
Furtive Documentation
Release master

Derrick Bryant

December 28, 2015

Contents

1 Contents 3
1.1 Furtive . 3
1.2 CLI Reference . 59
1.3 API Reference . 60

2 Requirements 63

3 Getting Started 65

4 CLI Usage 67
4.1 Use Case Example . 67
4.2 Actions . 67

5 Tests 69

6 Faster YAML 71

Python Module Index 73

i

ii

Furtive Documentation, Release master

File Integrity Verification (furtive) aims to ensure long term data integrity verification for digital archival purposes.
The idea is to create a manifest, or hash list, of all the files of which you wish to confirm integrity. Once a manifest
has been created, a user can then confirm the integrity of files at any point in the future.

The documentation is available on Read The Docs at furtive.readthedocs.org

Contents 1

https://furtive.readthedocs.org/

Furtive Documentation, Release master

2 Contents

CHAPTER 1

Contents

1.1 Furtive

File Integrity Verification (furtive) aims to ensure long term data integrity verification for digital archival purposes.
The idea is to create a manifest, or hash list, of all the files of which you wish to confirm integrity. Once a manifest
has been created, a user can then confirm the integrity of files at any point in the future.

The documentation is available on Read The Docs at furtive.readthedocs.org

1.1.1 Contents

Furtive

File Integrity Verification (furtive) aims to ensure long term data integrity verification for digital archival purposes.
The idea is to create a manifest, or hash list, of all the files of which you wish to confirm integrity. Once a manifest
has been created, a user can then confirm the integrity of files at any point in the future.

The documentation is available on Read The Docs at furtive.readthedocs.org

Contents

Furtive File Integrity Verification (furtive) aims to ensure long term data integrity verification for digital archival
purposes. The idea is to create a manifest, or hash list, of all the files of which you wish to confirm integrity. Once a
manifest has been created, a user can then confirm the integrity of files at any point in the future.

The documentation is available on Read The Docs at furtive.readthedocs.org

Contents

Furtive File Integrity Verification (furtive) aims to ensure long term data integrity verification for digital archival
purposes. The idea is to create a manifest, or hash list, of all the files of which you wish to confirm integrity. Once a
manifest has been created, a user can then confirm the integrity of files at any point in the future.

The documentation is available on Read The Docs at furtive.readthedocs.org

Contents

3

https://furtive.readthedocs.org/
https://furtive.readthedocs.org/
https://furtive.readthedocs.org/
https://furtive.readthedocs.org/

Furtive Documentation, Release master

Furtive File Integrity Verification (furtive) aims to ensure long term data integrity verification for digital archival
purposes. The idea is to create a manifest, or hash list, of all the files of which you wish to confirm integrity. Once a
manifest has been created, a user can then confirm the integrity of files at any point in the future.

The documentation is available on Read The Docs at furtive.readthedocs.org

Contents

Furtive File Integrity Verification (furtive) aims to ensure long term data integrity verification for digital archival
purposes. The idea is to create a manifest, or hash list, of all the files of which you wish to confirm integrity. Once a
manifest has been created, a user can then confirm the integrity of files at any point in the future.

The documentation is available on Read The Docs at furtive.readthedocs.org

Contents

Furtive File Integrity Verification (furtive) aims to ensure long term data integrity verification for digital archival
purposes. The idea is to create a manifest, or hash list, of all the files of which you wish to confirm integrity. Once a
manifest has been created, a user can then confirm the integrity of files at any point in the future.

The documentation is available on Read The Docs at furtive.readthedocs.org

Contents

Furtive File Integrity Verification (furtive) aims to ensure long term data integrity verification for digital archival
purposes. The idea is to create a manifest, or hash list, of all the files of which you wish to confirm integrity. Once a
manifest has been created, a user can then confirm the integrity of files at any point in the future.

The documentation is available on Read The Docs at furtive.readthedocs.org

Contents

Furtive File Integrity Verification (furtive) aims to ensure long term data integrity verification for digital archival
purposes. The idea is to create a manifest, or hash list, of all the files of which you wish to confirm integrity. Once a
manifest has been created, a user can then confirm the integrity of files at any point in the future.

The documentation is available on Read The Docs at furtive.readthedocs.org

Contents

Furtive File Integrity Verification (furtive) aims to ensure long term data integrity verification for digital archival
purposes. The idea is to create a manifest, or hash list, of all the files of which you wish to confirm integrity. Once a
manifest has been created, a user can then confirm the integrity of files at any point in the future.

The documentation is available on Read The Docs at furtive.readthedocs.org

Contents

4 Chapter 1. Contents

https://furtive.readthedocs.org/
https://furtive.readthedocs.org/
https://furtive.readthedocs.org/
https://furtive.readthedocs.org/
https://furtive.readthedocs.org/
https://furtive.readthedocs.org/

Furtive Documentation, Release master

Furtive File Integrity Verification (furtive) aims to ensure long term data integrity verification for digital archival
purposes. The idea is to create a manifest, or hash list, of all the files of which you wish to confirm integrity. Once a
manifest has been created, a user can then confirm the integrity of files at any point in the future.

The documentation is available on Read The Docs at furtive.readthedocs.org

Contents

Furtive File Integrity Verification (furtive) aims to ensure long term data integrity verification for digital archival
purposes. The idea is to create a manifest, or hash list, of all the files of which you wish to confirm integrity. Once a
manifest has been created, a user can then confirm the integrity of files at any point in the future.

The documentation is available on Read The Docs at furtive.readthedocs.org

Contents

CLI Reference Command Line Interface (or Tool) reference.

Manage a Furtive manifest

usage: furtive [-h] [--basedir BASEDIR] [--manifest MANIFEST_PATH]
[--log-level {debug,info,warn,error,critical}]
[--exclude PATTERN] [--quiet] [--report-output FILE_NAME]
[--version]
{create,compare,check}

Positional arguments:

action Which action to perform: compare - compare the current state of the files
on the file system with the recorded state in the manifest file. Status code
is 0 if the comparison was successful. check - check the integrity of files
listed in the manifest. Same as compare but exits with status code 1 if there
are changes to the files included in the manifest. That is, if any file hash
changes or if files are added or removed, the application will exit with a
status code of 1 to indicate there are changes. This action can be useful for
scripting. For example, to run a nightly cron check of a manifest. create
- create a new manifest from the files inthe directory specified by the –
basedir argument.

Possible choices: create, compare, check

Options:

--basedir=. Directory containing files that will be checked. Default: .

--manifest Location of the manifest file. Manifests may be located outside the direc-
tory indicated by –basedir. Must provide path and filename of the manifest
file. Default: <basedir>/.manifest.yaml

--log-level=info verbosity of furtive

Possible choices: debug, info, warn, error, critical

--exclude=[] Patterns to exclude files and directories from manifest. Can have multiple
occurances of this argument. Excludes are not stored in the manifest so
it is up to the user to provide the same arguments every run. Patterns are

1.1. Furtive 5

https://furtive.readthedocs.org/
https://furtive.readthedocs.org/

Furtive Documentation, Release master

evaluated as UNIX shell-style wildcard characters. See the [fnmatch docu-
mentation](https://docs.python.org/2/library/fnmatch.html)for more infor-
mation.

It is important to note that exclusions are not stored. Therefore ,they must
be specified for every run of ‘furtive‘. Otherwise, the files which were
previously excluded will be included and will show up as files added to the
manifest.

--quiet=False Only print out critial error messages. Do not print a report at the end of
a compare run. Using this argument will override the log-level and set it
to “critical”. Only acceptions will be printed to terminal. The return code
will be the only way to know if a Manifest has changed. This is useful
for scripting such as a cron based manifest checks. Useful with the check
command.

--report-output=- File to print the diff report to. - for stdout.This can be consumed by other
scripts todetermine exactly what has changed within themanifestDefault: -

--version show program’s version number and exit

API Reference

• API Reference

– Furtive Class

– Sub-Modules

* Hasher

* Manifest

This document is for developers of furtive, it contains the API functions

Furtive Class Furtive - File Integrity Verification System

class furtive.Furtive(base_dir, manifest_path, exclude=None)
Bases: object

Furtive is an application which stores file state and allows users to verify the state in the future. Example use
cases include file archives and file transport.

If the manifest file exists, it will be automatcally loaded. Calling create() will overwrite the existing manifest in
memory as well as the file.

Parameters

• base_dir (str) – Base directory to use for the manifest. Can be a full or relative path.

• manifest_path (str) – Path to the manifest file. Can be a full or relative path.

• exclude (list) – list containing patterns to use to exclude files from the manifest.

compare()
Compare the hashes in the database with the current hashes of files on the file system.

Returns Dictionary of added, deleted, and changed files.

Return type dict

6 Chapter 1. Contents

Furtive Documentation, Release master

create()
Create and save a new manifest.

The contents of the new Manfiest() will be saved to manifest_path.

Returns None

Sub-Modules

Hasher Manages the hashing of files

class furtive.hasher.HashDirectory(directory, exclude=None)
Bases: object

Object to manage hashing files in a directory.

This object is responsible for walking the directory tree and adding each file to a list. Once the directory walk
has compelted, each file path is passed to hash_task(). After each file has been hashed, this object will then
create a Python dictionary of files with their associated hash.

Parameters

• directory (str) – Path to directory containing files

• exclude (list) – list containing patterns to use to exclude files from the manifest.

Returns Dictionary of file:hash

Return type dict

excluded(file_path)
Should the file be excluded from the manifest?

Determines if a file should be excluded based on UNIX style pattern matching. Think *, ?, and [] se-
quences.

For matchers, see https://docs.python.org/2/library/fnmatch.html

Parameters file_path (str) – path of the file to match against.

Returns True or False indicating if the file should be excluded from the list of files containted
within the manifest.

Return type bool

hash_files()
Orchestrates the discovery and hashing of files.

Note: This method only supports the md5 hashing algorithm

furtive.hasher.hash_task(file_path, hash_algorithm=’md5’)
Responsible for hashing a file.

This function reads in the file file_path in small chuncks the size of the hash algorithm’s block size in order
to avoid running out of memory. This means that this function should be able to read any file irregardless of the
size.

Parameters

• file_path (str) – path of file to hash

• hash_algorithm (str) – the hashing algorithm to use. All options available in hash-
lib.algorithms should work. See: https://docs.python.org/2/library/hashlib.html

Returns hash of file

1.1. Furtive 7

https://docs.python.org/2/library/fnmatch.html
https://docs.python.org/2/library/hashlib.html

Furtive Documentation, Release master

Return type dict

furtive.hasher.initializer(terminating_)
Method to make terminating a global variable so that it is inherited by child processes.

Manifest Manifest of files and their hashes

class furtive.manifest.Manifest(directory, manifest_file, exclude=None)
Bases: object

Manifest of files and the associated hashes.

Parameters

• directory – directory which will serve as the root for the manifest. All files under the
directory will be hashed and added to or compared with the manifest.

• type – str

• manifest_file – file location of the manifest file. This is the path which will be used
for the create() and compare() methods. If the file exists, the create() method
will overwrite it.

• exclude (list) – list containing patterns to use to exclude files from the manifest.

create()
Creates a new manifest from the directory by calling furtive.hasher.HashDirectory() and placing the return
dictionary in to Manifest.manifest.

is_empty()
Determines if the manifest within memory is empty.

This simply checks to see if the manifest is None.

Returns True if manifest is empty, False otherwise.

Return type bool

load()
Load a manifest from the manifest file.

This method will open the manfiest YAML file and load it in to the manifest object variable.

save()
Save the manifest to the manifest file.

Open a YAML file and dump the contents of the manifest to it.

Requirements

• Python 2.7, 3.4, or 3.5

Getting Started To install furtive, run pip install furtive.

CLI Usage See the CLI Reference for more information about available command line arguments.

8 Chapter 1. Contents

Furtive Documentation, Release master

Use Case Example Suppose you have a million digital photos in a directory called my-photos that you have
taken over the years. You would like to know if the files begin to decay due to hardware failure or something else.
Alternatively, you may wish to have reassurance that your photos have not become corrupted while being stored in a
cloud backup solution such as S3 or Glacier.

To record the current state of the files, run furtive --basedir my-photos create

This command creates the file .manifest.yaml in the my-photos/ directory. The location and name of this file
can be changed by using the --manifest argument.

At this point, you can be sure that you will know if a file has changed. To check the files on the file system to the
recorded state in the manifest, run furtive --basedir my-photos check. The application will output a
list of files which have been added, removed, or changed. This output is YAML format so it should be easy to parse.
Additionally, furtive will exit with 1 indicating the check failed. This command can be placed in a cron job and setup
to send a notification if a file has changed.

Actions There are a few actions which can be performed by furtive.

• create - create a new manifest from the files in the directory specified by the --basedir argument.

• compare - compare the current state of the files on the file system with the recorded state in the manifest file.
A YAML based report will be created detailing which files have changed and which files have been added or
removed. Status code is 0 if the comparison was successful.

• check - check the integrity of files listed in the manifest. Same as compare but exits with status code 1 if
there are changes to the files included in the manifest. That is, if any file hash changes or if files are added or
removed, the application will exit with a status code of 1 to indicate there are changes. This action can be useful
for scripting. For example, to run a nightly cron check of a manifest. A YAML based report will be generated
as well.

Tests This application comes with tests. To run them, ensure you have tox installed (pip install tox). Then
you can run tox to run the tests.

To build the docs, run tox -e docs. The HTML docs will be generated in the .tox/docs/tmp/html/ direc-
tory.

Faster YAML By default, furtive will install and use the full Python implementation of the YAML parser which is
very slow. In a testing environment, the Python implementation of the YAML loader took 1 minute to parse a 187,000
line furtive manifest file. By contrast, when the LibYaml parser was used, the loader took only 5 seconds to parse the
same file.

To install the faster parser, perform the following steps:

1. Follow the instructions from the LibYaml website to download and install the latest release of libyaml.

2. Reinstall the PyYAML package by downloading the latest tar from the PyYAML website and running python
setup.py --with-libyaml install

CLI Reference Command Line Interface (or Tool) reference.

Manage a Furtive manifest

usage: furtive [-h] [--basedir BASEDIR] [--manifest MANIFEST_PATH]
[--log-level {debug,info,warn,error,critical}]
[--exclude PATTERN] [--quiet] [--report-output FILE_NAME]
[--version]
{create,compare,check}

1.1. Furtive 9

http://pyyaml.org/wiki/LibYAML
http://pyyaml.org/wiki/LibYAML
http://pyyaml.org/wiki/PyYAMLDocumentation

Furtive Documentation, Release master

Positional arguments:

action Which action to perform: compare - compare the current state of the files
on the file system with the recorded state in the manifest file. Status code
is 0 if the comparison was successful. check - check the integrity of files
listed in the manifest. Same as compare but exits with status code 1 if there
are changes to the files included in the manifest. That is, if any file hash
changes or if files are added or removed, the application will exit with a
status code of 1 to indicate there are changes. This action can be useful for
scripting. For example, to run a nightly cron check of a manifest. create
- create a new manifest from the files inthe directory specified by the –
basedir argument.

Possible choices: create, compare, check

Options:

--basedir=. Directory containing files that will be checked. Default: .

--manifest Location of the manifest file. Manifests may be located outside the direc-
tory indicated by –basedir. Must provide path and filename of the manifest
file. Default: <basedir>/.manifest.yaml

--log-level=info verbosity of furtive

Possible choices: debug, info, warn, error, critical

--exclude=[] Patterns to exclude files and directories from manifest. Can have multiple
occurances of this argument. Excludes are not stored in the manifest so
it is up to the user to provide the same arguments every run. Patterns are
evaluated as UNIX shell-style wildcard characters. See the [fnmatch docu-
mentation](https://docs.python.org/2/library/fnmatch.html)for more infor-
mation.

It is important to note that exclusions are not stored. Therefore ,they must
be specified for every run of ‘furtive‘. Otherwise, the files which were
previously excluded will be included and will show up as files added to the
manifest.

--quiet=False Only print out critial error messages. Do not print a report at the end of
a compare run. Using this argument will override the log-level and set it
to “critical”. Only acceptions will be printed to terminal. The return code
will be the only way to know if a Manifest has changed. This is useful
for scripting such as a cron based manifest checks. Useful with the check
command.

--report-output=- File to print the diff report to. - for stdout.This can be consumed by other
scripts todetermine exactly what has changed within themanifestDefault: -

--version show program’s version number and exit

API Reference

• API Reference

– Furtive Class

– Sub-Modules

* Hasher

* Manifest

10 Chapter 1. Contents

Furtive Documentation, Release master

This document is for developers of furtive, it contains the API functions

Furtive Class Furtive - File Integrity Verification System

class furtive.Furtive(base_dir, manifest_path, exclude=None)
Bases: object

Furtive is an application which stores file state and allows users to verify the state in the future. Example use
cases include file archives and file transport.

If the manifest file exists, it will be automatcally loaded. Calling create() will overwrite the existing manifest in
memory as well as the file.

Parameters

• base_dir (str) – Base directory to use for the manifest. Can be a full or relative path.

• manifest_path (str) – Path to the manifest file. Can be a full or relative path.

• exclude (list) – list containing patterns to use to exclude files from the manifest.

compare()
Compare the hashes in the database with the current hashes of files on the file system.

Returns Dictionary of added, deleted, and changed files.

Return type dict

create()
Create and save a new manifest.

The contents of the new Manfiest() will be saved to manifest_path.

Returns None

Sub-Modules

Hasher Manages the hashing of files

class furtive.hasher.HashDirectory(directory, exclude=None)
Bases: object

Object to manage hashing files in a directory.

This object is responsible for walking the directory tree and adding each file to a list. Once the directory walk
has compelted, each file path is passed to hash_task(). After each file has been hashed, this object will then
create a Python dictionary of files with their associated hash.

Parameters

• directory (str) – Path to directory containing files

• exclude (list) – list containing patterns to use to exclude files from the manifest.

Returns Dictionary of file:hash

Return type dict

excluded(file_path)
Should the file be excluded from the manifest?

Determines if a file should be excluded based on UNIX style pattern matching. Think *, ?, and [] se-
quences.

1.1. Furtive 11

Furtive Documentation, Release master

For matchers, see https://docs.python.org/2/library/fnmatch.html

Parameters file_path (str) – path of the file to match against.

Returns True or False indicating if the file should be excluded from the list of files containted
within the manifest.

Return type bool

hash_files()
Orchestrates the discovery and hashing of files.

Note: This method only supports the md5 hashing algorithm

furtive.hasher.hash_task(file_path, hash_algorithm=’md5’)
Responsible for hashing a file.

This function reads in the file file_path in small chuncks the size of the hash algorithm’s block size in order
to avoid running out of memory. This means that this function should be able to read any file irregardless of the
size.

Parameters

• file_path (str) – path of file to hash

• hash_algorithm (str) – the hashing algorithm to use. All options available in hash-
lib.algorithms should work. See: https://docs.python.org/2/library/hashlib.html

Returns hash of file

Return type dict

furtive.hasher.initializer(terminating_)
Method to make terminating a global variable so that it is inherited by child processes.

Manifest Manifest of files and their hashes

class furtive.manifest.Manifest(directory, manifest_file, exclude=None)
Bases: object

Manifest of files and the associated hashes.

Parameters

• directory – directory which will serve as the root for the manifest. All files under the
directory will be hashed and added to or compared with the manifest.

• type – str

• manifest_file – file location of the manifest file. This is the path which will be used
for the create() and compare() methods. If the file exists, the create() method
will overwrite it.

• exclude (list) – list containing patterns to use to exclude files from the manifest.

create()
Creates a new manifest from the directory by calling furtive.hasher.HashDirectory() and placing the return
dictionary in to Manifest.manifest.

is_empty()
Determines if the manifest within memory is empty.

This simply checks to see if the manifest is None.

Returns True if manifest is empty, False otherwise.

12 Chapter 1. Contents

https://docs.python.org/2/library/fnmatch.html
https://docs.python.org/2/library/hashlib.html

Furtive Documentation, Release master

Return type bool

load()
Load a manifest from the manifest file.

This method will open the manfiest YAML file and load it in to the manifest object variable.

save()
Save the manifest to the manifest file.

Open a YAML file and dump the contents of the manifest to it.

Requirements

• Python 2.7, 3.4, or 3.5

Getting Started To install furtive, run pip install furtive.

CLI Usage See the CLI Reference for more information about available command line arguments.

Use Case Example Suppose you have a million digital photos in a directory called my-photos that you have
taken over the years. You would like to know if the files begin to decay due to hardware failure or something else.
Alternatively, you may wish to have reassurance that your photos have not become corrupted while being stored in a
cloud backup solution such as S3 or Glacier.

To record the current state of the files, run furtive --basedir my-photos create

This command creates the file .manifest.yaml in the my-photos/ directory. The location and name of this file
can be changed by using the --manifest argument.

At this point, you can be sure that you will know if a file has changed. To check the files on the file system to the
recorded state in the manifest, run furtive --basedir my-photos check. The application will output a
list of files which have been added, removed, or changed. This output is YAML format so it should be easy to parse.
Additionally, furtive will exit with 1 indicating the check failed. This command can be placed in a cron job and setup
to send a notification if a file has changed.

Actions There are a few actions which can be performed by furtive.

• create - create a new manifest from the files in the directory specified by the --basedir argument.

• compare - compare the current state of the files on the file system with the recorded state in the manifest file.
A YAML based report will be created detailing which files have changed and which files have been added or
removed. Status code is 0 if the comparison was successful.

• check - check the integrity of files listed in the manifest. Same as compare but exits with status code 1 if
there are changes to the files included in the manifest. That is, if any file hash changes or if files are added or
removed, the application will exit with a status code of 1 to indicate there are changes. This action can be useful
for scripting. For example, to run a nightly cron check of a manifest. A YAML based report will be generated
as well.

Tests This application comes with tests. To run them, ensure you have tox installed (pip install tox). Then
you can run tox to run the tests.

To build the docs, run tox -e docs. The HTML docs will be generated in the .tox/docs/tmp/html/ direc-
tory.

1.1. Furtive 13

Furtive Documentation, Release master

Faster YAML By default, furtive will install and use the full Python implementation of the YAML parser which is
very slow. In a testing environment, the Python implementation of the YAML loader took 1 minute to parse a 187,000
line furtive manifest file. By contrast, when the LibYaml parser was used, the loader took only 5 seconds to parse the
same file.

To install the faster parser, perform the following steps:

1. Follow the instructions from the LibYaml website to download and install the latest release of libyaml.

2. Reinstall the PyYAML package by downloading the latest tar from the PyYAML website and running python
setup.py --with-libyaml install

CLI Reference Command Line Interface (or Tool) reference.

Manage a Furtive manifest

usage: furtive [-h] [--basedir BASEDIR] [--manifest MANIFEST_PATH]
[--log-level {debug,info,warn,error,critical}]
[--exclude PATTERN] [--quiet] [--report-output FILE_NAME]
[--version]
{create,compare,check}

Positional arguments:

action Which action to perform: compare - compare the current state of the files
on the file system with the recorded state in the manifest file. Status code
is 0 if the comparison was successful. check - check the integrity of files
listed in the manifest. Same as compare but exits with status code 1 if there
are changes to the files included in the manifest. That is, if any file hash
changes or if files are added or removed, the application will exit with a
status code of 1 to indicate there are changes. This action can be useful for
scripting. For example, to run a nightly cron check of a manifest. create
- create a new manifest from the files inthe directory specified by the –
basedir argument.

Possible choices: create, compare, check

Options:

--basedir=. Directory containing files that will be checked. Default: .

--manifest Location of the manifest file. Manifests may be located outside the direc-
tory indicated by –basedir. Must provide path and filename of the manifest
file. Default: <basedir>/.manifest.yaml

--log-level=info verbosity of furtive

Possible choices: debug, info, warn, error, critical

--exclude=[] Patterns to exclude files and directories from manifest. Can have multiple
occurances of this argument. Excludes are not stored in the manifest so
it is up to the user to provide the same arguments every run. Patterns are
evaluated as UNIX shell-style wildcard characters. See the [fnmatch docu-
mentation](https://docs.python.org/2/library/fnmatch.html)for more infor-
mation.

It is important to note that exclusions are not stored. Therefore ,they must
be specified for every run of ‘furtive‘. Otherwise, the files which were
previously excluded will be included and will show up as files added to the
manifest.

14 Chapter 1. Contents

http://pyyaml.org/wiki/LibYAML
http://pyyaml.org/wiki/LibYAML
http://pyyaml.org/wiki/PyYAMLDocumentation

Furtive Documentation, Release master

--quiet=False Only print out critial error messages. Do not print a report at the end of
a compare run. Using this argument will override the log-level and set it
to “critical”. Only acceptions will be printed to terminal. The return code
will be the only way to know if a Manifest has changed. This is useful
for scripting such as a cron based manifest checks. Useful with the check
command.

--report-output=- File to print the diff report to. - for stdout.This can be consumed by other
scripts todetermine exactly what has changed within themanifestDefault: -

--version show program’s version number and exit

API Reference

• API Reference

– Furtive Class

– Sub-Modules

* Hasher

* Manifest

This document is for developers of furtive, it contains the API functions

Furtive Class Furtive - File Integrity Verification System

class furtive.Furtive(base_dir, manifest_path, exclude=None)
Bases: object

Furtive is an application which stores file state and allows users to verify the state in the future. Example use
cases include file archives and file transport.

If the manifest file exists, it will be automatcally loaded. Calling create() will overwrite the existing manifest in
memory as well as the file.

Parameters

• base_dir (str) – Base directory to use for the manifest. Can be a full or relative path.

• manifest_path (str) – Path to the manifest file. Can be a full or relative path.

• exclude (list) – list containing patterns to use to exclude files from the manifest.

compare()
Compare the hashes in the database with the current hashes of files on the file system.

Returns Dictionary of added, deleted, and changed files.

Return type dict

create()
Create and save a new manifest.

The contents of the new Manfiest() will be saved to manifest_path.

Returns None

Sub-Modules

1.1. Furtive 15

Furtive Documentation, Release master

Hasher Manages the hashing of files

class furtive.hasher.HashDirectory(directory, exclude=None)
Bases: object

Object to manage hashing files in a directory.

This object is responsible for walking the directory tree and adding each file to a list. Once the directory walk
has compelted, each file path is passed to hash_task(). After each file has been hashed, this object will then
create a Python dictionary of files with their associated hash.

Parameters

• directory (str) – Path to directory containing files

• exclude (list) – list containing patterns to use to exclude files from the manifest.

Returns Dictionary of file:hash

Return type dict

excluded(file_path)
Should the file be excluded from the manifest?

Determines if a file should be excluded based on UNIX style pattern matching. Think *, ?, and [] se-
quences.

For matchers, see https://docs.python.org/2/library/fnmatch.html

Parameters file_path (str) – path of the file to match against.

Returns True or False indicating if the file should be excluded from the list of files containted
within the manifest.

Return type bool

hash_files()
Orchestrates the discovery and hashing of files.

Note: This method only supports the md5 hashing algorithm

furtive.hasher.hash_task(file_path, hash_algorithm=’md5’)
Responsible for hashing a file.

This function reads in the file file_path in small chuncks the size of the hash algorithm’s block size in order
to avoid running out of memory. This means that this function should be able to read any file irregardless of the
size.

Parameters

• file_path (str) – path of file to hash

• hash_algorithm (str) – the hashing algorithm to use. All options available in hash-
lib.algorithms should work. See: https://docs.python.org/2/library/hashlib.html

Returns hash of file

Return type dict

furtive.hasher.initializer(terminating_)
Method to make terminating a global variable so that it is inherited by child processes.

16 Chapter 1. Contents

https://docs.python.org/2/library/fnmatch.html
https://docs.python.org/2/library/hashlib.html

Furtive Documentation, Release master

Manifest Manifest of files and their hashes

class furtive.manifest.Manifest(directory, manifest_file, exclude=None)
Bases: object

Manifest of files and the associated hashes.

Parameters

• directory – directory which will serve as the root for the manifest. All files under the
directory will be hashed and added to or compared with the manifest.

• type – str

• manifest_file – file location of the manifest file. This is the path which will be used
for the create() and compare() methods. If the file exists, the create() method
will overwrite it.

• exclude (list) – list containing patterns to use to exclude files from the manifest.

create()
Creates a new manifest from the directory by calling furtive.hasher.HashDirectory() and placing the return
dictionary in to Manifest.manifest.

is_empty()
Determines if the manifest within memory is empty.

This simply checks to see if the manifest is None.

Returns True if manifest is empty, False otherwise.

Return type bool

load()
Load a manifest from the manifest file.

This method will open the manfiest YAML file and load it in to the manifest object variable.

save()
Save the manifest to the manifest file.

Open a YAML file and dump the contents of the manifest to it.

Requirements

• Python 2.7, 3.4, or 3.5

Getting Started To install furtive, run pip install furtive.

CLI Usage See the CLI Reference for more information about available command line arguments.

Use Case Example Suppose you have a million digital photos in a directory called my-photos that you have
taken over the years. You would like to know if the files begin to decay due to hardware failure or something else.
Alternatively, you may wish to have reassurance that your photos have not become corrupted while being stored in a
cloud backup solution such as S3 or Glacier.

To record the current state of the files, run furtive --basedir my-photos create

This command creates the file .manifest.yaml in the my-photos/ directory. The location and name of this file
can be changed by using the --manifest argument.

1.1. Furtive 17

Furtive Documentation, Release master

At this point, you can be sure that you will know if a file has changed. To check the files on the file system to the
recorded state in the manifest, run furtive --basedir my-photos check. The application will output a
list of files which have been added, removed, or changed. This output is YAML format so it should be easy to parse.
Additionally, furtive will exit with 1 indicating the check failed. This command can be placed in a cron job and setup
to send a notification if a file has changed.

Actions There are a few actions which can be performed by furtive.

• create - create a new manifest from the files in the directory specified by the --basedir argument.

• compare - compare the current state of the files on the file system with the recorded state in the manifest file.
A YAML based report will be created detailing which files have changed and which files have been added or
removed. Status code is 0 if the comparison was successful.

• check - check the integrity of files listed in the manifest. Same as compare but exits with status code 1 if
there are changes to the files included in the manifest. That is, if any file hash changes or if files are added or
removed, the application will exit with a status code of 1 to indicate there are changes. This action can be useful
for scripting. For example, to run a nightly cron check of a manifest. A YAML based report will be generated
as well.

Tests This application comes with tests. To run them, ensure you have tox installed (pip install tox). Then
you can run tox to run the tests.

To build the docs, run tox -e docs. The HTML docs will be generated in the .tox/docs/tmp/html/ direc-
tory.

Faster YAML By default, furtive will install and use the full Python implementation of the YAML parser which is
very slow. In a testing environment, the Python implementation of the YAML loader took 1 minute to parse a 187,000
line furtive manifest file. By contrast, when the LibYaml parser was used, the loader took only 5 seconds to parse the
same file.

To install the faster parser, perform the following steps:

1. Follow the instructions from the LibYaml website to download and install the latest release of libyaml.

2. Reinstall the PyYAML package by downloading the latest tar from the PyYAML website and running python
setup.py --with-libyaml install

CLI Reference Command Line Interface (or Tool) reference.

Manage a Furtive manifest

usage: furtive [-h] [--basedir BASEDIR] [--manifest MANIFEST_PATH]
[--log-level {debug,info,warn,error,critical}]
[--exclude PATTERN] [--quiet] [--report-output FILE_NAME]
[--version]
{create,compare,check}

Positional arguments:

action Which action to perform: compare - compare the current state of the files
on the file system with the recorded state in the manifest file. Status code
is 0 if the comparison was successful. check - check the integrity of files
listed in the manifest. Same as compare but exits with status code 1 if there
are changes to the files included in the manifest. That is, if any file hash
changes or if files are added or removed, the application will exit with a
status code of 1 to indicate there are changes. This action can be useful for

18 Chapter 1. Contents

http://pyyaml.org/wiki/LibYAML
http://pyyaml.org/wiki/LibYAML
http://pyyaml.org/wiki/PyYAMLDocumentation

Furtive Documentation, Release master

scripting. For example, to run a nightly cron check of a manifest. create
- create a new manifest from the files inthe directory specified by the –
basedir argument.

Possible choices: create, compare, check

Options:

--basedir=. Directory containing files that will be checked. Default: .

--manifest Location of the manifest file. Manifests may be located outside the direc-
tory indicated by –basedir. Must provide path and filename of the manifest
file. Default: <basedir>/.manifest.yaml

--log-level=info verbosity of furtive

Possible choices: debug, info, warn, error, critical

--exclude=[] Patterns to exclude files and directories from manifest. Can have multiple
occurances of this argument. Excludes are not stored in the manifest so
it is up to the user to provide the same arguments every run. Patterns are
evaluated as UNIX shell-style wildcard characters. See the [fnmatch docu-
mentation](https://docs.python.org/2/library/fnmatch.html)for more infor-
mation.

It is important to note that exclusions are not stored. Therefore ,they must
be specified for every run of ‘furtive‘. Otherwise, the files which were
previously excluded will be included and will show up as files added to the
manifest.

--quiet=False Only print out critial error messages. Do not print a report at the end of
a compare run. Using this argument will override the log-level and set it
to “critical”. Only acceptions will be printed to terminal. The return code
will be the only way to know if a Manifest has changed. This is useful
for scripting such as a cron based manifest checks. Useful with the check
command.

--report-output=- File to print the diff report to. - for stdout.This can be consumed by other
scripts todetermine exactly what has changed within themanifestDefault: -

--version show program’s version number and exit

API Reference

• API Reference

– Furtive Class

– Sub-Modules

* Hasher

* Manifest

This document is for developers of furtive, it contains the API functions

Furtive Class Furtive - File Integrity Verification System

class furtive.Furtive(base_dir, manifest_path, exclude=None)
Bases: object

1.1. Furtive 19

Furtive Documentation, Release master

Furtive is an application which stores file state and allows users to verify the state in the future. Example use
cases include file archives and file transport.

If the manifest file exists, it will be automatcally loaded. Calling create() will overwrite the existing manifest in
memory as well as the file.

Parameters

• base_dir (str) – Base directory to use for the manifest. Can be a full or relative path.

• manifest_path (str) – Path to the manifest file. Can be a full or relative path.

• exclude (list) – list containing patterns to use to exclude files from the manifest.

compare()
Compare the hashes in the database with the current hashes of files on the file system.

Returns Dictionary of added, deleted, and changed files.

Return type dict

create()
Create and save a new manifest.

The contents of the new Manfiest() will be saved to manifest_path.

Returns None

Sub-Modules

Hasher Manages the hashing of files

class furtive.hasher.HashDirectory(directory, exclude=None)
Bases: object

Object to manage hashing files in a directory.

This object is responsible for walking the directory tree and adding each file to a list. Once the directory walk
has compelted, each file path is passed to hash_task(). After each file has been hashed, this object will then
create a Python dictionary of files with their associated hash.

Parameters

• directory (str) – Path to directory containing files

• exclude (list) – list containing patterns to use to exclude files from the manifest.

Returns Dictionary of file:hash

Return type dict

excluded(file_path)
Should the file be excluded from the manifest?

Determines if a file should be excluded based on UNIX style pattern matching. Think *, ?, and [] se-
quences.

For matchers, see https://docs.python.org/2/library/fnmatch.html

Parameters file_path (str) – path of the file to match against.

Returns True or False indicating if the file should be excluded from the list of files containted
within the manifest.

Return type bool

20 Chapter 1. Contents

https://docs.python.org/2/library/fnmatch.html

Furtive Documentation, Release master

hash_files()
Orchestrates the discovery and hashing of files.

Note: This method only supports the md5 hashing algorithm

furtive.hasher.hash_task(file_path, hash_algorithm=’md5’)
Responsible for hashing a file.

This function reads in the file file_path in small chuncks the size of the hash algorithm’s block size in order
to avoid running out of memory. This means that this function should be able to read any file irregardless of the
size.

Parameters

• file_path (str) – path of file to hash

• hash_algorithm (str) – the hashing algorithm to use. All options available in hash-
lib.algorithms should work. See: https://docs.python.org/2/library/hashlib.html

Returns hash of file

Return type dict

furtive.hasher.initializer(terminating_)
Method to make terminating a global variable so that it is inherited by child processes.

Manifest Manifest of files and their hashes

class furtive.manifest.Manifest(directory, manifest_file, exclude=None)
Bases: object

Manifest of files and the associated hashes.

Parameters

• directory – directory which will serve as the root for the manifest. All files under the
directory will be hashed and added to or compared with the manifest.

• type – str

• manifest_file – file location of the manifest file. This is the path which will be used
for the create() and compare() methods. If the file exists, the create() method
will overwrite it.

• exclude (list) – list containing patterns to use to exclude files from the manifest.

create()
Creates a new manifest from the directory by calling furtive.hasher.HashDirectory() and placing the return
dictionary in to Manifest.manifest.

is_empty()
Determines if the manifest within memory is empty.

This simply checks to see if the manifest is None.

Returns True if manifest is empty, False otherwise.

Return type bool

load()
Load a manifest from the manifest file.

This method will open the manfiest YAML file and load it in to the manifest object variable.

1.1. Furtive 21

https://docs.python.org/2/library/hashlib.html

Furtive Documentation, Release master

save()
Save the manifest to the manifest file.

Open a YAML file and dump the contents of the manifest to it.

Requirements

• Python 2.7, 3.4, or 3.5

Getting Started To install furtive, run pip install furtive.

CLI Usage See the CLI Reference for more information about available command line arguments.

Use Case Example Suppose you have a million digital photos in a directory called my-photos that you have
taken over the years. You would like to know if the files begin to decay due to hardware failure or something else.
Alternatively, you may wish to have reassurance that your photos have not become corrupted while being stored in a
cloud backup solution such as S3 or Glacier.

To record the current state of the files, run furtive --basedir my-photos create

This command creates the file .manifest.yaml in the my-photos/ directory. The location and name of this file
can be changed by using the --manifest argument.

At this point, you can be sure that you will know if a file has changed. To check the files on the file system to the
recorded state in the manifest, run furtive --basedir my-photos check. The application will output a
list of files which have been added, removed, or changed. This output is YAML format so it should be easy to parse.
Additionally, furtive will exit with 1 indicating the check failed. This command can be placed in a cron job and setup
to send a notification if a file has changed.

Actions There are a few actions which can be performed by furtive.

• create - create a new manifest from the files in the directory specified by the --basedir argument.

• compare - compare the current state of the files on the file system with the recorded state in the manifest file.
A YAML based report will be created detailing which files have changed and which files have been added or
removed. Status code is 0 if the comparison was successful.

• check - check the integrity of files listed in the manifest. Same as compare but exits with status code 1 if
there are changes to the files included in the manifest. That is, if any file hash changes or if files are added or
removed, the application will exit with a status code of 1 to indicate there are changes. This action can be useful
for scripting. For example, to run a nightly cron check of a manifest. A YAML based report will be generated
as well.

Tests This application comes with tests. To run them, ensure you have tox installed (pip install tox). Then
you can run tox to run the tests.

To build the docs, run tox -e docs. The HTML docs will be generated in the .tox/docs/tmp/html/ direc-
tory.

Faster YAML By default, furtive will install and use the full Python implementation of the YAML parser which is
very slow. In a testing environment, the Python implementation of the YAML loader took 1 minute to parse a 187,000
line furtive manifest file. By contrast, when the LibYaml parser was used, the loader took only 5 seconds to parse the
same file.

To install the faster parser, perform the following steps:

22 Chapter 1. Contents

http://pyyaml.org/wiki/LibYAML

Furtive Documentation, Release master

1. Follow the instructions from the LibYaml website to download and install the latest release of libyaml.

2. Reinstall the PyYAML package by downloading the latest tar from the PyYAML website and running python
setup.py --with-libyaml install

CLI Reference Command Line Interface (or Tool) reference.

Manage a Furtive manifest

usage: furtive [-h] [--basedir BASEDIR] [--manifest MANIFEST_PATH]
[--log-level {debug,info,warn,error,critical}]
[--exclude PATTERN] [--quiet] [--report-output FILE_NAME]
[--version]
{create,compare,check}

Positional arguments:

action Which action to perform: compare - compare the current state of the files
on the file system with the recorded state in the manifest file. Status code
is 0 if the comparison was successful. check - check the integrity of files
listed in the manifest. Same as compare but exits with status code 1 if there
are changes to the files included in the manifest. That is, if any file hash
changes or if files are added or removed, the application will exit with a
status code of 1 to indicate there are changes. This action can be useful for
scripting. For example, to run a nightly cron check of a manifest. create
- create a new manifest from the files inthe directory specified by the –
basedir argument.

Possible choices: create, compare, check

Options:

--basedir=. Directory containing files that will be checked. Default: .

--manifest Location of the manifest file. Manifests may be located outside the direc-
tory indicated by –basedir. Must provide path and filename of the manifest
file. Default: <basedir>/.manifest.yaml

--log-level=info verbosity of furtive

Possible choices: debug, info, warn, error, critical

--exclude=[] Patterns to exclude files and directories from manifest. Can have multiple
occurances of this argument. Excludes are not stored in the manifest so
it is up to the user to provide the same arguments every run. Patterns are
evaluated as UNIX shell-style wildcard characters. See the [fnmatch docu-
mentation](https://docs.python.org/2/library/fnmatch.html)for more infor-
mation.

It is important to note that exclusions are not stored. Therefore ,they must
be specified for every run of ‘furtive‘. Otherwise, the files which were
previously excluded will be included and will show up as files added to the
manifest.

--quiet=False Only print out critial error messages. Do not print a report at the end of
a compare run. Using this argument will override the log-level and set it
to “critical”. Only acceptions will be printed to terminal. The return code
will be the only way to know if a Manifest has changed. This is useful
for scripting such as a cron based manifest checks. Useful with the check
command.

1.1. Furtive 23

http://pyyaml.org/wiki/LibYAML
http://pyyaml.org/wiki/PyYAMLDocumentation

Furtive Documentation, Release master

--report-output=- File to print the diff report to. - for stdout.This can be consumed by other
scripts todetermine exactly what has changed within themanifestDefault: -

--version show program’s version number and exit

API Reference

• API Reference

– Furtive Class

– Sub-Modules

* Hasher

* Manifest

This document is for developers of furtive, it contains the API functions

Furtive Class Furtive - File Integrity Verification System

class furtive.Furtive(base_dir, manifest_path, exclude=None)
Bases: object

Furtive is an application which stores file state and allows users to verify the state in the future. Example use
cases include file archives and file transport.

If the manifest file exists, it will be automatcally loaded. Calling create() will overwrite the existing manifest in
memory as well as the file.

Parameters

• base_dir (str) – Base directory to use for the manifest. Can be a full or relative path.

• manifest_path (str) – Path to the manifest file. Can be a full or relative path.

• exclude (list) – list containing patterns to use to exclude files from the manifest.

compare()
Compare the hashes in the database with the current hashes of files on the file system.

Returns Dictionary of added, deleted, and changed files.

Return type dict

create()
Create and save a new manifest.

The contents of the new Manfiest() will be saved to manifest_path.

Returns None

Sub-Modules

Hasher Manages the hashing of files

class furtive.hasher.HashDirectory(directory, exclude=None)
Bases: object

Object to manage hashing files in a directory.

24 Chapter 1. Contents

Furtive Documentation, Release master

This object is responsible for walking the directory tree and adding each file to a list. Once the directory walk
has compelted, each file path is passed to hash_task(). After each file has been hashed, this object will then
create a Python dictionary of files with their associated hash.

Parameters

• directory (str) – Path to directory containing files

• exclude (list) – list containing patterns to use to exclude files from the manifest.

Returns Dictionary of file:hash

Return type dict

excluded(file_path)
Should the file be excluded from the manifest?

Determines if a file should be excluded based on UNIX style pattern matching. Think *, ?, and [] se-
quences.

For matchers, see https://docs.python.org/2/library/fnmatch.html

Parameters file_path (str) – path of the file to match against.

Returns True or False indicating if the file should be excluded from the list of files containted
within the manifest.

Return type bool

hash_files()
Orchestrates the discovery and hashing of files.

Note: This method only supports the md5 hashing algorithm

furtive.hasher.hash_task(file_path, hash_algorithm=’md5’)
Responsible for hashing a file.

This function reads in the file file_path in small chuncks the size of the hash algorithm’s block size in order
to avoid running out of memory. This means that this function should be able to read any file irregardless of the
size.

Parameters

• file_path (str) – path of file to hash

• hash_algorithm (str) – the hashing algorithm to use. All options available in hash-
lib.algorithms should work. See: https://docs.python.org/2/library/hashlib.html

Returns hash of file

Return type dict

furtive.hasher.initializer(terminating_)
Method to make terminating a global variable so that it is inherited by child processes.

Manifest Manifest of files and their hashes

class furtive.manifest.Manifest(directory, manifest_file, exclude=None)
Bases: object

Manifest of files and the associated hashes.

Parameters

• directory – directory which will serve as the root for the manifest. All files under the
directory will be hashed and added to or compared with the manifest.

1.1. Furtive 25

https://docs.python.org/2/library/fnmatch.html
https://docs.python.org/2/library/hashlib.html

Furtive Documentation, Release master

• type – str

• manifest_file – file location of the manifest file. This is the path which will be used
for the create() and compare() methods. If the file exists, the create() method
will overwrite it.

• exclude (list) – list containing patterns to use to exclude files from the manifest.

create()
Creates a new manifest from the directory by calling furtive.hasher.HashDirectory() and placing the return
dictionary in to Manifest.manifest.

is_empty()
Determines if the manifest within memory is empty.

This simply checks to see if the manifest is None.

Returns True if manifest is empty, False otherwise.

Return type bool

load()
Load a manifest from the manifest file.

This method will open the manfiest YAML file and load it in to the manifest object variable.

save()
Save the manifest to the manifest file.

Open a YAML file and dump the contents of the manifest to it.

Requirements

• Python 2.7, 3.4, or 3.5

Getting Started To install furtive, run pip install furtive.

CLI Usage See the CLI Reference for more information about available command line arguments.

Use Case Example Suppose you have a million digital photos in a directory called my-photos that you have
taken over the years. You would like to know if the files begin to decay due to hardware failure or something else.
Alternatively, you may wish to have reassurance that your photos have not become corrupted while being stored in a
cloud backup solution such as S3 or Glacier.

To record the current state of the files, run furtive --basedir my-photos create

This command creates the file .manifest.yaml in the my-photos/ directory. The location and name of this file
can be changed by using the --manifest argument.

At this point, you can be sure that you will know if a file has changed. To check the files on the file system to the
recorded state in the manifest, run furtive --basedir my-photos check. The application will output a
list of files which have been added, removed, or changed. This output is YAML format so it should be easy to parse.
Additionally, furtive will exit with 1 indicating the check failed. This command can be placed in a cron job and setup
to send a notification if a file has changed.

26 Chapter 1. Contents

Furtive Documentation, Release master

Actions There are a few actions which can be performed by furtive.

• create - create a new manifest from the files in the directory specified by the --basedir argument.

• compare - compare the current state of the files on the file system with the recorded state in the manifest file.
A YAML based report will be created detailing which files have changed and which files have been added or
removed. Status code is 0 if the comparison was successful.

• check - check the integrity of files listed in the manifest. Same as compare but exits with status code 1 if
there are changes to the files included in the manifest. That is, if any file hash changes or if files are added or
removed, the application will exit with a status code of 1 to indicate there are changes. This action can be useful
for scripting. For example, to run a nightly cron check of a manifest. A YAML based report will be generated
as well.

Tests This application comes with tests. To run them, ensure you have tox installed (pip install tox). Then
you can run tox to run the tests.

To build the docs, run tox -e docs. The HTML docs will be generated in the .tox/docs/tmp/html/ direc-
tory.

Faster YAML By default, furtive will install and use the full Python implementation of the YAML parser which is
very slow. In a testing environment, the Python implementation of the YAML loader took 1 minute to parse a 187,000
line furtive manifest file. By contrast, when the LibYaml parser was used, the loader took only 5 seconds to parse the
same file.

To install the faster parser, perform the following steps:

1. Follow the instructions from the LibYaml website to download and install the latest release of libyaml.

2. Reinstall the PyYAML package by downloading the latest tar from the PyYAML website and running python
setup.py --with-libyaml install

CLI Reference Command Line Interface (or Tool) reference.

Manage a Furtive manifest

usage: furtive [-h] [--basedir BASEDIR] [--manifest MANIFEST_PATH]
[--log-level {debug,info,warn,error,critical}]
[--exclude PATTERN] [--quiet] [--report-output FILE_NAME]
[--version]
{create,compare,check}

Positional arguments:

action Which action to perform: compare - compare the current state of the files
on the file system with the recorded state in the manifest file. Status code
is 0 if the comparison was successful. check - check the integrity of files
listed in the manifest. Same as compare but exits with status code 1 if there
are changes to the files included in the manifest. That is, if any file hash
changes or if files are added or removed, the application will exit with a
status code of 1 to indicate there are changes. This action can be useful for
scripting. For example, to run a nightly cron check of a manifest. create
- create a new manifest from the files inthe directory specified by the –
basedir argument.

Possible choices: create, compare, check

Options:

1.1. Furtive 27

http://pyyaml.org/wiki/LibYAML
http://pyyaml.org/wiki/LibYAML
http://pyyaml.org/wiki/PyYAMLDocumentation

Furtive Documentation, Release master

--basedir=. Directory containing files that will be checked. Default: .

--manifest Location of the manifest file. Manifests may be located outside the direc-
tory indicated by –basedir. Must provide path and filename of the manifest
file. Default: <basedir>/.manifest.yaml

--log-level=info verbosity of furtive

Possible choices: debug, info, warn, error, critical

--exclude=[] Patterns to exclude files and directories from manifest. Can have multiple
occurances of this argument. Excludes are not stored in the manifest so
it is up to the user to provide the same arguments every run. Patterns are
evaluated as UNIX shell-style wildcard characters. See the [fnmatch docu-
mentation](https://docs.python.org/2/library/fnmatch.html)for more infor-
mation.

It is important to note that exclusions are not stored. Therefore ,they must
be specified for every run of ‘furtive‘. Otherwise, the files which were
previously excluded will be included and will show up as files added to the
manifest.

--quiet=False Only print out critial error messages. Do not print a report at the end of
a compare run. Using this argument will override the log-level and set it
to “critical”. Only acceptions will be printed to terminal. The return code
will be the only way to know if a Manifest has changed. This is useful
for scripting such as a cron based manifest checks. Useful with the check
command.

--report-output=- File to print the diff report to. - for stdout.This can be consumed by other
scripts todetermine exactly what has changed within themanifestDefault: -

--version show program’s version number and exit

API Reference

• API Reference

– Furtive Class

– Sub-Modules

* Hasher

* Manifest

This document is for developers of furtive, it contains the API functions

Furtive Class Furtive - File Integrity Verification System

class furtive.Furtive(base_dir, manifest_path, exclude=None)
Bases: object

Furtive is an application which stores file state and allows users to verify the state in the future. Example use
cases include file archives and file transport.

If the manifest file exists, it will be automatcally loaded. Calling create() will overwrite the existing manifest in
memory as well as the file.

Parameters

• base_dir (str) – Base directory to use for the manifest. Can be a full or relative path.

28 Chapter 1. Contents

Furtive Documentation, Release master

• manifest_path (str) – Path to the manifest file. Can be a full or relative path.

• exclude (list) – list containing patterns to use to exclude files from the manifest.

compare()
Compare the hashes in the database with the current hashes of files on the file system.

Returns Dictionary of added, deleted, and changed files.

Return type dict

create()
Create and save a new manifest.

The contents of the new Manfiest() will be saved to manifest_path.

Returns None

Sub-Modules

Hasher Manages the hashing of files

class furtive.hasher.HashDirectory(directory, exclude=None)
Bases: object

Object to manage hashing files in a directory.

This object is responsible for walking the directory tree and adding each file to a list. Once the directory walk
has compelted, each file path is passed to hash_task(). After each file has been hashed, this object will then
create a Python dictionary of files with their associated hash.

Parameters

• directory (str) – Path to directory containing files

• exclude (list) – list containing patterns to use to exclude files from the manifest.

Returns Dictionary of file:hash

Return type dict

excluded(file_path)
Should the file be excluded from the manifest?

Determines if a file should be excluded based on UNIX style pattern matching. Think *, ?, and [] se-
quences.

For matchers, see https://docs.python.org/2/library/fnmatch.html

Parameters file_path (str) – path of the file to match against.

Returns True or False indicating if the file should be excluded from the list of files containted
within the manifest.

Return type bool

hash_files()
Orchestrates the discovery and hashing of files.

Note: This method only supports the md5 hashing algorithm

furtive.hasher.hash_task(file_path, hash_algorithm=’md5’)
Responsible for hashing a file.

1.1. Furtive 29

https://docs.python.org/2/library/fnmatch.html

Furtive Documentation, Release master

This function reads in the file file_path in small chuncks the size of the hash algorithm’s block size in order
to avoid running out of memory. This means that this function should be able to read any file irregardless of the
size.

Parameters

• file_path (str) – path of file to hash

• hash_algorithm (str) – the hashing algorithm to use. All options available in hash-
lib.algorithms should work. See: https://docs.python.org/2/library/hashlib.html

Returns hash of file

Return type dict

furtive.hasher.initializer(terminating_)
Method to make terminating a global variable so that it is inherited by child processes.

Manifest Manifest of files and their hashes

class furtive.manifest.Manifest(directory, manifest_file, exclude=None)
Bases: object

Manifest of files and the associated hashes.

Parameters

• directory – directory which will serve as the root for the manifest. All files under the
directory will be hashed and added to or compared with the manifest.

• type – str

• manifest_file – file location of the manifest file. This is the path which will be used
for the create() and compare() methods. If the file exists, the create() method
will overwrite it.

• exclude (list) – list containing patterns to use to exclude files from the manifest.

create()
Creates a new manifest from the directory by calling furtive.hasher.HashDirectory() and placing the return
dictionary in to Manifest.manifest.

is_empty()
Determines if the manifest within memory is empty.

This simply checks to see if the manifest is None.

Returns True if manifest is empty, False otherwise.

Return type bool

load()
Load a manifest from the manifest file.

This method will open the manfiest YAML file and load it in to the manifest object variable.

save()
Save the manifest to the manifest file.

Open a YAML file and dump the contents of the manifest to it.

Requirements

• Python 2.7, 3.4, or 3.5

30 Chapter 1. Contents

https://docs.python.org/2/library/hashlib.html

Furtive Documentation, Release master

Getting Started To install furtive, run pip install furtive.

CLI Usage See the CLI Reference for more information about available command line arguments.

Use Case Example Suppose you have a million digital photos in a directory called my-photos that you have
taken over the years. You would like to know if the files begin to decay due to hardware failure or something else.
Alternatively, you may wish to have reassurance that your photos have not become corrupted while being stored in a
cloud backup solution such as S3 or Glacier.

To record the current state of the files, run furtive --basedir my-photos create

This command creates the file .manifest.yaml in the my-photos/ directory. The location and name of this file
can be changed by using the --manifest argument.

At this point, you can be sure that you will know if a file has changed. To check the files on the file system to the
recorded state in the manifest, run furtive --basedir my-photos check. The application will output a
list of files which have been added, removed, or changed. This output is YAML format so it should be easy to parse.
Additionally, furtive will exit with 1 indicating the check failed. This command can be placed in a cron job and setup
to send a notification if a file has changed.

Actions There are a few actions which can be performed by furtive.

• create - create a new manifest from the files in the directory specified by the --basedir argument.

• compare - compare the current state of the files on the file system with the recorded state in the manifest file.
A YAML based report will be created detailing which files have changed and which files have been added or
removed. Status code is 0 if the comparison was successful.

• check - check the integrity of files listed in the manifest. Same as compare but exits with status code 1 if
there are changes to the files included in the manifest. That is, if any file hash changes or if files are added or
removed, the application will exit with a status code of 1 to indicate there are changes. This action can be useful
for scripting. For example, to run a nightly cron check of a manifest. A YAML based report will be generated
as well.

Tests This application comes with tests. To run them, ensure you have tox installed (pip install tox). Then
you can run tox to run the tests.

To build the docs, run tox -e docs. The HTML docs will be generated in the .tox/docs/tmp/html/ direc-
tory.

Faster YAML By default, furtive will install and use the full Python implementation of the YAML parser which is
very slow. In a testing environment, the Python implementation of the YAML loader took 1 minute to parse a 187,000
line furtive manifest file. By contrast, when the LibYaml parser was used, the loader took only 5 seconds to parse the
same file.

To install the faster parser, perform the following steps:

1. Follow the instructions from the LibYaml website to download and install the latest release of libyaml.

2. Reinstall the PyYAML package by downloading the latest tar from the PyYAML website and running python
setup.py --with-libyaml install

1.1. Furtive 31

http://pyyaml.org/wiki/LibYAML
http://pyyaml.org/wiki/LibYAML
http://pyyaml.org/wiki/PyYAMLDocumentation

Furtive Documentation, Release master

CLI Reference Command Line Interface (or Tool) reference.

Manage a Furtive manifest

usage: furtive [-h] [--basedir BASEDIR] [--manifest MANIFEST_PATH]
[--log-level {debug,info,warn,error,critical}]
[--exclude PATTERN] [--quiet] [--report-output FILE_NAME]
[--version]
{create,compare,check}

Positional arguments:

action Which action to perform: compare - compare the current state of the files
on the file system with the recorded state in the manifest file. Status code
is 0 if the comparison was successful. check - check the integrity of files
listed in the manifest. Same as compare but exits with status code 1 if there
are changes to the files included in the manifest. That is, if any file hash
changes or if files are added or removed, the application will exit with a
status code of 1 to indicate there are changes. This action can be useful for
scripting. For example, to run a nightly cron check of a manifest. create
- create a new manifest from the files inthe directory specified by the –
basedir argument.

Possible choices: create, compare, check

Options:

--basedir=. Directory containing files that will be checked. Default: .

--manifest Location of the manifest file. Manifests may be located outside the direc-
tory indicated by –basedir. Must provide path and filename of the manifest
file. Default: <basedir>/.manifest.yaml

--log-level=info verbosity of furtive

Possible choices: debug, info, warn, error, critical

--exclude=[] Patterns to exclude files and directories from manifest. Can have multiple
occurances of this argument. Excludes are not stored in the manifest so
it is up to the user to provide the same arguments every run. Patterns are
evaluated as UNIX shell-style wildcard characters. See the [fnmatch docu-
mentation](https://docs.python.org/2/library/fnmatch.html)for more infor-
mation.

It is important to note that exclusions are not stored. Therefore ,they must
be specified for every run of ‘furtive‘. Otherwise, the files which were
previously excluded will be included and will show up as files added to the
manifest.

--quiet=False Only print out critial error messages. Do not print a report at the end of
a compare run. Using this argument will override the log-level and set it
to “critical”. Only acceptions will be printed to terminal. The return code
will be the only way to know if a Manifest has changed. This is useful
for scripting such as a cron based manifest checks. Useful with the check
command.

--report-output=- File to print the diff report to. - for stdout.This can be consumed by other
scripts todetermine exactly what has changed within themanifestDefault: -

--version show program’s version number and exit

32 Chapter 1. Contents

Furtive Documentation, Release master

API Reference

• API Reference

– Furtive Class

– Sub-Modules

* Hasher

* Manifest

This document is for developers of furtive, it contains the API functions

Furtive Class Furtive - File Integrity Verification System

class furtive.Furtive(base_dir, manifest_path, exclude=None)
Bases: object

Furtive is an application which stores file state and allows users to verify the state in the future. Example use
cases include file archives and file transport.

If the manifest file exists, it will be automatcally loaded. Calling create() will overwrite the existing manifest in
memory as well as the file.

Parameters

• base_dir (str) – Base directory to use for the manifest. Can be a full or relative path.

• manifest_path (str) – Path to the manifest file. Can be a full or relative path.

• exclude (list) – list containing patterns to use to exclude files from the manifest.

compare()
Compare the hashes in the database with the current hashes of files on the file system.

Returns Dictionary of added, deleted, and changed files.

Return type dict

create()
Create and save a new manifest.

The contents of the new Manfiest() will be saved to manifest_path.

Returns None

Sub-Modules

Hasher Manages the hashing of files

class furtive.hasher.HashDirectory(directory, exclude=None)
Bases: object

Object to manage hashing files in a directory.

This object is responsible for walking the directory tree and adding each file to a list. Once the directory walk
has compelted, each file path is passed to hash_task(). After each file has been hashed, this object will then
create a Python dictionary of files with their associated hash.

Parameters

• directory (str) – Path to directory containing files

1.1. Furtive 33

Furtive Documentation, Release master

• exclude (list) – list containing patterns to use to exclude files from the manifest.

Returns Dictionary of file:hash

Return type dict

excluded(file_path)
Should the file be excluded from the manifest?

Determines if a file should be excluded based on UNIX style pattern matching. Think *, ?, and [] se-
quences.

For matchers, see https://docs.python.org/2/library/fnmatch.html

Parameters file_path (str) – path of the file to match against.

Returns True or False indicating if the file should be excluded from the list of files containted
within the manifest.

Return type bool

hash_files()
Orchestrates the discovery and hashing of files.

Note: This method only supports the md5 hashing algorithm

furtive.hasher.hash_task(file_path, hash_algorithm=’md5’)
Responsible for hashing a file.

This function reads in the file file_path in small chuncks the size of the hash algorithm’s block size in order
to avoid running out of memory. This means that this function should be able to read any file irregardless of the
size.

Parameters

• file_path (str) – path of file to hash

• hash_algorithm (str) – the hashing algorithm to use. All options available in hash-
lib.algorithms should work. See: https://docs.python.org/2/library/hashlib.html

Returns hash of file

Return type dict

furtive.hasher.initializer(terminating_)
Method to make terminating a global variable so that it is inherited by child processes.

Manifest Manifest of files and their hashes

class furtive.manifest.Manifest(directory, manifest_file, exclude=None)
Bases: object

Manifest of files and the associated hashes.

Parameters

• directory – directory which will serve as the root for the manifest. All files under the
directory will be hashed and added to or compared with the manifest.

• type – str

• manifest_file – file location of the manifest file. This is the path which will be used
for the create() and compare() methods. If the file exists, the create() method
will overwrite it.

• exclude (list) – list containing patterns to use to exclude files from the manifest.

34 Chapter 1. Contents

https://docs.python.org/2/library/fnmatch.html
https://docs.python.org/2/library/hashlib.html

Furtive Documentation, Release master

create()
Creates a new manifest from the directory by calling furtive.hasher.HashDirectory() and placing the return
dictionary in to Manifest.manifest.

is_empty()
Determines if the manifest within memory is empty.

This simply checks to see if the manifest is None.

Returns True if manifest is empty, False otherwise.

Return type bool

load()
Load a manifest from the manifest file.

This method will open the manfiest YAML file and load it in to the manifest object variable.

save()
Save the manifest to the manifest file.

Open a YAML file and dump the contents of the manifest to it.

Requirements

• Python 2.7, 3.4, or 3.5

Getting Started To install furtive, run pip install furtive.

CLI Usage See the CLI Reference for more information about available command line arguments.

Use Case Example Suppose you have a million digital photos in a directory called my-photos that you have
taken over the years. You would like to know if the files begin to decay due to hardware failure or something else.
Alternatively, you may wish to have reassurance that your photos have not become corrupted while being stored in a
cloud backup solution such as S3 or Glacier.

To record the current state of the files, run furtive --basedir my-photos create

This command creates the file .manifest.yaml in the my-photos/ directory. The location and name of this file
can be changed by using the --manifest argument.

At this point, you can be sure that you will know if a file has changed. To check the files on the file system to the
recorded state in the manifest, run furtive --basedir my-photos check. The application will output a
list of files which have been added, removed, or changed. This output is YAML format so it should be easy to parse.
Additionally, furtive will exit with 1 indicating the check failed. This command can be placed in a cron job and setup
to send a notification if a file has changed.

Actions There are a few actions which can be performed by furtive.

• create - create a new manifest from the files in the directory specified by the --basedir argument.

• compare - compare the current state of the files on the file system with the recorded state in the manifest file.
A YAML based report will be created detailing which files have changed and which files have been added or
removed. Status code is 0 if the comparison was successful.

• check - check the integrity of files listed in the manifest. Same as compare but exits with status code 1 if
there are changes to the files included in the manifest. That is, if any file hash changes or if files are added or
removed, the application will exit with a status code of 1 to indicate there are changes. This action can be useful

1.1. Furtive 35

Furtive Documentation, Release master

for scripting. For example, to run a nightly cron check of a manifest. A YAML based report will be generated
as well.

Tests This application comes with tests. To run them, ensure you have tox installed (pip install tox). Then
you can run tox to run the tests.

To build the docs, run tox -e docs. The HTML docs will be generated in the .tox/docs/tmp/html/ direc-
tory.

Faster YAML By default, furtive will install and use the full Python implementation of the YAML parser which is
very slow. In a testing environment, the Python implementation of the YAML loader took 1 minute to parse a 187,000
line furtive manifest file. By contrast, when the LibYaml parser was used, the loader took only 5 seconds to parse the
same file.

To install the faster parser, perform the following steps:

1. Follow the instructions from the LibYaml website to download and install the latest release of libyaml.

2. Reinstall the PyYAML package by downloading the latest tar from the PyYAML website and running python
setup.py --with-libyaml install

CLI Reference Command Line Interface (or Tool) reference.

Manage a Furtive manifest

usage: furtive [-h] [--basedir BASEDIR] [--manifest MANIFEST_PATH]
[--log-level {debug,info,warn,error,critical}]
[--exclude PATTERN] [--quiet] [--report-output FILE_NAME]
[--version]
{create,compare,check}

Positional arguments:

action Which action to perform: compare - compare the current state of the files
on the file system with the recorded state in the manifest file. Status code
is 0 if the comparison was successful. check - check the integrity of files
listed in the manifest. Same as compare but exits with status code 1 if there
are changes to the files included in the manifest. That is, if any file hash
changes or if files are added or removed, the application will exit with a
status code of 1 to indicate there are changes. This action can be useful for
scripting. For example, to run a nightly cron check of a manifest. create
- create a new manifest from the files inthe directory specified by the –
basedir argument.

Possible choices: create, compare, check

Options:

--basedir=. Directory containing files that will be checked. Default: .

--manifest Location of the manifest file. Manifests may be located outside the direc-
tory indicated by –basedir. Must provide path and filename of the manifest
file. Default: <basedir>/.manifest.yaml

--log-level=info verbosity of furtive

Possible choices: debug, info, warn, error, critical

36 Chapter 1. Contents

http://pyyaml.org/wiki/LibYAML
http://pyyaml.org/wiki/LibYAML
http://pyyaml.org/wiki/PyYAMLDocumentation

Furtive Documentation, Release master

--exclude=[] Patterns to exclude files and directories from manifest. Can have multiple
occurances of this argument. Excludes are not stored in the manifest so
it is up to the user to provide the same arguments every run. Patterns are
evaluated as UNIX shell-style wildcard characters. See the [fnmatch docu-
mentation](https://docs.python.org/2/library/fnmatch.html)for more infor-
mation.

It is important to note that exclusions are not stored. Therefore ,they must
be specified for every run of ‘furtive‘. Otherwise, the files which were
previously excluded will be included and will show up as files added to the
manifest.

--quiet=False Only print out critial error messages. Do not print a report at the end of
a compare run. Using this argument will override the log-level and set it
to “critical”. Only acceptions will be printed to terminal. The return code
will be the only way to know if a Manifest has changed. This is useful
for scripting such as a cron based manifest checks. Useful with the check
command.

--report-output=- File to print the diff report to. - for stdout.This can be consumed by other
scripts todetermine exactly what has changed within themanifestDefault: -

--version show program’s version number and exit

API Reference

• API Reference

– Furtive Class

– Sub-Modules

* Hasher

* Manifest

This document is for developers of furtive, it contains the API functions

Furtive Class Furtive - File Integrity Verification System

class furtive.Furtive(base_dir, manifest_path, exclude=None)
Bases: object

Furtive is an application which stores file state and allows users to verify the state in the future. Example use
cases include file archives and file transport.

If the manifest file exists, it will be automatcally loaded. Calling create() will overwrite the existing manifest in
memory as well as the file.

Parameters

• base_dir (str) – Base directory to use for the manifest. Can be a full or relative path.

• manifest_path (str) – Path to the manifest file. Can be a full or relative path.

• exclude (list) – list containing patterns to use to exclude files from the manifest.

compare()
Compare the hashes in the database with the current hashes of files on the file system.

Returns Dictionary of added, deleted, and changed files.

Return type dict

1.1. Furtive 37

Furtive Documentation, Release master

create()
Create and save a new manifest.

The contents of the new Manfiest() will be saved to manifest_path.

Returns None

Sub-Modules

Hasher Manages the hashing of files

class furtive.hasher.HashDirectory(directory, exclude=None)
Bases: object

Object to manage hashing files in a directory.

This object is responsible for walking the directory tree and adding each file to a list. Once the directory walk
has compelted, each file path is passed to hash_task(). After each file has been hashed, this object will then
create a Python dictionary of files with their associated hash.

Parameters

• directory (str) – Path to directory containing files

• exclude (list) – list containing patterns to use to exclude files from the manifest.

Returns Dictionary of file:hash

Return type dict

excluded(file_path)
Should the file be excluded from the manifest?

Determines if a file should be excluded based on UNIX style pattern matching. Think *, ?, and [] se-
quences.

For matchers, see https://docs.python.org/2/library/fnmatch.html

Parameters file_path (str) – path of the file to match against.

Returns True or False indicating if the file should be excluded from the list of files containted
within the manifest.

Return type bool

hash_files()
Orchestrates the discovery and hashing of files.

Note: This method only supports the md5 hashing algorithm

furtive.hasher.hash_task(file_path, hash_algorithm=’md5’)
Responsible for hashing a file.

This function reads in the file file_path in small chuncks the size of the hash algorithm’s block size in order
to avoid running out of memory. This means that this function should be able to read any file irregardless of the
size.

Parameters

• file_path (str) – path of file to hash

• hash_algorithm (str) – the hashing algorithm to use. All options available in hash-
lib.algorithms should work. See: https://docs.python.org/2/library/hashlib.html

Returns hash of file

38 Chapter 1. Contents

https://docs.python.org/2/library/fnmatch.html
https://docs.python.org/2/library/hashlib.html

Furtive Documentation, Release master

Return type dict

furtive.hasher.initializer(terminating_)
Method to make terminating a global variable so that it is inherited by child processes.

Manifest Manifest of files and their hashes

class furtive.manifest.Manifest(directory, manifest_file, exclude=None)
Bases: object

Manifest of files and the associated hashes.

Parameters

• directory – directory which will serve as the root for the manifest. All files under the
directory will be hashed and added to or compared with the manifest.

• type – str

• manifest_file – file location of the manifest file. This is the path which will be used
for the create() and compare() methods. If the file exists, the create() method
will overwrite it.

• exclude (list) – list containing patterns to use to exclude files from the manifest.

create()
Creates a new manifest from the directory by calling furtive.hasher.HashDirectory() and placing the return
dictionary in to Manifest.manifest.

is_empty()
Determines if the manifest within memory is empty.

This simply checks to see if the manifest is None.

Returns True if manifest is empty, False otherwise.

Return type bool

load()
Load a manifest from the manifest file.

This method will open the manfiest YAML file and load it in to the manifest object variable.

save()
Save the manifest to the manifest file.

Open a YAML file and dump the contents of the manifest to it.

Requirements

• Python 2.7, 3.4, or 3.5

Getting Started To install furtive, run pip install furtive.

CLI Usage See the CLI Reference for more information about available command line arguments.

1.1. Furtive 39

Furtive Documentation, Release master

Use Case Example Suppose you have a million digital photos in a directory called my-photos that you have
taken over the years. You would like to know if the files begin to decay due to hardware failure or something else.
Alternatively, you may wish to have reassurance that your photos have not become corrupted while being stored in a
cloud backup solution such as S3 or Glacier.

To record the current state of the files, run furtive --basedir my-photos create

This command creates the file .manifest.yaml in the my-photos/ directory. The location and name of this file
can be changed by using the --manifest argument.

At this point, you can be sure that you will know if a file has changed. To check the files on the file system to the
recorded state in the manifest, run furtive --basedir my-photos check. The application will output a
list of files which have been added, removed, or changed. This output is YAML format so it should be easy to parse.
Additionally, furtive will exit with 1 indicating the check failed. This command can be placed in a cron job and setup
to send a notification if a file has changed.

Actions There are a few actions which can be performed by furtive.

• create - create a new manifest from the files in the directory specified by the --basedir argument.

• compare - compare the current state of the files on the file system with the recorded state in the manifest file.
A YAML based report will be created detailing which files have changed and which files have been added or
removed. Status code is 0 if the comparison was successful.

• check - check the integrity of files listed in the manifest. Same as compare but exits with status code 1 if
there are changes to the files included in the manifest. That is, if any file hash changes or if files are added or
removed, the application will exit with a status code of 1 to indicate there are changes. This action can be useful
for scripting. For example, to run a nightly cron check of a manifest. A YAML based report will be generated
as well.

Tests This application comes with tests. To run them, ensure you have tox installed (pip install tox). Then
you can run tox to run the tests.

To build the docs, run tox -e docs. The HTML docs will be generated in the .tox/docs/tmp/html/ direc-
tory.

Faster YAML By default, furtive will install and use the full Python implementation of the YAML parser which is
very slow. In a testing environment, the Python implementation of the YAML loader took 1 minute to parse a 187,000
line furtive manifest file. By contrast, when the LibYaml parser was used, the loader took only 5 seconds to parse the
same file.

To install the faster parser, perform the following steps:

1. Follow the instructions from the LibYaml website to download and install the latest release of libyaml.

2. Reinstall the PyYAML package by downloading the latest tar from the PyYAML website and running python
setup.py --with-libyaml install

CLI Reference Command Line Interface (or Tool) reference.

Manage a Furtive manifest

usage: furtive [-h] [--basedir BASEDIR] [--manifest MANIFEST_PATH]
[--log-level {debug,info,warn,error,critical}]
[--exclude PATTERN] [--quiet] [--report-output FILE_NAME]
[--version]
{create,compare,check}

40 Chapter 1. Contents

http://pyyaml.org/wiki/LibYAML
http://pyyaml.org/wiki/LibYAML
http://pyyaml.org/wiki/PyYAMLDocumentation

Furtive Documentation, Release master

Positional arguments:

action Which action to perform: compare - compare the current state of the files
on the file system with the recorded state in the manifest file. Status code
is 0 if the comparison was successful. check - check the integrity of files
listed in the manifest. Same as compare but exits with status code 1 if there
are changes to the files included in the manifest. That is, if any file hash
changes or if files are added or removed, the application will exit with a
status code of 1 to indicate there are changes. This action can be useful for
scripting. For example, to run a nightly cron check of a manifest. create
- create a new manifest from the files inthe directory specified by the –
basedir argument.

Possible choices: create, compare, check

Options:

--basedir=. Directory containing files that will be checked. Default: .

--manifest Location of the manifest file. Manifests may be located outside the direc-
tory indicated by –basedir. Must provide path and filename of the manifest
file. Default: <basedir>/.manifest.yaml

--log-level=info verbosity of furtive

Possible choices: debug, info, warn, error, critical

--exclude=[] Patterns to exclude files and directories from manifest. Can have multiple
occurances of this argument. Excludes are not stored in the manifest so
it is up to the user to provide the same arguments every run. Patterns are
evaluated as UNIX shell-style wildcard characters. See the [fnmatch docu-
mentation](https://docs.python.org/2/library/fnmatch.html)for more infor-
mation.

It is important to note that exclusions are not stored. Therefore ,they must
be specified for every run of ‘furtive‘. Otherwise, the files which were
previously excluded will be included and will show up as files added to the
manifest.

--quiet=False Only print out critial error messages. Do not print a report at the end of
a compare run. Using this argument will override the log-level and set it
to “critical”. Only acceptions will be printed to terminal. The return code
will be the only way to know if a Manifest has changed. This is useful
for scripting such as a cron based manifest checks. Useful with the check
command.

--report-output=- File to print the diff report to. - for stdout.This can be consumed by other
scripts todetermine exactly what has changed within themanifestDefault: -

--version show program’s version number and exit

API Reference

• API Reference

– Furtive Class

– Sub-Modules

* Hasher

* Manifest

1.1. Furtive 41

Furtive Documentation, Release master

This document is for developers of furtive, it contains the API functions

Furtive Class Furtive - File Integrity Verification System

class furtive.Furtive(base_dir, manifest_path, exclude=None)
Bases: object

Furtive is an application which stores file state and allows users to verify the state in the future. Example use
cases include file archives and file transport.

If the manifest file exists, it will be automatcally loaded. Calling create() will overwrite the existing manifest in
memory as well as the file.

Parameters

• base_dir (str) – Base directory to use for the manifest. Can be a full or relative path.

• manifest_path (str) – Path to the manifest file. Can be a full or relative path.

• exclude (list) – list containing patterns to use to exclude files from the manifest.

compare()
Compare the hashes in the database with the current hashes of files on the file system.

Returns Dictionary of added, deleted, and changed files.

Return type dict

create()
Create and save a new manifest.

The contents of the new Manfiest() will be saved to manifest_path.

Returns None

Sub-Modules

Hasher Manages the hashing of files

class furtive.hasher.HashDirectory(directory, exclude=None)
Bases: object

Object to manage hashing files in a directory.

This object is responsible for walking the directory tree and adding each file to a list. Once the directory walk
has compelted, each file path is passed to hash_task(). After each file has been hashed, this object will then
create a Python dictionary of files with their associated hash.

Parameters

• directory (str) – Path to directory containing files

• exclude (list) – list containing patterns to use to exclude files from the manifest.

Returns Dictionary of file:hash

Return type dict

excluded(file_path)
Should the file be excluded from the manifest?

Determines if a file should be excluded based on UNIX style pattern matching. Think *, ?, and [] se-
quences.

42 Chapter 1. Contents

Furtive Documentation, Release master

For matchers, see https://docs.python.org/2/library/fnmatch.html

Parameters file_path (str) – path of the file to match against.

Returns True or False indicating if the file should be excluded from the list of files containted
within the manifest.

Return type bool

hash_files()
Orchestrates the discovery and hashing of files.

Note: This method only supports the md5 hashing algorithm

furtive.hasher.hash_task(file_path, hash_algorithm=’md5’)
Responsible for hashing a file.

This function reads in the file file_path in small chuncks the size of the hash algorithm’s block size in order
to avoid running out of memory. This means that this function should be able to read any file irregardless of the
size.

Parameters

• file_path (str) – path of file to hash

• hash_algorithm (str) – the hashing algorithm to use. All options available in hash-
lib.algorithms should work. See: https://docs.python.org/2/library/hashlib.html

Returns hash of file

Return type dict

furtive.hasher.initializer(terminating_)
Method to make terminating a global variable so that it is inherited by child processes.

Manifest Manifest of files and their hashes

class furtive.manifest.Manifest(directory, manifest_file, exclude=None)
Bases: object

Manifest of files and the associated hashes.

Parameters

• directory – directory which will serve as the root for the manifest. All files under the
directory will be hashed and added to or compared with the manifest.

• type – str

• manifest_file – file location of the manifest file. This is the path which will be used
for the create() and compare() methods. If the file exists, the create() method
will overwrite it.

• exclude (list) – list containing patterns to use to exclude files from the manifest.

create()
Creates a new manifest from the directory by calling furtive.hasher.HashDirectory() and placing the return
dictionary in to Manifest.manifest.

is_empty()
Determines if the manifest within memory is empty.

This simply checks to see if the manifest is None.

Returns True if manifest is empty, False otherwise.

1.1. Furtive 43

https://docs.python.org/2/library/fnmatch.html
https://docs.python.org/2/library/hashlib.html

Furtive Documentation, Release master

Return type bool

load()
Load a manifest from the manifest file.

This method will open the manfiest YAML file and load it in to the manifest object variable.

save()
Save the manifest to the manifest file.

Open a YAML file and dump the contents of the manifest to it.

Requirements

• Python 2.7, 3.4, or 3.5

Getting Started To install furtive, run pip install furtive.

CLI Usage See the CLI Reference for more information about available command line arguments.

Use Case Example Suppose you have a million digital photos in a directory called my-photos that you have
taken over the years. You would like to know if the files begin to decay due to hardware failure or something else.
Alternatively, you may wish to have reassurance that your photos have not become corrupted while being stored in a
cloud backup solution such as S3 or Glacier.

To record the current state of the files, run furtive --basedir my-photos create

This command creates the file .manifest.yaml in the my-photos/ directory. The location and name of this file
can be changed by using the --manifest argument.

At this point, you can be sure that you will know if a file has changed. To check the files on the file system to the
recorded state in the manifest, run furtive --basedir my-photos check. The application will output a
list of files which have been added, removed, or changed. This output is YAML format so it should be easy to parse.
Additionally, furtive will exit with 1 indicating the check failed. This command can be placed in a cron job and setup
to send a notification if a file has changed.

Actions There are a few actions which can be performed by furtive.

• create - create a new manifest from the files in the directory specified by the --basedir argument.

• compare - compare the current state of the files on the file system with the recorded state in the manifest file.
A YAML based report will be created detailing which files have changed and which files have been added or
removed. Status code is 0 if the comparison was successful.

• check - check the integrity of files listed in the manifest. Same as compare but exits with status code 1 if
there are changes to the files included in the manifest. That is, if any file hash changes or if files are added or
removed, the application will exit with a status code of 1 to indicate there are changes. This action can be useful
for scripting. For example, to run a nightly cron check of a manifest. A YAML based report will be generated
as well.

Tests This application comes with tests. To run them, ensure you have tox installed (pip install tox). Then
you can run tox to run the tests.

To build the docs, run tox -e docs. The HTML docs will be generated in the .tox/docs/tmp/html/ direc-
tory.

44 Chapter 1. Contents

Furtive Documentation, Release master

Faster YAML By default, furtive will install and use the full Python implementation of the YAML parser which is
very slow. In a testing environment, the Python implementation of the YAML loader took 1 minute to parse a 187,000
line furtive manifest file. By contrast, when the LibYaml parser was used, the loader took only 5 seconds to parse the
same file.

To install the faster parser, perform the following steps:

1. Follow the instructions from the LibYaml website to download and install the latest release of libyaml.

2. Reinstall the PyYAML package by downloading the latest tar from the PyYAML website and running python
setup.py --with-libyaml install

CLI Reference Command Line Interface (or Tool) reference.

Manage a Furtive manifest

usage: furtive [-h] [--basedir BASEDIR] [--manifest MANIFEST_PATH]
[--log-level {debug,info,warn,error,critical}]
[--exclude PATTERN] [--quiet] [--report-output FILE_NAME]
[--version]
{create,compare,check}

Positional arguments:

action Which action to perform: compare - compare the current state of the files
on the file system with the recorded state in the manifest file. Status code
is 0 if the comparison was successful. check - check the integrity of files
listed in the manifest. Same as compare but exits with status code 1 if there
are changes to the files included in the manifest. That is, if any file hash
changes or if files are added or removed, the application will exit with a
status code of 1 to indicate there are changes. This action can be useful for
scripting. For example, to run a nightly cron check of a manifest. create
- create a new manifest from the files inthe directory specified by the –
basedir argument.

Possible choices: create, compare, check

Options:

--basedir=. Directory containing files that will be checked. Default: .

--manifest Location of the manifest file. Manifests may be located outside the direc-
tory indicated by –basedir. Must provide path and filename of the manifest
file. Default: <basedir>/.manifest.yaml

--log-level=info verbosity of furtive

Possible choices: debug, info, warn, error, critical

--exclude=[] Patterns to exclude files and directories from manifest. Can have multiple
occurances of this argument. Excludes are not stored in the manifest so
it is up to the user to provide the same arguments every run. Patterns are
evaluated as UNIX shell-style wildcard characters. See the [fnmatch docu-
mentation](https://docs.python.org/2/library/fnmatch.html)for more infor-
mation.

It is important to note that exclusions are not stored. Therefore ,they must
be specified for every run of ‘furtive‘. Otherwise, the files which were
previously excluded will be included and will show up as files added to the
manifest.

1.1. Furtive 45

http://pyyaml.org/wiki/LibYAML
http://pyyaml.org/wiki/LibYAML
http://pyyaml.org/wiki/PyYAMLDocumentation

Furtive Documentation, Release master

--quiet=False Only print out critial error messages. Do not print a report at the end of
a compare run. Using this argument will override the log-level and set it
to “critical”. Only acceptions will be printed to terminal. The return code
will be the only way to know if a Manifest has changed. This is useful
for scripting such as a cron based manifest checks. Useful with the check
command.

--report-output=- File to print the diff report to. - for stdout.This can be consumed by other
scripts todetermine exactly what has changed within themanifestDefault: -

--version show program’s version number and exit

API Reference

• API Reference

– Furtive Class

– Sub-Modules

* Hasher

* Manifest

This document is for developers of furtive, it contains the API functions

Furtive Class Furtive - File Integrity Verification System

class furtive.Furtive(base_dir, manifest_path, exclude=None)
Bases: object

Furtive is an application which stores file state and allows users to verify the state in the future. Example use
cases include file archives and file transport.

If the manifest file exists, it will be automatcally loaded. Calling create() will overwrite the existing manifest in
memory as well as the file.

Parameters

• base_dir (str) – Base directory to use for the manifest. Can be a full or relative path.

• manifest_path (str) – Path to the manifest file. Can be a full or relative path.

• exclude (list) – list containing patterns to use to exclude files from the manifest.

compare()
Compare the hashes in the database with the current hashes of files on the file system.

Returns Dictionary of added, deleted, and changed files.

Return type dict

create()
Create and save a new manifest.

The contents of the new Manfiest() will be saved to manifest_path.

Returns None

Sub-Modules

46 Chapter 1. Contents

Furtive Documentation, Release master

Hasher Manages the hashing of files

class furtive.hasher.HashDirectory(directory, exclude=None)
Bases: object

Object to manage hashing files in a directory.

This object is responsible for walking the directory tree and adding each file to a list. Once the directory walk
has compelted, each file path is passed to hash_task(). After each file has been hashed, this object will then
create a Python dictionary of files with their associated hash.

Parameters

• directory (str) – Path to directory containing files

• exclude (list) – list containing patterns to use to exclude files from the manifest.

Returns Dictionary of file:hash

Return type dict

excluded(file_path)
Should the file be excluded from the manifest?

Determines if a file should be excluded based on UNIX style pattern matching. Think *, ?, and [] se-
quences.

For matchers, see https://docs.python.org/2/library/fnmatch.html

Parameters file_path (str) – path of the file to match against.

Returns True or False indicating if the file should be excluded from the list of files containted
within the manifest.

Return type bool

hash_files()
Orchestrates the discovery and hashing of files.

Note: This method only supports the md5 hashing algorithm

furtive.hasher.hash_task(file_path, hash_algorithm=’md5’)
Responsible for hashing a file.

This function reads in the file file_path in small chuncks the size of the hash algorithm’s block size in order
to avoid running out of memory. This means that this function should be able to read any file irregardless of the
size.

Parameters

• file_path (str) – path of file to hash

• hash_algorithm (str) – the hashing algorithm to use. All options available in hash-
lib.algorithms should work. See: https://docs.python.org/2/library/hashlib.html

Returns hash of file

Return type dict

furtive.hasher.initializer(terminating_)
Method to make terminating a global variable so that it is inherited by child processes.

1.1. Furtive 47

https://docs.python.org/2/library/fnmatch.html
https://docs.python.org/2/library/hashlib.html

Furtive Documentation, Release master

Manifest Manifest of files and their hashes

class furtive.manifest.Manifest(directory, manifest_file, exclude=None)
Bases: object

Manifest of files and the associated hashes.

Parameters

• directory – directory which will serve as the root for the manifest. All files under the
directory will be hashed and added to or compared with the manifest.

• type – str

• manifest_file – file location of the manifest file. This is the path which will be used
for the create() and compare() methods. If the file exists, the create() method
will overwrite it.

• exclude (list) – list containing patterns to use to exclude files from the manifest.

create()
Creates a new manifest from the directory by calling furtive.hasher.HashDirectory() and placing the return
dictionary in to Manifest.manifest.

is_empty()
Determines if the manifest within memory is empty.

This simply checks to see if the manifest is None.

Returns True if manifest is empty, False otherwise.

Return type bool

load()
Load a manifest from the manifest file.

This method will open the manfiest YAML file and load it in to the manifest object variable.

save()
Save the manifest to the manifest file.

Open a YAML file and dump the contents of the manifest to it.

Requirements

• Python 2.7, 3.4, or 3.5

Getting Started To install furtive, run pip install furtive.

CLI Usage See the CLI Reference for more information about available command line arguments.

Use Case Example Suppose you have a million digital photos in a directory called my-photos that you have
taken over the years. You would like to know if the files begin to decay due to hardware failure or something else.
Alternatively, you may wish to have reassurance that your photos have not become corrupted while being stored in a
cloud backup solution such as S3 or Glacier.

To record the current state of the files, run furtive --basedir my-photos create

This command creates the file .manifest.yaml in the my-photos/ directory. The location and name of this file
can be changed by using the --manifest argument.

48 Chapter 1. Contents

Furtive Documentation, Release master

At this point, you can be sure that you will know if a file has changed. To check the files on the file system to the
recorded state in the manifest, run furtive --basedir my-photos check. The application will output a
list of files which have been added, removed, or changed. This output is YAML format so it should be easy to parse.
Additionally, furtive will exit with 1 indicating the check failed. This command can be placed in a cron job and setup
to send a notification if a file has changed.

Actions There are a few actions which can be performed by furtive.

• create - create a new manifest from the files in the directory specified by the --basedir argument.

• compare - compare the current state of the files on the file system with the recorded state in the manifest file.
A YAML based report will be created detailing which files have changed and which files have been added or
removed. Status code is 0 if the comparison was successful.

• check - check the integrity of files listed in the manifest. Same as compare but exits with status code 1 if
there are changes to the files included in the manifest. That is, if any file hash changes or if files are added or
removed, the application will exit with a status code of 1 to indicate there are changes. This action can be useful
for scripting. For example, to run a nightly cron check of a manifest. A YAML based report will be generated
as well.

Tests This application comes with tests. To run them, ensure you have tox installed (pip install tox). Then
you can run tox to run the tests.

To build the docs, run tox -e docs. The HTML docs will be generated in the .tox/docs/tmp/html/ direc-
tory.

Faster YAML By default, furtive will install and use the full Python implementation of the YAML parser which is
very slow. In a testing environment, the Python implementation of the YAML loader took 1 minute to parse a 187,000
line furtive manifest file. By contrast, when the LibYaml parser was used, the loader took only 5 seconds to parse the
same file.

To install the faster parser, perform the following steps:

1. Follow the instructions from the LibYaml website to download and install the latest release of libyaml.

2. Reinstall the PyYAML package by downloading the latest tar from the PyYAML website and running python
setup.py --with-libyaml install

CLI Reference Command Line Interface (or Tool) reference.

Manage a Furtive manifest

usage: furtive [-h] [--basedir BASEDIR] [--manifest MANIFEST_PATH]
[--log-level {debug,info,warn,error,critical}]
[--exclude PATTERN] [--quiet] [--report-output FILE_NAME]
[--version]
{create,compare,check}

Positional arguments:

action Which action to perform: compare - compare the current state of the files
on the file system with the recorded state in the manifest file. Status code
is 0 if the comparison was successful. check - check the integrity of files
listed in the manifest. Same as compare but exits with status code 1 if there
are changes to the files included in the manifest. That is, if any file hash
changes or if files are added or removed, the application will exit with a
status code of 1 to indicate there are changes. This action can be useful for

1.1. Furtive 49

http://pyyaml.org/wiki/LibYAML
http://pyyaml.org/wiki/LibYAML
http://pyyaml.org/wiki/PyYAMLDocumentation

Furtive Documentation, Release master

scripting. For example, to run a nightly cron check of a manifest. create
- create a new manifest from the files inthe directory specified by the –
basedir argument.

Possible choices: create, compare, check

Options:

--basedir=. Directory containing files that will be checked. Default: .

--manifest Location of the manifest file. Manifests may be located outside the direc-
tory indicated by –basedir. Must provide path and filename of the manifest
file. Default: <basedir>/.manifest.yaml

--log-level=info verbosity of furtive

Possible choices: debug, info, warn, error, critical

--exclude=[] Patterns to exclude files and directories from manifest. Can have multiple
occurances of this argument. Excludes are not stored in the manifest so
it is up to the user to provide the same arguments every run. Patterns are
evaluated as UNIX shell-style wildcard characters. See the [fnmatch docu-
mentation](https://docs.python.org/2/library/fnmatch.html)for more infor-
mation.

It is important to note that exclusions are not stored. Therefore ,they must
be specified for every run of ‘furtive‘. Otherwise, the files which were
previously excluded will be included and will show up as files added to the
manifest.

--quiet=False Only print out critial error messages. Do not print a report at the end of
a compare run. Using this argument will override the log-level and set it
to “critical”. Only acceptions will be printed to terminal. The return code
will be the only way to know if a Manifest has changed. This is useful
for scripting such as a cron based manifest checks. Useful with the check
command.

--report-output=- File to print the diff report to. - for stdout.This can be consumed by other
scripts todetermine exactly what has changed within themanifestDefault: -

--version show program’s version number and exit

API Reference

• API Reference

– Furtive Class

– Sub-Modules

* Hasher

* Manifest

This document is for developers of furtive, it contains the API functions

Furtive Class Furtive - File Integrity Verification System

class furtive.Furtive(base_dir, manifest_path, exclude=None)
Bases: object

50 Chapter 1. Contents

Furtive Documentation, Release master

Furtive is an application which stores file state and allows users to verify the state in the future. Example use
cases include file archives and file transport.

If the manifest file exists, it will be automatcally loaded. Calling create() will overwrite the existing manifest in
memory as well as the file.

Parameters

• base_dir (str) – Base directory to use for the manifest. Can be a full or relative path.

• manifest_path (str) – Path to the manifest file. Can be a full or relative path.

• exclude (list) – list containing patterns to use to exclude files from the manifest.

compare()
Compare the hashes in the database with the current hashes of files on the file system.

Returns Dictionary of added, deleted, and changed files.

Return type dict

create()
Create and save a new manifest.

The contents of the new Manfiest() will be saved to manifest_path.

Returns None

Sub-Modules

Hasher Manages the hashing of files

class furtive.hasher.HashDirectory(directory, exclude=None)
Bases: object

Object to manage hashing files in a directory.

This object is responsible for walking the directory tree and adding each file to a list. Once the directory walk
has compelted, each file path is passed to hash_task(). After each file has been hashed, this object will then
create a Python dictionary of files with their associated hash.

Parameters

• directory (str) – Path to directory containing files

• exclude (list) – list containing patterns to use to exclude files from the manifest.

Returns Dictionary of file:hash

Return type dict

excluded(file_path)
Should the file be excluded from the manifest?

Determines if a file should be excluded based on UNIX style pattern matching. Think *, ?, and [] se-
quences.

For matchers, see https://docs.python.org/2/library/fnmatch.html

Parameters file_path (str) – path of the file to match against.

Returns True or False indicating if the file should be excluded from the list of files containted
within the manifest.

Return type bool

1.1. Furtive 51

https://docs.python.org/2/library/fnmatch.html

Furtive Documentation, Release master

hash_files()
Orchestrates the discovery and hashing of files.

Note: This method only supports the md5 hashing algorithm

furtive.hasher.hash_task(file_path, hash_algorithm=’md5’)
Responsible for hashing a file.

This function reads in the file file_path in small chuncks the size of the hash algorithm’s block size in order
to avoid running out of memory. This means that this function should be able to read any file irregardless of the
size.

Parameters

• file_path (str) – path of file to hash

• hash_algorithm (str) – the hashing algorithm to use. All options available in hash-
lib.algorithms should work. See: https://docs.python.org/2/library/hashlib.html

Returns hash of file

Return type dict

furtive.hasher.initializer(terminating_)
Method to make terminating a global variable so that it is inherited by child processes.

Manifest Manifest of files and their hashes

class furtive.manifest.Manifest(directory, manifest_file, exclude=None)
Bases: object

Manifest of files and the associated hashes.

Parameters

• directory – directory which will serve as the root for the manifest. All files under the
directory will be hashed and added to or compared with the manifest.

• type – str

• manifest_file – file location of the manifest file. This is the path which will be used
for the create() and compare() methods. If the file exists, the create() method
will overwrite it.

• exclude (list) – list containing patterns to use to exclude files from the manifest.

create()
Creates a new manifest from the directory by calling furtive.hasher.HashDirectory() and placing the return
dictionary in to Manifest.manifest.

is_empty()
Determines if the manifest within memory is empty.

This simply checks to see if the manifest is None.

Returns True if manifest is empty, False otherwise.

Return type bool

load()
Load a manifest from the manifest file.

This method will open the manfiest YAML file and load it in to the manifest object variable.

52 Chapter 1. Contents

https://docs.python.org/2/library/hashlib.html

Furtive Documentation, Release master

save()
Save the manifest to the manifest file.

Open a YAML file and dump the contents of the manifest to it.

Requirements

• Python 2.7, 3.4, or 3.5

Getting Started

To install furtive, run pip install furtive.

CLI Usage

See the CLI Reference for more information about available command line arguments.

Use Case Example Suppose you have a million digital photos in a directory called my-photos that you have
taken over the years. You would like to know if the files begin to decay due to hardware failure or something else.
Alternatively, you may wish to have reassurance that your photos have not become corrupted while being stored in a
cloud backup solution such as S3 or Glacier.

To record the current state of the files, run furtive --basedir my-photos create

This command creates the file .manifest.yaml in the my-photos/ directory. The location and name of this file
can be changed by using the --manifest argument.

At this point, you can be sure that you will know if a file has changed. To check the files on the file system to the
recorded state in the manifest, run furtive --basedir my-photos check. The application will output a
list of files which have been added, removed, or changed. This output is YAML format so it should be easy to parse.
Additionally, furtive will exit with 1 indicating the check failed. This command can be placed in a cron job and setup
to send a notification if a file has changed.

Actions There are a few actions which can be performed by furtive.

• create - create a new manifest from the files in the directory specified by the --basedir argument.

• compare - compare the current state of the files on the file system with the recorded state in the manifest file.
A YAML based report will be created detailing which files have changed and which files have been added or
removed. Status code is 0 if the comparison was successful.

• check - check the integrity of files listed in the manifest. Same as compare but exits with status code 1 if
there are changes to the files included in the manifest. That is, if any file hash changes or if files are added or
removed, the application will exit with a status code of 1 to indicate there are changes. This action can be useful
for scripting. For example, to run a nightly cron check of a manifest. A YAML based report will be generated
as well.

Tests

This application comes with tests. To run them, ensure you have tox installed (pip install tox). Then you can
run tox to run the tests.

1.1. Furtive 53

Furtive Documentation, Release master

To build the docs, run tox -e docs. The HTML docs will be generated in the .tox/docs/tmp/html/ direc-
tory.

Faster YAML

By default, furtive will install and use the full Python implementation of the YAML parser which is very slow. In a
testing environment, the Python implementation of the YAML loader took 1 minute to parse a 187,000 line furtive
manifest file. By contrast, when the LibYaml parser was used, the loader took only 5 seconds to parse the same file.

To install the faster parser, perform the following steps:

1. Follow the instructions from the LibYaml website to download and install the latest release of libyaml.

2. Reinstall the PyYAML package by downloading the latest tar from the PyYAML website and running python
setup.py --with-libyaml install

CLI Reference

Command Line Interface (or Tool) reference.

Manage a Furtive manifest

usage: furtive [-h] [--basedir BASEDIR] [--manifest MANIFEST_PATH]
[--log-level {debug,info,warn,error,critical}]
[--exclude PATTERN] [--quiet] [--report-output FILE_NAME]
[--version]
{create,compare,check}

Positional arguments:

action Which action to perform: compare - compare the current state of the files
on the file system with the recorded state in the manifest file. Status code
is 0 if the comparison was successful. check - check the integrity of files
listed in the manifest. Same as compare but exits with status code 1 if there
are changes to the files included in the manifest. That is, if any file hash
changes or if files are added or removed, the application will exit with a
status code of 1 to indicate there are changes. This action can be useful for
scripting. For example, to run a nightly cron check of a manifest. create
- create a new manifest from the files inthe directory specified by the –
basedir argument.

Possible choices: create, compare, check

Options:

--basedir=. Directory containing files that will be checked. Default: .

--manifest Location of the manifest file. Manifests may be located outside the direc-
tory indicated by –basedir. Must provide path and filename of the manifest
file. Default: <basedir>/.manifest.yaml

--log-level=info verbosity of furtive

Possible choices: debug, info, warn, error, critical

--exclude=[] Patterns to exclude files and directories from manifest. Can have multiple
occurances of this argument. Excludes are not stored in the manifest so
it is up to the user to provide the same arguments every run. Patterns are

54 Chapter 1. Contents

http://pyyaml.org/wiki/LibYAML
http://pyyaml.org/wiki/LibYAML
http://pyyaml.org/wiki/PyYAMLDocumentation

Furtive Documentation, Release master

evaluated as UNIX shell-style wildcard characters. See the [fnmatch docu-
mentation](https://docs.python.org/2/library/fnmatch.html)for more infor-
mation.

It is important to note that exclusions are not stored. Therefore ,they must
be specified for every run of ‘furtive‘. Otherwise, the files which were
previously excluded will be included and will show up as files added to the
manifest.

--quiet=False Only print out critial error messages. Do not print a report at the end of
a compare run. Using this argument will override the log-level and set it
to “critical”. Only acceptions will be printed to terminal. The return code
will be the only way to know if a Manifest has changed. This is useful
for scripting such as a cron based manifest checks. Useful with the check
command.

--report-output=- File to print the diff report to. - for stdout.This can be consumed by other
scripts todetermine exactly what has changed within themanifestDefault: -

--version show program’s version number and exit

API Reference

• API Reference

– Furtive Class

– Sub-Modules

* Hasher

* Manifest

This document is for developers of furtive, it contains the API functions

Furtive Class

Furtive - File Integrity Verification System

class furtive.Furtive(base_dir, manifest_path, exclude=None)
Bases: object

Furtive is an application which stores file state and allows users to verify the state in the future. Example use
cases include file archives and file transport.

If the manifest file exists, it will be automatcally loaded. Calling create() will overwrite the existing manifest in
memory as well as the file.

Parameters

• base_dir (str) – Base directory to use for the manifest. Can be a full or relative path.

• manifest_path (str) – Path to the manifest file. Can be a full or relative path.

• exclude (list) – list containing patterns to use to exclude files from the manifest.

compare()
Compare the hashes in the database with the current hashes of files on the file system.

Returns Dictionary of added, deleted, and changed files.

Return type dict

1.1. Furtive 55

Furtive Documentation, Release master

create()
Create and save a new manifest.

The contents of the new Manfiest() will be saved to manifest_path.

Returns None

Sub-Modules

Hasher Manages the hashing of files

class furtive.hasher.HashDirectory(directory, exclude=None)
Bases: object

Object to manage hashing files in a directory.

This object is responsible for walking the directory tree and adding each file to a list. Once the directory walk
has compelted, each file path is passed to hash_task(). After each file has been hashed, this object will then
create a Python dictionary of files with their associated hash.

Parameters

• directory (str) – Path to directory containing files

• exclude (list) – list containing patterns to use to exclude files from the manifest.

Returns Dictionary of file:hash

Return type dict

excluded(file_path)
Should the file be excluded from the manifest?

Determines if a file should be excluded based on UNIX style pattern matching. Think *, ?, and [] se-
quences.

For matchers, see https://docs.python.org/2/library/fnmatch.html

Parameters file_path (str) – path of the file to match against.

Returns True or False indicating if the file should be excluded from the list of files containted
within the manifest.

Return type bool

hash_files()
Orchestrates the discovery and hashing of files.

Note: This method only supports the md5 hashing algorithm

furtive.hasher.hash_task(file_path, hash_algorithm=’md5’)
Responsible for hashing a file.

This function reads in the file file_path in small chuncks the size of the hash algorithm’s block size in order
to avoid running out of memory. This means that this function should be able to read any file irregardless of the
size.

Parameters

• file_path (str) – path of file to hash

• hash_algorithm (str) – the hashing algorithm to use. All options available in hash-
lib.algorithms should work. See: https://docs.python.org/2/library/hashlib.html

Returns hash of file

56 Chapter 1. Contents

https://docs.python.org/2/library/fnmatch.html
https://docs.python.org/2/library/hashlib.html

Furtive Documentation, Release master

Return type dict

furtive.hasher.initializer(terminating_)
Method to make terminating a global variable so that it is inherited by child processes.

Manifest Manifest of files and their hashes

class furtive.manifest.Manifest(directory, manifest_file, exclude=None)
Bases: object

Manifest of files and the associated hashes.

Parameters

• directory – directory which will serve as the root for the manifest. All files under the
directory will be hashed and added to or compared with the manifest.

• type – str

• manifest_file – file location of the manifest file. This is the path which will be used
for the create() and compare() methods. If the file exists, the create() method
will overwrite it.

• exclude (list) – list containing patterns to use to exclude files from the manifest.

create()
Creates a new manifest from the directory by calling furtive.hasher.HashDirectory() and placing the return
dictionary in to Manifest.manifest.

is_empty()
Determines if the manifest within memory is empty.

This simply checks to see if the manifest is None.

Returns True if manifest is empty, False otherwise.

Return type bool

load()
Load a manifest from the manifest file.

This method will open the manfiest YAML file and load it in to the manifest object variable.

save()
Save the manifest to the manifest file.

Open a YAML file and dump the contents of the manifest to it.

1.1.2 Requirements

• Python 2.7, 3.4, or 3.5

1.1.3 Getting Started

To install furtive, run pip install furtive.

1.1.4 CLI Usage

See the CLI Reference for more information about available command line arguments.

1.1. Furtive 57

Furtive Documentation, Release master

Use Case Example

Suppose you have a million digital photos in a directory called my-photos that you have taken over the years. You
would like to know if the files begin to decay due to hardware failure or something else. Alternatively, you may wish
to have reassurance that your photos have not become corrupted while being stored in a cloud backup solution such as
S3 or Glacier.

To record the current state of the files, run furtive --basedir my-photos create

This command creates the file .manifest.yaml in the my-photos/ directory. The location and name of this file
can be changed by using the --manifest argument.

At this point, you can be sure that you will know if a file has changed. To check the files on the file system to the
recorded state in the manifest, run furtive --basedir my-photos check. The application will output a
list of files which have been added, removed, or changed. This output is YAML format so it should be easy to parse.
Additionally, furtive will exit with 1 indicating the check failed. This command can be placed in a cron job and setup
to send a notification if a file has changed.

Actions

There are a few actions which can be performed by furtive.

• create - create a new manifest from the files in the directory specified by the --basedir argument.

• compare - compare the current state of the files on the file system with the recorded state in the manifest file.
A YAML based report will be created detailing which files have changed and which files have been added or
removed. Status code is 0 if the comparison was successful.

• check - check the integrity of files listed in the manifest. Same as compare but exits with status code 1 if
there are changes to the files included in the manifest. That is, if any file hash changes or if files are added or
removed, the application will exit with a status code of 1 to indicate there are changes. This action can be useful
for scripting. For example, to run a nightly cron check of a manifest. A YAML based report will be generated
as well.

1.1.5 Tests

This application comes with tests. To run them, ensure you have tox installed (pip install tox). Then you can
run tox to run the tests.

To build the docs, run tox -e docs. The HTML docs will be generated in the .tox/docs/tmp/html/ direc-
tory.

1.1.6 Faster YAML

By default, furtive will install and use the full Python implementation of the YAML parser which is very slow. In a
testing environment, the Python implementation of the YAML loader took 1 minute to parse a 187,000 line furtive
manifest file. By contrast, when the LibYaml parser was used, the loader took only 5 seconds to parse the same file.

To install the faster parser, perform the following steps:

1. Follow the instructions from the LibYaml website to download and install the latest release of libyaml.

2. Reinstall the PyYAML package by downloading the latest tar from the PyYAML website and running python
setup.py --with-libyaml install

58 Chapter 1. Contents

http://pyyaml.org/wiki/LibYAML
http://pyyaml.org/wiki/LibYAML
http://pyyaml.org/wiki/PyYAMLDocumentation

Furtive Documentation, Release master

1.2 CLI Reference

Command Line Interface (or Tool) reference.

Manage a Furtive manifest

usage: furtive [-h] [--basedir BASEDIR] [--manifest MANIFEST_PATH]
[--log-level {debug,info,warn,error,critical}]
[--exclude PATTERN] [--quiet] [--report-output FILE_NAME]
[--version]
{create,compare,check}

Positional arguments:

action Which action to perform: compare - compare the current state of the files
on the file system with the recorded state in the manifest file. Status code
is 0 if the comparison was successful. check - check the integrity of files
listed in the manifest. Same as compare but exits with status code 1 if there
are changes to the files included in the manifest. That is, if any file hash
changes or if files are added or removed, the application will exit with a
status code of 1 to indicate there are changes. This action can be useful for
scripting. For example, to run a nightly cron check of a manifest. create
- create a new manifest from the files inthe directory specified by the –
basedir argument.

Possible choices: create, compare, check

Options:

--basedir=. Directory containing files that will be checked. Default: .

--manifest Location of the manifest file. Manifests may be located outside the direc-
tory indicated by –basedir. Must provide path and filename of the manifest
file. Default: <basedir>/.manifest.yaml

--log-level=info verbosity of furtive

Possible choices: debug, info, warn, error, critical

--exclude=[] Patterns to exclude files and directories from manifest. Can have multiple
occurances of this argument. Excludes are not stored in the manifest so
it is up to the user to provide the same arguments every run. Patterns are
evaluated as UNIX shell-style wildcard characters. See the [fnmatch docu-
mentation](https://docs.python.org/2/library/fnmatch.html)for more infor-
mation.

It is important to note that exclusions are not stored. Therefore ,they must
be specified for every run of ‘furtive‘. Otherwise, the files which were
previously excluded will be included and will show up as files added to the
manifest.

--quiet=False Only print out critial error messages. Do not print a report at the end of
a compare run. Using this argument will override the log-level and set it
to “critical”. Only acceptions will be printed to terminal. The return code
will be the only way to know if a Manifest has changed. This is useful
for scripting such as a cron based manifest checks. Useful with the check
command.

--report-output=- File to print the diff report to. - for stdout.This can be consumed by other
scripts todetermine exactly what has changed within themanifestDefault: -

1.2. CLI Reference 59

Furtive Documentation, Release master

--version show program’s version number and exit

1.3 API Reference

• API Reference

– Furtive Class

– Sub-Modules

* Hasher

* Manifest

This document is for developers of furtive, it contains the API functions

1.3.1 Furtive Class

Furtive - File Integrity Verification System

class furtive.Furtive(base_dir, manifest_path, exclude=None)
Bases: object

Furtive is an application which stores file state and allows users to verify the state in the future. Example use
cases include file archives and file transport.

If the manifest file exists, it will be automatcally loaded. Calling create() will overwrite the existing manifest in
memory as well as the file.

Parameters

• base_dir (str) – Base directory to use for the manifest. Can be a full or relative path.

• manifest_path (str) – Path to the manifest file. Can be a full or relative path.

• exclude (list) – list containing patterns to use to exclude files from the manifest.

compare()
Compare the hashes in the database with the current hashes of files on the file system.

Returns Dictionary of added, deleted, and changed files.

Return type dict

create()
Create and save a new manifest.

The contents of the new Manfiest() will be saved to manifest_path.

Returns None

1.3.2 Sub-Modules

Hasher

Manages the hashing of files

60 Chapter 1. Contents

Furtive Documentation, Release master

class furtive.hasher.HashDirectory(directory, exclude=None)
Bases: object

Object to manage hashing files in a directory.

This object is responsible for walking the directory tree and adding each file to a list. Once the directory walk
has compelted, each file path is passed to hash_task(). After each file has been hashed, this object will then
create a Python dictionary of files with their associated hash.

Parameters

• directory (str) – Path to directory containing files

• exclude (list) – list containing patterns to use to exclude files from the manifest.

Returns Dictionary of file:hash

Return type dict

excluded(file_path)
Should the file be excluded from the manifest?

Determines if a file should be excluded based on UNIX style pattern matching. Think *, ?, and [] se-
quences.

For matchers, see https://docs.python.org/2/library/fnmatch.html

Parameters file_path (str) – path of the file to match against.

Returns True or False indicating if the file should be excluded from the list of files containted
within the manifest.

Return type bool

hash_files()
Orchestrates the discovery and hashing of files.

Note: This method only supports the md5 hashing algorithm

furtive.hasher.hash_task(file_path, hash_algorithm=’md5’)
Responsible for hashing a file.

This function reads in the file file_path in small chuncks the size of the hash algorithm’s block size in order
to avoid running out of memory. This means that this function should be able to read any file irregardless of the
size.

Parameters

• file_path (str) – path of file to hash

• hash_algorithm (str) – the hashing algorithm to use. All options available in hash-
lib.algorithms should work. See: https://docs.python.org/2/library/hashlib.html

Returns hash of file

Return type dict

furtive.hasher.initializer(terminating_)
Method to make terminating a global variable so that it is inherited by child processes.

Manifest

Manifest of files and their hashes

1.3. API Reference 61

https://docs.python.org/2/library/fnmatch.html
https://docs.python.org/2/library/hashlib.html

Furtive Documentation, Release master

class furtive.manifest.Manifest(directory, manifest_file, exclude=None)
Bases: object

Manifest of files and the associated hashes.

Parameters

• directory – directory which will serve as the root for the manifest. All files under the
directory will be hashed and added to or compared with the manifest.

• type – str

• manifest_file – file location of the manifest file. This is the path which will be used
for the create() and compare() methods. If the file exists, the create() method
will overwrite it.

• exclude (list) – list containing patterns to use to exclude files from the manifest.

create()
Creates a new manifest from the directory by calling furtive.hasher.HashDirectory() and placing the return
dictionary in to Manifest.manifest.

is_empty()
Determines if the manifest within memory is empty.

This simply checks to see if the manifest is None.

Returns True if manifest is empty, False otherwise.

Return type bool

load()
Load a manifest from the manifest file.

This method will open the manfiest YAML file and load it in to the manifest object variable.

save()
Save the manifest to the manifest file.

Open a YAML file and dump the contents of the manifest to it.

62 Chapter 1. Contents

CHAPTER 2

Requirements

• Python 2.7, 3.4, or 3.5

63

Furtive Documentation, Release master

64 Chapter 2. Requirements

CHAPTER 3

Getting Started

To install furtive, run pip install furtive.

65

Furtive Documentation, Release master

66 Chapter 3. Getting Started

CHAPTER 4

CLI Usage

See the CLI Reference for more information about available command line arguments.

4.1 Use Case Example

Suppose you have a million digital photos in a directory called my-photos that you have taken over the years. You
would like to know if the files begin to decay due to hardware failure or something else. Alternatively, you may wish
to have reassurance that your photos have not become corrupted while being stored in a cloud backup solution such as
S3 or Glacier.

To record the current state of the files, run furtive --basedir my-photos create

This command creates the file .manifest.yaml in the my-photos/ directory. The location and name of this file
can be changed by using the --manifest argument.

At this point, you can be sure that you will know if a file has changed. To check the files on the file system to the
recorded state in the manifest, run furtive --basedir my-photos check. The application will output a
list of files which have been added, removed, or changed. This output is YAML format so it should be easy to parse.
Additionally, furtive will exit with 1 indicating the check failed. This command can be placed in a cron job and setup
to send a notification if a file has changed.

4.2 Actions

There are a few actions which can be performed by furtive.

• create - create a new manifest from the files in the directory specified by the --basedir argument.

• compare - compare the current state of the files on the file system with the recorded state in the manifest file.
A YAML based report will be created detailing which files have changed and which files have been added or
removed. Status code is 0 if the comparison was successful.

• check - check the integrity of files listed in the manifest. Same as compare but exits with status code 1 if
there are changes to the files included in the manifest. That is, if any file hash changes or if files are added or
removed, the application will exit with a status code of 1 to indicate there are changes. This action can be useful
for scripting. For example, to run a nightly cron check of a manifest. A YAML based report will be generated
as well.

67

Furtive Documentation, Release master

68 Chapter 4. CLI Usage

CHAPTER 5

Tests

This application comes with tests. To run them, ensure you have tox installed (pip install tox). Then you can
run tox to run the tests.

To build the docs, run tox -e docs. The HTML docs will be generated in the .tox/docs/tmp/html/ direc-
tory.

69

Furtive Documentation, Release master

70 Chapter 5. Tests

CHAPTER 6

Faster YAML

By default, furtive will install and use the full Python implementation of the YAML parser which is very slow. In a
testing environment, the Python implementation of the YAML loader took 1 minute to parse a 187,000 line furtive
manifest file. By contrast, when the LibYaml parser was used, the loader took only 5 seconds to parse the same file.

To install the faster parser, perform the following steps:

1. Follow the instructions from the LibYaml website to download and install the latest release of libyaml.

2. Reinstall the PyYAML package by downloading the latest tar from the PyYAML website and running python
setup.py --with-libyaml install

71

http://pyyaml.org/wiki/LibYAML
http://pyyaml.org/wiki/LibYAML
http://pyyaml.org/wiki/PyYAMLDocumentation

Furtive Documentation, Release master

72 Chapter 6. Faster YAML

Python Module Index

f
furtive, 60
furtive.hasher, 60
furtive.manifest, 61

73

Furtive Documentation, Release master

74 Python Module Index

Index

C
compare() (furtive.Furtive method), 6, 11, 15, 20, 24, 29,

33, 37, 42, 46, 51, 55, 60
create() (furtive.Furtive method), 6, 11, 15, 20, 24, 29, 33,

38, 42, 46, 51, 55, 60
create() (furtive.manifest.Manifest method), 8, 12, 17, 21,

26, 30, 34, 39, 43, 48, 52, 57, 62

E
excluded() (furtive.hasher.HashDirectory method), 7, 11,

16, 20, 25, 29, 34, 38, 42, 47, 51, 56, 61

F
Furtive (class in furtive), 6, 11, 15, 19, 24, 28, 33, 37, 42,

46, 50, 55, 60
furtive (module), 6, 11, 15, 19, 24, 28, 33, 37, 42, 46, 50,

55, 60
furtive.hasher (module), 7, 11, 16, 20, 24, 29, 33, 38, 42,

47, 51, 56, 60
furtive.manifest (module), 8, 12, 17, 21, 25, 30, 34, 39,

43, 48, 52, 57, 61

H
hash_files() (furtive.hasher.HashDirectory method), 7, 12,

16, 20, 25, 29, 34, 38, 43, 47, 51, 56, 61
hash_task() (in module furtive.hasher), 7, 12, 16, 21, 25,

29, 34, 38, 43, 47, 52, 56, 61
HashDirectory (class in furtive.hasher), 7, 11, 16, 20, 24,

29, 33, 38, 42, 47, 51, 56, 60

I
initializer() (in module furtive.hasher), 8, 12, 16, 21, 25,

30, 34, 39, 43, 47, 52, 57, 61
is_empty() (furtive.manifest.Manifest method), 8, 12, 17,

21, 26, 30, 35, 39, 43, 48, 52, 57, 62

L
load() (furtive.manifest.Manifest method), 8, 13, 17, 21,

26, 30, 35, 39, 44, 48, 52, 57, 62

M
Manifest (class in furtive.manifest), 8, 12, 17, 21, 25, 30,

34, 39, 43, 48, 52, 57, 61

S
save() (furtive.manifest.Manifest method), 8, 13, 17, 21,

26, 30, 35, 39, 44, 48, 52, 57, 62

75

	Contents
	Furtive
	CLI Reference
	API Reference

	Requirements
	Getting Started
	CLI Usage
	Use Case Example
	Actions

	Tests
	Faster YAML
	Python Module Index

