieves its specified container. The VTK context (vtkRender and vtkRenderWindow) is installed in the
container of the manager.

The manager listens to the object signals of the associated fwData::Composite object. The transferred signals inform
the manager if objects in the fwData::Composite have been added, removed or changed. In response to the modifications
within the fwData::Composite object the manager supervises the starting and stopping of the visualization services
(adaptors explained below), which are specified in its configuration. Thus, an object is added or removed to the
fwData::Composite object, the corresponding adaptor which works on this object is started or stopped.

Adaptor

An adaptor (inherited from ::fwRenderVTK::IVtkAdaptorService) is a service to manipulate or display a FW4SPL data.
Services representing an adaptor are managed by a generic scene (SRender).
The adaptors are the gateway between FW4SPL objects and VTK objects.
To respect the principles of the framework, adaptors are kept as generic as possible.
Therefore they are reusable in further applications or even adaptors.

An adaptor is a specific service that need to implements the methods doStart, doStop, doUpdate, doConfigure` and
doSwap instead of the usual starting, updating, ...

class MyAdaptor : public ::fwRenderVTK::IVtkAdaptorService
{

public:

 fwCoreServiceClassDefinitionsMacro ((MyAdaptor)(::fwRenderVTK::IVtkAdaptorService));

protected:

 /// Parse the adaptor "config" tag
 void configuring() throw(fwTools::Failed);

 /// Initialize the vtk pipeline (actor, mapper, ...)
 void doStart();

 /// Clear the vtk pipeline
 void doStop();

 /// Update the pipeline from the current object
 void doUpdate();

 /// Update the pipeline with the new object (eventually call doStop();doStart();)
 void doSwap();
};

Configuration

<service uid="generiSceneUID" impl="::fwRenderVTK::SRender" type="::fwRender::IRender">
 <scene renderMode="auto|timer|none" offScreen="imageKey" width="1920" height="1080">
 <renderer id="myRenderer" layer="0" background="0.0" />
 <vtkObject id="transform" class="vtkTransform" />
 <picker id="negatodefault" vtkclass="fwVtkCellPicker" />

 <adaptor id="tmAdaptor" class="::visuVTKAdaptor::Transform" uid="adaptorUID" objectId="tm3dKey">
 <config transform="transform" />
 </adaptor>
 <adaptor id="snapshot" class="::visuVTKAdaptor::Snapshot" objectId="self">
 <config renderer="myRenderer" />
 </adaptor>

 <!-- -->

 <connect>
 <signal>adaptorUID/modified</signal>
 <slot>serviceUid/updateTM</slot>
 </connect>

 <connect waitForKey="tm3dKey">
 <signal>modified</signal><!-- signal for object "tm3dKey" -->
 <slot>serviceUid/updateTM</slot>
 </connect>

 <proxy channel="myChannel">
 <signal>adaptor2UID/modified</signal>
 <slot>service2Uid/updateTM</slot>
 </proxy>
 </scene>
 <fps>30</fps><!-- used if renderMode=="timer" -->
</service>

	renderMode (optional, “auto” by default)

	This attribute is forwarded to all adaptors. For each adaptor, if renderMode=”auto”, the scene is automatically
rendered after doStart, doUpdate, doSwap, doStop and m_vtkPipelineModified=true. If renderMode=”timer” the scene is
rendered at N frame per seconds (N is defined by fps tag). If renderMode=”none” you should call ‘render’ slot to
call reder the scene.

	offScreen (optional):

	Key of the image used for off screen render

	width (optional, “1280” by default):

	Width for off screen render

	height (optional, “720” by default):

	Height for off screen render

	renderer

	Defines a renderer. At least one renderer is mandatory, but there can be multiple renderer on different layers.

	id (mandatory): the identifier of the renderer

	layer (optional): defines the layer of the vtkRenderer. This is only used if there are layered renderers.

	background (optional): the background color of the rendering screen.

The color value can be defines as a grey level value (ex . 1.0 for white) or as a hexadecimal value (ex : #ffffff for white).

	vtkObject

	
Represents a vtk object. It is usually used for vtkTransform or vtkImageBlend.

	id (mandatory): the identifier of the vtkObject

	class (mandatory): the classname of the vtkObject to create. For example vtkTransform, vtkImageBlend, ...

	picker

	Represents a picker.

	id (mandatory): the identifier of the picker

	vtkclass (optional, by default vtkCellPicker): the classname of the picker to create.

	adaptor

	
Defines the adaptors to display in the scene.

	id (mandatory): the identifier of the adaptor

	class (mandatory): the classname of the adaptor service

	uid (optional): the fwID to specify for the adaptor service

	objectId (mandatory): the key of the adaptor’s object in the scene’s composite.

	autoConnect (optional, “yes” by default): if “yes” the service slot are automatically connected to the object signals.

	config: adaptor’s configuration. It is parsed in the adaptor’s configuring() method.

Note

The “self” key is used when the adaptor works on the scene’s composite.

	connect/proxy (optional)

	
Connects signal to slot

	waitForKey (optional): defines that the connection is made only if the key is present in the scene composite.

	signal (mandatory): must be signal holder UID, followed by ‘/’, followed by signal name.

	slot (mandatory): must be slot holder UID, followed by ‘/’, followed by slot name.

Note

To use the signal of the object (defined by waitForKey), you don’t have to write object uid, only the signal name.

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Software Architecture Description (SAD)

Data file migration

Contents

	Data file migration
	Overview

	Definitions

	Data Version

	Context version

	Migration

	Graph

	Structure

	Usage

Overview

The data migration system consists on converting the data to another version. It allows us to adapt any version of data to any version of software, and thus ensuring compatibility between data and software independently of their version.

Migration process is applied on two independent steps :

	In ::ioAtoms::SReader while reading data files, previously serialized with fwAtoms, right before converting said data to ::fwData::Objects.

	In ::ioAtoms::SWriter after data is converted to fwAtoms::Base.

Definitions

	Context

	It represents a complex chunk of data. For example, the medical patient folder, the software preference file, etc. Hereafter we will consider a medical patient folder which is called MedicalData.

	Structural patch

	This sort of patch affects only one object of the serialized data regardless of the context (ex: add or remove attribute, type, ...), see Structural patch.

	Semantic patch

	This sort of patch is applied on a context to migrate to a given version without changing the data structure.
(These patches are sometimes called contextual patches), see Semantic patch.

	Patcher

	A patcher defines the methods to parse the data and applies the structural and semantic patches, see Patcher.

Data Version

After the conversion from ::fwData::Object to ::fwAtoms::Object, each data is assigned a version number. Said number is defined in the camp serialization source files (see Serialization). Each data structure modification causes an incrementation of the data version.

Example of data declaration for introspection (used to convert to fwAtoms):

#include <fwCamp/UserObject.hpp>

fwCampImplementDataMacro((fwData)(ComplexClass))
{
 builder
 .tag("object_version", "1") // data version
 .tag("lib_name", "fwData")
 .base< ::fwData::Object>()
 .property("myString" , &::fwData::ComplexClass::m_myString)
 .property("myFloat" , &::fwData::ComplexClass::m_myFloat)
 .property("mySimpleClass" , &::fwData::ComplexClass::m_mySimpleClass)
 ;
}

Context version

The context version must be incremented after a data version modification.

Note

	If several data versions are modified simultaneously, only one incrementation of the context version is necessary.

	A single context version can contain data with different versions (see the example below).

The .versions file contains a detailed description of the context version, and the version of each data.

Example of V1.versions:

{
 "context": "MedicalData",
 "version_name": "V1",
 "versions":
 {
 "::fwData::Array": "1",
 "::fwData::Boolean": "1",
 "::fwData::Image": "1",
 "::fwData::Integer": "1",
 "::fwData::Material": "1",
 "::fwData::Mesh": "1",
 "::fwData::Patient": "1",
 }
}

Example of V2.versions:

{
 "context": "MedicalData",
 "version_name": "V2",
 "versions":
 {
 "::fwData::Array": "1",
 "::fwData::Boolean": "1",
 "::fwData::Image": "2",
 "::fwData::Integer": "1",
 "::fwData::Material": "1",
 "::fwData::Mesh": "1",
 "::fwMedData::Patient": "1",
 }
}

Migration

The migration is applied on a given context. It is described in the .graphlink file. It defines how to migrate from a context version to another.

Example of V1ToV2.graphlink:

{
 "context" : "MedicalData",
 "origin_version" : "V1",
 "target_version" : "V2",
 "patcher" : "DefaultPatcher",
 "links" : [
 {
 "::fwData::Patient" : "1",
 "::fwMedData::Patient" : "1"
 },
 {
 "::fwData::Image" : "1",
 "::fwData::Image" : "2"
 }
]
}

The links tag represents the data version modifications, by doing so, associated patches can be applied.

Warning

Two .versions files must be defined, one for each version (V1.versions and V2.versions).

Note

It is not necessary to specify a simple data version incrementation on the links tag, the patching system establishes this information from the data version defined in the .versions files.

Graph

The .graphlink and .versions files are parsed and the information is stored in the ::fwAtoms::VersionsManager. Each context defines a graph.

Example of graph:

[image: ../../_images/patchGraph.png]
The graph is used to find the migration path from an initial version to a target version.
In our example, it is possible to migrate from V1 to V5, the data is converted to V3, V4 then V5.
If several paths are possible, the shortest path is used.

Structure

The fwAtomsPatch library contains the base classes to perform the migration.

[image: ../../_images/patch_structure.png]

	PatchingManager

	This class provides the transformTo() method used to migrate the data. It uses the graph to apply
the patcher on each version.

	patcher::IPatcher

	Base class for patchers.

	patcher::DefaultPatcher

	Patcher used by default. It performs the data migration in two steps: first it applies the structural patches
recursivly on each sub-object and then applies the semantic patches recursivly on each sub-object .

	IPatch

	Base class for structural and semantic patches. It provides an apply() method that must be implemented in
sub-classes.

	ISemanticPatch

	Base class for semantic patches.

	IStructuralPatch

	Base class for structural patches.

	IStructuralCreator

	Base class for creators. It provides a create() method that must be implemented in sub-classes.

	SemanticPatchDB

	Singleton used to register all the semantic patches.

	StructuralPatchDB

	Singleton used to register all the structural patches.

	CreatorPatchDB

	Singleton used to register all the creator patches.

	VersionsGraph

	Registers the migration graphs.

	VersionsManager

	Singleton used to register all the version graph.

The fwStructuralPatch library contains the structural patches for fwData and fwMedData conversion.

The fwMDSemanticPatch library contains the semantic patches for fwData and fwMedData conversion in the
MedicalData context.

The patchMedicalData bundle must be activated in your application to allow migration in MedicalData context.

Structural patch

The structural patches are registered in the ::fwAtomsPatch::StructuralPatchDB singleton. A structural patch
provides a method apply that performs the structure conversion. The constructor defines the classname and versions
of the origin and target objects as described in the .graphlink links section.

Example of structural patch to convert the fwData::Image from version 1 to 2. We add three attributes related to
medical imaging: the number of components nb_components, the window center window_center and the window width
window_width.

#include "fwStructuralPatch/fwData/Image/V1ToV2.hpp"

#include <fwAtoms/Numeric.hpp>
#include <fwAtoms/Numeric.hxx>

namespace fwStructuralPatch
{

namespace fwData
{

namespace Image
{

V1ToV2::V1ToV2() : ::fwAtomsPatch::IStructuralPatch()
{
 m_originClassname = "::fwData::Image";
 m_targetClassname = "::fwData::Image";
 m_originVersion = "1";
 m_targetVersion = "2";

}

// --

void V1ToV2::apply(
 const ::fwAtoms::Object::sptr& previous, // object in the origin version
 const ::fwAtoms::Object::sptr& current, // clone of the previous object to convert in the targer version
 ::fwAtomsPatch::IPatch::NewVersionsType& newVersions) // map < previous object, new object > association
{
 // Check if the previous and current object version and classname correspond
 IStructuralPatch::apply(previous, current, newVersions);

 // Update object version
 this->updateVersion(current);

 // Create helper
 ::fwAtomsPatch::helper::Object helper(current);

 helper.addAttribute("nb_components", ::fwAtoms::Numeric::New(1));
 helper.addAttribute("window_center", ::fwAtoms::Numeric::New(50));
 helper.addAttribute("window_width", ::fwAtoms::Numeric::New(500));
}

} // namespace Image

} // namespace fwData

} // namespace fwStructuralPatch

To register the structural patch:

// fwStructuralPatch/autoload.cpp

::fwAtomsPatch::StructuralPatchDB::sptr structuralPatches = ::fwAtomsPatch::StructuralPatchDB::getDefault();
structuralPatches->registerPatch(::fwStructuralPatch::fwData::Image::V1ToV2::New());

Creator

The creator provides a method create that allows to create a new object with the default attribute initialization.
The creator is used in structural patches to create new sub-objects.
Creators are registered in the ::fwAtomsPatch::StructuralCreatorDB singleton.

Creators are useful for adding an attribute that is a non-null object.

Example of creator for the ::fwMedData::Patient :

#include "fwStructuralPatch/creator/fwMedData/Patient1.hpp"

#include <fwAtoms/String.hpp>

#include <fwAtomsPatch/helper/Object.hpp>

namespace fwStructuralPatch
{
namespace creator
{
namespace fwMedData
{

Patient1::Patient1()
{
 m_classname = "::fwMedData::Patient";
 m_version = "1";
}

// --

::fwAtoms::Object::sptr Patient1::create()
{
 // Create an empty ::fwAtoms::Object with the classname, version and ID informtation
 ::fwAtoms::Object::sptr patient = this->createObjBase();

 ::fwAtomsPatch::helper::Object helper(patient);

 helper.addAttribute("name", ::fwAtoms::String::New(""));
 helper.addAttribute("patient_id", ::fwAtoms::String::New(""));
 helper.addAttribute("birth_date", ::fwAtoms::String::New(""));
 helper.addAttribute("sex", ::fwAtoms::String::New(""));

 return patient;
}

} // namespace fwMedData
} // namespace creator
} // namespace fwStructuralPatch

To register the creator:

// fwStructuralPatch/creator/autoload.cpp

::fwAtomsPatch::StructuralCreatorDB::sptr creators = ::fwAtomsPatch::StructuralCreatorDB::getDefault();
creators->registerCreator(::fwStructuralPatch::creator::fwMedData::Equipment1::New());

Semantic patch

The semantic patches are registered in the ::fwAtomsPatch::SemanticPatchDB singleton.
The structural patch provides a method apply that performs the structure conversion. The constructor
defines the origin classname, the origin version of the object, and the origin and the target context version as
described in the .graphlink.

The semantic patch is used when we need several objects to perform the object migration.

Example of semantic patch :

#include "fwMDSemanticPatch/V2/V3/fwData/Image.hpp"

#include <fwAtoms/Object.hpp>
#include <fwAtoms/Object.hxx>
#include <fwAtoms/Numeric.hpp>
#include <fwAtoms/Numeric.hxx>

#include <fwAtomsPatch/helper/functions.hpp>

namespace fwMDSemanticPatch
{
namespace V2
{
namespace V3
{
namespace fwData
{

Image::Image() : ::fwAtomsPatch::ISemanticPatch()
{
 m_originClassname = "::fwData::Image";
 m_originVersion = "1";
 this->addContext("MedicalData", "V2", "V3"); // Context version
}

// --

void Image::apply(
 const ::fwAtoms::Object::sptr& previous, // object in the origin version
 const ::fwAtoms::Object::sptr& current, // clone of the previous object to convert in the targer version
 ::fwAtomsPatch::IPatch::NewVersionsType& newVersions) // map < previous object, new object > association
{
 // Check if the previous and current object version and classname correspond
 ISemanticPatch::apply(previous, current, newVersions);

 // Cleans object fields (also creates them if they are missing)
 ::fwAtomsPatch::helper::cleanFields(current);

 ::fwAtomsPatch::helper::Object helper(current);

 ::fwAtoms::Object::sptr array = ::fwAtoms::Object::dynamicCast(previous->getAttribute("array"));
 ::fwAtoms::Numeric::sptr nbComponent =
 ::fwAtoms::Numeric::dynamicCast(array->getAttribute("nb_of_components"));

 helper.replaceAttribute("nb_components", nbComponent->clone());
}

// --

} // namespace fwData
} // namespace V3
} // namespace V2
} // namespace fwMDSemanticPatch

This patch changed the attribute nb_components in the image copied from array nb_of_components.

To register the semantic patch:

// fwMDSemanticPatch/V1/V2/fwData/autoload.cpp
::fwAtomsPatch::SemanticPatchDB::sptr contextPatchDB = ::fwAtomsPatch::SemanticPatchDB::getDefault();
contextPatchDB->registerPatch(::fwMDSemanticPatch::V1::V2::fwData::Composite::New());

Patcher

The patcher defines the methods to parse the data and applies the structural and semantic patches. It must inherit from fwAtomsPatch::patcher::IPatcher and implements the transformObject() method.

We usually use the DefaultPatcher. The conversion is processed in two steps: first it applies the structural patches recursivly on each sub-objects, then it applies the semantic patches recursively on each sub-objects.

Rules

	Rule 1

	A change in data (fwData, fwMedData, ...) involves the incrementation of the data version and the context version
and thus, the creation of structural and/or semantic patch.

	Rule 2

	The creator patch creates the fwAtoms::Object representing the data object. The ::fwAtoms::Object created
must be the same as the data created with a New() and converted to fwAtoms.

	Rule 3

	The buffer object (converted as BLOB in fwAtoms) is just reused (without copy) during the migration. If its
structure is modified, you should clone the buffer before applying the patch.

	Rule 4

	If an object is contained in the fwAtoms::Object to migrate but is not present in the current context version
(in the .versions file), this object will be erased from the fwAtoms::Object.

Usage

If you have to modify data, you don’t have to re-implement all the migration system, but there are steps to perform :

	step 1

	Increment the data version in camp declaration (and update the declaration of the attribute if needed). See
Data Version.

	step 2

	Increment the context version: create new .versions files (with the associated data version). See
Context version.

	step 3

	Create the .graphlink file. See graphlink.

	step 4 (optional)

	Create the creator if you need to add a new non-null objet. See Creator.

	step 5

	Create the structural patch. See Structural patch.

	step 6 (optional)

	Create the semantic patch if you need other objects to update the current one. See Semantic patch.

Note

You can create migration patches from V1 to V3 without using the V1 to V2 and V2 to V3.

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

Coding style

	Terminology

	Generalities

	C++ coding
	Source and files

	Naming conventions

	Coding rules

	Documentation

	XML coding

	CMakeLists coding

	Licence

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Coding style

Terminology

	Rules are mandatory. Any rule can be (exceptionally) exceeded, but if so, it has to be rigorously justified.

	Recommendations are optional.

	Camel case is the practice of writing compound words or phrases such that each word or abbreviation begins with a capital letter. In programming languages, camel case is assumed to start with a lowercase letter. We will use the term upper camel case when it starts with a capital.

camelCaseLabel
UpperCamelCaseLabel

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Coding style

Generalities

	Rule 44 : Preferred language

	English is the preferred language for types, variables, functions naming, and code comments.

	Rule 45 : Maximum size of a line

	A source code line must not exceed 120 characters.

	Rule 46 : Indentation

	Use only spaces, and an indent level has four spaces.

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Coding style

C++ coding

Source and files

	Rule 4 : Files tree

	Source files must be placed in a folder src/. Public header files must be placed in a folder include/. Private headers may be placed in a different location.

	Rule 5 : Files hierarchy

	The file hierarchy should follow the namespace hierarchy. For instance, the implementation of a class ::ns1::ns2::SService should be put in src/ns1/ns2/SService.cpp.

	Rule 6 : Files extensions

	Header files use the extension .hpp.

Implementation files use the extension .cpp.

Files containing implementation of “template” classes use the extension .hxx.

	Recommendation 2 : Only one class per file

	It is recommended to declare (or to implement) only one class per file. However tiny classes may be declared inside the same file.

	Rule 7 : Includes

	Use the right include directive depending on the context. #include "..." must be used to import headers from the same module, whereas #include <...> must be used to import headers from other modules.

	Rule 8 : Include path

	The include path is not an absolute path depending on a local file system. A correct include path does respect the letter case of the filenames and folders (since some platforms require it) and uses the character ‘/’ as a separator.

	Rule 9 : Protection against multiple inclusions

	You must protect your files against multiple inclusions. To this end, use the standard directives of the precompiler #ifndef and #define (since #pragma once is only supported by Microsoft compilers).

Use the name of the file and the namespace hierarchy inside the define name in order to prevent any conflict with a file which has the same name but located in a different namespace. Namespaces and file name must be separated by a single underscore _. The define name must be prefixed and suffixed by two underscores __. Last, a comment must be placed after #endif to quote the define.

#ifndef __NAMESPACEA_NAMESPACEB_SAMPLE_HPP__ // Preamble protecting against
#define __NAMESPACEA_NAMESPACEB_SAMPLE_HPP__ // multiple inclusions.

#endif // __NAMESPACEA_NAMESPACEB_SAMPLE_HPP__

	Recommendation 3 : Independent headers

	A header should compile alone. All necessary includes should be contained inside the header itself. In the following sample :

// Header.hpp

class Foo
{
public:
 std::string m_string;
}

you will be forced to include the file in this way to get a successful build :

// Source.hpp

#include <string>
#include "Header.hpp"

This is a bad practice, the header should rather be written :

// Header.hpp

#include <string>

// Header.hpp
class Foo
{
public:
 std::string m_string;
}

So that people can simply include the header :

// Source.hpp

#include "Header.hpp"

	Recommendation 4 : Minimize inclusions

	Try to minimize as much as possible inclusions inside a header file. Include only what you use [https://code.google.com/p/include-what-you-use/]. Use forward declarations when you can (i.e. a type or class structure is not referenced inside the header). This will limit dependency between files and reduce compile time. Hiding the implementation can also help to minimize inclusions (see Hide implementation)

	Rule 10 : Sort headers inclusions

	You must sort headers in the following order : same module, framework libraries, bundles, external libraries, standard library. This way, this helps to make each header independent. The rule can be broken if a different include order is necessary to get a successful build.

#include "currentModule.hpp"

#include <libSampleB/second.hpp>
#include <libSampleA/first.hpp>
#include <libSampleB/subModule/first.hpp>

#include <Qt/QtGui>
#include <vector>
#include <map>

	Recommendation 5 : Sort inclusions alphanumerically

	In addition to the previous sort, you may sort includes in alphanumerical order, according to the whole path. Thus they will be grouped by module. For a better readability, an empty line can be added between each module.

#include "currentModule.hpp"

#include <libSampleA/first.hpp>
#include <libSampleB/second.hpp>

#include <libSampleB/subModule/first.hpp>
#include <libSampleB/subModule/second.hpp>

#include <Qt/QtGui>

#include <map>
#include <vector>

Naming conventions

	Rule 11 : Class

	Class names must be written in upper camel case. It should not repeat a namespace name. For instance ::editor::SCustomEditor should be rather called ::editor::SCustom.

	Rule 12 : File

	The name of the file should be based on the class name defined in it. It must follow the same letter case.

	Rule 13 : Namespace

	Namespaces must be written in camel case. A comment quoting the namespace must be placed next to the ending ‘}’.

namespace namespaceA
{
namespace namespaceB
{
 class Sample
 {
 ...
 };
} // namespace namespaceB
} // namespace namespaceA

When referring a namespace, you must put :: if this is a root namespace, with an exception for std namespace. Ex: ::boost::filesystem.

	Rule 14 : Function and method names

	Functions and methods names must be written in camel case.

	Recommendation 6 : Correct naming of functions

	Try as much as possible to help the users of your code by using comprehensive names. You may for instance help them to indicate the cost of a function. A function that executes a search to retrieve an object must not be called like a getter. In this case, it is better to call it findObjet() instead of getObject().

	Rule 15 : Variable

	Variable names must be written in camel case. Members of a class are prefixed with a m_.

class SampleClass
{
private:
 int m_identifier;
 float m_value;
};

Static variables are prefixed with a s_.

static int s_staticVar;

	Rule 16 : Constant

	Constant variables must be written in snake_case but in capitals, and follow the previous rule.

class SampleClass
{
 static const int s_AAA_BBB_CCC_VALUE = 1;
};

void fooFunction()
{
 const int AAA_BBB_VAR = 1;
 ...
}

	Rule 17 : Type

	Type names, like classes, must be written in upper camel case.

typedef int CustomType;
typedef vector<int> CustomContainer;

	Rule 18 : Template parameter

	Template parameters must be written in capitals. In addition, they must be short and explicit.

template< class KEY, class VALUE > class SampleClass
{
 ...
};

	Rule 19 : Macro

	Macros without parameters must be written in capitals. On the contrary, there is no specific rule on macros with parameters.

#define CUSTOM_FLAG_A 1
#define CUSTOM_FLAG_B 1

#define CUSTOM_MACRO_A(x) x
#define Custom_Macro_B(x) x
#define custom_Macro_C(x) x
#define custom_macro_d(x) x

	Rule 20 : Enumerated type

	An enumerated type name must be written in upper camel case. Labels must be written in capitals. If a typedef is defined, it follows the upper camel case standard.

typedef enum SampleEnum
{
 LABEL_1,
 LABEL_2
 ...
} SampleEnumType;

	Rule 21 : Service

	A service implementation is identified by a S at the beginning of the class name. Example : SCustomEditor. A service interface is identified by a I at the beginning of the class name. Example : IEditor.

	Rule 22 : Signal

	A signal name must be prefixed with sig. It should be suffixed by a past action (ex: Updated, Triggered, Cancelled, CakeCookedAndBaked). It follows other common variable naming rules (member of a class, etc...).

class Sample
{
 SigType::sptr m_sigImageDisplayed;
};

	Rule 23 : Slot

	A slot name must be prefixed with slot. It should be suffixed by an imperative order (Ex: Update, Run, Detach, Deliver, OpenWebBrowser, GoToFail). It follows other common variable naming rules (member of a class, etc...).

class Sample
{
 SlotType::sptr m_slotDisplayImage;
}

Coding rules

Blocks

	Rule 24 : Indentation

	Code block indentation and bracket positioning follow the Allman [http://en.wikipedia.org/wiki/Indent_style#Allman_style] style.

void function(void)
{
 if(x == y)
 {
 something1();
 something2();
 }
 else
 {
 somethingElse1();
 somethingElse2();
 }
 finalThing();
}

	Rule 25 : Indentation of namespaces

	Namespaces are an exception of the previous rule. They should not be indented.

namespace namespaceA
{
namespace namespaceB
{
 ...
} // namespace namespaceB
} // namespace namespaceA

	Rule 26 : Blocks are mandatory

	After a control statement (if, else, for, while/do...while, try/catch, switch, foreach, etc...), it is mandatory to open a block, whatever is the number of instructions inside the block.

	Rule 27 : Scope

	The keywords public, protected and private are not indented, they should be aligned with the keyword class.

class Sample
{
public:
 ...
private:
 ...
};

Class declaration

	Recommendation 7 : Only three scope sections

	When possible, use only one section of each scope type public, protected and private. They must be declared in this order.

	Recommendation 8 : Group class members by type

	You may group class members in each scope according to their type: type definitions, constructors, destructor, operators, variables, functions.

	Rule 28 : Hide implementation

	Avoid non-const public member variables except in very small classes (i.e. a 3D point). The Pimpl idiom [http://c2.com/cgi/wiki?PimplIdiom] may also be helpful to separate the implementation from the declaration.

	Recommendation 9 : Hide implementation

	Try to put variables as much as possible in the private section.

	Rule 29 : Accessors

	Since you protect your member variables from the outside, you will have to write accessors, named getXXX() and setXXX(). Getters are always const.

	Rule 30 : Template class function definition

	The function definition of a template class must be defined after the declaration of the class.

template < typename TYPE >
class Sample
{
public:
 void function(int i);
};

template < typename TYPE >
inline Sample<TYPE>::function(int i)
{
 ...
}

	Recommendation 10 : Separate template class function definition

	In addition of the previous rule, you may put the definition of the function in a .hxx file. This file will be included in the implementation file right after the header file (the compile time will be reduced comparing with an inclusion of the .hxx in the header file itself).

#include <namespaceA/file.hpp>
#include <namespaceA/file.hxx>

Initializer list

	Rule 31 : One initializer per line

	In a class constructor, use the initialization list as much as possible. Place one initializer per line. Constructors of base classes should be placed first, followed by member variables. Do not specify an initializer if it is the default one (empty std::string for instance).

SampleClass::SampleClass(const std::string& name, const int value) :
 BaseClassOne(name),
 BaseClassTwo(name),
 m_value(value),
 m_misc(10)
{}

	Recommendation 11 : Align everything that improves readability

	To improve readability, you may align members on one hand and argument lists on the other hand.

SampleClass::SampleClass(const std::string& name, const int value) :
 BaseClassOne (name),
 BaseClassTwo (name),
 m_value (value),
 m_misc (10)
{}

Functions

	Rule 32 : Constant reference

	Whenever possible, use constant references to pass arguments of non-primitive types. This avoids useless and expensive copies.

void badFunction(std::vector<int> array)
{
 ...
}

void goodFunction(const std::vector<int>& array)
{
 ...
}

	Recommendation 12 : Constant reference for shared pointers

	For performance sake, it is preferable to use const& to pass arguments of type ::boost::shared_ptr. It is only useful to pass the pointer by copy if the pointer can be invalidated by an another thread during the function call. If you have any doubt, it is safer to pass the argument by copy.

	Rule 33 : Constant functions

	Whenever a member function should not modify an attribute of a class, it must be declared as const.

void readOnlyFunction(const std::vector<int>& array) const
{
 ...
}

	Recommendation 13 : Limit use of expression in arguments

	When passing arguments, try to limit the use of expressions to the minimum.

// This is bad
function(fn1(val1 + val2 / 4), fn2(fn3(val3), val4));

// This is better
const float res0 = val1 + val2 / 4;

const float res1 = fn1(res0);
const float res3 = fn3(val3);
const float res2 = fn2(res3, val4);

function(res1 , res2);

Miscellaneous

	Rule 34 : Enumerator labels

	Each label must be placed on a single line, followed by a comma. If you assign values to labels, align values on the same column.

enum OpenFlag
{
 OPEN_SHARE_READ = 1,
 OPEN_SHARE_WRITE = 2,
 OPEN_EXISTING = 4,
};

	Rule 35 : Use of namespaces

	You have to organize your code inside namespaces. By default, you will have at least one namespace for your module (application or bundle). Inside this namespace, it is recommended to split your code into sub-namespaces. This helps notably to prevent naming conflicts.

It is forbidden to use the expression``using namespace`` in header files but it is allowed in implementation files. It is however recommended to use aliases in this latter case.

namespace bf = ::boost::filesystem;

	Rule 36 : Keyword const

	Use this keyword as much as possible for variables, parameters and functions.

	Recommendation 14 : Keyword auto

	Use this keyword as much as possible to improve maintainability and robustness of the code.

	Rule 37 : Prefer constants instead of #define

	Use a static constant object or an enumeration instead of a #define. This will help the compiler to make type checking. You will also be able to check the content of the constants while debugging. You can also define a scope for them, inside the namespace, inside a class, private to a class, etc...

	Rule 38 : Prefer references over pointers

	When possible, use references instead of pointers, especially for function parameters. Pointer as parameter should only be used if it is considered to have a NULL pointer or when passing a C-like array. If you use a pointer, always check it if is null in the current scope before dereferencing it.

	Rule 39 : Type conversion

	For type conversion, use the C++ operators which are static_cast, dynamic_cast, const_cast and reinterpret_cast. Use them wisely in the appropriate case. You may read this documentation [http://www.cplusplus.com/doc/tutorial/typecasting/].

	Recommendation 15 : Strings to numbers/numbers to string conversion

	When converting strings to numbers or numbers to string, prefer the use of boost::lexical_cast [http://www.boost.org/doc/libs/1_55_0/doc/html/boost_lexical_cast/examples.html#boost_lexical_cast.examples.strings_to_numbers_conversion].

	Recommendation 16 : Exceptions

	Exceptions are the preferred mechanism to handle error notifications.

	Rule 40 : Explicit integer types

	When you do need a specific integer size, use type definitions declared in <cstdint> [http://www.cplusplus.com/reference/cstdint/], for example :

	Bits
	Signed
	Unsigned

	8
	int8_t
	uint8_t

	16
	int16_t
	uint16_t

	32
	int32_t
	uint32_t

	64
	int64_t
	uint64_t

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Coding style

Documentation

	Rule 41 : Document the code

	The code must be documented with Doxygen, an automated tool to generate documentation.

	Rule 42 : Location of the documentation

	Every documentation that can be useful to a user must be placed inside the header files. Thus a user of a module can find the declaration of a class and its documentation at the same place. Inside the implementation file, the documentation will give more details about algorithms.
Moreover, every documentation must be placed next to the entity it is refering to, in order to help searching inside the code.

	Recommendation 17 : Lightweight documentation

	Inside a documentation block, only use necessary tags. This will avoid to overload the documentation and makes it readable. By the way, empty tags will be presented inside the generated documentation and will be useless.
Just use an empty line to make a separation inside a documentation block.
Don’t indicate parameter types when using @param directive. This is useless since it will duplicate information of the function prototype.
Also, prefer the use of /// whenever possible.

Example 1 : Bad documentation block

/**
* @brief A very short description.
*
* A longer description, giving more details about the documented piece
* of code.

* @param

* @return

* @exception

* @todo

Example 2 : Good documentation block

/**
* @brief A very short description.
*
* A longer description, giving more details about the documented piece
* of code.
*/

Example 3 : Function documentation

class Sample
{
public:
 /**
 * Retrieve the thing.
 *
 * @return The thing value.
 */
 const std::string& getThing(void) const;
 /**
 * @brief Set the thing.
 *
 * @param thing : The new thing.
 */
 void setThing(const std::string& thing);

private:
 /// stored thing
 std::string m_thing;
};

	Recommendation 18 : Structured documentation

	Doxygen provides a default structure when you generate the documentation. However, when dealing with a big documented entity, it is often recommended to use the group feature (@name). With this feature you will build a logical view of the class interfaces.

	Rule 43 : Document service configuration

	The method configuring of a service must be properly documented. It should indicate every parameter that can be passed, no matter if it is optional or not. Example :

/**
 * @verbatim
<adaptor id="points" class="::namespace::SService">
 <config option1="default" option2="false"/>
</adaptor>
 @endverbatim
 * - \b option1 : first option.
 * - \b option2(optional) : second option.
*/
NAMESPACE_API void configuring() throw(fwTools::Failed);

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Coding style

XML coding

	Rule 48 : Id name

	Id should have a semantic name. Avoid id like myXXXXX or customXXXXX. Moreover, id must be written in lower case with an underscore as separator.

<service id="generic_scene" />

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Coding style

CMakeLists coding

	Rule 1 : Function name

	Standard CMake functions and macros should be written in lower case. Each word is generally separated by an underscore (this is a rule of CMake anyway).

add_subdirectory("library/")
include_directories(SYSTEM "/usr/local")

	Rule 2 : Macro name

	Custom macros should be written in camel case.

fwLoadProperties()
fwLink("boost")

	Rule 3 : Variable name

	Variables should be written in upper case letters separated if needed by underscores.

set(VARIABLE_NAME "")

	Recommendation 1 : Expression in block ending

	In the past, CMake enforced to specify the label or expression in block ending, for instance :

function(name arg1 arg2)
 ...
 if(expr1)
 ...
 else(expr1)
 ...
 endif(expr1)
 ...
endfunction(name)

This is no longer needed in latest CMake versions, and we recommend to use this possibility for the sake of simplicity.

function(name arg1 arg2)
 ...
 if(expr1)
 ...
 else()
 ...
 endif()
 ...
endfunction()

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Coding style

Licence

	Rule 47 : LGPL

	Do not forget to put the LGPL licence block on fw4spl.

/* ***** BEGIN LICENSE BLOCK *****
 * FW4SPL - Copyright (C) IRCAD, 2009-2015.
 * Distributed under the terms of the GNU Lesser General Public License (LGPL) as
 * published by the Free Software Foundation.
 * ***** END LICENSE BLOCK ***** */

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

Frequently Asked Questions (FAQ)

What is fw4spl?

The framework FW4SPL (FrameWork for Software Production) is an open-source framework, developed by IRCAD (research institute against cancer and disease). The principle of FW4SPL is the fast and easy creation of applications, mainly in the medical field. Therefore it provides features like digital image processing in 2D and 3D, visualization or simulation of medical interactions. To build an application with FW4SPL there are no programming skills required. By writing a simple XML the users can design their own application.

What does fw4spl mean?

FW4SPL means FrameWork for Software Production Line. It is also called F4S (“forces”).

What are the features of fw4spl?

The framework is built around the notion of component (bundle). To build an application with FW4SPL there are no programming skills required. By writing a simple XML the users can design their own application.

FW4SPL has a component-based architecture composed of C++ libraries.
There are three main concepts in the architecture:
- object-service concept
- component approach
- signal-slot communication

Which platforms does fw4spl run on?

This framework can run under Windows, Linux and MacOS and we are working on the Android part.

Where can I find applications developed with fw4spl ?

Some tutorials are provided with the framework and you can also build VR-Render, a free visualization software.

Which prerequiste do I need to develop bundle?

You must have a good knowledge in C++. Concerning the configuration files, they are written in XML.

What are the BinPkgs?

The BinPkgs (binary packages) contain all the extern libraries needed by fw4spl. For each BinPkg, a CMakeLists provides the OS specific instructions to build it . They can be downloaded on https://github.com/fw4spl-org/fw4spl-deps

Is it difficult to compile an application with fw4spl?

No, it isn’t. You just have to compile all the bundles and libraries used by the application.

Why does fw4spl provide a launcher?

The launcher is used to create the entry point of the application. It parses the profile and configuration xml file to build it.

How can I debug my program ?

First, you can change the log level of a sub-project in the CMake configuration.

The allowed values are : [‘trace’, ‘debug’, ‘info’, ‘error’, ‘fatal’, ‘warning’, ‘disable’]. the value ‘trace’ gives me the maximun of log, ‘disable’ disables log.

note a : Printing many log messages (by activating trace on all sub-projects for ex.) can be very time consuming for the application.

note b : Under windows system, log messages are saved on filesystem in SLM.log file, in the working directory.

Secondly, you can debug your application using gdb (Linux/Mac) or Visual Studio (Windows) and compiling your application in Debug mode

note a : you can use gdb like this “LD_LIBRARY_PATH=./lib gdb -arg bin/launcher Bundles/myApp/myProfile.xml”, and press “r” for run the program

note b : you can use under gdb the command “catch throw” hence gdb will stop near the error
note c : Documentation to learn using gdb : http://www.cs.tau.ac.il/lin-club/lecture-notes/GDB_Linux_telux.pdf

Thirdly, you can manage the program complexity by reducing the number of activated components (in profile.xml) and the number of created services (in config.xml) to better localize errors.

Fourthly, verify that your profile.xml / plugin.xml and each bundle plugin.xml are well-formed, by using xmllint (command line tool provided by libxml2).

I have an assertion/fatal message when I launch my program, any idea to correct the problem ?

First, you can read the output message :) and try to solve the problem.
In many cases, there are two kind of problems. The program fails to :

	
	create the service given in configuration In this case, four reasons are possibles :

	
	the name of service implementation in config.xml contains mistakes

	the bundle that contains this service is not activated in the profile

	the bundle plugin.xml, that contains this service, not declares the service or the declaration contains mistakes.

	the service is not register in the Service Factory (forget of macro REGISTER_SERVICE(...) in file .cpp)

	manage the configuration of service. In this case, the implementation code in .cpp file (generally configuring() method of service) does not correspond to description code in config.xml (Missing arguments, or not well-formed, or mistakes string parameters).

If I use fw4spl, do I need wrap all my data ?

The first question is to know if the data is on center of application:

	Need you to shared data between few bundles ?

	Need you to attach services on this data ?

	If the answer is no, you don’t need to wrap your data.

	Otherwise, you need to have an object that inherits of ::fwData::Object.

In this last case, do you need shared this object between different services which use different libraries, ex for Object Image : itk::Image vs vtkImage ?

	If the answer is yes, you need create a new object like fwData::Image and a wrapping with fwData::Image<=>itk::Image and fwData::Image<=>vtkImage.

	Otherwise, you can just encapsulated an itk::Image in fwData::Image and create an accessor on it. (however, this kind of choice implies that all applications that use fwData::Image need itk library for running.)

What is a sesh@ path ?

A sesh@ path is a path used to browse an object (and sub-object) using the introspection (see fwDataCamp and Serialization). The path begins
with a ‘@’ or a ‘!’.
- @ : the returned string is the fwID of the sub-object defined by the path.
- ! : the returned string is the value of the sub-object, it works only on String, Integer, Float and Boolean object.

Example:

To get the fwID of an image contained in a Composite with the key “myImage”

@values.myImage

To get the fwID of the first reconstruction of a ModelSeries contained in a Composite with the key “myModel”

@values.myModel.reconstruction_db.0

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

How to use CMake with Fw4spl

	CMake for fw4spl
	Introduction

	CMake files for dependencies

	CMake files for fw4spl

	Tutorials
	How can I add a new dependency

	How can I add a custom bundle in fw4spl

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	How to use CMake with Fw4spl

CMake for fw4spl

Introduction

Fw4spl and it’s dependencies are based on CMake [http://www.cmake.org/] .
Note that the minimal version of cmake to have is 2.8.12.

CMake files for dependencies

fw4spl dependencies are based on the ExternalProject [http://www.cmake.org/cmake/help/v3.0/module/ExternalProject.html] concept from lastest versions of cmake.

The concept is to create custom targets to build projects in external trees.
Each project has custom steps for download, update/patch, configure, build and install.

Here is a simple example from camp :

cmake_minimum_required(VERSION 2.8)

project(campBuilder)

include(ExternalProject)

set(CAMP_CMAKE_ARGS ${COMMON_CMAKE_ARGS}
 -DBUILD_DOXYGEN:BOOL=OFF
 -DBOOST_INCLUDEDIR:PATH=${CMAKE_INSTALL_PREFIX}/include/boost-1_57
)

getCachedUrl(https://github.com/greenjava/camp/archive/0.7.1.1.tar.gz CACHED_URL)

ExternalProject_Add(
 camp
 URL ${CACHED_URL}
 DOWNLOAD_DIR ${ARCHIVE_DIR}
 DEPENDS boost
 INSTALL_DIR ${CMAKE_INSTALL_PREFIX}
 CMAKE_ARGS ${CAMP_CMAKE_ARGS}
 STEP_TARGETS CopyConfigFileToInstall
)

ExternalProject_Add_Step(camp CopyConfigFileToInstall
 COMMAND ${CMAKE_COMMAND} -E copy ${CMAKE_SOURCE_DIR}/cmake/findBinpkgs/FindCAMP.cmake ${CMAKE_INSTALL_PREFIX}/FindCAMP.cmake
 COMMENT "Install configuration file"

The important parts are in the ExternalProject_Add fonction:

	URL: is the download link of the sources

	DOWNLOAD_DIR: The folder where the sources will be stored (set globaly for all deps)

	DEPENDS: The dependencies of the current library (will be compiled before)

	INSTALL_DIR: The folder in which the library will be installed (set globaly for all deps)

	CMAKE_ARGS: CMake options for library which have a cmake build system

	STEP_TARGETS: Custom command (in this example it will copy a script in the install folder)

Note that in other script you can have much more options like:

	PATCH_COMMAND

	CONFIGURE_COMMAND

	BUILD_COMMAND

	INSTALL_COMMAND

Refer you to the documentation of ExternalProject [http://www.cmake.org/cmake/help/v3.0/module/ExternalProject.html] for more informations.

CMake files for fw4spl

Each project (apps, bundles, libs) have two “CMake” files:

	CMakeLists.txt

	Properties.cmake

The CMakeLists.txt file

The CMakeLists.txt should contain at least the function fwLoadProperties() to load the Properties.cmake.
But it can also contain others functions usefull to link with external libraries.

Here is an example of CMakeLists.txt from guiQt Bundle :

fwLoadProperties()
fwUseForwardInclude(
 fwActivities
 fwGuiQt
 fwRuntime
 fwServices
 fwTools

 gui
)

find_package(Qt5 COMPONENTS Core Gui Widgets REQUIRED)

fwForwardInclude(
 ${Qt5Core_INCLUDE_DIRS}
 ${Qt5Gui_INCLUDE_DIRS}
 ${Qt5Widgets_INCLUDE_DIRS}
)

fwLink(
 ${Qt5Core_LIBRARIES}
 ${Qt5Gui_LIBRARIES}
 ${Qt5Widgets_LIBRARIES}
)

set_target_properties(${FWPROJECT_NAME} PROPERTIES AUTOMOC TRUE)

The first line fwLoadProperties() will load the properties.cmake (see explanation in the next section).
The fwUseForwardInclude(...) function will add the include directories of each argument to the target.

The next lines are for the link with an external libraries (fw4spl-deps), in this example it is Qt.

The first thing to do is to call find_package(The_lib COMPONENTS The_component).

The use fwForwardInclude to add includes directories to the target,
and fwLink to link the libraries with your target.

You can also add custom properties to your target with set_target_properties.

The Properties.cmake file

Properties.cmake should contain informations like name, version, dependencies and requirements of the current target.

Here is an example of Properties.cmake from fwData library:

set(NAME fwData)
set(VERSION 0.1)
set(TYPE LIBRARY)
set(DEPENDENCIES fwCamp fwCom fwCore fwMath fwMemory fwTools)
set(REQUIREMENTS)

	NAME: Name of the target

	VERSION: Version of the target

	TYPE: Type of the target (can be library, bundle or executable)

	DEPENDENCIES: Link the target with the given libraries (see target_link_libraries [http://www.cmake.org/cmake/help/v3.0/command/target_link_libraries.html?highlight=target_link_libraries])

	REQUIREMENTS: Ensure that the depends are build before target (see add_dependencies [http://www.cmake.org/cmake/help/v3.0/command/add_dependencies.html?highlight=add_dependencies])

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	How to use CMake with Fw4spl

Tutorials

How can I add a new dependency

You may want to add a new dependency into fw4spl-deps or you may want to add your own folder of dependencies.

Tip

You need to know that the main CMakeLists.txt is in fw4spl-deps, and you can add as many additional folders as you want.
Use the ADDITONNAL_DEPS option in cmake to set the path of your custom deps.

Add a new deps in fw4spl-deps

Adding a new deps is quite easy, the only things to do is to add a new folder myNewDeps and put a CMakeLists.txt file into it.
The CMakeLists.txt should contain at least:

	cmake_minimum_required()

	project()

	include(ExternalProject)

	ExternalProject_Add(...)

For example:

cmake_minimum_required(VERSION 2.8)

project(myDepsBuilder)

include(ExternalProject)

getCachedUrl(http://myDeps.com/myDeps.zip CACHED_URL)

ExternalProject_Add(
 myDeps
 URL ${CACHED_URL}
 DOWNLOAD_DIR Path/To/Your/Download/dir
 PATCH_COMMAND your_patch_command (optional)
 CONFIGURE_COMMAND your_configure_command (optional)
 BUILD_COMMAND your_build_command (optional)
 INSTALL_COMMAND your_install_command (optional)
 INSTALL_DIR your_install_dir
 CMAKE_ARGS cmake_arguments
)

Add a custom deps repository

You may want to add your own folder of dependencies (as fw4spl-ext-deps or fw4spl-ar-deps).
In this case your main need to create a CMakeLists.txt in the root of your folder (myDepsFolder/CMakeLists.txt) in order to list the subdirectories of your deps.

cmake_minimum_required(VERSION 2.8)

project(CustomDeps)

list(APPEND SUBDIRECTORIES myDeps1)
list(APPEND SUBDIRECTORIES myDeps2)
...

Then when you do a ccmake or cmake-gui in the build of your deps, you need to add the path to your custom repository in the ADDITONNAL_DEPS option.
Then cmake will automaticaly parsed your folder.

How can I add a custom bundle in fw4spl

You may want to add a new bundle/lib/app in an existing repository or you may want to add your custom repository to fw4spl.

Tip

You need to know that the main CMakeLists.txt is in fw4spl repository, and you can add as many additional repository as you want.
Use the ADDITIONAL_PROJECTS option in cmake to add path of your custom folders.

Add a new bundle/lib/app in fw4spl

The only thing to do is to write a CMakeLists.txt and a Properties.cmake (see section Cmake for Fw4spl for more informations).

Add a custom repository to fw4spl

As the main CMakeLists.txt is in fw4spl repository,you need to add the path of your folder in ADDITIONAL_PROJECTS option when you launch ccmake of cmake-gui on the build folder of fw4spl.
Then your folder will automaticaly be parsed by cmake.

Note

All your bundle/lib/application need to respect the fw4spl-cmake conventions and have a CMakeLists.txt and a Properties.cmake.

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

Contributors

	Contributors

	Libraries

	FLOSS projects using FW4SPL

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Contributors

Contributors

From 2004 to 2006, an advanced modular software for patient modeling (see publication page) has been designed and
implemented by Guillaume Brocker, Johan Moreau, Jean-Baptiste Fasquel, Vincent Agnus and Nicolas Papier. This
represented the basis of the component management system of FW4SPL, essentially conceived by Guillaume Brocker and Johan
Moreau. This framework version (v0.1) was used to create 3 software tools in visualization and medical image processing
in the Eureka project Odysseus (3DVPM, 3DDVP and MARNS software).

Throughout 2007, Vincent Agnus and Jean-Baptiste Fasquel conceived and implemented the main core mechanisms of this new
version of FW4SPL. Jean-Baptiste Fasquel focused on the notion of roles coupled with the component management system,
the inter-role communication system, as well as an appropriate XML formalism for the description of both roles embedded
into components and description of software. Many basic software tools have been built to validate the architecture (see
publication page). Vincent Agnus also focused on role design, and more specifically on data structures, a generic
serialization mechanism and a powerful template dispatching technique. During his internship in 2007, Benjamin Gaillard
has improved the communication system in FW4SPL. In parallel with the work on the pure FW4SPL system, Johan Moreau got
involved in the construction/compilation system and, together with Arnaud Charnoz, in the management of external
dependencies and some specific medical data structures. Their work also led to advanced visualization of medical images
(free download). Early 2008, the framework was available in version 0.2.

During the period from mid-2008 to mid-2009, some advanced data structures and functionalities have been developed on
the basis of the architecture to further evaluate it and make it more robust. A larger development team has been
involved, including Emilie Harquel, Julien Waechter and Nicolas Philipps additionally to Vincent Agnus, Jean-Baptiste
Fasquel, Johan Moreau and Arnaud Charnoz. Additional efforts have been made by Johan Moreau and Arnaud Charnoz on the
management of external dependencies. Nicolas Philipps, Julien Waechter and Johan Moreau also improved the construction
environment Sconspiracy, initially opened as an opensource project YAMS++ in 2007. The version 0.3 of the framework had
been achieved by early summer 2009.

From mid-2009 to mid-2010, the main work on FW4SPL included: performing generic scenes for visualization (mainly
developed by Nicolas Philipps, Julien Waechter and Vincent Agnus), a new communication system (mainly developed by
Nicolas Philipps and Arnaud Charnoz), new UI components (mainly developed by Emilie Harquel and Julien Waechter), better
log and assert system (by Arnaud Charnoz), new documentation (mainly done by Pascal Monnier, Alexandre Hostettler).

FW4SPL (version 0.4) has been opened late 2009 and was used to create several software in the European project Passport
(VR-Render, VR-Render WLE, AR-Surg, VR-Planning and VR-Probe software). In December, we had switched to version 0.5
(with generic scene). The latest stable version is 0.6 (new communication system) and the current branch development is
the 0.6.1 branch.

Version 0.7 adds a limited Qt support during summer 2010 (Hocine Chekatt’s internship) and limited support for Python,
OpenNI and SOFA (these two last parts had been developed by Altran). During 2011, FW4SPL 0.8 adds a Qt based 2D scene
(Ivan MATHIEU’s internship), new buffer for meshes and images, new memory dump mechanisms, a new set of applications
(Apps/Examples), a new Dicom reader (Jordi ROMERA’s internship), new registration functionalities (Marc Schweitzer’s
internship) an improved image origin management, etc. A new scenegraph design has been developed but not yet integrated
(Loïc Velut’s internship).

Multithreading (fwThread), signal/slot (fwCom), dump management and data introspection (fwAtoms) mechanisms have been
added during 2012 in version 0.9 (co-working between IRCAD and IHU). A new design to manage data and store data (Julien
Weinzorn’s internship) has been prototyped.

This version supports msvc2010 and has also been used to evaluate the transition to Android and iOS (Adrien Bensaibi’s
internship). Altran has added a connector towards the management tool of the MIDAS content developed by Kitware.
Finally, a version management mechanism has been developed (fwAtomsPatch) (Clément Troesch’s internship) and new data
has been created (fwMedData). This version has been used by the Visible Patient company within the framework of their
ISO 13485 certification. A new repository has also been created (fw4spl-ext) with the aim of welcoming not yet
stabilized functionalities or to host PoC. The CMake construction system is also supported.

Version 0.10.0 provides the notion of timeline to manage temporal data (IHU). The SConspiracy construction system has
been removed.

	[image: IRCAD] [http://www.ircad.fr]
	Core, visualization, image processing, applications and tutorials

	Team : Johan Moreau, Marc Schweitzer, Frédéric CHAMP,

	Flavien Bridault-Louchez, Pascal Monnier

	[image: IHU] [http://www.ihu-strasbourg.eu]
	Core, visualization, image processing, applications and tutorials

Team : Julien Waechter, Emilie Harquel, Jessica GROMER

	[image: ALTRAN] [http://www.altran.fr]
	
	Proof of concept on Kinect and Sofa integration

	
	Altran_200609_MAG10_FR.pdf [http://www.altran.com/fileadmin/medias/1.altran.com/files/Altitude_FR/Altran_200609_MAG10_FR.pdf] French document p12

	Altitude_17_20100407_FR.pdf [http://www.altran.fr/fileadmin/medias/1.altran.com/files/Altitude_FR/Altitude_17_20100407_FR.pdf] French document p26

Proof of concept on MIDAS integration

	[image: VP] [http://www.visiblepatient.com/en/]
	Team : Nicolas Philipps, Valentin Martinet, Arnaud Charnoz, Julien Weinzorn

	[image: EHEALTH] [http://ec.europa.eu/information_society/activities/health/index_en.htm]
	
	This project has partly funded by the European Commission via PASSPORT project :

	
	http://www.passport-liver.eu/

	http://www.vph-noe.eu/vph-repository/doc_download/154-passportppt

	newsletter july 2010 [http://www.vph-noe.eu/vph-repository/.../188-vph-noe-4th-newsletter-july-2010]

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Contributors

Libraries

	[image: DCMTK] [http://www.dcmtk.org/]
	[image: BOOST] [http://www.boost.org/]
	[image: GNU] [http://www.gnu.org/]
	[image: CFITSIO] [http://heasarc.gsfc.nasa.gov/docs/software/fitsio/]

	[image: ITK] [http://www.itk.org/]
	[image: VTK] [http://www.vtk.org/]
	[image: QT] [http://www.qt.io/developers/]
	[image: PYTHON] [http://www.python.org/]

	[image: WIX] [http://wix.sourceforge.net/]
	[image: ZLIB] [http://www.zlib.net/]
	[image: XML2] [http://xmlsoft.org/]
	

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Contributors

FLOSS projects using FW4SPL

	skuld-project [http://www.programmez.com/actualites.php?id_actu=10873]
	Skuld project work on mobile port (iphone, android, meego/maemo, ...) of FW4SPL

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

Tutorials

	[Tuto01Basic] Create an application

	[Tuto02DataServiceBasic] Display an image

	[Tuto03DataService] Display an image with menu

	[Tuto04SignalSlot] Signal-slot communication

	[Tuto05Mesher] Create a mesh from an image

	[Tuto06Filter] Apply a filter on an image

	[Tuto08GenericScene] Generic scene

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Tutorials

[Tuto01Basic] Create an application

The first tutorial represents a basic application that launch a simple empty frame.

[image: ../../_images/tuto01Basic.png]

Prerequisites

	Before to read this tutorial, you should have seen :

	
	Object-service concept

	App-config

	Component-based software

Structure

	An application is organized around three main files :

	
	CMakeLists.txt

	Properties.cmake

	plugin.xml

CMakeLists.txt

The CMakeLists is parsed by CMake [https://cmake.org]. For the aplication it should contain the line :

fwLoadProperties()

This line allows to load Properties.cmake file.

Properties.cmake

This file describes the project information and requirements :

set(NAME Tuto01Basic) # Name of the application
set(VERSION 0.1) # Version of the application
set(TYPE APP) # Type APP represent "Application"
set(DEPENDENCIES) # For an application we have no dependencies (libraries to link)
set(REQUIREMENTS # List of the bundles used by this application
 dataReg # to load the data registry
 servicesReg # to load the service registry
 gui # to load gui
 guiQt # to load the Qt implementation of gui
 launcher # executable of the application
 appXml # to parse the application configuration
)

Set the configuration to use : 'tutoBasicConfig'
bundleParam(appXml PARAM_LIST config PARAM_VALUES tutoBasicConfig)

This file contains the minimal requirements to launch an application with a Qt user interface.

Note

The Properties.cmake file of the application is used by CMake [https://cmake.org] to compile the application but also to generate the
profile.xml: the file used to launch the application.

plugin.xml

This file is in the rc/ directory of the application. It defines the services to run.

<!-- Application name and version (the version is automatically replaced by CMake
 using the version defined in the Properties.cmake) -->
<plugin id="Tuto01Basic" version="@DASH_VERSION@">

 <!-- Defines the App-config -->
 <extension implements="::fwServices::registry::AppConfig">
 <id>tutoBasicConfig</id><!-- identifier of the configuration -->
 <config>
 <object type="::fwData::Image"><!-- Main object -->

 <!-- Frame service -->
 <service uid="myFrame" impl="::gui::frame::SDefaultFrame">
 <gui>
 <frame>
 <name>tutoBasicApplicationName</name>
 <icon>Bundles/Tuto01Basic_0-1/tuto.ico</icon>
 <minSize width="800" height="600" />
 </frame>
 </gui>
 </service>

 <start uid="myFrame" /><!-- start the frame service -->

 </object>
 </config>
 </extension>
</plugin>

The ::fwServices::registry::AppConfig extension defines the configuration of an application.

	id:

	The configuration identifier.

	config:

	Contains the list of objects and services used by the application.

For this tutorial, we have only one object ::fwData::Image and one service ::gui::frame::DefaultFrame.

	The order of the elements in the configuration is important:

	
	<service> tags are into <object> tags

	<start> tags are after <service> tags

There are others tags that will be described in the next tutorials.

Run

To run the application, you must call the following line into the install or build directory:

bin/launcher Bundles/Tuto01Basic_0-1/profile.xml

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Tutorials

[Tuto02DataServiceBasic] Display an image

The secons tutorial represents a basic application that display a medical 3D image.

[image: ../../_images/tuto02DataServiceBasic.png]

Prerequisites

	Before to read this tutorial, you should have seen :

	
	[Tuto01Basic] Create an application

Structure

Properties.cmake

This file describes the project information and requirements :

set(NAME Tuto02DataServiceBasic)
set(VERSION 0.1)
set(TYPE APP)
set(DEPENDENCIES)
set(REQUIREMENTS
 dataReg
 servicesReg
 gui
 guiQt
 io # contains the interface for reader and writer.
 ioVTK # contains the reader and writer for VTK files (image and mesh).
 visuVTK # loads VTK rendering library (fwRenderVTK).
 visuVTKQt # containsthe vtk Renderer window interactor manager using Qt.
 vtkSimpleNegato # contains a visualization service of medical image.
 launcher
 appXml
)

bundleParam(appXml PARAM_LIST config PARAM_VALUES tutoDataServiceBasicConfig)

Note

The Properties.cmake file of the application is used by CMake to compile the application but also to generate the
profile.xml: the file used to launch the application.

plugin.xml

This file is in the rc/ directory of the application. It defines the services to run.

<plugin id="Tuto02DataServiceBasic" version="@DASH_VERSION@">

 <extension implements="::fwServices::registry::AppConfig">
 <id>tutoDataServiceBasicConfig</id>
 <config>

 <!-- In tutoDataServiceBasic, the central data object is a ::fwData::Image. -->
 <object type="::fwData::Image">

 <!--
 Description service of the GUI:
 The ::gui::frame::SDefaultFrame service automatically positions the various
 containers in the application main window.
 Here, it declares a container for the 3D rendering service.
 -->
 <service uid="myFrame" impl="::gui::frame::SDefaultFrame">
 <gui>
 <frame>
 <name>tutoDataServiceBasic</name>
 <icon>Bundles/Tuto02DataServiceBasic_0-1/tuto.ico</icon>
 <minSize width="800" height="600" />
 </frame>
 </gui>
 <registry>
 <!-- Associate the container for the rendering service. -->
 <view sid="myRendering" />
 </registry>
 </service>

 <!--
 Reading service:
 The <file> tag defines the path of the image to load. Here, it is a relative
 path from the repository in which you launch the application.
 -->
 <service uid="myReaderPathFile" impl="::ioVTK::SImageReader">
 <file>./TutoData/patient1.vtk</file>
 </service>

 <!--
 Visualization service of a 3D medical image:
 This service will render the 3D image.
 -->
 <service uid="myRendering" impl="::vtkSimpleNegato::SRenderer" />

 <!--
 Definition of the starting order of the different services:
 The frame defines the 3D scene container, so it must be started first.
 The services will be stopped the reverse order compared to the starting one.
 -->
 <start uid="myFrame" />
 <start uid="myReaderPathFile" />
 <start uid="myRendering" />

 <!--
 Definition of the service to update:
 The reading service load the data on the update.
 The render update must be called after the reading of the image.
 -->
 <update uid="myReaderPathFile" />
 <update uid="myRendering" />

 </object>

 </config>
 </extension>

</plugin>

	For this tutorial, we have only one object ::fwData::Image and three service:

	
	::gui::frame::DefaultFrame: frame service

	::ioVTK::ImageReaderService: reader for 3D VTK image

	::vtkSimpleNegato::SRenderer: render for 3D image

Note

To avoid the <start uid="myRendering" />, the frame service can automatically start the rendering service: you just need to add the attribute start="yes" in the <view> tag.

Run

To run the application, you must call the following line in the install or build directory:

bin/launcher Bundles/Tuto02DataServiceBasic_0-1/profile.xml

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Tutorials

[Tuto03DataService] Display an image with menu

The third tutorial is similar to the previous application, but we add gui service like menus.

[image: ../../_images/tuto03DataService.png]

Prerequisites

	Before to read this tutorial, you should have seen :

	
	[Tuto02DataServiceBasic] Display an image

	Graphical User Interface

Structure

Properties.cmake

This file describes the project information and requirements :

set(NAME Tuto03DataService)
set(VERSION 0.1)
set(TYPE APP)
set(DEPENDENCIES)
set(REQUIREMENTS
 dataReg
 servicesReg
 gui
 guiQt
 io
 ioVTK
 uiIO # contains services to show dialogs for reader/writer selection
 visuVTK
 visuVTKQt
 vtkSimpleNegato
 launcher
 appXml
)

bundleParam(appXml PARAM_LIST config PARAM_VALUES tutoDataServiceConfig)

Note

The Properties.cmake file of the application is used by CMake to compile the application but also to generate the
profile.xml: the file used to launch the application.

plugin.xml

This file is in the rc/ directory of the application. It defines the services to run.

<plugin id="Tuto03DataService" version="@DASH_VERSION@">
 <requirement id="servicesReg" />

 <extension implements="::fwServices::registry::AppConfig">
 <id>tutoDataServiceConfig</id>
 <config>

 <!-- The root data object in tutoDataService is a ::fwData::Image. -->
 <object type="::fwData::Image">

 <!-- Frame service:
 The frame creates a container fot the rendering service and a menu bar.
 In this tutorial, the gui services will automatically start the services they register using the
 'start="yes"' attribute.
 -->
 <service uid="myFrame" impl="::gui::frame::SDefaultFrame">
 <gui>
 <frame>
 <name>tutoDataService</name>
 <icon>Bundles/Tuto03DataService_0-1/tuto.ico</icon>
 <minSize width="800" height="600" />
 </frame>
 <menuBar />
 </gui>
 <registry>
 <menuBar sid="myMenuBar" start="yes" />
 <view sid="myRendering" start="yes" />
 </registry>
 </service>

 <!--
 Menu bar service:
 This service defines the list of the menus displayed in the menu bar.
 Here, we have only one menu: File
 Each <menu> declared into the <layout> tag, must have its associated <menu> into the <registry> tag.
 The <layout> tags defines the displayed information, whereas the <registry> tags defines the
 services information.
 -->
 <service uid="myMenuBar" impl="::gui::aspect::SDefaultMenuBar">
 <gui>
 <layout>
 <menu name="File" />
 </layout>
 </gui>
 <registry>
 <menu sid="myMenu" start="yes" />
 </registry>
 </service>

 <!--
 Menu service:
 This service defines the actions displayed in the "File" menu.
 Here, it registers two actions: "Open file", and "Quit".
 As in the menu bar service, each <menuItem> declared into the <layout> tag, must have its
 associated <menuItem> into the <registry> tag.

 It's possible to associate specific attributes for <menuItem> to configure their style, shortcut...
 In this tutorial, the attribute 'specialAction' has the value "QUIT". On MS Windows, there's no
 impact, but on Mac OS, this value installs the menuItem in the system menu bar, and on Linux this
 value installs the default 'Quit' system icon in the menuItem.
 -->
 <service uid="myMenu" impl="::gui::aspect::SDefaultMenu">
 <gui>
 <layout>
 <menuItem name="Open file" shortcut="Ctrl+O" />
 <separator />
 <menuItem name="Quit" specialAction="QUIT" shortcut="Ctrl+Q" />
 </layout>
 </gui>
 <registry>
 <menuItem sid="actionOpenFile" start="yes" />
 <menuItem sid="actionQuit" start="yes" />
 </registry>
 </service>

 <!--
 Quit action:
 The action service (::gui::action::SQuit) is a generic action that will close the application
 when the user click on the menuItem "Quit".
 -->
 <service uid="actionQuit" impl="::gui::action::SQuit" />

 <!--
 Open file action:
 This service (::gui::action::StarterActionService) is a generic action, it starts and update the
 services given in the configuration when the user clicks on the action.
 Here, the reader selector will be called when the actions is clicked.
 -->
 <service uid="actionOpenFile" impl="::gui::action::SStarter">
 <start uid="myReaderPathFile" />
 </service>

 <!--
 Reader selector dialog:
 This is a generic service that show a dialog to display all the reader or writer available for its
 associated data. By default it is configured to show reader. (Note: if there is only one reading
 service, it is directly selected without dialog box.)
 Here, it the only reader available to read a ::fwData::Image is ::ioVTK::ImageReaderService (see
 Tuto02DataServiceBasic), so the selector will not be displayed.
 When the service was chosen, it is started, updated and stopped, so the data is read.
 -->
 <service uid="myReaderPathFile" impl="::uiIO::editor::SIOSelector" />

 <!--
 3D visualization service of medical images:
 Here, the service attribute 'autoConnect="yes"' allows the rendering to listen the modification of
 the data image. So, when the image is loaded, the visualization will be updated.
 -->
 <service uid="myRendering" impl="::vtkSimpleNegato::SRenderer" autoConnect="yes" />

 <!--
 Here, we only start the frame because all the others services are managed by the gui service:
 - the frame starts the menu bar and the redering service
 - the menu bar starts the menu services
 - the menus starts the actions
 -->
 <start uid="myFrame" />

 </object>

 </config>
 </extension>
</plugin>

The framework provides some gui services:

	Frame (::gui::frame::DefaultFrame)

	This service display a frame and creates menu bar, tool bar and container for views, rendering service, ...

	View (::gui::view::DefaultView)

	This service creates sub-container and tool bar.

	Menu bar (::gui::aspect::DefaultMenuSrv)

	A menu bar displays menus.

	Tool bar (::gui::aspect::DefaultToolBarSrv)

	A tool bar displays actions, menus and editors.

	Menu (::gui::aspect::DefaultMenuSrv)

	A menu displays actions and sub-menus.

	Action (inherited from ::fwGui::IActionSrv)

	An action is a service inherited from ::fwGui::IActionSrv. It is called when the user clicks on the associated
tool bar or menu.

	Editors (inherited from ::gui::editor::IEditor)

	An editor is a service inherited from ::gui::editor::IEditor. It is used to creates your own gui container.

Run

To run the application, you must call the following line into the install or build directory:

bin/launcher Bundles/Tuto03DataService_0-1/profile.xml

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Tutorials

[Tuto04SignalSlot] Signal-slot communication

The fourth tutorial explains the communication mechanism with signals and slots.

[image: ../../_images/tuto04SignalSlot.png]

Prerequisites

	Before to read this tutorial, you should have seen :

	
	[Tuto03DataService] Display an image with menu

	Signal-slot communication

Structure

Properties.cmake

This file describes the project information and requirements :

set(NAME Tuto04SignalSlot)
set(VERSION 0.1)
set(TYPE APP)
set(DEPENDENCIES)
set(REQUIREMENTS
 dataReg
 servicesReg
 gui
 guiQt
 io
 ioVTK
 uiIO
 visuVTK
 visuVTKQt
 vtkSimpleMesh # contains a visualization service of mesh.
 launcher
 appXml
)

bundleParam(appXml PARAM_LIST config PARAM_VALUES tutoSignalSlotConfig)

Note

The Properties.cmake file of the application is used by CMake to compile the application but also to generate the
profile.xml: the file used to launch the application.

plugin.xml

This file is in the rc/ directory of the application. It defines the services to run.

<plugin id="Tuto04SignalSlot" version="@DASH_VERSION@">

 <requirement id="servicesReg" />

 <extension implements="::fwServices::registry::AppConfig">
 <id>tutoSignalSlotConfig</id>
 <config>

 <!-- The main data object is ::fwData::Mesh. -->
 <object type="::fwData::Mesh">

 <service uid="myFrame" impl="::gui::frame::SDefaultFrame">
 <gui>
 <frame>
 <name>tutoSignalSlot</name>
 <icon>Bundles/Tuto04SignalSlot_0-1/tuto.ico</icon>
 <minSize width="720" height="600" />
 </frame>
 <menuBar />
 </gui>
 <registry>
 <menuBar sid="myMenuBar" start="yes" />
 <view sid="myDefaultView" start="yes" />
 </registry>
 </service>

 <service uid="myMenuBar" impl="::gui::aspect::SDefaultMenuBar">
 <gui>
 <layout>
 <menu name="File" />
 </layout>
 </gui>
 <registry>
 <menu sid="myMenuFile" start="yes" />
 </registry>
 </service>

 <!--
 Default view service:
 This service defines the view layout. The type '::fwGui::CardinalLayoutManager' represents a main
 central view and other views at the 'right', 'left', 'bottom' or 'top'.
 Here the application contains a central view at the right.

 Each <view> declared into the <layout> tag, must have its associated <view> into the <registry> tag.
 A minimum window height and a width are given to the two non-central views.
 -->
 <service uid="myDefaultView" impl="::gui::view::SDefaultView">
 <gui>
 <layout type="::fwGui::CardinalLayoutManager">
 <view caption="Rendering 1" align="center" />
 <view caption="Rendering 2" align="right" minWidth="400" minHeight="100" />
 <view caption="Rendering 3" align="right" minWidth="400" minHeight="100" />
 </layout>
 </gui>
 <registry>
 <view sid="myRendering1" start="yes" />
 <view sid="myRendering2" start="yes" />
 <view sid="myRendering3" start="yes" />
 </registry>
 </service>

 <service uid="myMenuFile" impl="::gui::aspect::SDefaultMenu">
 <gui>
 <layout>
 <menuItem name="Open file" shortcut="Ctrl+O" />
 <separator />
 <menuItem name="Quit" specialAction="QUIT" shortcut="Ctrl+Q" />
 </layout>
 </gui>
 <registry>
 <menuItem sid="actionOpenFile" start="yes" />
 <menuItem sid="actionQuit" start="yes" />
 </registry>
 </service>

 <service uid="actionOpenFile" impl="::gui::action::SStarter">
 <start uid="myReaderPathFile" />
 </service>

 <service uid="actionQuit" impl="::gui::action::SQuit" type="::fwGui::IActionSrv" />

 <service uid="myReaderPathFile" impl="::uiIO::editor::SIOSelector">
 <type mode="reader" /><!-- mode is optional (by default it is "reader") -->
 </service>

 <!--
 Visualization services:
 We have three rendering service representing a 3D scene displaying the loaded mesh. The scene are
 shown in the windows defines in 'view' service.
 -->
 <service uid="myRendering1" impl="::vtkSimpleMesh::SRenderer" autoConnect="yes" />
 <service uid="myRendering2" impl="::vtkSimpleMesh::SRenderer" autoConnect="yes" />
 <service uid="myRendering3" impl="::vtkSimpleMesh::SRenderer" autoConnect="yes" />

 <!--
 Each 3D scene owns a 3D camera that can be moved by the user on clicking in the scene.
 - When the camera moved, a signal 'camUpdated' is emitted with the new camera information (position,
 focal, view up).
 - To update the camera without clicking, you could called the slot 'updateCamPosition'

 Here, we connect each rendering service signal 'camUpdated' to the others service slot
 'updateCamPosition', so the cameras are synchronized in each scene.
 -->
 <connect>
 <signal>myRendering1/camUpdated</signal>
 <slot>myRendering2/updateCamPosition</slot>
 <slot>myRendering3/updateCamPosition</slot>
 </connect>

 <connect>
 <signal>myRendering2/camUpdated</signal>
 <slot>myRendering1/updateCamPosition</slot>
 <slot>myRendering3/updateCamPosition</slot>
 </connect>

 <connect>
 <signal>myRendering3/camUpdated</signal>
 <slot>myRendering2/updateCamPosition</slot>
 <slot>myRendering1/updateCamPosition</slot>
 </connect>

 <start uid="myFrame" />
 </object>

 </config>
 </extension>

</plugin>

You can use proxy instead of the <connect> tag: it allows to connect all the signals to all the slots for a given channel name.

<proxy channel="Camera" >
 <signal>myRenderingTuto1/camUpdated</signal>
 <signal>myRenderingTuto2/camUpdated</signal>
 <signal>myRenderingTuto3/camUpdated</signal>

 <slot>myRenderingTuto1/updateCamPosition</slot>
 <slot>myRenderingTuto2/updateCamPosition</slot>
 <slot>myRenderingTuto3/updateCamPosition</slot>
</proxy>

Tip

You can remove a connection to see the camera in the scene is no longer synchronized.

Signal and slot creation

RendererService.hpp

class VTKSIMPLEMESH_CLASS_API RendererService : public fwRender::IRender
{
public:
 //

 typedef ::boost::shared_array< double > SharedArray;

 typedef ::fwCom::Slot<void (SharedArray, SharedArray, SharedArray)> UpdateCamPositionSlotType;

 typedef ::fwCom::Signal< void (SharedArray, SharedArray, SharedArray) > CamUpdatedSignalType;

 //

 /// This method is call when the VTK camera position is modified.
 /// It notifies the new camera position.
 void notifyCamPositionUpdated();

private:

 /// Slot: receives new camera information (position, focal, viewUp).
 /// Update camera with new information.
 void updateCamPosition(SharedArray positionValue,
 SharedArray focalValue,
 SharedArray viewUpValue);

 //

 /// Slot to call updateCamPosition method
 UpdateCamPositionSlotType::sptr m_slotUpdateCamPosition;

 /// Signal emitted when camera position is updated.
 CamUpdatedSignalType::sptr m_sigCamUpdated;
}

RendererService.cpp

RendererService::RendererService() throw()
{
 m_sigCamUpdated = newSignal<CamUpdatedSignalType>("camUpdated");

 m_slotUpdateCamPosition = newSlot("updateCamPosition",
 &RendererService::updateCamPosition,
 this);
}

//---

void RendererService::updateCamPosition(SharedArray positionValue,
 SharedArray focalValue,
 SharedArray viewUpValue)
{
 vtkCamera* camera = m_render->GetActiveCamera();

 // Update the vtk camera
 camera->SetPosition(positionValue.get());
 camera->SetFocalPoint(focalValue.get());
 camera->SetViewUp(viewUpValue.get());
 camera->SetClippingRange(0.1, 1000000);

 // Render the scene
 m_interactorManager->getInteractor()->Render();
}

//---

void RendererService::notifyCamPositionUpdated()
{
 vtkCamera* camera = m_render->GetActiveCamera();

 SharedArray position = SharedArray(new double[3]);
 SharedArray focal = SharedArray(new double[3]);
 SharedArray viewUp = SharedArray(new double[3]);

 std::copy(camera->GetPosition(), camera->GetPosition()+3, position.get());
 std::copy(camera->GetFocalPoint(), camera->GetFocalPoint()+3, focal.get());
 std::copy(camera->GetViewUp(), camera->GetViewUp()+3, viewUp.get());

 {
 // The Blocker blocks the connection between the "camUpdated" signal and the
 // "updateCamPosition" slot for this instance of service.
 // The block is release at the end of the scope.
 ::fwCom::Connection::Blocker block(
 m_sigCamUpdated->getConnection(m_slotUpdateCamPosition));

 // Asynchronous emit of "camUpdated" signal
 m_sigCamUpdated->asyncEmit (position, focal, viewUp);
 }
}

//---

//

Run

To run the application, you must call the following line into the install or build directory:

bin/launcher Bundles/Tuto04SignalSlot_0-1/profile.xml

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Tutorials

[Tuto05Mesher] Create a mesh from an image

The fifth tutorial explains how to use several object in an application.
This application provides an action to creates a mesh from an image.

[image: ../../_images/tuto05Mesher.png]

Prerequisites

	Before to read this tutorial, you should have seen :

	
	[Tuto04SignalSlot] Signal-slot communication

Structure

Composite

A ::fwData::Composite is an object that contains a map of fwData::Object associated to a key (std::string).

Using Composite in C++

// Create a Composite
::fwData::Composite::sptr composite = ::fwData::Composite::New();

::fwData::Image::sptr image = ::fwData::Image::New();
::fwData::Mesh::sptr mesh = ::fwData::Mesh::New();

// Add an image and a mesh
composite->getContainer()["myImage"] = image;
composite->getContainer()["myMesh"] = mesh;

::fwData::Composite::sptr composite = ::fwData::Composite::New();

// Get the image
::fwData::Image::sptr image = composite->at< ::fwData::Image >("myImage");

// Get the mesh
::fwData::Mesh::sptr mesh = composite->at< ::fwData::Mesh >("myMesh");

::fwData::Composite::sptr composite = ::fwData::Composite::New();

// Check if the image exists into the composite
::fwData::Composite::iterator iter = composite->find("myImage");
if (iter != composite->end())
{
 // Image is found
 ::fwData::Image::sptr image = ::fwData::Image::dynamicCast(iter->second);
}
else
{
 // Image is not found
}

Using Composite in XML

<object type="::fwData::Composite">

 <!-- Composite services -->

 <item key="myImage">
 <object uid="myImageUID" type="::fwData::Image">

 <!-- Image services -->

 </object>
 </item>

 <item key="myMesh">
 <object uid="myMeshUID" type="::fwData::Mesh">

 <!-- Mesh services -->

 </object>
 </item>

</object>

Properties.cmake

This file describes the project information and requirements :

set(NAME Tuto05Mesher)
set(VERSION 0.1)
set(TYPE APP)
set(DEPENDENCIES)
set(REQUIREMENTS
 dataReg
 servicesReg
 gui
 guiQt
 io
 ioVTK
 visuVTK
 visuVTKQt
 uiIO
 vtkSimpleNegato
 vtkSimpleMesh
 opVTKMesh # provides services to generate a mesh from an image.
 launcher
 appXml
)

bundleParam(appXml PARAM_LIST config PARAM_VALUES MesherConfig)

Note

The Properties.cmake file of the application is used by CMake to compile the application but also to generate the
profile.xml: the file used to launch the application.

plugin.xml

This file is in the rc/ directory of the application. It defines the services to run.

<plugin id="Tuto05Mesher" version="@DASH_VERSION@">

 <requirement id="servicesReg" />

 <extension implements="::fwServices::registry::AppConfig">
 <id>MesherConfig</id>
 <config>

 <!--
 The main data object is ::fwData::Composite.
 A Composite, can contains sub-objects associated to a key.
 -->
 <object type="::fwData::Composite">

 <!-- Frame & View -->

 <service uid="myFrame" impl="::gui::frame::SDefaultFrame">
 <gui>
 <frame>
 <name>Mesher</name>
 <icon>Bundles/Tuto05Mesher_0-1/tuto.ico</icon>
 <minSize width="800" height="600" />
 </frame>
 <menuBar />
 </gui>
 <registry>
 <menuBar sid="myMenuBar" start="yes" />
 <view sid="myDefaultView" start="yes" />
 </registry>
 </service>

 <!--
 Default view service:
 The type '::fwGui::LineLayoutManager' represents a layout where the view are aligned
 horizontally or vertically (set orientation value 'horizontal' or 'vertical').
 It is possible to add a 'proportion' attribute for the <view> to defined the proportion
 used by the view compared to the others.
 -->
 <service uid="myDefaultView" impl="::gui::view::SDefaultView">
 <gui>
 <layout type="::fwGui::LineLayoutManager">
 <orientation value="horizontal" />
 <view caption="Image view" />
 <view caption="Mesh view" />
 </layout>
 </gui>
 <registry>
 <view sid="RenderingImage" start="yes" />
 <view sid="RenderingMesh" start="yes" />
 </registry>
 </service>

 <!-- Menu Bar, Menus & Actions -->

 <service uid="myMenuBar" impl="::gui::aspect::SDefaultMenuBar">
 <gui>
 <layout>
 <menu name="File" />
 <menu name="Mesher" />
 </layout>
 </gui>
 <registry>
 <menu sid="menuFile" start="yes" />
 <menu sid="menuMesher" start="yes" />
 </registry>
 </service>

 <service uid="menuFile" impl="::gui::aspect::SDefaultMenu">
 <gui>
 <layout>
 <menuItem name="Open image file" shortcut="Ctrl+O" />
 <menuItem name="Save image" />
 <separator />
 <menuItem name="Open mesh file" shortcut="Ctrl+M" />
 <menuItem name="Save mesh" />
 <separator />
 <menuItem name="Quit" specialAction="QUIT" shortcut="Ctrl+Q" />
 </layout>
 </gui>
 <registry>
 <menuItem sid="actionOpenImageFile" start="yes" />
 <menuItem sid="actionSaveImageFile" start="yes" />
 <menuItem sid="actionOpenMeshFile" start="yes" />
 <menuItem sid="actionSaveMeshFile" start="yes" />
 <menuItem sid="actionQuit" start="yes" />
 </registry>
 </service>

 <service uid="menuMesher" impl="::gui::aspect::SDefaultMenu">
 <gui>
 <layout>
 <menuItem name="Compute Mesh (VTK)" />
 </layout>
 </gui>
 <registry>
 <menuItem sid="actionCreateVTKMesh" start="yes" />
 </registry>
 </service>

 <service uid="actionQuit" impl="::gui::action::SQuit" />

 <service uid="actionOpenImageFile" impl="::gui::action::SStarter">
 <start uid="readerPathImageFile" />
 </service>

 <service uid="actionSaveImageFile" impl="::gui::action::SStarter">
 <start uid="writerImageFile" />
 </service>

 <service uid="actionOpenMeshFile" impl="::gui::action::SStarter">
 <start uid="readerPathMeshFile" />
 </service>

 <service uid="actionSaveMeshFile" impl="::gui::action::SStarter">
 <start uid="writerMeshFile" />
 </service>

 <service uid="actionCreateVTKMesh" impl="::opVTKMesh::action::SMeshCreation">
 <image uid="myImageUID" />
 <mesh uid="myMeshUID" />
 <percentReduction value="0" />
 </service>

 <!-- Image object associated to the key 'myImage' -->
 <item key="myImage">
 <object uid="myImageUID" type="::fwData::Image">

 <!--
 Services associated to the Image data :
 Visualization, reading and writing service creation.
 -->
 <service uid="RenderingImage" impl="::vtkSimpleNegato::SRenderer" autoConnect="yes" />

 <service uid="readerPathImageFile" impl="::uiIO::editor::SIOSelector">
 <type mode="reader" />
 </service>

 <service uid="writerImageFile" impl="::uiIO::editor::SIOSelector">
 <type mode="writer" />
 </service>

 </object>
 </item>

 <!-- Mesh object associated to the key 'myMesh' -->
 <item key="myMesh">
 <object uid="myMeshUID" type="::fwData::Mesh">

 <!--
 Services associated to the Mesh data :
 Visualization, reading and writing service creation.
 -->
 <service uid="RenderingMesh" impl="::vtkSimpleMesh::SRenderer" autoConnect="yes" />

 <service uid="readerPathMeshFile" impl="::uiIO::editor::SIOSelector">
 <type mode="reader" />
 </service>

 <service uid="writerMeshFile" impl="::uiIO::editor::SIOSelector">
 <type mode="writer" />
 </service>

 </object>
 </item>

 <start uid="myFrame" />

 </object>

 </config>
 </extension>
</plugin>

Run

To run the application, you must call the following line into the install or build directory:

bin/launcher Bundles/Tuto05Mesher_0-1/profile.xml

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fw4spl-doc 0 documentation

 	Tutorials

[Tuto06Filter] Apply a filter on an image

This tutorial explains how to perform a filter on an image. Here, the filter applied on the image is a threshold.

[image: ../../_images/tuto06Filter.png]

Prerequisites

	Before to read this tutorial, you should have seen :

	
	[Tuto05Mesher] Create a mesh from an image

Structure

Properties.cmake

This file describes the project information and requirements :

set(NAME Tuto06Filter)
set(VERSION 0.1)
set(TYPE APP)
set(DEPENDENCIES)
set(REQUIREMENTS
 dataReg
 servicesReg
 gui
 guiQt
 io
 ioVTK
 uiIO
 visuVTK
 visuVTKQt
 vtkSimpleNegato
 opImageFilter # bundle containing the action to performs a threshold
 launcher
 appXml
)

bundleParam(appXml PARAM_LIST config PARAM_VALUES FilterConfig)

Note

The Properties.cmake file of the application is used by CMake to compile the application but also to generate the
profile.xml: the file used to launch the application.

plugin.xml

This file is in the rc/ directory of the application. It defines the services to run.

<plugin id="Tuto06Filter" version="@DASH_VERSION@">

 <requirement id="dataReg" />
 <requirement id="servicesReg" />
 <requirement id="visuVTKQt" />

 <extension implements="::fwServices::registry::AppConfig">
 <id>FilterConfig</id>
 <config>

 <!-- Root object -->
 <object type="::fwData::Composite">

 <!-- Windows & Main Menu -->
 <service uid="myFrame" impl="::gui::frame::SDefaultFrame">
 <gui>
 <frame>
 <name>Filter</name>
 <icon>Bundles/Tuto06Filter_0-1/tuto.ico</icon>
 <minSize width="720" height="600" />
 </frame>
 <menuBar />
 </gui>
 <registry>
 <menuBar sid="myMenuBar" start="yes" />
 <view sid="myDefaultView" start="yes" />
 </registry>
 </service>

 <service uid="myMenuBar" impl="::gui::aspect::SDefaultMenuBar">
 <gui>
 <layout>
 <menu name="File" />
 <menu name="Filter" />
 </layout>
 </gui>
 <registry>
 <menu sid="menuFile" start="yes" />
 <menu sid="menuFilter" start="yes" />
 </registry>
 </service>

 <service uid="myDefaultView" impl="::gui::view::SDefaultView">
 <gui>
 <layout type="::fwGui::CardinalLayoutManager">
 <view align="center" />
 <view align="right" minWidth="500" minHeight="100" />
 </layout>
 </gui>
 <registry>
 <view sid="RenderingImage1" start="yes" />
 <view sid="RenderingImage2" start="yes" />
 </registry>
 </service>

 <!-- Menus -->
 <service uid="menuFile" impl="::gui::aspect::SDefaultMenu">
 <gui>
 <layout>
 <menuItem name="Open image file" shortcut="Ctrl+O" />
 <separator />
 <menuItem name="Quit" specialAction="QUIT" shortcut="Ctrl+Q" />
 </layout>
 </gui>
 <registry>
 <menuItem sid="actionOpenImageFile" start="yes" />
 <menuItem sid="actionQuit" start="yes" />
 </registry>
 </service>

 <service uid="menuFilter" impl="::gui::aspect::SDefaultMenu">
 <gui>
 <layout>
 <menuItem name="Compute Image Filter" />
 </layout>
 </gui>
 <registry>
 <menuItem sid="actionImageFilter" start="yes" />
 </registry>
 </service>

 <!-- Actions -->
 <service uid="actionQuit" impl="::gui::action::SQuit" />
 <service uid="actionOpenImageFile" impl="::gui::action::SStarter" >
 <start uid="readerPathImageFile" />
 </service>

 <!--
 Filter action:
 This action applies a threshold filter. The source image is 'myImage1' and the
 output image is 'myImage2'.
 The two images are declared below.
 -->
 <service uid="actionImageFilter" impl="::opImageFilter::action::SThreshold">
 <imageIn uid="myImage1" />
 <imageOut uid="myImage2" />
 </service>

 <!-- Image declaration: -->

 <!--
 1st Image of the composite:
 This is the source image for the filtering.
 -->
 <item key="myImage1">
 <object uid="myImage1" type="::fwData::Image">
 <service uid="RenderingImage1" impl="::vtkSimpleNegato::SRenderer" autoConnect="yes" />
 <service uid="readerPathImageFile" impl="::uiIO::editor::SIOSelector">
 <type mode="reader" />
 </service>
 </object>
 </item>

 <!--
 2nd Image of the composite:
 This is the output image for the filtering.
 -->
 <item key="myImage2">
 <object uid="myImage2" type="::fwData::Image">
 <service uid="RenderingImage2" impl="::vtkSimpleNegato::SRenderer" autoConnect="yes" />
 </object>
 </item>

 <start uid="myFrame" />

 </object>

 </config>
 </extension>
</plugin>

Filter service

Here, the filter service is inherited from ::fwGui::IActionSrv but you can inherit from another type (like
::arServices::IOperator in fw4spl-ar repository).

For an action, the updating() method is called by the click on the button. This method retrieves the two images and
applies the threshold algorithm.

The ::fwData::Image contains a buffer for pixel values, it is stored as a void * to allows several types of
pixel (uint8, int8, uint16, int16, double, float ...). To use image buffer, we need to cast it to the image pixel type.
For that, we use the Dispatcher : it allows to invoke a template functor according to the image type.

void SThreshold::updating() throw (::fwTools::Failed)
{
 SLM_TRACE_FUNC();

 // threshold value: the pixel with the value less than 50 will be set to 0, else the value is set to the maximum
 // value of the image pixel type.
 const double threshold = 50.0;

 ThresholdFilter::Parameter param; // filter parameters: threshold value, image source, image target

 // Get source image
 OSLM_ASSERT("Image 1 not found. UID : " << m_imageSrcUID, ::fwTools::fwID::exist(m_imageSrcUID));
 param.imageIn = ::fwData::Image::dynamicCast(::fwTools::fwID::getObject(m_imageSrcUID));

 // Get target image
 OSLM_ASSERT("Image 2 not found. UID : " << m_imageTgtUID, ::fwTools::fwID::exist(m_imageTgtUID));
 param.imageOut = ::fwData::Image::dynamicCast(::fwTools::fwID::getObject(m_imageTgtUID));

 param.thresholdValue = threshold;

 /*
 * The dispatcher allows to apply the filter on any type of image.
 * It invokes the template functor ThresholdFilter using the image type.
 */
 ::fwTools::DynamicType type = param.imageIn->getPixelType(); // image type

 // Invoke filter functor
 ::fwTools::Dispatcher< ::fwTools::IntrinsicTypes, ThresholdFilter >::invoke(type, param);

 // Notify that the image target is modified
 auto sig = param.imageOut->signal< ::fwData::Object::ModifiedSignalType >(::fwData::Object::s_MODIFIED_SIG);
 {
 ::fwCom::Connection::Blocker block(sig->getConnection(m_slotUpdate));
 sig->asyncEmit();
 }
}

The functor is a structure containing a sub-structure for the parameters (inputs and outputs) and a template
method operator(parameters).

/**
 * Functor to apply a threshold filter.
 *
 * The pixel with the value less than the threshold value will be set to 0, else the value is set to the maximum
 * value of the image pixel type.
 *
 * The functor provides a template method operator(param) to apply the filter
 */
struct ThresholdFilter
{
 struct Parameter
 {
 double thresholdValue; ///< threshold value.
 ::fwData::Image::sptr imageIn; ///< image source
 ::fwData::Image::sptr imageOut; ///< image target: contains the result of the filter
 };

 /**
 * @brief Applies the filter
 * @tparam PIXELTYPE image pixel type (uint8, uint16, int8, int16, float, double,)
 */
 template<class PIXELTYPE>
 void operator()(Parameter ¶m)
 {
 const PIXELTYPE thresholdValue = static_cast<PIXELTYPE>(param.thresholdValue);
 ::fwData::Image::sptr imageIn = param.imageIn;
 ::fwData::Image::sptr imageOut = param.imageOut;
 SLM_ASSERT("Sorry, image must be 3D", imageIn->getNumberOfDimensions() == 3);
 imageOut->copyInformation(imageIn); // Copy image size, type... without copying the buffer
 imageOut->allocate(); // Allocate the image buffer

 ::fwComEd::helper::Image imageInHelper(imageIn); // helper used to access the image source buffer
 ::fwComEd::helper::Image imageOutHelper(imageOut); // helper used to access the image target buffer

 // Get image buffers
 PIXELTYPE *buffer1 = (PIXELTYPE *)imageInHelper.getBuffer();
 PIXELTYPE *buffer2 = (PIXELTYPE *)imageOutHelper.getBuffer();

 // Get number of pixels
 const size_t NbPixels = imageIn->getSize()[0] * imageIn->getSize()[1] * imageIn->getSize()[2];

 // Fill the target buffer considering the thresholding
 for(size_t i = 0; i<NbPixels; ++i, ++buffer1, ++buffer2)
 {
 *buffer2 = (*buffer1 < thresholdValue) ? 0 : std::numeric_limits<PIXELTYPE>::max();
 }
 }
};

Run

To run the application, you must call the following line into the install or build directory:

bin/launcher Bundles/Tuto06Filter_0-1/profile.xml

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	fw4spl-doc 0 documentation

 	Tutorials

[Tuto08GenericScene] Generic scene

This tutorial explains how to use the generic scene.

[image: ../../_images/tuto08GenericScene1.png]
Image and mesh

[image: ../../_images/tuto08GenericScene2.png]
Mesh with texture

Prerequisites

	Before to read this tutorial, you should have seen :

	
	Generic Scene

	[Tuto06Filter] Apply a filter on an image

Structure

Properties.cmake

This file describes the project information and requirements :

set(NAME Tuto08GenericScene)
set(VERSION 0.1)
set(TYPE APP)
set(UNIQUE TRUE)
set(DEPENDENCIES)
set(REQUIREMENTS
 dataReg
 servicesReg
 gui
 guiQt
 io
 ioData # contains reader/writer for mesh (.trian) or matrix (.trf)
 ioVTK
 uiIO
 uiVisuQt # contains several editors for visualization
 uiImageQt # contains several editors on image
 visuVTK
 visuVTKQt
 visuVTKAdaptor # contains adaptors for the generic scene
 ctrlSelection # contains services to manage object selection (and associated services)
 launcher
 appXml
)

bundleParam(appXml PARAM_LIST config PARAM_VALUES Tuto08GenericScene)

Note

The Properties.cmake file of the application is used by CMake to compile the application but also to generate the
profile.xml: the file used to launch the application.

plugin.xml

This file is in the rc/ directory of the application. It defines the services to run.

<!--
 This tutorial shows a VTK scene containing a 3D image and a textured mesh.
 To use this application, you should open a 3D image, a mesh and/or a 2D texture image.
-->
<plugin id="Tuto08GenericScene" version="@DASH_VERSION@">

 <requirement id="dataReg" />
 <requirement id="servicesReg" />
 <requirement id="visuVTKQt" />

 <extension implements="::fwServices::registry::AppConfig">
 <id>Tuto08GenericScene</id>
 <config>

 <object type="::fwData::Composite">
 <service uid="MyIHM" impl="::gui::frame::SDefaultFrame">
 <gui>
 <frame>
 <name>Tuto08GenericScene</name>
 <icon>Bundles/Tuto08GenericScene_0-1/tuto.ico</icon>
 </frame>
 <menuBar />
 </gui>
 <registry>
 <menuBar sid="myMenuBar" start="yes" />
 <view sid="mainView" start="yes" />
 </registry>
 </service>

 <!-- Status bar used to display the progress bar for reading -->
 <service uid="progress_statusbar" impl="::gui::editor::SJobBar" />

 <service uid="myMenuBar" impl="::gui::aspect::SDefaultMenuBar">
 <gui>
 <layout>
 <menu name="File" />
 </layout>
 </gui>
 <registry>
 <menu sid="menu_File" start="yes" />
 </registry>
 </service>

 <service uid="menu_File" impl="::gui::aspect::SDefaultMenu">
 <gui>
 <layout>
 <menuItem name="Open image" shortcut="Ctrl+I" />
 <menuItem name="Open mesh" shortcut="Ctrl+M" />
 <menuItem name="Open texture" shortcut="Ctrl+T" />
 <separator />
 <menuItem name="Quit" specialAction="QUIT" shortcut="Ctrl+Q" />
 </layout>
 </gui>
 <registry>
 <menuItem sid="action_openImage" start="yes" />
 <menuItem sid="action_openMesh" start="yes" />
 <menuItem sid="action_openTexture" start="yes" />
 <menuItem sid="action_quit" start="yes" />
 </registry>
 </service>

 <!-- Actions to call readers -->
 <service uid="action_openImage" impl="::gui::action::SStarter">
 <start uid="imageReader" />
 </service>
 <service uid="action_openMesh" impl="::gui::action::SStarter">
 <start uid="meshReader" />
 </service>
 <service uid="action_openTexture" impl="::gui::action::SStarter">
 <start uid="textureReader" />
 </service>

 <!-- Quit action -->
 <service uid="action_quit" impl="::gui::action::SQuit" />

 <!-- main view -->
 <service uid="mainView" impl="::gui::view::SDefaultView">
 <gui>
 <layout type="::fwGui::CardinalLayoutManager">
 <view align="center" />
 <view align="bottom" minWidth="400" minHeight="30" resizable="no" />
 </layout>
 </gui>
 <registry>
 <view sid="genericScene" start="yes" />
 <view sid="editorsView" start="yes" />
 </registry>
 </service>

 <!-- View for editors to update image visualization -->
 <service uid="editorsView" impl="::gui::view::SDefaultView">
 <gui>
 <layout type="::fwGui::LineLayoutManager">
 <orientation value="horizontal" />
 <view proportion="0" minWidth="30" />
 <view proportion="0" minWidth="50" />
 <view proportion="1" />
 <view proportion="0" minWidth="30" />
 </layout>
 </gui>
 <registry>
 <view sid="sliceListEditor" start="yes" />
 <view sid="showScanEditor" start="yes" />
 <view sid="sliderIndexEditor" start="yes" />
 <view sid="snapshotScene1Editor" start="yes" />
 </registry>
 </service>

 <!--
 Editor used for scene snapshot:
 It allows to select the snapshot filename and emits a "snapped" signal with this path.
 -->
 <service uid="snapshotScene1Editor" impl="::uiVisu::SnapshotEditor" />

 <!--
 Generic scene:
 This scene display a 3D image and a textured mesh.
 -->
 <service uid="genericScene" impl="::fwRenderVTK::SRender" autoConnect="yes">
 <scene>
 <!-- Image picker -->
 <picker id="myPicker" vtkclass="fwVtkCellPicker" />
 <!-- Renderer -->
 <renderer id="default" background="0.0" />

 <!-- Mesh adapor -->
 <adaptor id="meshAdaptor" class="::visuVTKAdaptor::Mesh" objectId="mesh">
 <config renderer="default" picker="" uvgen="sphere" texture="textureAdaptor" />
 </adaptor>

 <!-- Texture adaptor, used by mesh adaptor -->
 <adaptor id="textureAdaptor" class="::visuVTKAdaptor::Texture" objectId="textureImage">
 <config renderer="default" picker="" filtering="linear" wrapping="repeat" />
 </adaptor>

 <!-- 3D image negatoscope adaptor -->
 <adaptor id="imageAdaptor" uid="imageAdaptorUID" class="::visuVTKAdaptor::NegatoMPR" objectId="image">
 <config renderer="default" picker="myPicker" mode="3d" slices="3" sliceIndex="axial" />
 </adaptor>

 <!-- Snapshot adaptor: create a snapshot of the scene. It has a slot "snap" that receives a path -->
 <adaptor id="snapshotAdaptor" uid="snapshotUID" class="::visuVTKAdaptor::Snapshot" objectId="self">
 <config renderer="default" />
 </adaptor>

 <!--
 Connection for snapshot:
 connect the editor signal "snapped" to the adaptor slot "snap"
 -->
 <connect>
 <signal>snapshotScene1Editor/snapped</signal>
 <slot>snapshotUID/snap</slot>
 </connect>

 <!--
 Connection for 3D image slice:
 Connect the button (showScanEditor) signal "toggled" to the image adaptor (MPRNegatoScene3D)
 slot "showSlice", this signals/slots contains a boolean.
 The image slices will be show or hide when the button is checked/unchecked.

 The "waitForKey" attribut means that the signal and slot are connected only if the key
 "image" is present in the scene composite. It is recommanded to used because the adaptors
 exists only if the object is present.

 -->
 <connect waitForKey="image">
 <signal>showScanEditor/toggled</signal>
 <slot>imageAdaptorUID/showSlice</slot>
 </connect>

 <!--
 Connection for 3D image slice:
 Connect the menu button (sliceListEditor) signal "selected" to the image adaptor
 (MPRNegatoScene3D) slot "updateSliceMode", this signals/slots contains an integer.
 This integer defines the number of slice to show (0, 1 or 3).
 -->
 <connect waitForKey="image">
 <signal>sliceListEditor/selected</signal>
 <slot>imageAdaptorUID/updateSliceMode</slot>
 </connect>

 </scene>
 </service>

 <!-- ***
 Displayed objects
 *** -->

 <!-- Image displayed in the scene -->
 <item key="image">
 <object uid="imageUID" type="::fwData::Image">

 <service uid="imageReader" impl="::uiIO::editor::SIOSelector">
 <type mode="reader" />
 </service>

 <!--
 Generic editor representing a menu button.
 It send signal with the current selected item.
 -->
 <service uid="sliceListEditor" impl="::guiQt::editor::SSelectionMenuButton">
 <toolTip>Manage slice visibility</toolTip><!-- button tooltip -->
 <selected>3</selected><!-- Default selection -->
 <items>
 <item text="One slice" value="1" /><!-- first item, if selected the emitted value is "1" -->
 <item text="three slices" value="3" /><!-- second item, if selected the emitted value is "1" -->
 </items>
 </service>
 <!--
 Generic editor representing a simple button with an icon.
 The button can be checkable. In this case it can have a second icon.
 - It emits a signal "clicked" when it is clicked.
 - It emits a signal "toggled" when it is checked/unchecked.

 Here, this editor is used to show or hide the image. It is connected to the image adaptor.
 -->
 <service uid="showScanEditor" impl="::guiQt::editor::SSignalButton">
 <config>
 <checkable>true</checkable>
 <icon>Bundles/media_0-1/icons/sliceHide.png</icon>
 <icon2>Bundles/media_0-1/icons/sliceShow.png</icon2>
 <iconWidth>40</iconWidth>
 <iconHeight>16</iconHeight>
 <checked>true</checked>
 </config>
 </service>

 <!-- Editor representing a slider to navigate into image slices -->
 <service uid="sliderIndexEditor" impl="::uiImage::SliceIndexPositionEditor" autoConnect="yes">
 <sliceIndex>axial</sliceIndex>
 </service>

 </object>
 </item>

 <!-- texture displayed on the mesh -->
 <item key="textureImage">
 <object uid="textureUID" type="::fwData::Image">
 <service uid="textureReader" impl="::uiIO::editor::SIOSelector">
 <type mode="reader" />
 </service>
 </object>
 </item>

 <!-- Mesh displayed in the scene -->
 <item key="mesh">
 <object uid="meshUID" type="::fwData::Mesh">
 <service uid="meshReader" impl="::uiIO::editor::SIOSelector">
 <type mode="reader" />
 </service>
 </object>
 </item>

 <!-- Connects readers to status bar service -->
 <connect>
 <signal>meshReader/jobCreated</signal>
 <slot>progress_statusbar/showJob</slot>
 </connect>

 <connect>
 <signal>imageReader/jobCreated</signal>
 <slot>progress_statusbar/showJob</slot>
 </connect>

 <connect>
 <signal>textureReader/jobCreated</signal>
 <slot>progress_statusbar/showJob</slot>
 </connect>

 <!--
 Connects showScanEditor signal "toggled" to sliceListEditor slot "setEnable", this signal and slot
 contains a boolean, so the sliceListEditor can be disabled when the image is not displayed.
 -->
 <connect>
 <signal>showScanEditor/toggled</signal>
 <slot>sliceListEditor/setEnabled</slot>
 </connect>

 <start uid="MyIHM" />
 <start uid="progress_statusbar" />
 <start uid="medicalImageConverter" />

 </object>

 </config>
 </extension>

</plugin>

GUI

This tutorials used multiple editors to manage the image rendering:

	show/hide image slices

	navigate between the image slices

	snapshot

[image: ../../_images/tuto08GenericSceneGUI.png]

The two editors (SSelectionMenuButton and SSignalButton) are generic, so we need to configure their behaviour in
the xml file.

The editor aspect is defined in the service configuration. They emit signals that must be manually connected to the
scene adaptor.

SSelectionMenuButton

This editor displays a menu when the user click on the button. Then the user can select one item.

[image: ../../_images/SSelectionMenuButton1.png]

<service uid="selectionMenuButton" impl="::uiImage::SSelectionMenuButton">
 <text>...</text>
 <toolTip>...</toolTip>
 <items>
 <item text="One" value="1" />
 <item text="Two" value="2" />
 <item text="Six" value="6" />
 </items>
 <selected>2</selected>
</service>

	text (optional, default “>”)

	Text displayed on the button

	toolTip (optional)

	Button tool tip

	items

	List of the menu items

	item

	One item

	text

	The text displayed in the menu

	value

	The value emitted when the item is selected

	selected

	The value of the item selected by default

When the user select an item, a signal is emitted: the signal is selected(int selection). It sends the value of
the selected item.

In our case, we want to change the number of image slices displayed in the scene. So, we need to connect this signal to
the image adaptor slot updateSliceMode(int nbSlice).

<connect>
 <signal>selectionMenuButton/selected</signal>
 <slot>imageAdaptor/updateSliceMode</slot>
</connect>

SSignalButton

This editor shows a simple button.

<service uid="signalButton" impl="::guiQt::editor::SSignalButton" >
 <config>
 <checkable>true|false</checkable>
 <text>...</text>
 <icon>...</icon>
 <text2>...</text2>
 <icon2>...</icon2>
 <checked>true|false</checked>
 <iconWidth>...</iconWidth>
 <iconHeight>...</iconHeight>
 </config>
</service>

	text (optional)

	Text displayed on the button

	icon (optional)

	Icon displayed on the button

	checkable (optional, default: false)

	If true, the button is checkable

	text2 (optional)

	Text displayed if the button is checked

	icon2 (optional)

	Icon displayed if the button is checked

	checked (optional, default: false)

	If true, the button is checked at start

	iconWidth (optional)

	Icon width

	iconHeight (optional)

	Icon height

This editor provides two signals:

	clicked()

	Emitted when the user click on the button.

	toggled(bool checked)

	Emitted when the button is checked or unchecked.

In our case, we want to show (or hide) the image slices when the button is checked (or unckecked). So, we need to
connect the toogled signal to the image adaptor slot showSlice(bool show).

<connect>
 <signal>signalButton/toggled</signal>
 <slot>imageAdaptor/showSlice</slot>
</connect>

Run

To run the application, you must call the following line into the install or build directory:

bin/launcher Bundles/Tuto08GenericScene_0-1/profile.xml

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	fw4spl-doc 0 documentation

Index

 Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

 _images/state.png
Set parameters,...

Initialize, allocate,...

Process data

Uninitialize, deallocate,...

_images/3D.png

_images/cfitsio.png

_images/patch_structure.png
foAtoms::SReader

v

fwAtoms:PatchingManager
transformTo0)

v

fwAtoms::DefaultPatcher
transformObject(

for each sub-objects

Y s

StructuralPatch

SemanticPatch

_images/zlib.png
zlib

_images/ihu.jpg

_images/state1.png
Set parameters,...

Initialize, allocate,...

Process data

Uninitialize, deallocate,...

_images/ehealth.gif
®@Health

Better Healthcare for Europe

_images/tuto02DataServiceBasic.png

_images/tuto06Filter.png
launcher

_images/DCMTK.png
chm

_images/Image.png
short * m_buffer;
unsigned int * m_size;

void setBuffer(short * buff);
short * getBuffer();

void setSize(unsigned int * size);
unsigned int * getSize();

_images/SDB.png
Dk & o

Information

Pationt name

(1 VP image
1412-01_HepaticArteryAneurysm

]

1401-10_Cochlearimplant

[Mer

3D Model

1401-10_Cochlearimplant
(1] CT only bones.

CT only bones
1401-10_Cochlearimplant
(1] Contrasted CT

Contrasted CT

[-191, 569]
760 189
223, 121, 116

Modality
ot

ot

ot

ot

Acquisition date
2014/11/25 15:50:49
2014/10/27 22:19:37

2014/10/27 22:26:20
1400/01/01 00:00:00
1400/01/01 00:00:00
1400/01/01 00:00:00
1400/01/01 00:00:00
1400/01/01 00:00:00
1400/01/01 00:00:00
1400/01/01 00:00:00
1400/01/01 00:00:00
1400/01/01 00:00:00

Image imension

512 x512x516

512 x 512 x 237

512 x 512 x 237

512 x 512 x 237

Vorel size

0.8x08x1.25

0.39x0.39x 0.63

0.39x0.39x 0.63

0.39x0.39x 0.63

VRRender 0.9.6
Less o .

Patient position
-208, -203.5, -649.25

-100, -100, -15.5

-100, -100, 155

-100, -100, -15.5

Proview

Roferring physician / P Study description
VP Team

ABM

VP image

3D Model

cr
cr

CT only bones
CT only bones

Contrasted CT
Contrasted CT

Patient ID

1.2.826.0.1..

Institution

VP

anonymous

anonymous

anonymous

Birtndate

20141027 221937

1400/01/01

1400/01/01

1400/01/01

1412-01_HepaticArteryAneurysm

116/ 186

_images/Image1.png
short * m_buffer;
unsigned int * m_size;

void setBuffer(short * buff);
short * getBuffer();

void setSize(unsigned int * size);
unsigned int * getSize();

_images/ircad_france_couleur_petit.png
ireac

_images/VR.png

_images/calibrationExt.png
eoe ARCalibration 0.1
©soB.()

alibration (4)
= o e G
2) (&) [¢

Gaibraton Information
B bocaptures: - =25

description: Caméra FaceTime HD (intégrée)
Ex The camera is calibrated.

Width Height Skew:
S Cx: Cy: Fx: Fy:

K1 K2 P1: P2: K3
v camera 2

description: IUsers/eharquel/Dev/tmp/MVI_2.mp4
Q The camera is calibrated.

Width Height Skew:

ox oy Fx Fy:

K1 K2 P1: P2: K3

The cameras are calibrated.

1 [[[
[1 [[
[[1 [
[[[1

_images/SSelectionMenuButton1.png
> S

One slice
v three slices

_images/tuto05Mesher.png
Mesher

Open image file
Save image

Open mesh file
Save mesh

Mesher

_images/qt-logo.png

_images/calibration.png
o ARCalibration 0.1

oot B[@) B || oo | [

Galibration

Device: | Open file. B

Galibration Information

M rbocaptures: - description: /Users/eharquel/Dev/__DATA/Donnees_Softs/Lasar/data3/calibration.mpd
0.72 elements The camera is calibrated.
72 elements Width: 1920 Height: 1080 Skew: 0

72 elements
Cx:915.123 Cy:527.116 Fx: 945.22 Fy: 047.002
72 elements

1
2

3.

4.72 elements K1:-0.233822 K2:0.38744 P1:0.00182279 P2:0.00631224 K3: -0.256808
5.72 elements
6.
7.
8.

72 elements
72 elements
72 elements
72 elements
10. 72 elements
11. 72 elements

B (9] [«

_images/Libxml2.png

_images/SActivityLauncher.png
VRRenderExt 09.6.

Lo =0e o

> &= o

Information ® @ ¥Choose anactivity

Patient name Modality _ Acquisition dat
v Unknown*Unknown 1400/01/01
(1] original image CT 1400/01/01
Original image OT 1400/01/01

3D Visu
3D visualization activity

Volume rendering
Volume rendering activity

Curved Planar Reformation
Curved planar reformation activity

Spline Edition

Spline edition activity
View Points

View Points activity

conce

Study descri

Original im
Original im

_images/tuto01Basic.png
eoe tutoBasicApplicationName

_images/serialization.png
Other use of atoms
new save format, atom modification,...

fwData serialization Atoms serialization
manage by the camp files internal camp file

_images/MPR.png
52

1 16

(315, 301, 313):

[-176, 208]
384 L

LE

_images/boost.png

_images/itk.png
itk

_images/sigslot.png
DcmtkReaderSrv VtkQtVisuSrv

- | —>
update() Emit signal Signal received update()

_images/DynamicView.png
() VRRender 0.9.6

| @ sos o [TETE@ZDVsum 6@ SDVisua)

> B O W

Information
Patient name. Modality Acauisition date Image dimension Voxelsize _ Patient position _ Study descri
Unknown*Unknown 1400/01/01 00:00:00
m
Original image OT 1400/01/01 00:00:00 Original im

R

[-200, 300]
W: 500 L: 50

85
Axial 56/11

_images/patchGraph.png
— > graphiink

ViTovs VITovz

V3Tovs V3Tovz

V4Tovs

_images/sigslot1.png
DcmtkReaderSrv VtkQtVisuSrv

- | —>
update() Emit signal Signal received update()

_images/tuto03DataService.png
launcher

Services/src/actions/gui.html

 Navigation

 		
 index

 		fw4spl-doc 0 documentation »

gui

::gui::action::SBooleanSlotCaller

 © Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

_images/osx_cmake_fw4spl.png
Page 1 of 1

ADDITIONAL_PROJECTS

BUILD_DOCUMENTATION

BUILD_TESTS

(QUAKE_BUTLO_TYPE__________ e

|CMAKE_INSTALL_PREFIX
QMAKE_OSX_ARCHITECTURES

QMAKE_0SX_DEPLOYMENT_TARGET

QMAKE_0SX_SYSROOT

CREATE_SUBPROJECTS. ore
CROSS_COWPILING ore
ECLIPSE_PROJECT ore
[EXTERNAL_LTBRARTES

PROJECTS_TO_BUILD
PROJECTS_TO_INSTALL
SPYLOG_LEVEL ferror

rules will be
Press [enter] to edit option Qake Version 3.2.2
Press [c] to configure

Press [h] for help Press [q] to quit without generating

Press [t] to toggle advanced mode (Currently Off)

Services/src/editors/guiQt.html

 Navigation

 		
 index

 		fw4spl-doc 0 documentation »

guiQt

::guiQt::editor::Code

This service displays a code editor and works on a ::fwData::String. This editor provide highlighting for python and
C++.

[image: ../../../_images/codeEditor.png]

Configuration:

<object type="::fwData::String">
 <service uid="codeEditor" type="::gui::editor::IEditor" impl="::guiQt::editor::Code" autoConnect="yes">
 <config>
 <language name="Python" />
 </config>
 </service>
</object>

		Language name can be “Python” or “Cpp”.

		The text is stored in the ::fwData::String.

::guiQt::editor::SSelectionMenuButton

This service show a menu button. The user can select one item in the menu and the service sends a message
containing the value of the item. This menu is configurable in xml.

[image: ../../../_images/SSelectionMenuButton.png]

Configuration:

<service uid="selectionMenuButton" impl="::uiImage::SSelectionMenuButton">
 <text>...</text>
 <toolTip>...</toolTip>
 <items>
 <item text="One" value="1" />
 <item text="Two" value="2" />
 <item text="Six" value="6" />
 </items>
 <selected>2</selected>
</service>

		text (optional, default “>”)

		Text displayed on the button

		toolTip (optional)

		Button tool tip

		items

		List of the menu items

		item

		One item

		text

		The text displayed in the menu

		value

		The value emitted when the item is selected

		selected

		The value of the item selected by default

When the user select an item, the signal selected(int selection) is emitted: it sends the value of the selected
item.

Note

This service doesn’t modify its associated object, so it can work on any type of object.

::guiQt::editor::SSignalButton

This editor shows a button and send a signal when it is clicked.

[image: ../../../_images/SSignalButton.png]

Configuration:

<service uid="..." impl="::guiQt::editor::SSignalButton" >
 <config>
 <checkable>true|false</checkable>
 <text>...</text>
 <icon>...</icon>
 <text2>...</text2>
 <icon2>...</icon2>
 <checked>true|false</checked>
 <iconWidth>...</iconWidth>
 <iconHeight>...</iconHeight>
 </config>
 </service>

		text (optional):

		text displayed on the button

		icon (optional):

		icon displayed on the button

		checkable (optional, default: false):

		if true, the button is checkable

		text2 (optional):

		text displayed if the button is checked

		icon2 (optional):

		icon displayed if the button is checked

		checked (optional, default: false):

		if true, the button is checked at start

		iconWidth (optional):

		icon width

		iconHeight (optional):

		icon height

Note

This service doesn’t modify its associated object, so it can work on any type of object.

::guiQt::editor::DynamicView

This editor manages tabs containing sub-configurations. It receives signals with ::fwActivities::registry::ActivityMsg
containing the view information (config Id, parameters, ...).

It is usually used with the ::activities::action::SActivityLauncher action. This action sends the signals containing the
view information.

[image: ../../../_images/DynamicView.png]

In our applications, we mostly use the Series selector as main configuration. The main configuration is launched in the
first tab and is not closable.

Configuration:

 <service type="::gui::view::IView" impl="::guiQt::editor::DynamicView" autoConnect="yes" >
 <config dynamicConfigStartStop="false">
 <appConfig id="Visu2DID" title="Visu2D" >
 <parameters>
 <parameter replace="SERIESDB" by="medicalData" />
 <parameter replace="IMAGE" by="@values.image" />
 </parameters>
 </appConfig>
 </config>
</service>

The tag appConfig defines the information needed to launch the main sub-configuration.

		id:

		configuration identifier

		title:

		title of the created tab

		parameters:

		list of the parameters needed to launch the configuration.

		replace:

		name of the parameter as defined in the AppConfig

		by:

		defines the string that will replace the parameter name. It should be a simple string (ex. frontal) or define a
sesh@ path (ex. @values.myImage). The root object of the sesh@ path is this service object.

 © Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

Services/src/editors/uiImageQt.html

 Navigation

 		
 index

 		fw4spl-doc 0 documentation »

uiImageQt

::uiImage::ImageInfo

The ImageInfo service displays the value of the pixel under the mouse cursor.

::uiImage::ImageTransparency

The ImageTransparency service displays a slider to modify the image transparency.

::uiImage::SliceIndexPositionEditor

This service allows to change the slice index of an image.
It is represented by

		a slider to select the slice index

		a choice list to select the slice orientation (axial, frontal, sagittal)

::uiImage::WindowLevel

The WindowLevel service allows to change the min / max value of windowing.
It is represented by two sliders: for the min and max value of windowing.

 © Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

Services/src/editors/uiMedDataQt.html

 Navigation

 		
 index

 		fw4spl-doc 0 documentation »

uiMedDataQt

::uiMedData::editor::SModelSeriesList

::uiMedData::editor::SOrganTransformation

::uiMedData::editor::SSelector

This editor shows information about the medical data. It allows to manipulate (select, erase, ...) studies and series.

::uiMedData::editor::SSeries

This editor shows and edit fwMedData::Series information

 © Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

Services/index.html

 Navigation

 		
 index

 		fw4spl-doc 0 documentation »

FW4SPL services

		Editors

		Actions

 © Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

Services/src/editors.html

 Navigation

 		
 index

 		fw4spl-doc 0 documentation »

Editors

An editor is a GUI service iherited from ::gui::editor::IEditor (see Graphical User Interface).

		guiQt
		::guiQt::editor::Code

		::guiQt::editor::SSelectionMenuButton

		::guiQt::editor::SSignalButton

		::guiQt::editor::DynamicView

		uiImageQt
		::uiImage::ImageInfo

		::uiImage::ImageTransparency

		::uiImage::SliceIndexPositionEditor

		::uiImage::WindowLevel

		uiMedDataQt
		::uiMedData::editor::SModelSeriesList

		::uiMedData::editor::SOrganTransformation

		::uiMedData::editor::SSelector

		::uiMedData::editor::SSeries

 © Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

Services/src/actions.html

 Navigation

 		
 index

 		fw4spl-doc 0 documentation »

Actions

An action is a GUI service iherited from ::fwGui::IActionSrv (see Graphical User Interface).

		gui
		::gui::action::SBooleanSlotCaller

 © Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

_images/launchApp.png
File Edit View Help

ild\Debug>bin’launcher.exe Bundles\MyApplication\profile.xml

_images/codeEditor.png
import fwData
import numpy

#use ‘open’ to load an image, then you can use the ‘test" button

image = fwData.getObject("animage")

print “image informations : *
for attr in [‘origin', 'spacing’, ‘type’,'size'
print " -, attr, ', getattr(image, attr)

#get view on fwData:Image buffer
if image.buffer is not None:
data = numpy.asarray(image.buffer)

#work on data ...
datal (0 < data) & (data > 10) 1 = 5

#this willretrieve the <animageWriter> described in the configuration,
#start, update and stop it. this wil show file dialog box requesting @
#filename to save the image to.

writer = fwData.getSrv(*animageWriter")

writer.start()

writer.update()

writer.stop()

_images/team.jpg

_images/statF4S.png
Languages
In a Nutshell, FrameWork for Software Production
Line...

] C++ 79% @ XML 10%
... has had 8,712 commits made by 87 contributors 1cC 5% J 10 Other 6%
representing 529,542 lines of code
... Iis mostly written in C++ Lines of Code
with an average number of source code comments 1,000k

... has a well established, mature codebase
maintained by a very large development team
with stable Y-O-Y commits

... took an estimated 141 years of effort (COCOMO model)
starting with its first commit in September, 2009

. S) 2010 2011 2012 2013 2014 2015
ending with its most recent commit 5 days ago

[Code M Comments [Blanks

Activity
Commits per Month
30 Day Summary 12 Month Summary Zoom 1yr 3yr Syr Al
Nov 12 2015 — Dec 12 2015 Dec 12 2014 — Dec 12 2015 500
107 Commits 402 Commits A~ A AN SA AN 0
13 Contributors e B () e AEUES 1 2010 2011 2012 2013 2014 2015
N 5 7 months
including 2 new contributors
29 Contributors 5 N . 2 A AR
Down -5 (14%) from previous 12 2010 2012 2014
months ‘« 1] >
Community
Ratings Most Recent Contributors Contributors per Month
20
1 user rates this project: . Julien Waechter M emilie.harquel
Yok kkok sorso
B flavien.bridault B marc.schweitzer
Click to add your rating 1
WO IE B fnuttens B 'mendoza

Review this Project! 0

2010 2011 2012 2013 2014 2015

_images/VR-3D.png

search.html

 Navigation

 		
 index

 		fw4spl-doc 0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

_images/VisiblePatient.png
A\

_images/wix.png
Wix

_images/IService021.png

_images/logoIHU.jpg
ihu

STRASBOURG

_images/Image04.png
Image

short * m_buffer;
unsigned int * m_size;

void setBuffer(short * buff);
short * getBuffer();

void setSize(unsigned int * size);
unsigned int * getSize();

void readlmageFromPacsWithDcmtk(...
void croplmageWithltk(...)
void windowinglmageWithOpenCV(...)
void visuWithVtkAndQt(...)

_images/IService02.png

_images/ogre-uml-overview.png
g

Scene Management

MovableObject

Plugin

[T———{OctreeSceneManager
SceneNndel

En_llyl

Cameml Light Maleriall

Plugin

CustomMovable |

Resource Managerent

Rendefing

ResnurceGmupManagerl Meshl Texture

Rendemhlel RenderWi ndnwl

Arcl

eFactory

GpubiogEm HardwareBufferManager
ResnurceManagerl

Rendersyﬂeml

/

Plulin

CustomArchiveFactory |

Plugin
GLTexture | GLRenderSystem

_images/patient.png
Patient

_images/osx_cmake_binpkgs.png
ADDITIONAL_DEPS
ARCHIVE_DIR
MAKE_BUILD_TYPE
|QMAKE_INSTALL_PREFIX
‘MAKE_OSX_ARCHITECTURES
CMAKE_0SX_DEPLOYMENT_TARGET
MAKE_0SX_SYSROOT
CROSS_COMPILING
NUMBER_OF_PARALLEL_BUILD
PATCH_EXECUTABLE
PYTHON_EXECUTABLE

Press [enter] to edit option Qvake Version 3.
Press [c] to configure

press [h] for help Press [q] to quit without generating

Press [t] to toggle advanced mode (Currently Off)

_images/logo_altran.png
alLTRan

Slides/20150708_RMLL/f4s.html

 Navigation

 		
 index

 		fw4spl-doc 0 documentation »

		id:		circle-no-background

FW4SPL, a framework for applications based on medical imaging.

Flavien Bridault

RMLL 2015 - Beauvais, Wednesday, 8th 2015

		data-y:		r1500

		data-rotate-z:		90

		class:		text-small

IRCAD (Strasbourg, France)

[image: ../../_images/ircad.jpg]

		Institut de Recherche contre les Cancers de l’Appareil Digestif

		Created by Jacques Marescaux in 1994

		Training center - Research

Note

		IRCAD is a research institute against digestive system cancers.

		It is known worldwide especially because it is a training center, where 4000 surgeons/year attend courses on mini-invasive and laparoscopic surgery.

		There are also two research and development teams. One about Robotics, and an another one about Computer Vision. FW4SPL is the framework developed by this team.

		class:		text-small

IHU Strasbourg

[image: ../../_images/ihu.jpg]

		Institut Hospitalier Universitaire

		Mini-invasive surgery guided by image

Note

		IHU is located next to IRCAD.

		It is a research center about mini-invasive surgery guided by image.

		IHU also contributes to FW4SPL.

		data-y:		r1500

Presentation purpose

		Why IRCAD R&D team has developed FW4SPL ?

		Explain the design

		Show the main features

		Help to start developing

FW4SPL meaning

		FrameWork for Software Production Line

		Nickname: F4S -> Forces [fɔʁsjz]

Note

		Also a disclaimer

		id:		ircad-context

IRCAD context

[image: ../../_images/patient.png]

Note

		At IRCAD, we make prototypes/PoC of software based on medical imaging

		Our data is the patient

		Historically we have worked on different steps of the image process

		data-x:		r-300

		data-y:		r-300

		data-scale:		0.4

Viewer/Segmentation

 Your browser does not support the video tag.

		data-x:		r-300

		data-y:		r100

Planning

 Your browser does not support the video tag.

Note

Thanks to the 3D segmentation, we can help the surgeon to analyse a patient pathology. We worked on tools that help to plan the surgery. This activity has led to create a start-up called Visible Patient.

		data-y:		r400

Simulation

 Your browser does not support the video tag.

Note

We also worked on medical simulators in laparoscopy. Laparoscopy is a way to perform a surgery with only small incisions in the abdomen. Surgeons interact with mechanical instruments and watch the organs through camera. Simulators help them to train without a . This activity has led to create a start-up called Digital Trainers.

		data-y:		r100

		data-x:		r300

Augmented reality

 Your browser does not support the video tag.

Note

Today we are focused on augmented reality. In laparoscopy, the surgeon has a very tight field of view. We superimpose informations on the video to help them during the surgery, for instance here, the location of the tumor on a liver.

		data-y:		r-300

		data-scale:		1.2

		class:		text-small

		data-y:		r1500

IRCAD R&D team

[image: ../../_images/team.jpg]

		Researchers (3)

		Engineers (7)

		Phd. students (3)

		Trainees (6)

		Internships (4)

Note

		Around 20 people

Why a framework ?

		Quick development, reuse source code

		Intensive use of open source libraries (boost, Qt, VTK, ITK,...)

		Integrate trainees/students/researchers/partners code

Note

		software/prototype - Windows, OSX, Linux, Android, IOs

		reuse source code

		we don’t want people to work on different library versions, with different options,...

		we need to integrate the different applications/fragmented code

FW4SPL characteristics

		Object/services design

		Component based (inspired by OSGi [http://www.osgi.org])

		Applications built in XML

		Developed in C++

		Multi platforms (Windows, Linux, OSX, Android)

		Dependencies on many open source libraries

		Licensed under LGPL

Note

		To match all these goals...

		XML, not common to build applications

Important dates

		2004 : creation of FW4SPL project

		2009 : FW4SPL became open-source (LGPL)

		2010-2011 : PoC Sofa and Kinect (Altran-Est)

		2013 : Creation of the FW4SPL board

Note

		Sofa: biomechanical engine

		Altran: proof that FW4SPL could be used outside IRCAD

		Visible Patient was created in 2013 to commercialize the planning applications,...

		class:		square-background

		data-x:		r2000

		data-rotate-z:		r90

Outline

		Object/Service approach

		Communication

		Component based approach

		Discussion

		Getting started

		data-x:		r1500

What is the Object/Service approach ?

		data-x:		r1500

Classic object-oriented approach

		an object (i.e. an image) is represented by a class.

		class:		centered

		data-y:		r270

		data-scale:		0.5

[image: ../../_images/Image.png]

		data-scale:		1

		data-y:		r250

		this class contains all functionalities working on the object (read, write, filter, visualize, ...)

		class:		centered

		data-y:		r250

		data-scale:		0.5

[image: ../../_images/Image04.png]

		data-scale:		1

		data-x:		r1500

Limits of this approach

		Too many methods in the class, hard to maintain

		Many dependencies required even if you only need a single method.

		Collaborative work harder

Solution

		Split data and functions

Note

		Too many functions, if team continue to add functions

		Many dependencies required (itk,vtk,qt,dcmtk,...) even if you just need to crop an image

		Everyone work on the same file

Service

		Only one functionality (Read, Crop, Visualize...)

		Class of services (IReader, IOperator, IVisu)

		State pattern

Note

		to this end, we use to concept of service

		we can observe that for each process, we always have to repeat the same execution pattern, life cycle, configure, then initialize, update and stop

		update can be repeated

		class:		centered

		data-y:		r400

		data-scale:		0.8

[image: ../../_images/state.png]

Note

		transitions, on ne peut pas passer de configure à stop

		We need to store data into it

		class:		centered

		data-scale:		1

		data-x:		r1500

		data-y:		r-200

Service approach example

[image: ../../_images/IService02.png]

Note

		Common interface 4 methods

		sub-classes for each type

		one service for each functionality

		data-scale:		0.15

		data-x:		r-50

		data-y:		r360

DcmtkReaderSrv

		configure() : verify if url is ok

		start() : do nothing

		update() : read the data (equivalent to readImageFromPacsWithDcmtk())

		stop() : do nothing

		data-x:		r165

ItkCropOperatorSrv

		configure() : verify if the cropping region is valid

		start() : do nothing

		update() : compute the cropping on image and set the new data (equivalent to cropImageWithItk)

		stop() : do nothing

		data-x:		r360

VtkQtVisuSrv

		configure() : verify if the screen support this size

		start() : initialize Qt frame and vtk pipeline and show the frame

		update() : check the buffer, if it has changed, refresh the vtk pipeline

		stop() : destroy vtk pipeline and uninitialize Qt frame.

Note

		configure() : verify if the screen support this size

		start() : initialize Qt frame and vtk pipeline and show the frame (image is not shown if image buffer is null)

		update() : check if the buffer has be changed, if true, refresh the vtk pipeline to show negato

		stop() : destroy vtk pipeline and uninitialize Qt frame.

		data-y:		r600

		data-scale:		1

Application description in XML

		Objects and services classes are registered dynamically

		Instances are created by a factory

		Application launcher read a XML configuration file

		data-x:		r1500

		class:		text-small

XML configuration file

<object type="::fwData::Image">

 <service uid="myFrame" impl="DefaultFrame" type="IFrame" >
 <gui>
 <frame>
 <minSize width="800" height="600" />
 </frame>
 </gui>
 <registry>
 <view uid="myVisu" />
 </registry>
 </service>

 <service uid="myVisu" impl="vtkSimpleNegatoRenderer" type="IRender" />

 <service uid="myReader" impl="VtkImageReader" type="IReader" >
 <filename path="./TutoData/patient1.vtk"/>
 </service>

 <start uid="myFrame" />
 <start uid="myVisu"/>
 <start uid="myReader"/>

 <update uid="myReader"/> <!-- Read the image on filesystem -->
 <update uid="myVisu"/> <!-- Refresh the visu -->

</object>

Problem

And if we read a new image later ?

		We can no longer call update() of the visualization from the xml

		How to automate the call ?

		class:		square-background

		data-y:		r1500

		data-rotate-z:		90

Outline

		Object/Service approach

		Communication

		Component based approach

		Discussion

		Getting started

		data-y:		r1500

Communication

		
		Signals/Slots (inspired by Qt)

		
		Data -> Service

		Service <-> Service

		
		Slot call

		
		synchronous

		asynchronous

		class:		centered

[image: ../../_images/sigslot.png]

		class:		text-small

		data-x:		r-10

		data-y:		r-150

		data-scale:		0.6

void DcmtkReaderSrv::update()
{
 // Load an image using dcmtk
 Dcmtk::Image img;
 ...

 Image* img = this->getObject<Image>();

 // Convert dcmtk image data in our format
 img->createImage(img, size);

 // Emit the signal "modified"
 Signal* sig = img->signal("modified");
 sig->asyncEmit();
}

		class:		text-small

		data-x:		r-40

		data-y:		r350

<object uid="imageUID" type="::fwData::Image">

 ...

 <service uid="myVisu" impl="vtkSimpleNegatoRenderer" type="IRender" />

 <service uid="myReader" impl="VtkImageReader" type="IReader" >
 <filename path="./TutoData/patient1.vtk"/>
 </service>

 <connect>
 <signal>imageUID/modified</signal>
 <slot>myVisu/update</slot>
 </connect>

 <start uid="myFrame" />
 <start uid="myVisu"/>
 <start uid="myReader"/>

</object>

		class:		square-background

		data-y:		r1500

		data-rotate-z:		180

Outline

		Object/Service approach

		Communication

		Component based approach

		Discussion

		Getting started

		data-x:		r-1500

Component in FW4SPL

		Also called Bundle

		Dynamic library, loaded on demand

		Group services, by theme and/or by dependency

		
		Examples:

		
		ioVTK: reading/writing image or mesh data from VTK formats

		uiImageQt: Qt widgets to manipulate images

Component based approach

Benefits

		Code reuse without recompiling

		Improve external dependencies management (VTK, ITK, Qt,...)

		Easier support

		Easier collaborative work

Examples

		Eclipse,...

Note

		Code split

		Reuse code in another application, without recompiling your program, even no link of your application against a library

		Easier support EXAMPLE correction of bug

Content of a Bundle

		Xml description file : plugin.xml

		Library binary (.so, .dll, .dylib)

		Other shared resources (icons, sounds, ...)

Note

		When a Bundle is compiled

		Xml description file (plugin.xml) to describe the content of the dynamic library

		class:		text-small

Extract of plugin.xml (ioITK)

<plugin id="ioITK" class="ioITK::Plugin">
 <library name="ioITK" />

 <requirement id="io" />
 <requirement id="gui" />

 <extension implements="::fwServices::registry::ServiceFactory">
 <type>::io::IReader</type>
 <service>::ioITK::InrImageReaderService</service>
 <object>::fwData::Image</object>
 <desc>Inrimage Reader (ITK/Ircad)</desc>
 </extension>

 <extension implements="::fwServices::registry::ServiceFactory">
 <type>::io::IWriter</type>
 <service>::ioITK::InrImageWriterService</service>
 <object>::fwData::Image</object>
 <desc>Inrimage Writer (ITK/Ircad)</desc>
 </extension>

 <extension implements="::fwServices::registry::ServiceFactory">
 <type>::io::IWriter</type>
 <service>::ioITK::JpgImageWriterService</service>
 <object>::fwData::Image</object>
 <desc>Jpeg Writer (ITK)</desc>
 </extension>
 ...
</plugin>

Note

		This shows how to register services in the factory

		This helps to load bundles dynamically

		Don’t talk about extension points

Bundles in application

profile.xml

		Input file for the launcher

		Describe which bundles to use

		data-y:		r-320

		class:		text-small

<profile name="TestApp" version="0.1.0">

 <activate id="dataReg" version="0-1" />

 <activate id="gui" version="0-1" />
 <activate id="guiQt" version="0-1" />

 <activate id="io" version="0-1" />
 <activate id="ioVTK" version="0-1" />

 <activate id="media" version="0-1" />

 <activate id="visu" version="0-1" />
 <activate id="visuVTK" version="0-1" />
 <activate id="visuVTKQt" version="0-1" />

 <activate id="TestApp" />
 <activate id="appXml" version="0-1" >
 <param id="config" value="TestAppBase" />
 <param id="parameters" value="TestAppBase" />
 </activate>

 <start id="visuVTK" />
 <start id="visuVTKQt" />
 <start id="guiQt" />
 <start id="appXml" />

</profile>

		data-x:		r-1500

Example : I/O Bundles

 Your browser does not support the video tag.

Note

		Switch GUI !!!

		class:		square-background

		data-y:		r-20500

		data-rotate-z:		270

Outline

		Object/Service approach

		Communication

		Component based approach

		Discussion

		Getting started

		data-y:		r-1500

Design of a new application

		Write a new xml configuration file (plugin.xml)

		Pick the bundles you need (profile.xml)

		Write new services

		Create new bundles/libraries

		Share common code in regular shared libraries (.so,.dll)

Discussion

Services and components

Cons

		Think design differently

		Need to write a new class for each new functionality

Pros

		Far less coupling !

		No need for a public and private API

		class:		square-background

		data-rotate-z:		90

		data-x:		r1500

Outline

		Object/Service approach

		Communication

		Component based approach

		Discussion

		Getting started

		data-y:		r1500

Online documentation

		Documentation http://fw4spl-doc.readthedocs.org/

		Developper blog http://fw4spl-org.github.io/fw4spl-blog/

Downloading FW4SPL

		Github : https://github.com/fw4spl-org

		BitBucket : https://bitbucket.org/fw4splorg

		Do not use the obsolete googlecode page !!! https://code.google.com/p/fw4spl/

Note

		googlecode may still be in the search engine results

Which version to use ?

Current stable version : 0.10.1

Current development version : 0.10.2

		Strongly advised for a new software (communication API is simpler)

		Temporarily we need patches repositories, only available on bitbucket

hg qclone https://bitbucket.org/fw4splorg/fw4spl-patches

Repositories

		Type
		Sources
		Dependencies

		Main
		fw4spl
		fw4spl-deps

		Extended
		fw4spl-ext
		fw4spl-ext-deps

		AR
		fw4spl-ar
		fw4spl-ar-deps

Third-part libraries

		Build scripts (CMake ExternalProject_Add())

Note

		dependencies = external libraries (examples)

		before building fw4spl, you must build dependencies

		extended : work in progress

Main repository (fw4spl)

		Basic data (Float, Integer, String, Image, Mesh,...)

		GUI (Qt)

		Data I/O (JSON, DICOM (gdcm), VTK, Inr)

		2D rendering (Qt)

		3D rendering (VTK)

		Around 15 tutorials

		data-x:		r-320

 Your browser does not support the video tag.

		Medical images viewer : VR-Render

		data-x:		r-350

 Your browser does not support the video tag.

		data-y:		r1500

Extended repository (fw4spl-ext)

		DICOM (dcmtk)

		OpenIGTLink support

		data-x:		r-300

 Your browser does not support the video tag.

		data-y:		r1500

Augmented reality repository (fw4spl-ar)

		Video player (QtMultimedia): file, camera or network

		Tag-based video tracking (Aruco, OpenCV)

		ARCalibration : Camera calibration (mono, stereo)

		data-x:		r-320

 Your browser does not support the video tag.

		DroidTracking : Tag tracking on Android devices

		data-x:		r-350

 Your browser does not support the video tag.

		data-y:		r1500

Debian Integration

		Available on testing [https://packages.debian.org/testing/science/fw4spl]

		Previous stable version 0.9.2

		Ready to use !

		data-y:		r1000

Stay tuned !!!

Coming in September 2015

		Ogre3D integration : fw4spl-Ogre3d

		Advanced rendering techniques

		Better performances

		data-x:		r-350

 Your browser does not support the video tag.

		class:		centered

		data-y:		r1000

Thank you !

fw4spl at gmail.com

fbridault at ircad.fr

johan.moreau at ircad.fr

Presentation made with Hovercraft [https://github.com/regebro/hovercraft]

 © Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

Slides/20160120_f4s-ogre/ogre.html

 Navigation

 		
 index

 		fw4spl-doc 0 documentation »

		id:		circle-no-background

Ogre 3D in FW4SPL

Flavien Bridault

Training - Strasbourg, 22nd January 2016

		class:		overview

		data-x:		r2000

		data-scale:		1.0

Overview

		
		Ogre 3D

		
		Architecture overview

		Scripting

		
		Generic scene

		
		Architecture

		Basics

		Adaptors

		Transparency

		Perspectives

		
		Tutorials

		
		Material

		Compositors

		data-x:		r0

		data-y:		r2700

		data-rotate-z:		90

Ogre 3D

History

		Object-Oriented Graphics Rendering Engine

		Started in 2000, first release in 2005

		Latest stable 1.9 (2013), preview 2.1

		
		Used in free or commercial games

		
		Ankh series (2005-2009)

		TorchLight I (2009)

		Zombie Driver (2009)

		TorchLight II (2012-2015)

Note

		Rendering Engine, not actually a game engine

		data-y:		r1500

		class:		text-medium

Ogre 3D

Features

		High-level abstractions

		Cross-platform : Windows, Linux, MacOSX and Android

		Scene-graph

		Resource management (meshes, textures, material/shaders)

		Vertex animation (CPU and GPU)

		Material LOD

		Material scripting

		Multipass effects

		Progressive meshes (manual or auto)

		Shadows (image or object-based)

		Compositors

		Particles system

		Ribbon trails

		BSP/PVS, Octree, portals

Note

		Texture == image

Ogre 3D

Why ?

		
		VTK

		
		is oriented towards visualization

		is far from the hardware, very high-level abstraction

		does not use cutting-edge OpenGL features

		
		Other

		
		Unreal, Unity

		Irrlicht

		G3D

		class:		title

Architecture overview

Ogre 3D

Architecture overview

[image: ../../_images/ogre-uml-overview.png]

		data-y:		r0

		data-x:		r-100

		data-scale:		.75

		data-x:		r0

		data-y:		r1700

		data-scale:		1

Ogre 3D

::Ogre::Root

		Entry point in the Ogre system

		First to be created, last to be deleted

		Holds scene and resource managers

		Holds the render system

		Triggers the rendering of frames (continuous or on demand)

Ogre 3D

::Ogre::RenderSystem

		Abstraction of the underlying 3D API (DirectX/OpenGL)

		Used to create render windows ::Ogre::RenderWindow

		
		Instantiated dynamically by selecting a shared library

		
		DirectX9

		DirectX11

		OpenGL

		OpenGL3+

Ogre 3D

::Ogre::SceneManager

		
		Organize the content of the 3D scene through a graph :

		
		objects

		cameras

		lights

		Differents spatial structures used (BSP, PVS, etc...) according to the scene type

		Responsible of selecting the objects to be rendered each frame

Ogre 3D

::Ogre::Entity

		Movable or static object in the scene

		Attached to a ::Ogre::SceneNode

		Instantiation of a mesh in the 3D scene

		A mesh may have multiple materials : for each ::Ogre::SubMesh, a ::Ogre::SubEntity is created in the entity

Ogre 3D

::Ogre::Material

		
		Render states

		
		depth buffer test/write

		culling/mode

		blending equation

		polygon fill mode (point, wireframe, solid)

		...

		
		Shader

		
		vertex

		hull

		domain

		geometry

		fragment

Ogre 3D

::Ogre::ResourceGroupManager

		
		one for each resource type:

		
		MeshManager

		MaterialManager

		TextureManager

		CompositorManager

		allows to create/load/unload/destroy resources

		few direct interactions, called by other parts of the Ogre system

Ogre 3D

::Ogre::ResourceGroupManager

		
		Resources are created by name, looking through registered resource locations

		
		::Ogre::ResourceGroupManager::addResourceLocation()

		configured easily from ::Ogre::ConfigFile (.cfg)

resources.cfg

[compositors]
FileSystem=./Bundles/material_0-1/Media/compositors

[materials]
FileSystem=./Bundles/material_0-1/Media/materials/
FileSystem=./Bundles/materialExt_0-1/Media/materials/

[textures]
FileSystem=./Bundles/material_0-1/Media/textures/

		class:		title

Scripting

		class:		text-small

Ogre 3D

Materials

// dummy.material

vertex_program dummy_VP glsl
{
 source dummy_VP.glsl
 default_params
 {
 param_named_auto u_worldViewProj worldviewproj_matrix
 }
}

fragment_program dummy_FP glsl
{
 source dummy_FP.glsl
}

material dummy
{
 technique
 {
 pass
 {
 cull_hardware none
 depth_write on
 polygon_mode wireframe

 vertex_program_ref dummy_VP
 {
 }

 fragment_program_ref dummy_FP
 {
 }

 texture_unit
 {
 texture image.png
 }
 }
 }
}

Ogre 3D

Materials

		Materials are parsed from (.material) files from the registered resource locations

		
		GLSL programs can be written in a .material file

		
		be careful of the parsing order if you share programs accross multiple files

		they can be put in .program, read before all .material

Ogre 3D

Materials

		Once parsed during initialization, easy to use:

entity->setMaterialName("dummy");

		Documentation: http://www.ogre3d.org/docs/manual/manual_14.html#Material-Scripts

Ogre 3D

Compositors

		
		Pipeline of successive rendering passes:

		
		geometric pass

		full screen pass

[image:]

		data-x:		r-900

		data-y:		r0

		class:		text-small

compositor Edges
{
 technique
 {
 texture Scene target_width target_height PF_R8G8B8
 texture Edges target_width_scaled 0.5 target_target_height_scaled 0.5 PF_FLOAT16_R

 target Scene
 {
 input none
 pass clear
 {
 }

 pass render_scene
 {
 }
 }

 target Edges
 {
 input none

 pass render_quad
 {
 material EdgeDetection
 input 0 Scene
 }
 }

 target_output
 {
 input none

 pass render_quad
 {
 material BlendEdges
 input 0 Scene
 input 1 Edges
 }
 }
 }
}

		data-x:		r0

		data-y:		r1500

Ogre 3D

Compositors

		Compositors can be chained together:

// Next.compositor
compositor Next
{
 ...
 target dummy
 {
 input previous

 ...
 }
 ...
}

// .cpp
auto manager = ::Ogre::CompositorManager::getSingletonPtr();
manager->addCompositor(viewport, "Edges");
manager->addCompositor(viewport, "Next");
manager->setCompositorEnabled(viewport, "Edges", true);
manager->setCompositorEnabled(viewport, "Next", true);

Ogre 3D

Compositors

		render_scene passes can select a technique in the material

// .compositor
target dummy
{
 material_scheme tutuScheme

 pass render_scene
 {
 }
}

		data-x:		r-800

		data-y:		r0

// .material
material toto
{
 technique
 {
 pass
 {
 vertex_program_ref default_VP
 {
 }

 fragment_program_ref default_FP
 {
 }
 }
 }

 technique tutu
 {
 scheme tutuScheme

 pass
 {
 vertex_program_ref tutu_VP
 {
 }

 fragment_program_ref tutu_FP
 {
 }
 }
 }
}

		data-x:		r0

		data-y:		r1500

Ogre 3D

Compositors

		Documentation:

http://www.ogre3d.org/docs/manual/manual_29.html#Compositor-Scripts

		
		Limitation:

		
		With the current v1.10, it is not possible to retrieve a depth buffer

		Forced to use an extra floating-point buffer

		Supported with 2.0 and 2.1

		data-x:		r0

		data-y:		r2700

		data-rotate-z:		r90

		class:		overview

Overview

		
		Ogre 3D

		
		Architecture overview

		Scripting

		
		Generic scene

		
		Architecture

		Basics

		Adaptors

		Transparency

		Perspectives

		
		Tutorials

		
		Material

		Compositors

		data-x:		r-2000

		data-y:		r0

		data-rotate-z:		r0

		class:		title

Generic scene architecture

Generic scene

Architecture

Same principle than our generic scene using VTK

		A render service, working on a ::fwData::Composite data, acts as a manager

		Sub-services named as adaptors work on the keys of the composite

		Adaptors are configured in XML or instantiated by the C++ code

		The manager listens to its composite, and supervises the starting and stopping of adaptors

		When an object is added/removed, the adaptor in the XML configuration is started/stopped

		data-x:		r0

		data-y:		r-900

<service uid="genericSceneOgre" impl="::fwRenderOgre::SRender" autoConnect="yes">
 <scene>
 <background topColor="#DDDDDD" bottomColor="#43958D" topScale="0.7" bottomScale="1.0" />
 <renderer id="default" layer="1" />

 <adaptor id="cameraAdaptor" class="::visuOgreAdaptor::SCamera" objectId="cameraTF">
 <config renderer="default" />
 </adaptor>

 <adaptor id="meshAdaptor" class="::visuOgreAdaptor::SMesh" objectId="meshKey">
 <config renderer="default" transform="meshTF" />
 </adaptor>

 <adaptor id="transformAdaptor" class="::visuOgreAdaptor::STransform" objectId="transform">
 <config renderer="default" transform="meshTF"/>
 </adaptor>

 </scene>
</service>

<item key="cameraTF">
 <object uid="cameraTF" type="::fwData::TransformationMatrix3D" />
</item>

<item key="meshKey">
 <object uid="meshUid" type="::fwData::Mesh" />
</item>

<item key="transform">
 <object uid="transformUid" type="::fwData::TransformationMatrix3D" />
</item>

		data-x:		r-2000

		data-y:		r0

		class:		text-medium

Generic scene

Library design

		
		the library fwRenderOgre contains the core

		
		SRender service

		Interactors

		the bundle visu allows to register SRender

		the bundle visuOgreQt contains the Qt widget and its interactions

		
		the bundle visuOgreAdaptor contains the core adaptors

		
		SCamera

		STransform

		SMesh

		SMaterial

		SNegato

		STexture

		...

		data-x:		r-2000

		data-y:		r0

		data-rotate-z:		r0

		class:		title

Basics

Generic scene

Windowing management

[image:]

		data-x:		r0

		data-y:		r1000

Generic scene

::visuOgreQt::Window

		
		Create and manage the RenderWindow

		
		There is some shi**** platform-specific code

		Responsible of triggering the rendering (on-demand)

		Receive mouse and keyboards interactions, forward them to the RenderWindowInteractorManager

		data-x:		r0

		data-y:		r-1000

		data-x:		r0

		data-y:		r-1000

Generic scene

::visuOgreQt::RenderWindowInteractorManager

		Create ::visuOgreQt::Window and place it the GUI layout

		
		Manage communication with Qt and fw4spl slots

		
		::fwRenderOgre::SRender

		::visuOgreQt::Window

		data-x:		r0

		data-y:		r1000

		data-x:		r-1500

		data-y:		r0

Generic scene

::fwRenderOgre::SRender

		Contains and manages the adaptors

		Bridge between the adaptors and the widget

		With makeCurrent(), allows the adaptors to set the current OpenGL context

		With requestRender(), allows the adaptors to refresh the rendering

Generic scene

Layers

[image:]

		data-x:		r0

		data-y:		r1000

Generic scene

Layer

		Allows to have multiple scenes in a window

		A scene is rendered individually in a render target (::Ogre::Viewport)

		The output is only a color texture, thus SRender composite them at the end

<service uid="genericScene" impl="::fwRenderOgre::SRender" autoConnect="yes" >
 <scene>
 <renderer id="video" layer="1" />
 <renderer id="scene" layer="2" />
 ...

 <adaptor id="videoAdapter" class="::visuOgreAdaptor::SVideo" objectId="image">
 <config renderer="video" />
 </adaptor>

 <adaptor id="modelSeries" class="::visuOgreAdaptor::SModelSeries" objectId="model">
 <config renderer="scene" />
 </adaptor>

 </scene>
</service>

		data-x:		r0

		data-y:		r-1000

		data-x:		r0

		data-y:		r-1000

Generic scene

Interactors

		
		Two types :

		
		How to pick objects : mesh, video

		How to move the camera : trackball, fixed, negato2D

		Selected with ::visuOgreAdaptor::SInteractorStyle

<service uid="genericScene" impl="::fwRenderOgre::SRender" autoConnect="yes" >
 <scene>
 ...
 <adaptor id="adaptor" class="::visuOgreAdaptor::SInteractorStyle" objectId="self">
 <config renderer="default" style="Trackball" />
 </adaptor>
 ...
 </scene>
</service>

		data-x:		r0

		data-y:		r1000

		data-x:		r-1800

		data-y:		r0

Generic scene

Compositors

		DefaultCompositor handles the “core” compositors, like those related to transparency

		Each layer has a compositor chain managed by a CompositorChainManager, designed to receive custom compositors

<service uid="genericScene" impl="::fwRenderOgre::SRender" autoConnect="yes" >
 <scene>
 <renderer id="video" layer="1" compositors="Laplace;ASCII;Bloom" />
 ...
 </scene>
</service>

Generic scene

Background

		Special layer #0, instantiated in SRender

		Can be filled with a gradient

<service uid="genericScene" impl="::fwRenderOgre::SRender" autoConnect="yes" >
 <scene>
 <background topColor="#DDDDDD" bottomColor="#43958D" topScale="0.7" bottomScale="1.0" />
 ...
 </scene>
</service>

Generic scene

Logging

		The output log is redirected to the current working directory Ogre.log

		Very important for debugging materials and shaders

		data-x:		r-2000

		class:		title

Adaptors

Generic scene - Adaptors

STransform

		Work on a ::fwData::TransformationMatrix3D

		Wrap a ::Ogre::SceneNode

		A parent transform can be specified, thus allowing to build a scene graph implicitly

<adaptor id="meshAdaptor" class="::visuOgreAdaptor::SMesh" objectId="mesh">
 <config renderer="default" transform="meshTransform" />
</adaptor>

<adaptor id="tfAdaptor" class="::visuOgreAdaptor::STransform" objectId="meshTF">
 <config renderer="default" transform="meshTransform" parentTransform="parentTransform" />
</adaptor>

<adaptor id="parentAdaptor" class="::visuOgreAdaptor::STransform" objectId="parentTF">
 <config renderer="default" transform="parentTransform" />
</adaptor>

Generic scene - Adaptors

SMesh

		Work on a ::fwData::Mesh

		Instantiated in XML, but also automatically by ::visuOgreAdaptor::SModelSeries

		Copy meshes data into ::Ogre::HardwareBuffer as fast as possible

		Handle edges, triangles, quads or tetrahedrons primitives

		Handle only meshes with cells data (indices)

		Handle vertex normals, vertex texture coordinates, vertex colors and primitive colors

Generic scene - Adaptors

SMesh - Implementation details

		Contains a ::Ogre::Mesh and a ::Ogre::Entity

		This means that mesh data is not shared between two adaptors on the same mesh (future work)

		By default, a SMaterial is created automatically but it can be specified in XML

<adaptor id="meshAdaptor" class="::visuOgreAdaptor::SMesh" objectId="meshKey">
 <config renderer="default" transform="meshTransform" materialTemplate="Blue" />
</adaptor>

<adaptor id="meshAdaptor2" class="::visuOgreAdaptor::SMesh" objectId="meshKey">
 <config renderer="default" materialAdaptor="mtlAdaptorUID" />
</adaptor>

<adaptor id="mtlAdaptor" uid="mtlAdaptorUID" class="::visuOgreAdaptor::SMaterial" objectId="mtl">
 <config renderer="default" materialTemplate="Red" normalLength="1.0" />
</adaptor>

Generic scene - Adaptors

SMesh - Render-to-Vertex Buffer

		Quads or tetrahedrons are not native primitive types, they must be converted into triangles

		Per-primitive color is also not straightforward to implement, you need to duplicate points

		Doing this in software is expensive, especially if we need to do that every frame

		Take advantage of geometry shaders and Render-to-Vertex Buffer (GL_TRANSFORM_FEEDBACK)

Generic scene - Adaptors

SMesh - Render-to-Vertex Buffer

Example: quads

[image:]

Generic scene - Adaptors

SMesh - Render-to-Vertex Buffer

		Give the GPU the raw quads list

		Let the geometry shader generate a strip of two triangles for each primitive

layout (lines_adjacency) in;
layout (triangle_strip, max_vertices = 4) out;

out vec3 oPos;

void emit(int index)
{
 oPos = gl_in[index].gl_Position.xyz;
 EmitVertex();
}

void main(void)
{
 emit(0); emit(1); emit(3); emit(2);
 EndPrimitive();
}

Generic scene - Adaptors

SMesh - Render-to-Vertex Buffer

		
		Do we want to do that each time the object is rendered ?

		
		The geometry shader cost is real, especially if we render the object several times

		So, we break the GPU pipeline after the geometry shader output, just before the rasterization

		The output is a vertex buffer that we can reuse when the object is rendered

Generic scene - Adaptors

SMesh - Render-to-Vertex Buffer

		
		We use a special R2VBRenderable object,

		
		Contains a ::Ogre::RenderToVertexBuffer, which takes a ::Ogre::SubEntity as input

		
		When it is updated, before rendering:

		
		Render the source data into a vertex buffer

		Put the result data in the render queue

		data-x:		r100

		data-y:		r-350

		class:		centered

		data-scale:		0.5

[image:]

		data-x:		r-2000

		data-y:		r0

		data-scale:		1

Generic scene - Adaptors

SMaterial

		Work on a ::fwData::Material

		Instantiated by SMesh or configured by XML

		Wrap a ::Ogre::Material

<adaptor id="meshAd" class="::visuOgreAdaptor::SMesh" objectId="meshKey">
 <config renderer="default" materialAdaptor="mtlAdUID" />
</adaptor>

<adaptor id="mtlAd" uid="mtlAdUID" class="::visuOgreAdaptor::SMaterial" objectId="mtl">
 <config renderer="default" materialTemplate="Red" normalLength="1.0" />
</adaptor>

Generic scene - Adaptors

SMaterial

		
		::Ogre::Material is loaded

		
		from a script on disk

		into the resource group “materialsTemplate”

		We create a copy of the template material, thus we can modify it without altering other objects which use this material

Generic scene - Adaptors

Material scripts registration

		Either put the material in the existing material Bundle

		Create a bundle and create a configuration file that indicates the resource locations :

resources.cfg
[materials]
FileSystem=./Bundles/myBundle_0-1/Media/materials/

		And register the configuration file :

// Plugin.cpp

#define RESOURCES_PATH "./Bundles/myBundle_0-1/resources.cfg"

void Plugin::start() throw(::fwRuntime::RuntimeException)
{
 ::fwRenderOgre::Utils::addResourcesPath(RESOURCES_PATH);
}

Generic scene - Adaptors

1/ Default material

		Default is the main material

		
		It replaces the fixed function pipeline we had with VTK:

		
		Flat/Gouraud/Diffuse shading

		Point/WireFrame/Solid/Edge fill modes

		Vertex color, diffuse texture

		Lots of combinations !

Generic scene - Adaptors

2/ Default material

		The GLSL code is shared as much as possible

		Use of preprocessor_defines in Ogre material program

// .material
fragment_program Lighting_FP glsl
{
 source Lighting.glsl
 preprocessor_defines LIGHTING_ENABLED=1,NUM_LIGHTS=10
}

// Lighting.glsl
...
#ifdef LIGHTING_ENABLED
uniform vec3 u_lightDir[NUM_LIGHTS];
#endif
...

Generic scene - Adaptors

3/ Default material

		We switch the vertex and fragment programs at runtime in SMaterial::updateShadingMode()

		
		Generation of the material programs definitions with a Python script using Jinja templating

		
		materials/genDefaultMaterial.py

		Template: materials/genTemplates/Default.program.tpl

		Generated file: materials/core/Default.program

		Less error-prone

Generic scene - Adaptors

Negato

		Two services SNegato2D and SNegato3D

		Work on a ::fwData::Image

		Optional bilinear filtering supported

		Transfer function will be supported soon

		Interactions in 2D managed by a specific interactor ::fwRenderOgre::Negato2DInteractor

		Use of textured planes (::fwRenderOgre::Plane)

Generic scene - Adaptors

Negato - Implementation details

		
		The 3D image is uploaded entirely to the GPU in a 3D texture

		
		normalized unsigned integer texture format

		cheap hardware bilinear interpolation (raw integer formats can’t be filtered in OpenGL)

		slower copy in CPU (conversion from signed to unsigned)

		
		Sampling is done in a fragment shader

		
		conversion from unsigned to signed

		interpolation and transfer function fetch (WIP)

Generic scene - Adaptors

Textures

		Work on a ::fwData::Image

		Wrap a ::Ogre::Texture

		Currently only used as a diffuse texture

		Static or dynamic texture

Generic scene - Adaptors

SShaderParameter

		
		Work on several data :

		
		::fwData::Integer

		::fwData::Float

		::fwData::Boolean

		::fwData::Color

		::fwData::PointList

		::fwData::TransformationMatrix3D

		::fwData::Vector

		Upload the data as a program uniform

		data-x:		r-2000

		class:		title

Transparency

Transparency

Order Independent Transparency

		
		GPU hardware only supports alpha blending

		
		Order dependent

		
		We support four different OIT techniques:

		
		Depth Peeling (exact but slow)

		Dual Depth Peeling (normally faster)

		Weighted-Order Independent Transparency (fastest)

		Hybrid Transparency (nice tradeoff)

Transparency

Implementation

		
		Use of compositors with lots of passes

		
		Example: one compositor pass for each peel in the Depth Peeling algorithm

		
		The scene is rendered several times

		
		Specific code for the transparency

		Common code for the lighting

		
		Technique schemes are used to select the appropriate code

		
		The material must implement all the schemes to support all the OIT techniques !

		Techniques are automatically generated thanks to ::fwRenderOgre::compositor::MaterialMgrListener

Transparency

Extensibility

		Define a technique called depth that will be used for depth-only passes, with a single a vertex program

		
		Define your fragment shader code in seperated .glsl, in a function called vec4 getFragmentColor()

		
		The main() function will be defined by Main_FP.glsl which is replaced at runtime

fragment_program CustomProgram_FP glsl
{
 source CustomProgram_FP.glsl
}

fragment_program Default/CustomProgram_FP glsl
{
 source Main_FP.glsl
 attach CustomProgram_FP
}

		data-x:		r0

		data-y:		r-900

material custom
{
 technique
 {
 pass
 {
 vertex_program_ref custom_VP
 {
 }

 fragment_program_ref Default/CustomProgram_FP
 {
 }
 }
 }

 technique depth
 {
 pass
 {
 vertex_program_ref customDepth_VP
 {
 }
 }
 }
}

		data-x:		r-2000

		data-y:		r0

		class:		title

Perspectives

Perspectives

		Unit testing

		Volume rendering

		SAO with transparency

		Better visualizations for Augmented Reality

		New adaptors

		Helper drawing class

		3D Widgets

		Diffuse/specular shading

		Post Effects

		Ogre 2.0/2.1 ?

		...

		data-x:		r0

		data-y:		r-2700

		data-rotate-z:		r90

		class:		overview

Overview

		
		Ogre 3D

		
		Architecture overview

		Scripting

		
		Generic scene

		
		Architecture

		Basics

		Adaptors

		Transparency

		Perspectives

		
		Tutorials

		
		Material

		Compositors

		data-x:		r0

		data-y:		r-2000

		data-rotate-z:		r0

		class:		title

Tutorials - Material

Tutorials

1/ Mesh

		Grab the application skeleton on OwnCloud/PartageRD/ogre-training

		Add an ogre generic scene to display the liver mesh

 Your browser does not support the video tag.

Tutorials

2/ Texture

		Modify the previous application to load the liver texture with a ::ioVTK::SImageReader

		Add a texture adaptor on the loaded image to map it on the liver mesh

 Your browser does not support the video tag.

Tutorials

3/ New Material

		
		Create a bundle and register a material “toto”

		
		Check registration with Ogre.log

		
		Create the material with a vertex shader and a fragment shader

		
		Vertex shader only transforms the points

		Fragment shader lits pixels in green

		
		Tip to write the vertex shader:

		
		gl_Position output is automatically defined RenderSystems/GL3Plus/src/GLSL/OgreGLSLShader.cpp:232

		class:		text-small

Tutorials

3/ New Material

//---

vertex_program toto_VP glsl
{
 source toto_VP.glsl
 default_params
 {
 param_named_auto u_worldViewProj worldviewproj_matrix
 }
}

//--

vertex_program toto_FP glsl
{
 source toto_FP.glsl
}

//--
material toto
{
 technique
 {
 pass
 {
 vertex_program_ref toto_VP
 {
 }

 fragment_program_ref toto_FP
 {
 }
 }
 }
}

Tutorials

3/ New Material

 Your browser does not support the video tag.

Tutorials

4/ Material with a static texture

		Modify the material to add a texture unit and bind the sampler uniform

		
		Modify the vertex and fragment programs to forward the texture coordinates

		
		
		Possible vertex input attributes are:

		
		position (or vertex),

		normal,

		colour,

		secondary_colour,

		tangent,

		binormal,

		uv# (up to 8),

		blendIndices,

		blendWeights

Tutorials

4/ Material with a static texture

		Sample the texture in the fragment program

 Your browser does not support the video tag.

Tutorials

5/ Material with diffuse lighting

		Modify the material to grab the light direction uniform

http://www.ogre3d.org/docs/manual/manual_23.html#Using-Vertex_002fGeometry_002fFragment-Programs-in-a-Pass

		Add the normal vertex input attribute

		Multiply the pixel color with the dot product of the light direction and the fragment normal

		Bonus: lit backfaces as well

 Your browser does not support the video tag.

Tutorials

6/ Material with user control

		Now the vertex shader waves points away along the normal

		The fragment shader waves the base color

		
		Use the two types of uniform in Ogre to control the wave

		
		Automatic - use one of the time uniforms

		User-defined - use SShaderParameter adaptor

http://www.ogre3d.org/docs/manual/manual_23.html#Using-Vertex_002fGeometry_002fFragment-Programs-in-a-Pass

Tutorials

6/ Material with user control

 Your browser does not support the video tag.

 Your browser does not support the video tag.

Tutorials

7/ Rendering passes

		
		Add a new pass in the material to render the liver a second time

		
		Multiplied over the previous pass, with a different color

		At a different location

		class:		title

Tutorials - Compositors

Tutorials

1/ Blur

		
		Create a compositor

		
		Don’t forget to put it in a registered location !

		
		Apply a 5x5 Gaussian filter on the source image

		
		Sample the image with a texel offset [-5;5]

		Take into account the size of the image (viewport_width, viewport_height)

		Don’t filter the texture image

		
		Enlarge your blur !

		
		“Cheat” by applying a bilinear filter on the source image

		Downscale the resolution (1/4) of the render target used to perform the blur

		Bonus: enhance the performance of the blur by using two passes: horizontal then vertical

Tutorials

1/ Blur

 Your browser does not support the video tag.

Tutorials

2/ Depth of Field (non-optimal)

		Use the model sponza.vtk

		Add a target in the compositor where you render the scene to compute a blur factor

		Add a new material technique that matches the scheme of this pass and compute the blur factor in the vertex shader, depending on the distance :

blurFactor = clamp(abs(-posWorldView.z - focalDistance) / focalRange, 0.0, 1.0);

		Add a last step in the compositor to modulate the blur according to the blur factor :

gl_FragColor = sharp + blurFactor * (blur - sharp);

		Add a slider to modify the focalDistance

Tutorials

2/ Depth of Field (non-optimal)

 Your browser does not support the video tag.

		class:		centered

That’s all folks !

fw4spl at gmail.com

fbridault at ircad.fr

Presentation made with Hovercraft [https://github.com/regebro/hovercraft]

 © Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

Slides/20151215_barcamp/f4s.html

 Navigation

 		
 index

 		fw4spl-doc 0 documentation »

		id:		circle-no-background

FW4SPL, a framework for applications based on medical imaging.

Johan Moreau

Flavien Bridault

Barcamp - Strasbourg, 15th December 2015

		class:		square-background

		data-x:		r2000

		data-scale:		1.0

Overall presentation

		data-x:		r0

		data-y:		r2700

		data-rotate-z:		90

		data-scale:		1.2

		class:		text-small

FW4SPL

Why a framework ?

		Quick development, reuse source code

		Intensive use of open source libraries (boost, Qt, VTK, ITK,...)

		Integrate trainees/students/researchers/partners code

Basics

		Builds with CMake - Written in C++ (Python extension)

		Cross-platform : Windows, Linux, MacOSX and Android

		Started in 2004

		OpenSource since 2009 (LGPL license)

Note

		software/prototype - Windows, OSX, Linux, Android, IOs

		reuse source code

		we don’t want people to work on different library versions, with different options,...

		we need to integrate the different applications/fragmented code

		class:		text-small

Core features

main repository :

		Basic data (Float, Integer, String, Image, Mesh,...)

		Application(HMI include) configuration available in xml

		2D or 3D widgets synchronization

		Data serialization in xml/json/zip

		System/process memory managment (data dumping)

		2D/3D generic scene (VTK/Qt)

		Embedded python

		Around 15 tutorials

		VR-Render

others repositories :

		4D synchronization - timeline

		3D with Ogre, 2D with wxWidgets

		AR with OpenCV, Aruco, ARAM

		Network communication (openIGTLink and dicom with DCMTK)

		OpenNI, Sofa

		class:		text-small

User features

main repository :

		2D Multi-Planar Reconstruction

		3D meshes with optional 3D orthogonal MPR

		3D volume rendering with editable and transfer func.

		Pre-defined pipeline of GPU shaders

		Measuring tool features and landmarks

		DICOM : CT and MRI, surface segmentation

		VTK : images and meshes (.vtk, .vti, .vtu)

		High-efficiency in-house data format

		Radiological and surgery data management

others repositories :

		MPR curved

		DICOM PACS and MIDAS communication

		Tracking, Calibration, Registration, ...

		Video player

		class:		square-background

		data-rotate-z:		r-90

		data-x:		r2000

		data-y:		r0

Design

		data-rotate-z:		r0

		data-x:		r1500

Classic object-oriented approach

		an object (i.e. an image) is represented by a class.

		class:		centered

		data-x:		r0

		data-y:		r270

		data-scale:		0.5

[image: ../../_images/Image1.png]

		data-scale:		1

		data-y:		r250

		this class contains all functionalities working on the object (read, write, filter, visualize, ...)

		class:		centered

		data-y:		r250

		data-scale:		0.5

[image: ../../_images/Image041.png]

		data-scale:		1

		data-x:		r0

		data-y:		r1000

Limits of this approach

		Too many methods in the class, hard to maintain

		Many dependencies required even if you only need a single method.

		Collaborative work harder

Solution

		Split data and functions

Note

		Too many functions, if team continue to add functions

		Many dependencies required (itk,vtk,qt,dcmtk,...) even if you just need to crop an image

		Everyone work on the same file

Object/Service

		Only one functionality (Read, Crop, Visualize...)

		Class of services (IReader, IOperator, IVisu)

		State pattern

Note

		to this end, we use to concept of service

		we can observe that for each process, we always have to repeat the same execution pattern, life cycle, configure, then initialize, update and stop

		update can be repeated

		class:		centered

		data-x:		r0

		data-y:		r400

		data-scale:		0.8

[image: ../../_images/state1.png]

Note

		transitions, on ne peut pas passer de configure à stop

		We need to store data into it

		class:		centered

		data-scale:		1

		data-x:		r0

		data-y:		r800

Service approach example

[image: ../../_images/IService021.png]

Note

		Common interface 4 methods

		sub-classes for each type

		one service for each functionality

		data-scale:		0.15

		data-x:		r-50

		data-y:		r360

DcmtkReaderSrv

		configure() : verify if url is ok

		start() : do nothing

		update() : read the data (equivalent to readImageFromPacsWithDcmtk())

		stop() : do nothing

		data-x:		r165

		data-y:		r0

ItkCropOperatorSrv

		configure() : verify if the cropping region is valid

		start() : do nothing

		update() : compute the cropping on image and set the new data (equivalent to cropImageWithItk)

		stop() : do nothing

		data-x:		r360

VtkQtVisuSrv

		configure() : verify if the screen support this size

		start() : initialize Qt frame and vtk pipeline and show the frame

		update() : check the buffer, if it has changed, refresh the vtk pipeline

		stop() : destroy vtk pipeline and uninitialize Qt frame.

Note

		configure() : verify if the screen support this size

		start() : initialize Qt frame and vtk pipeline and show the frame (image is not shown if image buffer is null)

		update() : check if the buffer has be changed, if true, refresh the vtk pipeline to show negato

		stop() : destroy vtk pipeline and uninitialize Qt frame.

		data-x:		r0

		data-y:		r600

		data-scale:		1

Application description in XML

		Objects and services classes are registered dynamically

		Instances are created by a factory

		Application launcher reads a XML configuration file

		data-x:		r1500

		data-y:		r0

Communication

		
		Signals/Slots (inspired by Qt)

		
		Data -> Service

		Service <-> Service

		
		Slot call

		
		synchronous

		asynchronous

		class:		centered

[image: ../../_images/sigslot1.png]

Component in FW4SPL

		Also called Bundle (in OSGi)

		Dynamic library, loaded on demand

		Group services, by theme and/or by dependency

		Examples: ioVTK, uiImageQt

Content of a Bundle

		Xml description file : plugin.xml

		Library binary (.so, .dll, .dylib)

		Other shared resources (icons, sounds, ...)

Note

		When a Bundle is compiled

		Xml description file (plugin.xml) to describe the content of the dynamic library

		data-x:		r0

		data-y:		r1000

Component based approach

Benefits

		Code reuse without recompiling

		Improve external dependencies management (VTK, ITK, Qt,...)

		Easier support

		Easier collaborative work

Examples

		Eclipse,...

Note

		Code split

		Reuse code in another application, without recompiling your program, even no link of your application against a library

		Easier support EXAMPLE correction of bug

		data-x:		r1500

		data-y:		r0

Discussion

Services and components

Cons

		Think design differently

		Need to write a new service for each new functionality

Pros

		Code reuse, and you pick only what you need

		Far less coupling !

		No need for a public and private API

		class:		text-small

		data-rotate-z:		90

		data-x:		r0

		data-y:		r1500

Demonstration

 Your browser does not support the video tag.

		data-y:		r0

		data-x:		r-500

 Your browser does not support the video tag.

		data-x:		r-450

 Your browser does not support the video tag.

		data-x:		r-450

 Your browser does not support the video tag.

		data-x:		r-450

 Your browser does not support the video tag.

		data-x:		r-450

 Your browser does not support the video tag.

		class:		square-background

		data-x:		r1500

		data-y:		r1000

Getting started

		class:		text-small

		data-x:		r0

		data-y:		r1500

Getting started

Basics

		Le GitHub http://fw4spl-org.github.io

		Documentation http://fw4spl-doc.readthedocs.org

		Developper blog http://fw4spl-org.github.io/fw4spl-blog

		#fw4spl on irc.freenode.net and http://fw4spl.slack.com

Source

		Github : https://github.com/fw4spl-org

		BitBucket : https://bitbucket.org/fw4splorg

		Do not use the obsolete googlecode page !!!

		Current stable version : 0.10.1 (used in CE/FDA Application)

		Current development version : 0.10.2 (Strongly advised for a new software)

Others

		Repositories : fw4spl, fw4spl-ext, fw4spl-ar, fw4spl-ogre, ...

		Debian Integration (Previous stable version 0.9.2)

[image: ../../_images/statF4S.png]

		class:		text-small

		data-x:		r0

		data-y:		r1500

Future

		API and code simplification

		Documentation improvement (Enhanced ISO13485 support)

		Installation improvement (repository cloning, docker, ...)

		API stabilisation with roadmap (1.0 after 0.10 or 0.11 ?)

		Enhanced C++11 support (C++14 ?)

		Enhanced Embedded python

		Enhanced unittests

		Support for web development

		User interface markup language

		New threading and GPU technics

		class:		centered

		data-y:		r1500

Thank you !

fw4spl at gmail.com

johan.moreau at ircad.fr

fbridault at ircad.fr

Presentation made with Hovercraft [https://github.com/regebro/hovercraft]

 © Copyright 2015, IRCAD-IHU.
 Created using Sphinx 1.3.5.

_static/up.png

_static/down.png

_static/up-pressed.png

_images/free_software_foundation.png

_images/tuto08GenericScene1.png
Tuto08GenericScene

> SE e 63/185]

_images/tuto08GenericScene2.png

_images/ircad.jpg
M

g

|
|
:
!

S

o |

SRR T
7

_images/SSelectionMenuButton.png
> S

One slice
v three slices

_images/vtk.png

_images/tuto04SignalSlot.png
launcher

_images/Python.png

_images/tuto08GenericSceneGUI.png
00
Geperic scene

enericScene

SSelectionMenuButton SSignalButton SnapshotEditor

_static/comment.png

_static/plus.png

_static/file.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment-bright.png

_static/minus.png

_images/SSignalButton.png

_images/Image041.png
Image

short * m_buffer;
unsigned int * m_size;

void setBuffer(short * buff);
short * getBuffer();

void setSize(unsigned int * size);
unsigned int * getSize();

void readlmageFromPacsWithDcmtk(...
void croplmageWithltk(...)
void windowinglmageWithOpenCV(...)
void visuWithVtkAndQt(...)

