

 Navigation

 	
 index

 	
 next |

 	FVF Documentation 1 documentation

Welcome to the FVF Measurement System Documentation

The Flicker Fusion Frequency (FVF) is used to measure central nervous activation. This is the technical documentation for the measurement system. Reach for the manual [https://fvf-manual.readthedocs.org] on how to run your own tests.

The FVF measurement system [http://www.sport.tu-darmstadt.de/sportinstitut/personal/professoren/wiemeyer_seiten/forschung_detail/forschung_flimmerverschmelzungsfrequenz.de.jsp] is created at the Institute for Sport Science at Technical University Darmstadt, see the Authors.

Table of contents:

About

	Authors

	License

	Contribute

Source Documentation

	Structure

	Firmware

	Driver

	Software

Developer Documentation

	Setup

	Deployment

	Documentation

	Follow-Up Projects

Appendix

	LED Protocol

	ERM

 Copyright 2015, Thomas Gossmann.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FVF Documentation 1 documentation

Authors

The FVF measurement system is built by:

Project lead:

	Prof. Dr. Josef Wiemeyer [http://www.sport.tu-darmstadt.de/sportinstitut/personal/professoren/wiemeyer_seiten/wiemeyer_profil.de.jsp]

Project members:

	Leonie Poetsch

	Gerrit Kollegger

	Thomas Gossmann

 Copyright 2015, Thomas Gossmann.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FVF Documentation 1 documentation

License

The MIT License (MIT)

Copyright (c) 2015 Thomas Gossmann

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Copyright 2015, Thomas Gossmann.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FVF Documentation 1 documentation

Contribute

There are a couple of ways to contribute:

	Create an issue [https://github.com/tudifs/fvf/issues] on github, if you realized something is wrong

	You may clone the repo and send a pull-request which contains the fix

	Get in contact with the team

 Copyright 2015, Thomas Gossmann.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FVF Documentation 1 documentation

Structure

The FVF measurement system is split into various pieces and components.

Pieces

The FVF measurement system consists of multiple pieces:

	Tube

	Hardware LED controller (Arduino Uno)

	Client Software

Components

The software consists of multiple components written in multiple programming languages:

	Arduino Firmware (C++)

	LED Driver (Java)

	Client Software (Java)

Folders

The folders and what they contain in this repository:

	docs/ - contains the source files for this documentation

	driver/ - contains the source files for the Driver

	firmware/ - contains the sources files for the Firmware

	software/ - contains the sources files for the Software

	manual/ - contains the sources files for the manual

 Copyright 2015, Thomas Gossmann.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FVF Documentation 1 documentation

Firmware

The firmware runs on the Arduino Uno board. The board is connected via an Universal Serial Port (USB) to the host computer which runs the measurement software. It’s main job is to handle incoming commands (via serial port) and send back feedback notifications.

Available Commands

	on

	flicker

	off

	measurement

	ping

Detailed information about the input and output about the firmware is described in the LED Protocol.

References

	Arduino Website [http://www.arduino.cc/]

	Arudino IDE [http://www.arduino.cc/en/Main/Software]

	Arduino API [http://www.arduino.cc/en/Reference/HomePage]

Verification

To ensure the flickering frequency a verification measurement has been done with VOLTCRAFT Universal SYSTEM MS-9150 Frequency Counter.

An important Note: The delay() [http://www.arduino.cc/en/Reference/Delay] method on the Arduino passes the delay in integer values, no floats are possible. For every milliseconds below 16383, delayMicroseconds() [http://www.arduino.cc/en/Reference/DelayMicroseconds] must be used. The gap happens between 30Hz and 31Hz.

Methodology

Voltage has been captured at the pins directly at the measured LED. Each frequency was measured two times and the latter value was used.

Note: Prior sample measurements showed, the value didn’t changed after the second measurement for each frequency.

Results

	Frequency
	Measured Frequency
	Offset

	10Hz
	9,996
	-0,004

	11Hz
	11,105
	+0,105

	12Hz
	12,186
	+0,185

	13Hz
	13,146
	+0,146

	14Hz
	14,270
	+0,270

	15Hz
	15,071
	+0,071

	16Hz
	16,110
	+0,110

	17Hz
	17,220
	+0,220

	18Hz
	18,488
	+0,488

	19Hz
	19,200
	+0,200

	20Hz
	19,966
	-0,034

	21Hz
	21,567
	+0,567

	22Hz
	22,678
	+0,678

	23Hz
	23,756
	+0,756

	24Hz
	24,935
	+0,935

	25Hz
	24,941
	-0,059

	26Hz
	26,245
	+0,245

	27Hz
	27,704
	+0,704

	28Hz
	29,191
	+1,191

	29Hz
	29,196
	+0,196

	30Hz
	31,138
	+1,138

	31Hz
	30,772
	-0,328

	32Hz
	31,723
	-0,277

	33Hz
	32,712
	-0,288

	34Hz
	33,702
	-0,298

	35Hz
	34,689
	-0,311

	36Hz
	35,673
	-0,327

	37Hz
	36,657
	-0,343

	38Hz
	37,646
	-0,354

	39Hz
	38,633
	-0,367

	40Hz
	39,621
	-0,379

	41Hz
	40,598
	-0,402

	42Hz
	41,590
	-0,41

	43Hz
	42,578
	-0,422

	44Hz
	43,562
	-0,438

	45Hz
	44,544
	-0,456

	46Hz
	45,275
	-0,725

	47Hz
	46,520
	-0,48

	48Hz
	47,500
	-0,5

	49Hz
	48,481
	-0,519

	50Hz
	49,465
	-0,536

	51Hz
	50,454
	-0,546

	52Hz
	51,436
	-0,564

	53Hz
	52,414
	-0,586

	54Hz
	53,152
	-0,848

	55Hz
	54,389
	-0,611

	...
	
	

	500Hz
	468,991
	-32,009

The next graph shows the scattering of the measured values around the expected linear ideal values.

[image: ../_images/firmware-verification.png]

 Copyright 2015, Thomas Gossmann.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FVF Documentation 1 documentation

Driver

The LED driver is a Java API to send commands to the Firmware and getting notified about feedback from the firmware.

Communication

The client software talks to the Arduino board through a serial port connection. For this purpose the RXTX interface is used. In order to check whether the connection is still established, the driver periodically sends a ping to the board. Once this connection is interrupted for several reasons, it’s assumed the connection is dead.

Protocol

The driver implements the LED Protocol.

Deployment

The driver is deployed as *.jar file into the softwares lib/ folder.

[image: ../_images/driver_export.png]
[image: ../_images/driver_export_dialog.png]
Note: This is not ideal and must be triggered manually. Better solutions are welcome.

Remarks

There is a rxtx wiki entry [http://rxtx.qbang.org/wiki/index.php/Wrapping_RXTX_in_an_Eclipse_Plugin] describing how to bundle the jni extension with an eclipse rcp application.

Mac OS X

The normal distributed librxtxSerial.jnilib is only in 32-bit mode which doesn’t match a 64-bit processor architecture and can thus not be autoloaded. See here:

$ file librxtxSerial.jnilib
librxtxSerial.jnilib: Mach-O universal binary with 2 architectures
librxtxSerial.jnilib (for architecture ppc): Mach-O dynamically linked shared library ppc
librxtxSerial.jnilib (for architecture i386): Mach-O dynamically linked shared library i386

Luckily there is a 64-bit version available, forged by Robert Harder [http://blog.iharder.net/2009/08/18/rxtx-java-6-and-librxtxserial-jnilib-on-intel-mac-os-x/]. The eclipse plugin distributes the 64-bit version mentioned here:

$ file librxtxSerial.jnilib
librxtxSerial.jnilib: Mach-O universal binary with 4 architectures
librxtxSerial.jnilib (for architecture x86_64): Mach-O 64-bit bundle x86_64
librxtxSerial.jnilib (for architecture i386): Mach-O bundle i386
librxtxSerial.jnilib (for architecture ppc7400): Mach-O bundle ppc
librxtxSerial.jnilib (for architecture ppc64): Mach-O 64-bit bundle ppc64

Disconnecting

There are some problems between RXTX and properly disconnecting connections. The problems are described in a forum thread [http://archive.infiniteautomation.com/forum/posts/list/297.page]. The mentioned hacks are implemented precautionally. Probably RXTX version 2.2 should have these issues resolved, yet wasn’t available stable at the time of implementation.

References

	RXTX [http://rxtx.qbang.org]

	Arduino Java Interface [http://playground.arduino.cc/Interfacing/Java]

 Copyright 2015, Thomas Gossmann.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FVF Documentation 1 documentation

Software

The heart of the measurement system is the software, which is responsible for managing your probands, running tests and browsing the results. It is an Eclipse RCP [http://eclipse.org/rcp] application. It uses the eclipse e3 API. Latest API docs are available at Eclipse Help [http://help.eclipse.org].

Database

Database development is realized via sormula [http://sormula.org] ORM. The models are placed in the de.tu_darmstadt.sport.fvf.model package. The respective ERM is available as appendix. It is a SQLite database which is realized with SQLJet [http://sqljet.com] and connected with SQLite JDBC [http://www.xerial.org/trac/Xerial/wiki/SQLiteJDBC].

Migrations

Further version might require a migration of the underlying database. The mechanics for this are already implemented and ready to use. SQLJet allows to stores a user version number along with the database file. The purpose is to read this number at start and run a migration if necessary. The class de.tu_darmstadt.sport.fvf.database.DatabaseLoader handles this logic. The required code to read the version number is already available in the initialize() method, yet commented out but provides good start.

Icons

Icons are Silk [http://www.famfamfam.com/lab/icons/silk/] by famfamfam and Fugue [http://p.yusukekamiyamane.com] by Yusuke Kamiyamane.

 Copyright 2015, Thomas Gossmann.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FVF Documentation 1 documentation

Setup

Learn how to setup your development environment for FVF.

Installing Arduino

Installing the Arduino IDE is straight forward. From the Arduino Website [http://www.arduino.cc/en/Main/Software] download the Arduino IDE for your platform and open firmware/fvf/fvf.ino to start your firmware development.

Arduino Drivers

Some systems require a manual driver installation for the Arduino board. Please refer to the Getting Started Guide [http://www.arduino.cc/en/Guide/HomePage] from the Arduino website if this is required for you and how to get this done.

CoolTerm

CoolTerm [http://freeware.the-meiers.org/] is a simple serial port terminal application. CoolTerm can be used to send commands to the Arduino Board and test your firmware.

Install Git

Git is used as VCS and GitHub as repository master.

Windows

Luckily GitHub provides an application with GUI to access git repositories. Download GitHub for Windows [https://windows.github.com/] and install it; Clone the repo from GitHub and you are ready to go.

Mac

Also Mac got a GitHub app with GUI to access git repositories. Download GitHub for Mac [https://mac.github.com/] and install it; Clone the repo from GitHub and you are ready to go.

Linux

You are on Linux, you know how to use your personal package manager to install yourself a git package and of course you can handle it from your favorite shell.

Installing Eclipse

Eclipse is the main development environment. A good start is to download the Eclipse for RCP and RAP Developers [https://www.eclipse.org/downloads/] package.

Install PDE Tools

To help and assist you with programming (Javadoc + proper code completion), install the following plugins from “The Eclipse Project and Updates” update site (Help > Install New Software ... Update Site: http://download.eclipse.org/eclipse/updates/4.4 - replace “4.4” with the current version number):

	Eclipse Plug-In Development Environment

	Eclipse Platform SDK

	Eclipse Java Development Tools

Note: Some of them might already be installed.

Install Deployment Tools

To deploy the FVF application bundle to multiple platforms the eclipse “DeltaPack” is required for this.
Read here for installation: https://stackoverflow.com/a/12737382/483492

Install Optional Tools

There are more useful plug-ins to support your development. They are available via the current releases update site (Help > Install New Software ... Update Site: http://download.eclipse.org/releases/luna - replace “luna” with the current release):

	SWT Designer

	Eclipse GIT Team provider

 Copyright 2015, Thomas Gossmann.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FVF Documentation 1 documentation

Deployment

This page describes, how to deploy your own version of the measurement software.

Required Plugins

Since this is an e3 Plug-In deployed in an e4 environment all required compatibility layer plugins [https://www.eclipse.org/community/eclipse_newsletter/2013/february/article3.php#compatibiliylayer_plugins] must be added.

Export the RCP application

Open the fvf.product file in eclipse. On the Overview page there is the export section with a link to open the “Eclipse Product export wizard” (which is also available from the toolbar of this editor). Make sure to check “Export for multiple platforms” (which is only available if you followed the Install Deployment Tools instructions) and “Synchronize before exporting”. Click “Next” which shows the available platforms to deploy to.

 Copyright 2015, Thomas Gossmann.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FVF Documentation 1 documentation

Documentation

The process of writing documentation is also known as continuous documentation. The raw source files are written in reStructuredText [http://docutils.sourceforge.net/rst.html] and Sphinx [http://sphinx-doc.org] is used to generate the documentation in various formats. Read the Docs [http://readthedocs.org] hosts this documentation.

 Copyright 2015, Thomas Gossmann.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FVF Documentation 1 documentation

Follow-Up Projects

Some ideas for follow-up projects.

Automated Builds

Currently deploying the software is a manual job. It would be more pleasant to have automated builds. This especially means two tasks:

	Driver and FVF are two independent projects right now, which means deploying the driver first to use it from FVF, it would be way easier to just refer to the driver project instead.

	Deploy the software (with all it’s required libs). Either automatically, by committing, tagging a release or trigger the build manually.

For option #2 (continuous deployment) there are some online services available, which must be checked individually if they are eligible for the task on hand:

	semaphore [https://semaphoreci.com]

	codeship [https://codeship.com]

	dploy [http://dploy.io]

	drone.io [https://drone.io]

	circleci [https://circleci.com]

Additionally, there must be found a good place to distribute binaries to.

Streamline Web Presence

The current web presence is cluttered among this docs [https://fvf.readthedocs.org] and the manual [https://fvf-manual.readthedocs.org]. A formal webpage introducing FVF, what it is, who is responsible for that, where to download, how to contribute and contains links to the docs and manual is missing. Probably GitHub pages [https://pages.github.com] are a solution to island this or possibly put this up on the IFS website [http://www.sport.tu-darmstadt.de].

Internationalization (i18n)

Right now, the docs are in english, software and manual are in german. All tools within the toolchain support internationalization. This can be used to better translate all occurring strings. Transifex [https://www.transifex.com] is an online service to keep track of all translations, which can be used as a managing instance. There is even an integration between Transifex and Sphinx, to translate docs [http://sphinx-doc.org/intl.html].

Self-Validation

A self-validation routine built into the Firmware that averages the deviation for each frequency and applies it during the measurement routine.

Post-Processing of Results

The results can receive some post-processing by either showing statistics and displaying graphs or providing exports to various formats for further processing, e.g. exporting to SPS.

Instructions to setup your own FVF measurement system

Instructions to setup one’s own FVF measurement system. With technical specifications of the tube and the oculus adapter to connecting the software. Likewise a step-by-step manual for a self-construction-kit.

Port to eclipse e4

For historical reasons, the software is built on eclipse e3 API. At the time of writing, e4 is the current API and contains modern programming approaches to simply development. It can be worth to port the codebase to the new e4 API.

 Copyright 2015, Thomas Gossmann.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FVF Documentation 1 documentation

LED Protocol

The firmware communicates with the protocol described here. The driver sends a command with arguments (Input) and the hardware send feedback on what is happening (Output).

Schema

The following schema is used for every command, in every direction:

cmd [arg1] [arg2] ... [argN]

Input

Commands send to the hardware

on

Turns on a led:

on [led]

Arguments

	led (int) - the led number

flicker

Flickers a led:

flicker [led] [frequency] [duration] [[light]] [[dark]]

Arguments

	led (int) - the led number

	frequency (int) - the flicker frequency [hz]

	duration (int) - the duration the led flickers [ms]

	light (int) - the light part of the light/dark ratio (optional)

	dark (int) - the dark part of the light/dark ratio (optional)

off

Turns off a led:

off [led]

Arguments

	led (int) - the led number

measurement

Runs a measurement sequence:

measurement [mode] [flickerLed] [frequency] [onDuration] [offDuration]

Arguments

	mode (int) - 2 for two leds and 4 for four leds

	flickerLed (int) - Which led will flicker

	frequency (float) - The frequency for the flickering led [hz]

	onDuration (int) - The duration, the leds will be on [ms]

	offDuration (int) - The duration, the leds will be off [ms]

ping

Sends a ping:

ping [[seq]]

Arguments

	seq (misc) - An optional sequence identifier (optional)

Output

Feedback received from the hardware.

on

Send when a led is turned on (or flickering, when measurement command was used):

on [led]

Arguments

	led (int) - the led number

flicker

Send when a led is flickering:

flicker [led]

Arguments

	led (int) - the led number

off

Send when a led is turned off:

off [led]

Arguments

	led (int) - the led number

measurement

Send when a measurement is started or finished:

measurement [state]

Arguments

	state (string) - on when the measurement started and off when it’s finished

ons

Send when more than one led is turned on (during a measurement):

ons [mode]

Arguments

	mode (int) - is either 2 or 4, depending the first value of the measurement input command

offs

Send when more than one led is turned off (during a measurement):

offs [mode]

Arguments

	mode (int) - is either 2 or 4, depending the first value of the measurement input command

pong

Answers a ping with a pong:

pong [seq]

Arguments

	seq (misc) - The returned sequence identifier (optional)

error

Send when an error occured:

error [number]

Arguments

	number (int) - the error number (see below)

Error Codes

Error code explanation:

	0 - Unknown Error

	1 - Malformed command

	2 - Unknown command

	3 - Too few arguments for flicker command

Troubleshooting

1. Getting a “Port in Use” exception on OSX, when connecting to the Arduino Board
-> See here: https://marcosc.com/2011/10/arduino-java-error-serial-port-already-in-use/

 Copyright 2015, Thomas Gossmann.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	FVF Documentation 1 documentation

ERM

The softwares database entity-relation-model (ERM).

 Copyright 2015, Thomas Gossmann.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	FVF Documentation 1 documentation

Index

 Copyright 2015, Thomas Gossmann.
 Created using Sphinx 1.3.1.

 _static/up-pressed.png

_static/minus.png

_static/comment-close.png

_static/down.png

_static/file.png

_static/up.png

_static/ajax-loader.gif

_static/plus.png

_static/comment-bright.png

_static/down-pressed.png

_static/comment.png

_images/driver_export.png
[% Package % Jujunic fs TypeHi % Plug-ins = O

3

New >
> e
Y g Golnto
> BARES Open in New Window
; :\“":":: Open Type Hierarchy 4
Y oylp Showin W >
'93:' 3 Copy C
» mRefer
¥ Eipug. [Copy Qualified Name
»@gsc [0 Paste =V
> BARES) 3¢ Delete ®
> Gy datat
» (yicons . Remove from Context X0l
> Gyl Build Path >
s E:EI’: Source x®s >
iy Refactor x®T >

%:::f‘ £ Import...

B o BT
& Refresh s
Close Project

Close Unrelated Projects
Assign Working Sets...

Profile As >
Debug As >
Run As >
Validate

Team >
Compare With >
Replace With >
Restore from Local History...
Configure >

Properties %!

_images/driver_export_dialog.png
606 Export

Select

Export resources into a JAR file on the local file system.

Select an export destination:

» (> General
» = Install
v (=Java
AR file
@)javadoc
(s Runnable JAR file
» (= PHP
» (= Plug-in Development
» (= Run/Debug
» (= Tasks
» (=Team
» XML
» (= Other

@ <Back

Finish

_images/firmware-verification.png
60

B Measured Frequency

—— Linear (Ideal Value)

0
\2(\/ \2(\/ \2(\/ \2(\/ \2(\/ Q(\/ ‘2(\/ ‘2‘1/ ‘2‘/\/ \2(\/ ‘2‘/\/ \2(\/ ‘2‘/\/ \2(\/ \2(\/ \2(\/ \2(\/ \2(\/ \2(\/ \2(\/ ‘2"\/ ‘2(\/ ‘2‘1/
N N N . . o 2 S A 2 I S N Sl S O AR

