

Fuzzinator

Random Testing Framework

Quick Start

	Introduction

	Tutorial

API Reference

	Fuzzinator Core: package fuzzinator

	SUT Calls: package fuzzinator.call

	Fuzzers: package fuzzinator.fuzzer

	Test Case Reducers: package fuzzinator.reduce

	SUT Updaters: package fuzzinator.update

Miscellaneous

	Release Notes

	Versioning and Releasing

	Licensing

Introduction

Fuzzinator is a fuzzing framework that helps you to automate tasks usually
needed during a fuzz session:

	run your favorite test generator and feed the test cases to the
system-under-test,

	catch and save the unique issues,

	reduce the failing test cases,

	ease the reporting of issues in bug trackers (e.g., Bugzilla or GitHub),

	regularly update SUTs if needed, and

	schedule multiple SUTs and generators without overloading your workstation.

All the above features are fully customizable either by writing a simple config
file or by implementing Python snippets to cover special needs. Check out some
slides [http://www.slideshare.net/hodovanrenata/fuzzinator-in-bug-we-trust] about Fuzzinator for a general overview, or see the
Tutorial for a detailed walk-through on the config files.

To help tracking the progress of the fuzzing, Fuzzinator provides two
interfaces:

	an interactive TUI (supported on Linux and Mac OS X) that gives a continuously
updated overview about the currently running tasks, statistics about the
efficacy of the test generators, and the found issues (and also supports
reporting them); and

	a dump-mode (supported on every platform) that displays the news on line-based
consoles.

Although Fuzzinator itself doesn’t come with test generators (except for an
example random character sequence generator), you can find a list of useful
generators in the wiki [https://github.com/renatahodovan/fuzzinator/wiki].

Requirements

	Python [https://www.python.org] >= 3.4

	pip [https://pip.pypa.io] and setuptools Python packages (the latter is automatically installed by
pip)

	MongoDB [https://www.mongodb.com] (either local installation or access to remote database)

Install

The quick way:

pip install fuzzinator

Alternatively, by cloning the project and running setuptools:

python setup.py install

Usage

A common form of Fuzzinator’s usage:

fuzzinator --tui -U <path/to/the/config.ini>

Compatibility

Fuzzinator was tested on:

	Linux (Ubuntu 14.04 / 15.10 / 16.04)

	Mac OS X (OS X El Capitan - 10.11).

Acknowledgements

The authors are immensely grateful to Dr. Heinz Doofenshmirtz for the continuous
inspiration.

Tutorial

Fuzzinator is a framework helping you to deal with the common fuzzing tasks,
like running fuzz jobs, updating the targets, and reducing the inputs that
induced failures. The figure below shows a high-level overview of the components
of the framework.

[image: _images/architecture.png]
The red line represents an API boundary. Everything below it is part of the core
infrastructure, while boxes above it are user-defined. However, you don’t
(necessarily) need to write a single line of code to describe your needs, since
Fuzzinator can be configured through configuration ini files and it comes
with several built-in building blocks that cover the most common scenarios and
can be used out of the box.

In the next paragraphs, we will use the JerryScript [https://github.com/Samsung/jerryscript] project as our running
example and we will incrementally build a configuration file to setup a fuzzing
infrastructure for it. We will start from an absolute minimum configuration that
will be extended step-by-step.

Although, the examples cover only a small subset of the provided building
blocks, you can find the full list in the API Reference (under sub-packages with
descriptive names). If none of them fits your needs, then you can still write
your own snippet … or submit a feature request [https://github.com/renatahodovan/fuzzinator/issues] ;-)

Minimum Configuration

Let’s start with the minimum configuration example that defines one SUT with
fuzzinator.call.StdinSubprocessCall, expecting input from stdin and
one test generator with fuzzinator.fuzzer.RandomContent that simply
produces random strings.

Sections starting with 'sut.' prefix define how target applications (a.k.a.,
system-under-test or SUT) will be handled. The string after 'sut.' will be
used as the identifier of the target. In this example, we deal with
JerryScript.
[sut.jerry]
StdinSubprocessCall will execute the target and return an issue dictionary if
the target exits with a non-zero code.
call=fuzzinator.call.StdinSubprocessCall

Define parameters expected by StdinSubprocessCall.
[sut.jerry.call]
'command' defines how SUT has to be executed.
command=./build/bin/jerry -
Directory where 'command' has to be run.
cwd=</path/to/jerryscript/root/directory>

Sections starting with 'fuzz.' prefix bind SUTs and test case generators.
[fuzz.jerry-with-random]
Specify the SUT by referencing the appropriate config section.
sut=sut.jerry
Specify the fuzzer by referring a Python callable.
fuzzer=fuzzinator.fuzzer.RandomContent

Fine Tuning SUT Calls

Now, if you would like to fine-tune error detection to do more than simply
checking for a non-zero exit-code, then you can use two built-in solutions (or,
again, you can implement your own version):

	fuzzinator.call.ExitCodeFilter for keeping issues only if the SUT
exited with specific exit codes, and

	fuzzinator.call.RegexFilter for keeping issues only if the SUT
printed messages on either stdout or stderr that matches some specific
patterns.

We can extend the original example as follows:

[sut.jerry]
... define filters ...
Properties named as 'call.decorate(N)' are Python decorators that can access
the input & output of the wrapped methods (in this case, of
StdinSubprocessCall) and can modify them. Here, they are used to filter the
output issues. If decorators expect parameters, then they have to be defined
in parameter sections named as 'sut.<SUT_NAME>.call.decorate(N)'.
call.decorate(0)=fuzzinator.call.ExitCodeFilter
call.decorate(1)=fuzzinator.call.RegexFilter

Parameter section for ExitCodeFilter.
[sut.jerry.call.decorate(0)]
exit_codes=[132, 129]

Parameter section for RegexFilter.
[sut.jerry.call.decorate(1)]
stderr=["(?P<msg>Assertion '.*' failed)at (?P<file>[^(]+)[(](?P<path>[^)]+)[)]:(?P<line>[0-9]+)",
 "(?P<msg>Unreachable control path)at (?P<file>[^(]+)[(](?P<path>[^)]+)[)]:(?P<line>[0-9]+)"]

However, issues not only can be filtered but also extended with arbitrary
information that helps describing the circumstances of the failure. This
extension can also happen with the above shown decorator approach. The next
example shows how platform, git version, and ID information can be added using:

	fuzzinator.call.PlatformInfoDecorator adds an extra 'platform'
field to the issue dictionary, filled with OS information,

	fuzzinator.call.SubprocessPropertyDecorator adds a user-defined
field with the output of a user-defined script, and

	fuzzinator.call.UniqueIdDecorator combines existing fields into an ID
to help detect whether an issue is unique or a duplicate of an already known
one.

[sut.jerry]
.. extend issue with platform information ..
call.decorate(2)=fuzzinator.call.PlatformInfoDecorator
.. extend issue with user-defined information ..
call.decorate(3)=fuzzinator.call.SubprocessPropertyDecorator
.. add an id to the issue ..
call.decorate(4)=fuzzinator.call.UniqueIdDecorator

No parameter section for the 2nd decorator as it needs none.

Parameter section for the 3rd decorator.
[sut.jerry.call.decorate(3)]
.. extend issue dictionary with a version field ..
property=version
.. the value of version field is filled with the output of the next command ..
command=git rev-parse --short HEAD
.. directory where 'command' has to be run (no need to copy the value of 'cwd'
from the 'sut.jerry.call' section verbatim, extended interpolation syntax can
help to reuse options) ..
cwd=${sut.jerry.call:cwd}

Parameter section for the 4th decorator.
[sut.jerry.call.decorate(4)]
.. compose the new id field from the msg and path fields previously found by
RegexFilter ..
properties=["msg", "path"]

Updating SUTs and Reducing Tests

Similarly to the above, we can have control over SUT update and test reduce jobs
as well. The following final example uses built-in building blocks again:

	fuzzinator.update.TimestampUpdateCondition for triggering the update
based on the last modification time of the target binary,

	fuzzinator.update.SubprocessUpdate for updating the target via a
script, and

	fuzzinator.reduce.Picire for reducing the size of test cases with
Picire [https://github.com/renatahodovan/picire].

[sut.jerry]
... define update ...
update_condition=fuzzinator.update.TimestampUpdateCondition
update=fuzzinator.update.SubprocessUpdate
... define reduction ...
reduce=fuzzinator.reduce.Picire

Parameter section for fuzzinator.update.TimestampUpdateCondition.
[sut.jerry.update_condition]
Update SUT in every 12 hours.
age=12:00:00
path=${sut.jerry.call:cwd}/build/bin/jerry

Parameter section for fuzzinator.update.SubprocessUpdate.
[sut.jerry.update]
Script to execute to update.
command=git pull origin master &&
 ./tools/build.py --debug --clean
Directory where 'command' has to be run.
cwd=${sut.jerry.call:cwd}

Etc…

There is more, e.g.:

	SUTs can take their input from files instead of stdin.

	Reducers are highly parametrizable.

	Test reduce jobs can deviate from fuzz jobs in the way their SUT is called.

	Fuzzers can be decorated the same way as SUT calls.

	Etc…

More complex configuration files are available in the examples/configs
directory of the project (e.g., for WebKit [https://webkit.org], too).

Fuzzinator Core: package fuzzinator

class Controller

	
class fuzzinator.Controller(config)

	Fuzzinator’s main controller that orchestrates a fuzz session by scheduling
all related activities (e.g., keeps SUTs up-to-date, runs fuzzers and feeds
test cases to SUTs, or minimizes failure inducing test cases) . All
configuration options of the framework must be encapsulated in a
configparser.ConfigParser [https://docs.python.org/3/library/configparser.html#configparser.ConfigParser] object.

The following config sections and options are recognized:

	Section fuzzinator: Global settings of the framework.

	Option work_dir: Work directory for temporary files. (Optional,
default: ~/.fuzzinator)

	Option db_uri: URI to a MongoDB database to store found issues and
execution statistics. (Optional, default:
mongodb://localhost/fuzzinator)

	Option cost_budget: (Optional, default: number of cpus)

	Sections sut.NAME: Definitions of a SUT named NAME

	Option call: Fully qualified name of a python callable that must
accept a test keyword argument representing the input to the SUT
and must return a dictionary object if the input triggered an issue in
the SUT, or None otherwise. The returned issue dictionary (if any)
should contain an 'id' field that equals for issues that are not
considered unique. (Mandatory)

See package fuzzinator.call for potential callables.

	Option cost: (Optional, default: 1)

	Option reduce: Fully qualified name of a python callable that must
accept issue, sut_call, sut_call_kwargs, listener,
ident, work_dir keyword arguments representing an issue to be
reduced (and various other potentially needed objects), and must
return a tuple consisting of a reduced test case for the issue (or
None if the issue’s current test case could not be reduced) and a
(potentially empty) list of new issues that were discovered during
test case reduction (if any). (Optional, no reduction for this SUT if
option is missing.)

See package fuzzinator.reduce for potential callables.

	Option reduce_call: Fully qualified name of a python callable that
acts as the SUT’s call option during test case reduction.
(Optional, default: the value of option call)

See package fuzzinator.call for potential callables.

	Option reduce_cost: (Optional, default: the value of option
cost)

	Option update_condition: Fully qualified name of a python callable
that must return True if and only if the SUT should be updated.
(Optional, SUT is never updated if option is missing.)

See package fuzzinator.update for potential callables.

	Option update: Fully qualified name of a python callable that
should perform the update of the SUT. (Optional, SUT is never updated
if option is missing.)

See package fuzzinator.update for potential callables.

	Sections fuzz.NAME: Definitions of a fuzz job named NAME

	Option sut: Name of the SUT section that describes the subject of
this fuzz job. (Mandatory)

	Option fuzzer: Fully qualified name of a python callable that must
accept and index keyword argument representing a running counter
in the fuzz job and must return a test input (or None, which
signals that the fuzzer is “exhausted” and cannot generate more test
cases in this fuzz job). The semantics of the generated test input is
not restricted by the framework, it is up to the configuration to
ensure that the SUT of the fuzz job can deal with the tests generated
by the fuzzer of the fuzz job. (Mandatory)

See package fuzzinator.fuzzer for potential callables.

	Option batch: Number of times the fuzzer is requested to generate
a new test and the SUT is called with it. (Optional, default: 1)

	Option instances: Number of instances of this fuzz job allowed to
run in parallel. (Optional, default: inf)

	Callable options can be implemented as functions or classes with
__call__ method (the latter are instantiated first to get a callable
object). Both constructor calls (if any) and the “real” calls can be
given keyword arguments. These arguments have to be specified in
sections (sut|fuzz).NAME.OPT[.init] with appropriate names (where
the .init sections stand for the constructor arguments).

	All callables can be decorated according to python semantics. The
decorators must be callable classes themselves and have to be specified
in options OPT.decorate(N) with fully qualified name. Multiple
decorators can be applied to a callable OPT, their order is
specified by an integer index in parentheses. Keyword arguments to be
passed to the decorators have to be listed in sections
(sut|fuzz).NAME.OPT.decorate(N).

See packages fuzzinator.call and fuzzinator.fuzzer for
potential decorators.

	Parameters

	config (configparser.ConfigParser [https://docs.python.org/3/library/configparser.html#configparser.ConfigParser]) – the configuration options of the
fuzz session.

	Variables

	listener (fuzzinator.ListenerManager) – a listener manager object that is
called on various events during the fuzz session.

	
run(*, max_cycles=None)

	Start the fuzz session.

	Parameters

	max_cycles (int [https://docs.python.org/3/library/functions.html#int]) – maximum number to iterate through the fuzz jobs
defined in the configuration (defaults to inf).

class EmailListener

	
class fuzzinator.EmailListener(event, param_name, from_address, to_address, subject, content, smtp_host, smtp_port)

	EventListener subclass that can be used to send e-mail notification about
various events.

	Parameters

	
	event – The name of the event to send notification about.

	param_name – The name of the event’s parameter containing the information to send.

	from_address – E-mail address to send notifications from.

	to_address – Target e-mail address to send the notification to.

	subject – Subject of the e-mail (it may contain placeholders, that will be filled by parameter information).

	content – Content of the e-mail (it may contain placeholders, that will be filled by parameter information).

	smtp_host – Host of the smtp server to send e-mails from.

	smtp_port – Port of the smtp server to send e-mails from.

	
send_mail(data)

	Send e-mail with the provided data.

	Parameters

	data – Information to fill subject and content fields with.

class EventListener

	
class fuzzinator.EventListener

	A no-op base class for listeners that can get notified by
fuzzinator.Controller on various events of a fuzz sessions.

Note

Subclasses should be aware that some notification methods may be called
from subprocesses.

	
activate_job(ident)

	Invoked when a previously instantiated job is activated (started).

	Parameters

	ident (int [https://docs.python.org/3/library/functions.html#int]) – unique identifier of the activated job.

	
invalid_issue(issue)

	Invoked when an issue seems invalid.

	Parameters

	issue (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the issue object that did not pass re-validation
(listener is free to decide how to react, an option is to remove the
issue from the database).

	
job_progress(ident, progress)

	Invoked when an activated job makes progress.

	Parameters

	
	ident (int [https://docs.python.org/3/library/functions.html#int]) – unique identifier of the progressing job.

	progress (int [https://docs.python.org/3/library/functions.html#int]) – for fuzz jobs, this is the number of already
generated tests (number between 0 and the job’s batch size); for
reduce jobs, this is the current size of the test case being reduced
(number between the original test size and 0).

	
new_fuzz_job(ident, fuzzer, sut, cost, batch)

	Invoked when a new (still inactive) fuzz job is instantiated.

	Parameters

	
	ident (int [https://docs.python.org/3/library/functions.html#int]) – a unique identifier of the new fuzz job.

	fuzzer (str [https://docs.python.org/3/library/stdtypes.html#str]) – short name of the new fuzz job (name of the
corresponding config section without the “fuzz.” prefix).

	sut (str [https://docs.python.org/3/library/stdtypes.html#str]) – short name of the SUT of the new fuzz job (name of the
corresponding config section without the “sut.” prefix).

	cost (int [https://docs.python.org/3/library/functions.html#int]) – cost associated with the new fuzz job.

	batch (int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float]) – batch size of the new fuzz job, i.e., number of test cases
requested from the fuzzer (may be inf).

	
new_issue(issue)

	Invoked when a new issue is found.

	Parameters

	issue (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the issue that was found (all relevant information -
e.g., the SUT that reported the issue, the test case that triggered
the issue, the fuzzer that generated the test case, the ID of the
issue - is stored in appropriate properties of the issue).

	
new_reduce_job(ident, sut, cost, issue_id, size)

	Invoked when a new (still inactive) reduce job is instantiated.

	Parameters

	
	ident (int [https://docs.python.org/3/library/functions.html#int]) – a unique identifier of the new reduce job.

	sut (str [https://docs.python.org/3/library/stdtypes.html#str]) – short name of the SUT used in the new reduce job (name
of the corresponding config section without the “sut.” prefix).

	cost (int [https://docs.python.org/3/library/functions.html#int]) – cost associated with the new reduce job.

	issue_id (Any) – 'id' property of the issue to be reduced.

	size (int [https://docs.python.org/3/library/functions.html#int]) – size of the test case associated with the issue to be
reduced.

	
new_update_job(ident, sut)

	Invoked when a new (still inactive) update job is instantiated.

	Parameters

	
	ident (int [https://docs.python.org/3/library/functions.html#int]) – a unique identifier of the new update job.

	sut (str [https://docs.python.org/3/library/stdtypes.html#str]) – short name of the SUT to be updated (name of the
corresponding config section without the “sut.” prefix).

	
remove_job(ident)

	Invoked when an active job has finished.

	Parameters

	ident (int [https://docs.python.org/3/library/functions.html#int]) – unique identifier of the finished job.

	
update_fuzz_stat()

	Invoked when statistics about fuzzers, SUTs, and issues (e.g., execution
counts, crash counts, unique issue counts) are updated in the
framework’s database.

	
update_issue(issue)

	Invoked when the status of an issue changed.

	Parameters

	issue (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the issue object that has changed.

	
update_load(load)

	Invoked when the framework’s load changes.

	Parameters

	load (int [https://docs.python.org/3/library/functions.html#int]) – number between 0 and controller’s capacity.

	
warning(msg)

	Invoked on unexpected events.

	Parameters

	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – a string representation of the problem.

class ListenerManager

	
class fuzzinator.ListenerManager(listeners=None)

	Class that registers listeners to various events and executes all of them
when the event has triggered.

	Parameters

	listeners – List of listener objects.

	
add(listener)

	Register a new listener in the manager.

	Parameters

	listener – The new listener to register.

SUT Calls: package fuzzinator.call

class AnonymizeDecorator

	
class fuzzinator.call.AnonymizeDecorator(*args, **kwargs)

	Decorator for SUT calls to anonymize issue properties.

Mandatory parameter of the decorator:

	old_text: text to replace in issue properties.

Optional parameters of the decorator:

	new_text: text to replace ‘old_text’ with (empty string by default).

	properties: array of properties to anonymize (anonymize all
properties by default).

Example configuration snippet:

[sut.foo]
call=fuzzinator.call.StdinSubprocessCall
call.decorate(0)=fuzzinator.call.AnonymizeDecorator

[sut.foo.call]
command=/home/alice/foo/bin/foo -

[sut.foo.call.decorate(0)]
old_text=/home/alice/foo
new_text=FOO_ROOT
properties=["stdout", "stderr"]

class ExitCodeFilter

	
class fuzzinator.call.ExitCodeFilter(*args, **kwargs)

	Decorator filter for SUT calls that return issues with 'exit_code'
property.

Mandatory parameter of the decorator:

	exit_codes: if issue['exit_code'] is not in the array of
exit_codes, the issue is filtered out.

The issues that are not filtered out are not changed in any way.

Example configuration snippet:

[sut.foo]
call=fuzzinator.call.StdinSubprocessCall
call.decorate(0)=fuzzinator.call.ExitCodeFilter

[sut.foo.call]
command=/home/alice/foo/bin/foo -

[sut.foo.call.decorate(0)]
exit_codes=[139]

class FileReaderDecorator

	
class fuzzinator.call.FileReaderDecorator(*args, **kwargs)

	Decorator for SUTs that take input as a file path: saves the content of
the failing test case.

Moreover, the issue (if any) is also extended with the new 'filename'
property containing the name of the test case (as received in the test
argument).

Example configuration snippet:

[sut.foo]
call=fuzzinator.call.SubprocessCall
call.decorate(0)=fuzzinator.call.FileReaderDecorator

[sut.foo.call]
assuming that foo takes one file as input specified on command line
command=/home/alice/foo/bin/foo {test}

class FileWriterDecorator

	
class fuzzinator.call.FileWriterDecorator(*args, **kwargs)

	Decorator for SUTs that take input from a file: writes the test input to a
temporary file and replaces the test input with the name of that file.

Mandatory parameter of the decorator:

	filename: path pattern for the temporary file, which may contain the
substring {uid} as a placeholder for a unique string (replaced by
the decorator).

The issue returned by the decorated SUT (if any) is extended with the new
'filename' property containing the name of the generated file (although
the file itself is removed).

Example configuration snippet:

[sut.foo]
call=fuzzinator.call.SubprocessCall
call.decorate(0)=fuzzionator.call.FileWriterDecorator

[sut.foo.call]
assuming that foo takes one file as input specified on command line
command=/home/alice/foo/bin/foo {test}

[sut.foo.call.decorate(0)]
filename=${fuzzinator:work_dir}/test-{uid}.txt

class GdbBacktraceDecorator

	
class fuzzinator.call.GdbBacktraceDecorator(*args, **kwargs)

	Decorator for subprocess-based SUT calls with file input to extend issues
with 'backtrace' property.

Mandatory parameter of the decorator:

	command: string to pass to GDB as a command to run (all occurrences
of {test} in the string are replaced by the actual name of the test
file).

Optional parameters of the decorator:

	cwd: if not None, change working directory before GDB/command
invocation.

	env: if not None, a dictionary of variable names-values to
update the environment with.

The new 'backtrace' issue property will contain the result of GDB’s
bt command after the halt of the SUT.

Example configuration snippet:

[sut.foo]
call=fuzzinator.call.SubprocessCall
call.decorate(0)=fuzzinator.call.GdbBacktraceDecorator

[sut.foo.call]
assuming that {test} is something that can be interpreted by foo as
command line argument
command=./bin/foo {test}
cwd=/home/alice/foo
env={"BAR": "1"}

[sut.foo.call.decorate(0)]
command=${sut.foo.call:command}
cwd=${sut.foo.call:cwd}
env={"BAR": "1", "BAZ": "1"}

class LldbBacktraceDecorator

	
class fuzzinator.call.LldbBacktraceDecorator(*args, **kwargs)

	Decorator for subprocess-based SUT calls with file input to extend issues
with 'backtrace' property.

Mandatory parameter of the decorator:

	command: string to pass to Lldb as a command to run (all occurrences
of {test} in the string are replaced by the actual name of the test
file).

Optional parameters of the decorator:

	cwd: if not None, change working directory before Lldb/command
invocation.

	env: if not None, a dictionary of variable names-values to
update the environment with.

	timeout: timeout (in seconds) to wait between two lldb commands
(integer number, 1 by default).

The new 'backtrace' issue property will contain the result of Lldb’s
bt command after the halt of the SUT.

Example configuration snippet:

[sut.foo]
call=fuzzinator.call.SubprocessCall
call.decorate(0)=fuzzinator.call.LldbBacktraceDecorator

[sut.foo.call]
assuming that {test} is something that can be interpreted by foo as
command line argument
command=./bin/foo {test}
cwd=/home/alice/foo
env={"BAR": "1"}

[sut.foo.call.decorate(0)]
command=${sut.foo.call:command}
cwd=${sut.foo.call:cwd}
env={"BAR": "1", "BAZ": "1"}

class PlatformInfoDecorator

	
class fuzzinator.call.PlatformInfoDecorator(*args, **kwargs)

	Decorator for SUT calls to extend issues with 'platform' property.

The new 'platform' issue property will contain the result of Python’s
platform.platform [https://docs.python.org/3/library/platform.html#platform.platform].

Example configuration snippet:

[sut.foo]
#call=...
call.decorate(0)=fuzzinator.call.PlatformInfoDecorator

class RegexFilter

	
class fuzzinator.call.RegexFilter(*args, **kwargs)

	Decorator filter for SUT calls to recognise patterns in the returned issue dictionaries.

Optional parameters of the decorator:

	key: array of patterns to match against issue[key] (note that ‘key’
can be arbitrary, and multiple different keys can be given to the decorator).

If none of the patterns matches on any of the fields, the issue is filtered
out. The issues that are not filtered out are extended with keys-values from
the named groups of the matching regex pattern.

Example configuration snippet:

[sut.foo]
call=fuzzinator.call.StdinSubprocessCall
call.decorate(0)=fuzzinator.call.RegexFilter

[sut.foo.call]
command=/home/alice/foo/bin/foo -

[sut.foo.call.decorate(0)]
stderr=["(?P<file>[^:]+):(?P<line>[0-9]+): (?P<func>[^:]+): (?P<msg>Assertion `.*' failed)"]
backtrace=["#[0-9]+ +0x[0-9a-f]+ in (?P<path>[^]+) .*? at (?P<file>[^:]+):(?P<line>[0-9]+)"]

function StdinSubprocessCall

	
fuzzinator.call.StdinSubprocessCall(command, cwd=None, env=None, no_exit_code=None, test=None, timeout=None, **kwargs)

	Subprocess invocation-based call of a SUT that takes a test input on its
stdin stream.

Mandatory parameter of the SUT call:

	command: string to pass to the child shell as a command to run.

Optional parameters of the SUT call:

	cwd: if not None, change working directory before the command
invocation.

	env: if not None, a dictionary of variable names-values to
update the environment with.

	no_exit_code: makes possible to force issue creation regardless of
the exit code.

	timeout: run subprocess with timeout.

Result of the SUT call:

	If the child process exits with 0 exit code, no issue is returned.

	Otherwise, an issue with 'exit_code', 'stdout', and 'stderr'
properties is returned.

Example configuration snippet:

[sut.foo]
call=fuzzinator.call.StdinSubprocessCall

[sut.foo.call]
command=./bin/foo -
cwd=/home/alice/foo
env={"BAR": "1"}

class StreamMonitoredSubprocessCall

	
class fuzzinator.call.StreamMonitoredSubprocessCall(command, cwd=None, env=None, end_patterns=None, timeout=None, **kwargs)

	
Note

Not available on platforms without fcntl support (e.g., Windows).

function SubprocessCall

	
fuzzinator.call.SubprocessCall(command, cwd=None, env=None, no_exit_code=None, test=None, timeout=None, **kwargs)

	Subprocess invocation-based call of a SUT that takes test input on its
command line. (See fuzzinator.call.FileWriterDecorator for SUTs
that take input from a file.)

Mandatory parameter of the SUT call:

	command: string to pass to the child shell as a command to run (all
occurrences of {test} in the string are replaced by the actual test
input).

Optional parameters of the SUT call:

	cwd: if not None, change working directory before the command
invocation.

	env: if not None, a dictionary of variable names-values to
update the environment with.

	no_exit_code: makes possible to force issue creation regardless of
the exit code.

	timeout: run subprocess with timeout.

Result of the SUT call:

	If the child process exits with 0 exit code, no issue is returned.

	Otherwise, an issue with 'exit_code', 'stdout', and 'stderr'
properties is returned.

Example configuration snippet:

[sut.foo]
call=fuzzinator.call.SubprocessCall

[sut.foo.call]
assuming that {test} is something that can be interpreted by foo as
command line argument
command=./bin/foo {test}
cwd=/home/alice/foo
env={"BAR": "1"}

class SubprocessPropertyDecorator

	
class fuzzinator.call.SubprocessPropertyDecorator(*args, **kwargs)

	Decorator for SUT calls to extend issues with an arbitrary property where
the value is the output of a shell subprocess.

Mandatory parameters of the decorator:

	property: name of the property to extend the issue with.

	command: string to pass to the child shell as a command to run.

Optional parameters of the decorator:

	cwd: if not None, change working directory before the command
invocation.

	env: if not None, a dictionary of variable names-values to
update the environment with.

	timeout: run subprocess with timeout.

Example configuration snippet:

[sut.foo]
call=fuzzinator.call.StdinSubprocessCall
call.decorate(0)=fuzzinator.call.SubprocessPropertyDecorator

[sut.foo.call]
command=./bin/foo -
cwd=/home/alice/foo

[sut.foo.call.decorate(0)]
property=version
command=git rev-parse --short HEAD
cwd=${sut.foo.call:cwd}
env={"GIT_FLUSH": "1"}

class TestRunnerSubprocessCall

	
class fuzzinator.call.TestRunnerSubprocessCall(command, cwd=None, env=None, end_texts=None, init_wait=None, timeout_per_test=None, **kwargs)

	
Note

Not available on platforms without fcntl support (e.g., Windows).

class UniqueIdDecorator

	
class fuzzinator.call.UniqueIdDecorator(*args, **kwargs)

	Decorator for SUT calls to extend issues with 'id' property.

Mandatory parameter of the decorator:

	properties: array of issue property names, which are concatenated
(separated by a space) to form the new 'id' property.

Example configuration snippet:

[sut.foo]
call=fuzzinator.call.StdinSubprocessCall
call.decorate(0)=fuzzinator.call.RegexFilter
call.decorate(1)=fuzzinator.call.UniqueIdDecorator

[sut.foo.call]
command=/home/alice/foo/bin/foo -

[sut.foo.call.decorate(0)]
stderr=[": (?P<file>[^:]+):(?P<line>[0-9]+): (?P<func>[^:]+): (?P<msg>Assertion `.*' failed)"]

[sut.foo.call.decorate(1)]
properties=["msg", "file", "func"]

Fuzzers: package fuzzinator.fuzzer

class AFLRunner

	
class fuzzinator.fuzzer.AFLRunner(afl_fuzz, input, output, sut_command, cwd=None, env=None, timeout=None, dictionary=None, master_name=None, slave_name=None, **kwargs)

	Wrapper around AFL to be executed continuously in a subprocess. The findings
of AFL are periodically checked and any new test cases are returned as test
inputs to the SUT. (Thus, all AFL findings are processed, extended, and
filtered by any and all SUT decorators, uniqueness is determined, etc.)

For AFL, it is best not to run multiple instances in parallel.

Mandatory parameters of the fuzzer:

	afl_fuzz: path to the AFL fuzzer tool.

	sut_command: the string to append to the command string used to
invoke AFL, probably the same string that is used for
fuzzinator.call.SubprocessCall’s command parameter (the
{test} substring is automatically replaced with the @@ input
file placeholder used by AFL).

	input: the directory of initial test cases for AFL.

	output: the directory that will store the findings of AFL (all
occurrences of {uid} in the string are replaced by an identifier
unique to this fuzz job).

Optional parameters of the fuzzer:

	cwd: if not None, change working directory before invoking AFL.

	env: if not None, a dictionary of variable names-values to
update the environment with (AFL_NO_UI=1 will be added automatically
to suppress AFL’s own UI).

	timeout: if not None, pass its value as the -t timeout
parameter to AFL.

	dictionary: if not None, pass its value as the -x dictionary
parameter to AFL.

	master_name: the name of the master fuzzer instance which will perform
deterministic checks.

	slave_name: the name of a slave fuzzer instance which will proceed to
random tweaks.
For further details check:
https://github.com/mirrorer/afl/blob/master/docs/parallel_fuzzing.txt

Example configuration snippet:

[sut.foo]
call=fuzzinator.call.SubprocessCall

[sut.foo.call]
command=./bin/foo {test}
cwd=/home/alice/foo
env={"BAR": "1"}

[fuzz.foo-with-afl]
sut=sut.foo
fuzzer=fuzzinator.fuzzer.AFLRunner
batch=inf
instances=1

[fuzz.foo-with-afl.fuzzer.init]
afl_fuzz=/home/alice/afl/afl-fuzz
sut_command=${sut.foo.call:command}
cwd=${sut.foo.call:cwd}
env=${sut.foo.call:env}
input=/home/alice/foo-inputs
output=${fuzzinator:work_dir}/afl-output/{uid}

class ByteFlipDecorator

	
class fuzzinator.fuzzer.ByteFlipDecorator(*args, **kwargs)

	Decorator to add extra random byte flips to fuzzer results.

Mandatory parameter of the decorator:

	frequency: the length of the test divided by this integer number
gives the number of bytes flipped.

Optional parameters of the decorator:

	min_byte: minimum value for the flipped bytes (integer number, 32 by
default, the smallest ASCII code of the printable characters).

	max_byte: maximum value for the flipped bytes (integer number, 126
by default, the largest ASCII code of the printable characters).

Example configuration snippet:

[sut.foo]
see fuzzinator.call.*

[fuzz.foo-with-flips]
sut=sut.foo
fuzzer=fuzzinator.fuzzer.ListDirectory
fuzzer.decorate(0)=fuzzinator.fuzzer.ByteFlipDecorator
batch=inf

[fuzz.foo-with-flips.fuzzer.init]
outdir=/home/alice/foo-old-bugs/

[fuzz.foo-with-flips.fuzzer.decorate(0)]
frequency=100
min_byte=0
max_byte=255

class FileWriterDecorator

	
class fuzzinator.fuzzer.FileWriterDecorator(filename)

	Decorator for fuzzers that create str or bytes-like output. The decorator writes
the test input to a temporary file and replaces the output with the name of that file.

Mandatory parameter of the decorator:

	filename: path pattern for the temporary file, which may contain the
substring {uid} as a placeholder for a unique string (replaced by
the decorator).

Example configuration snippet:

[sut.foo]
see fuzzinator.call.*

[fuzz.foo-with-random]
sut=sut.foo
fuzzer=fuzzinator.fuzzer.RandomContent
fuzzer.decorate(0)=fuzzionator.fuzzer.FileWriterDecorator

[fuzz.foo-with-random.fuzzer.decorate(0)]
filename=${fuzzinator:work_dir}/test-{uid}.txt

class ListDirectory

	
class fuzzinator.fuzzer.ListDirectory(pattern, contents='True', **kwargs)

	A simple test generator to iterate through existing files in a directory and
return their contents one by one. Useful for re-testing previously
discovered issues.

Since the fuzzer starts iterating from the beginning of the directory in
every fuzz job, there is no gain in running multiple instances of this
fuzzer in parallel. Because of the same reason, the fuzzer should be left
running in the same fuzz job batch until all the files of the directory are
processed.

Mandatory parameter of the fuzzer:

	pattern: shell-like pattern to the test files.

Optional parameter of the fuzzer:

	
	contents: if it’s true then the content of the files will be returned

	instead of their path (boolean value, True by default).

Example configuration snippet:

[sut.foo]
see fuzzinator.call.*

[fuzz.foo-with-oldbugs]
sut=sut.foo
fuzzer=fuzzinator.fuzzer.ListDirectory
instances=1
batch=inf

[fuzz.foo-with-oldbugs.fuzzer.init]
pattern=/home/alice/foo-old-bugs/**/*.js

function RandomContent

	
fuzzinator.fuzzer.RandomContent(*, min_length='1', max_length='1', **kwargs)

	Example fuzzer to generate strings of random length from random ASCII
uppercase letters and decimal digits.

Optional parameters of the fuzzer:

	min_length: minimum length of the string to generate (integer
number, 1 by default)

	max_length: maximum length of the string to generate (integer
number, 1 by default)

Example configuration snippet:

[sut.foo]
see fuzzinator.call.*

[fuzz.foo-with-random]
sut=sut.foo
fuzzer=fuzzinator.fuzzer.RandomContent
batch=100

[fuzz.foo-with-random.fuzzer]
min_length=100
max_length=1000

class SubprocessRunner

	
class fuzzinator.fuzzer.SubprocessRunner(outdir, command, cwd=None, env=None, timeout=None, contents='True', **kwargs)

	Wrapper around a fuzzer that is available as an executable and can generate
its test cases as file(s) in a directory. First, the external executable is
invoked as a subprocess, and once it has finished, the contents of the
generated files are returned one by one.

Mandatory parameters of the fuzzer:

	command: string to pass to the child shell as a command to run (all
occurrences of {uid} in the string are replaced by an identifier
unique to this fuzz job).

	outdir: path to the directory containing the files generated by the
external fuzzer (all occurrences of {uid} in the path are replaced
by the same identifier as described at the command parameter).

Optional parameters of the fuzzer:

	cwd: if not None, change working directory before the command
invocation.

	env: if not None, a dictionary of variable names-values to
update the environment with.

	timeout: run subprocess with timeout.

	
	contents: if it’s true then the content of the files will be returned

	instead of their path (boolean value, True by default).

Example configuration snippet:

[sut.foo]
see fuzzinator.call.*

[fuzz.foo-with-bar]
sut=sut.foo
fuzzer=fuzzinator.fuzzer.SubprocessRunner
batch=50

[fuzz.foo-with-bar.fuzzer.init]
outdir=${fuzzinator:work_dir}/bar/{uid}
command=barfuzzer -n ${fuzz.foo-with-bar:batch} -o ${outdir}

class TornadoDecorator

	
class fuzzinator.fuzzer.TornadoDecorator(port, **kwargs)

	Decorator for fuzzers to transport generated content through http. The
decorator starts a Tornado server at the start of the fuzz job and returns
a http url as test input. The SUT is expected to access the returned url and
the decorated fuzzer is invoked on every GET access to that url. The
response to the GET contains the generated test input prepended by a html
meta tag to force continuous reloads in the SUT (or a window.close()
javascript content to force stopping the SUT if the decorated fuzzer cannot
generate more tests). Useful for transporting fuzz tests to browser SUTs.

Mandatory parameter of the fuzzer decorator:

	port: first port to start binding the started http server to (keeps
incrementing until a free port is found).

Example configuration snippet:

[sut.foo]
assuming that foo expects a http url as input, which it tries to access
afterwards

[fuzz.foo-with-bar-over-http]
sut=sut.foo
#fuzzer=...
fuzzer.decorate(0)=fuzzinator.fuzzer.TornadoDecorator
batch=5

[fuzz.foo-with-bar-over-http.fuzzer.decorate(0)]
port=8000

Test Case Reducers: package fuzzinator.reduce

function Picire

	
fuzzinator.reduce.Picire(sut_call, sut_call_kwargs, listener, ident, issue, work_dir, parallel=False, combine_loops=False, split_method='zeller', subset_first=True, subset_iterator='forward', complement_iterator='forward', jobs=4, max_utilization=100, encoding=None, atom='both', granularity=2, cache_class='ContentCache', cleanup=True, **kwargs)

	Test case reducer based on the Picire Parallel Delta Debugging Framework.

Optional parameters of the reducer:

	parallel, combine_loops, split_method, subset_first,
subset_iterator, complement_iterator, jobs,
max_utilization, encoding, atom, granularity,
cache_class, cleanup

Refer to https://github.com/renatahodovan/picire for configuring Picire.

Note: This reducer is capable of detecting new issues found during the test
reduction (if any).

Example configuration snippet:

[sut.foo]
#call=...
cost=1
reduce=fuzzinator.reduce.Picire
reduce_cost=4

[sut.foo.reduce]
parallel=True
jobs=4
subset_iterator=skip

function Picireny

	
fuzzinator.reduce.Picireny(sut_call, sut_call_kwargs, listener, ident, issue, work_dir, hddmin=None, parallel=False, combine_loops=False, split_method='zeller', subset_first=True, subset_iterator='forward', complement_iterator='forward', jobs=4, max_utilization=100, encoding=None, antlr=None, format=None, grammar=None, start=None, replacements=None, lang='python', hdd_star=True, flatten_recursion=False, squeeze_tree=True, skip_unremovable=True, skip_whitespace=False, build_hidden_tokens=False, granularity=2, cache_class='ContentCache', cleanup=True, **kwargs)

	Test case reducer based on the Picireny Hierarchical Delta Debugging
Framework.

Mandatory parameters of the reducer:

	Either format or grammar and start must be defined.

Optional parameters of the reducer:

	hddmin, parallel, combine_loops, split_method, subset_first,
subset_iterator, complement_iterator, jobs, max_utilization, encoding,
antlr, format, grammar, start, replacements, lang,
hdd_star, flatten_recursion, squeeze_tree, skip_unremovable, skip_whitespace,
build_hidden_tokens, granularity, cache_class, cleanup

Refer to https://github.com/renatahodovan/picireny for configuring Picireny.

Note: This reducer is capable of detecting new issues found during the test
reduction (if any).

Example configuration snippet:

[sut.foo]
#call=...
cost=1
reduce=fuzzinator.reduce.Picireny
reduce_cost=4

[sut.foo.reduce]
hddmin=full
grammar=/home/alice/grammars-v4/HTMLParser.g4 /home/alice/grammars-v4/HTMLLexer.g4
start=htmlDocument
parallel=True
jobs=4
subset_iterator=skip

SUT Updaters: package fuzzinator.update

function SubprocessUpdate

	
fuzzinator.update.SubprocessUpdate(command, cwd=None, env=None, timeout=None)

	Subprocess invocation-based SUT update.

Mandatory parameter of the SUT update:

	command: string to pass to the child shell as a command to run.

Optional parameters of the SUT update:

	cwd: if not None, change working directory before the command
invocation.

	env: if not None, a dictionary of variable names-values to
update the environment with.

	timeout: run subprocess with timeout.

Example configuration snippet:

[sut.foo]
update=fuzzinator.update.SubprocessUpdate
#update_condition=... is needed to trigger the update

[sut.foo.update]
command=git pull && make
cwd=/home/alice/foo
env={"BAR": "1"}

function TimestampUpdateCondition

	
fuzzinator.update.TimestampUpdateCondition(path, age)

	File timestamp-based SUT update condition.

Mandatory parameters of the SUT update condition:

	path: path to a file or directory to check for its last modification
time.

	age: maximum allowed age of path given in
[days:][hours:][minutes:]seconds format.

Result of the SUT update condition:

	Returns True if path does not exist or is older than age.

Example configuration snippet:

[sut.foo]
update_condition=fuzzinator.update.TimestampUpdateCondition
#update=... will be triggered if file timestamp is too old

[sut.foo.update_condition]
path=/home/alice/foo/bin/foo
age=7:00:00:00

Release Notes

18.3.1

Summary of changes:

	Fixed the way package metadata is accessed to ensure wheel compatibility.

18.3

Summary of changes:

	New features in the framework:

	Support for issue (re-)validation with a new job type (validate).

	Support for user-defined event listeners.

	Numerous new building blocks in the framework:

	fuzzinator.EmailListener: support for sending emails about events, e.g.,
new issues.

	fuzzinator.tracker.MonorailReport: support for the Monorail issue
tracking system.

	fuzzinator.call.LldbBacktraceDecorator: support for backtrace info via
LLDB.

	fuzzinator.fuzzer.ByteFlipDecorator: support for adding extra random
byte flips to fuzzer results.

	fuzzinator.fuzzer.FileWriterDecorator: support for writing fuzzer
results to files.

	fuzzinator.call.FileReaderDecorator: support for extracting fuzzer
results from files.

	Building blocks with extended or changed functionality:

	fuzzinator.call.SubprocessCall and .StdinSubprocessCall can accept 0
exit code as an issue.

	fuzzinator.call.StreamRegexFilter has been renamed to .RegexFilter
to enable arbitrary filtering of issues, and can match multiple patterns.

	fuzzinator.call.StreamMonitoredSubprocessCall regex patterns are
multiline.

	fuzzinator.fuzzer.AFLRunner supports AFL’s master and slave concepts.

	fuzzinator.fuzzer.ListDirectory works with a glob pattern instead of a
simple directory name to collect test cases.

	fuzzinator.fuzzer.SubprocessRunner and .ListDirectory can work both
as file content generators and as file path generators.

	fuzzinator.update.TimestampUpdateCondition supports time intervals
longer than 24 hours.

	All Popen-based subprocess-executing building blocks
(fuzzinator.call.StdinSubprocessCall,
.StreamMonitoredSubprocessCall, .SubprocessCall,
.SubprocessPropertyDecorator, .TestRunnerSubprocessCall,
fuzzinator.fuzzer.SubprocessRunner, and
fuzzinator.update.SubprocessUpdate) have timeout support and avoid shell
invocation.

	fuzzinator.reduce.Picire has been updated to use Picire 18.1.

	fuzzinator.reduce.Picireny has been updated to use Picireny 18.2.

	All reporters (fuzzinator.tracker.MonorailReport, .BugzillaReport,
.GithubReport) have been changed to use format string syntax ({key})
instead of template syntax ($key) in their report templates, and all handle
missing keys gracefully.

	TUI improvements:

	Support for simpler custom color schemes.

	More convenient bug report editor.

	Support for both text and binary copying of test cases to the clipboard.

	Support for declaring bug duplicates manually.

	New and improved dialogs (about dialog, closing of dialogs).

	Improved event handling (responsivity, updated issues, invalid issues).

	General usability improvements:

	More flexible configuration format enabling config sections to be split
across multiple files, and keys to have no value.

	Support for command line arguments specified in list files to help with
config file fragments.

	Useful command line argument aliases and new arguments (appearance,
verbosity, Python interpreter limits, fuzz session length).

	Under-the-hood improvements:

	Improved logging.

	Added testing infrastructure: unit testing of SUT calls, fuzzers, and SUT
updaters via tox; continuous testing via Travis and AppVeyor CI services.

	Added documentation: out-of-sources tutorial and auto-generated API docs via
Sphinx; online documentation hosting on Read-the-Docs.

	Various bug fixes and refactorings (in core components, in building blocks,
and in user interfaces).

16.10

First public release of the Fuzzinator Random Testing Framework.

Summary of main features:

	Core scheduler/controller of fuzzing-related jobs (update, fuzz, reduce).

	MongoDB-based issue repository.

	Extensible framework with predefined building blocks for invoking SUTs,
detecting issues, and determining uniqueness; for generating test cases and
transporting them to SUTs; for minimizing issue-triggering tests; and for
keeping SUTs under development up-to-date.

	Configurability via INI files.

	CLI and Urwid-based TUI.

Versioning and Releasing

Version Scheme

The project uses a date-based version scheme conforming to PEP440 [https://www.python.org/dev/peps/pep-0440/]. The
identifiers of official releases follow the “YY.MM” form (e.g., “16.10” for the
version released on October, 2016), while development versions between two
releases append an “r” suffix to the identifier of the last official release
(e.g., “16.10r” for snapshots that contain changes on top of the “16.10”
release).

(Alpha, beta, RC, and dev release version identifiers are not planned as of yet,
as they would require the knowledge of the release date of the next offical
release in advance - however, the project follows the “it will be released when
it’s ready, whenever that is” ideology.)

Commits in the Repository

For any official release, there should be exactly one commit in the repository
that makes the project identify itself as the released version, and that commit
should also be tagged with the version ID. Thus, the first commit after a
release has to be a bump to an “r”-suffixed snapshot version.

Release Steps

The release of a new version happens along the following steps.

name the new version and add release notes
echo "YY.MM" > fuzzinator/VERSION
nano RELNOTES.rst

create a commit for the release, tag it, and push it to the public
repository
git add fuzzinator/VERSION RELNOTES.rst
git commit -m "YY.MM release"
git tag YY.MM
git push origin master YY.MM

upload the release to PyPI
python setup.py sdist upload -r pypi

Before landing anything in the repository after a release, the version should be
bumped.

echo "YY.MMr" > fuzzinator/VERSION
git add fuzzinator/VERSION
git commit -m "Change to post-release version YY.MMr"
git push origin master

Licensing

Copyright (c) 2016-2018 Renata Hodovan, Akos Kiss.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 fuzzinator	

 	
 	
 fuzzinator.call	

 	
 	
 fuzzinator.fuzzer	

 	
 	
 fuzzinator.reduce	

 	
 	
 fuzzinator.update	

Index

 A
 | B
 | C
 | E
 | F
 | G
 | I
 | J
 | L
 | N
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	activate_job() (fuzzinator.EventListener method)

 	add() (fuzzinator.ListenerManager method)

 	
 	AFLRunner (class in fuzzinator.fuzzer)

 	AnonymizeDecorator (class in fuzzinator.call)

B

 	
 	ByteFlipDecorator (class in fuzzinator.fuzzer)

C

 	
 	Controller (class in fuzzinator)

E

 	
 	EmailListener (class in fuzzinator)

 	
 	EventListener (class in fuzzinator)

 	ExitCodeFilter (class in fuzzinator.call)

F

 	
 	FileReaderDecorator (class in fuzzinator.call)

 	FileWriterDecorator (class in fuzzinator.call)

 	(class in fuzzinator.fuzzer)

 	fuzzinator (module)

 	
 	fuzzinator.call (module)

 	fuzzinator.fuzzer (module)

 	fuzzinator.reduce (module)

 	fuzzinator.update (module)

G

 	
 	GdbBacktraceDecorator (class in fuzzinator.call)

I

 	
 	invalid_issue() (fuzzinator.EventListener method)

J

 	
 	job_progress() (fuzzinator.EventListener method)

L

 	
 	ListDirectory (class in fuzzinator.fuzzer)

 	
 	ListenerManager (class in fuzzinator)

 	LldbBacktraceDecorator (class in fuzzinator.call)

N

 	
 	new_fuzz_job() (fuzzinator.EventListener method)

 	new_issue() (fuzzinator.EventListener method)

 	
 	new_reduce_job() (fuzzinator.EventListener method)

 	new_update_job() (fuzzinator.EventListener method)

P

 	
 	Picire() (in module fuzzinator.reduce)

 	
 	Picireny() (in module fuzzinator.reduce)

 	PlatformInfoDecorator (class in fuzzinator.call)

R

 	
 	RandomContent() (in module fuzzinator.fuzzer)

 	RegexFilter (class in fuzzinator.call)

 	
 	remove_job() (fuzzinator.EventListener method)

 	run() (fuzzinator.Controller method)

S

 	
 	send_mail() (fuzzinator.EmailListener method)

 	StdinSubprocessCall() (in module fuzzinator.call)

 	StreamMonitoredSubprocessCall (class in fuzzinator.call)

 	
 	SubprocessCall() (in module fuzzinator.call)

 	SubprocessPropertyDecorator (class in fuzzinator.call)

 	SubprocessRunner (class in fuzzinator.fuzzer)

 	SubprocessUpdate() (in module fuzzinator.update)

T

 	
 	TestRunnerSubprocessCall (class in fuzzinator.call)

 	
 	TimestampUpdateCondition() (in module fuzzinator.update)

 	TornadoDecorator (class in fuzzinator.fuzzer)

U

 	
 	UniqueIdDecorator (class in fuzzinator.call)

 	update_fuzz_stat() (fuzzinator.EventListener method)

 	
 	update_issue() (fuzzinator.EventListener method)

 	update_load() (fuzzinator.EventListener method)

W

 	
 	warning() (fuzzinator.EventListener method)

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Fuzzinator

 		
 Introduction

 		
 Requirements

 		
 Install

 		
 Usage

 		
 Compatibility

 		
 Acknowledgements

 		
 Tutorial

 		
 Minimum Configuration

 		
 Fine Tuning SUT Calls

 		
 Updating SUTs and Reducing Tests

 		
 Etc…

 		
 Fuzzinator Core: package fuzzinator

 		
 class Controller

 		
 class EmailListener

 		
 class EventListener

 		
 class ListenerManager

 		
 SUT Calls: package fuzzinator.call

 		
 class AnonymizeDecorator

 		
 class ExitCodeFilter

 		
 class FileReaderDecorator

 		
 class FileWriterDecorator

 		
 class GdbBacktraceDecorator

 		
 class LldbBacktraceDecorator

 		
 class PlatformInfoDecorator

 		
 class RegexFilter

 		
 function StdinSubprocessCall

 		
 class StreamMonitoredSubprocessCall

 		
 function SubprocessCall

 		
 class SubprocessPropertyDecorator

 		
 class TestRunnerSubprocessCall

 		
 class UniqueIdDecorator

 		
 Fuzzers: package fuzzinator.fuzzer

 		
 class AFLRunner

 		
 class ByteFlipDecorator

 		
 class FileWriterDecorator

 		
 class ListDirectory

 		
 function RandomContent

 		
 class SubprocessRunner

 		
 class TornadoDecorator

 		
 Test Case Reducers: package fuzzinator.reduce

 		
 function Picire

 		
 function Picireny

 		
 SUT Updaters: package fuzzinator.update

 		
 function SubprocessUpdate

 		
 function TimestampUpdateCondition

 		
 Release Notes

 		
 18.3.1

 		
 18.3

 		
 16.10

 		
 Versioning and Releasing

 		
 Version Scheme

 		
 Commits in the Repository

 		
 Release Steps

 		
 Licensing

_static/plus.png

_static/file.png

_static/minus.png

_images/architecture.png
ISSUE

suT call

Fuzz Job Reduce Job

_static/up-pressed.png

_static/up.png

