
funsociety-ircclient Documentation
Release 2.1

Dave Richer

Jun 30, 2019

Contents

1 More detailed docs: 1
1.1 API . 1

Index 11

i

ii

CHAPTER 1

More detailed docs:

1.1 API

This library provides IRC client functionality

1.1.1 Client

irc.Client(server, nick[, options])
This object is the base of everything, it represents a single nick connected to a single IRC server.

The first two arguments are the server to connect to, and the nickname to attempt to use. The third optional
argument is an options object with default values:

{
userName: 'MrNodeBot',
realName: 'MrNodeBot IRC Bot',
socket: false,
port: 6667,
localAddress: null,
localPort: null,
debug: false,
showErrors: false,
autoRejoin: false,
autoConnect: true,
channels: [],
secure: false,
selfSigned: false,
certExpired: false,
floodProtection: false,
floodProtectionDelay: 1000,
sasl: false,
retryCount: 0,
retryDelay: 2000,

(continues on next page)

1

funsociety-ircclient Documentation, Release 2.1

(continued from previous page)

stripColors: false,
channelPrefixes: "&#",
messageSplit: 512,
encoding: ''

}

secure (SSL connection) can be a true value or an object (the kind of object returned from
crypto.createCredentials()) specifying cert etc for validation. If you set selfSigned to true SSL accepts cer-
tificates from a non trusted CA. If you set certExpired to true, the bot connects even if the ssl cert has expired.

Set socket to true to interpret server as a path to a UNIX domain socket.

localAddress is the local address to bind to when connecting, such as 127.0.0.1

localPort is the local port to bind when connecting, such as 50555

floodProtection queues all your messages and slowly unpacks it to make sure that we won’t get kicked out
because for Excess Flood. You can also use Client.activateFloodProtection() to activate flood protection after
instantiating the client.

floodProtectionDelay sets the amount of time that the client will wait between sending subsequent messages
when floodProtection is enabled.

Set sasl to true to enable SASL support. You’ll also want to set nick, userName, and password for authentication.

stripColors removes mirc colors (0x03 followed by one or two ascii numbers for foreground,background) and
ircII “effect” codes (0x02 bold, 0x1f underline, 0x16 reverse, 0x0f reset) from the entire message before parsing
it and passing it along.

messageSplit will split up large messages sent with the say method into multiple messages of length fewer than
messageSplit characters.

With encoding you can set IRC bot to convert all messages to specified character set. If you don’t want to use
this just leave value blank or false. Example values are UTF-8, ISO-8859-15, etc.

Setting debug to true will emit timestamped messages to the console using util.log when certain events are fired.

autoRejoin has the client rejoin channels after being kicked.

Setting autoConnect to false prevents the Client from connecting on instantiation. You will need to call connect()
on the client instance:

var client = new irc.Client({ autoConnect: false, ... });
client.connect();

retryCount is the number of times the client will try to automatically reconnect when disconnected. It defaults
to 0.

retryDelay is the number of milliseconds to wait before retying to automatically reconnect when disconnected.
It defaults to 2000.

Client.send(command, arg1, arg2, ...)
Sends a raw message to the server; generally speaking, it’s best not to use this method unless you know what
you’re doing. Instead, use one of the methods below.

Client.join(channel, callback)
Joins the specified channel.

Arguments

• channel (string) – Channel to join

2 Chapter 1. More detailed docs:

funsociety-ircclient Documentation, Release 2.1

• callback (function) – Callback to automatically subscribed to the join#channel event,
but removed after the first invocation. channel supports multiple JOIN arguments as a space
separated string (similar to the IRC protocol).

Client.part(channel[, message], callback)
Parts the specified channel.

Arguments

• channel (string) – Channel to part

• message (string) – Optional message to send upon leaving the channel

• callback (function) – Callback to automatically subscribed to the part#channel event,
but removed after the first invocation.

Client.say(target, message)
Sends a message to the specified target.

Arguments

• target (string) – is either a nickname, or a channel.

• message (string) – the message to send to the target.

Client.ctcp(target, type, text)
Sends a CTCP message to the specified target.

Arguments

• target (string) – is either a nickname, or a channel.

• type (string) – the type of the CTCP message. Specify “privmsg” for a PRIVMSG, and
anything else for a NOTICE.

• text (string) – the CTCP message to send.

Client.action(target, message)
Sends an action to the specified target.

Client.notice(target, message)
Sends a notice to the specified target.

Arguments

• target (string) – is either a nickname, or a channel.

• message (string) – the message to send as a notice to the target.

Client.whois(nick, callback)
Request a whois for the specified nick.

Arguments

• nick (string) – is a nickname

• callback (function) – Callback to fire when the server has finished generating the
whois information and is passed exactly the same information as a whois event described
above.

Client.watchRaw(nicks[, mode])
Adds or removes the specified nicks to the watch list. Notifications from the server are available via the watch,
watchlist, watchonline and watchoffline events.

Arguments

1.1. API 3

funsociety-ircclient Documentation, Release 2.1

• nicks (string) – is a nickname or an array of nicknames. Nicknames should contain
the + (add) or - (remove) prefixes

• mode (string) – is the mode to use for the watch list (s or l). Defaults to s

Client.watch(nicks[, mode])
Adds the specified nicks to the watch list. Notifications from the server are available via the watch, watchlist,
watchonline and watchoffline events.

Arguments

• nicks (string) – is a nickname or an array of nicknames.

• mode (string) – is the mode to use for the watch list (s or l). Defaults to s

Client.unwatch(nicks[, mode])
Removes the specified nicks to the watch list.

Arguments

• nicks (string) – is a nickname or an array of nicknames.

• mode (string) – is the mode to use for the watch list (s or l). Defaults to s

Client.list([arg1, arg2, ...])
Request a channel listing from the server. The arguments for this method are fairly server specific, this method
just passes them through exactly as specified.

Responses from the server are available via the channellist_start, channellist_item, and channellist events.

Client.connect([retryCount[, callback]])
Connects to the server. Used when autoConnect in the options is set to false. If retryCount is a function it will
be treated as the callback (i.e. both arguments to this function are optional).

param integer retryCount Optional number of times to attempt reconnection

param function callback Optional callback

Client.disconnect([message[, callback]])
Disconnects from the IRC server. If message is a function it will be treated as the callback (i.e. both arguments
to this function are optional).

Arguments

• message (string) – Optional message to send when disconnecting.

• callback (function) – Optional callback

Client.activateFloodProtection([interval])
Activates flood protection “after the fact”. You can also use floodProtection while instantiating the Client to
enable flood protection, and floodProtectionDelay to set the default message interval.

Arguments

• interval (integer) – Optional configuration for amount of time to wait between mes-
sages. Takes value from client configuration if unspecified.

1.1.2 Events

irc.Client instances are EventEmitters with the following events:

'registered'
function (message) { }

4 Chapter 1. More detailed docs:

funsociety-ircclient Documentation, Release 2.1

Emitted when the server sends the initial 001 line, indicating you’ve connected to the server. See the raw event
for details on the message object.

'connectionEnd'
function () { }

Emitted when the server connection is lost.

'netError'
function (exception) { }

Emitted when the underlying scoket fires an error.

'abort'
function (retryCount) { }

Emitted when the server loses connection and attempts auto reconnection.

'motd'
function (motd) { }

Emitted when the server sends the message of the day to clients.

'names'
function (channel, nicks) { }

Emitted when the server sends a list of nicks for a channel (which happens immediately after joining and on
request. The nicks object passed to the callback is keyed by nick names, and has values ‘’, ‘+’, or ‘@’ depending
on the level of that nick in the channel.

'names#channel'
function (nicks) { }

As per ‘names’ event but only emits for the subscribed channel.

'topic'
function (channel, topic, nick, message) { }

Emitted when the server sends the channel topic on joining a channel, or when a user changes the topic on a
channel. See the raw event for details on the message object.

'join'
function (channel, nick, message) { }

Emitted when a user joins a channel (including when the client itself joins a channel). See the raw event for
details on the message object.

'join#channel'
function (nick, message) { }

As per ‘join’ event but only emits for the subscribed channel. See the raw event for details on the message
object.

'part'
function (channel, nick, reason, message) { }

Emitted when a user parts a channel (including when the client itself parts a channel). See the raw event for
details on the message object.

'part#channel'
function (nick, reason, message) { }

As per ‘part’ event but only emits for the subscribed channel. See the raw event for details on the message
object.

1.1. API 5

funsociety-ircclient Documentation, Release 2.1

'quit'
function (nick, reason, channels, message) { }

Emitted when a user disconnects from the IRC, leaving the specified array of channels. See the raw event for
details on the message object.

'kick'
function (channel, nick, by, reason, message) { }

Emitted when a user is kicked from a channel. See the raw event for details on the message object.

'kick#channel'
function (nick, by, reason, message) { }

As per ‘kick’ event but only emits for the subscribed channel. See the raw event for details on the message
object.

'kill'
function (nick, reason, channels, message) { }

Emitted when a user is killed from the IRC server. channels is an array of channels the killed user was in which
are known to the client. See the raw event for details on the message object.

'message'
function (nick, to, text, message) { }

Emitted when a message is sent. to can be either a nick (which is most likely this clients nick and means a
private message), or a channel (which means a message to that channel). See the raw event for details on the
message object.

'message#'
function (nick, to, text, message) { }

Emitted when a message is sent to any channel (i.e. exactly the same as the message event but excluding private
messages. See the raw event for details on the message object.

'message#channel'
function (nick, text, message) { }

As per ‘message’ event but only emits for the subscribed channel. See the raw event for details on the message
object.

'selfMessage'
function (to, text) { }

Emitted when a message is sent from the client. to is who the message was sent to. It can be either a nick (which
most likely means a private message), or a channel (which means a message to that channel).

'notice'
function (nick, to, text, message) { }

Emitted when a notice is sent. to can be either a nick (which is most likely this clients nick and means a private
message), or a channel (which means a message to that channel). nick is either the senders nick or null which
means that the notice comes from the server. See the raw event for details on the message object.

'ping'
function (server) { }

Emitted when a server PINGs the client. The client will automatically send a PONG request just before this is
emitted.

'pm'
function (nick, text, message) { }

6 Chapter 1. More detailed docs:

funsociety-ircclient Documentation, Release 2.1

As per ‘message’ event but only emits when the message is direct to the client. See the raw event for details on
the message object.

'ctcp'
function (from, to, text, type, message) { }

Emitted when a CTCP notice or privmsg was received (type is either ‘notice’ or ‘privmsg’). See the raw event
for details on the message object.

'ctcp-notice'
function (from, to, text, message) { }

Emitted when a CTCP notice was received. See the raw event for details on the message object.

'ctcp-privmsg'
function (from, to, text, message) { }

Emitted when a CTCP privmsg was received. See the raw event for details on the message object.

'ctcp-version'
function (from, to, message) { }

Emitted when a CTCP VERSION request was received. See the raw event for details on the message object.

'nick'
function (oldnick, newnick, channels, message) { }

Emitted when a user changes nick along with the channels the user is in. See the raw event for details on the
message object.

'invite'
function (channel, from, message) { }

Emitted when the client receives an /invite. See the raw event for details on the message object.

'+mode'
function (channel, by, mode, argument, message) { }

Emitted when a mode is added to a user or channel. channel is the channel which the mode is
being set on/in. by is the user setting the mode. mode is the single character mode identifier. If the
mode is being set on a user, argument is the nick of the user. If the mode is being set on a channel,
argument is the argument to the mode. If a channel mode doesn’t have any arguments, argument will
be ‘undefined’. See the raw event for details on the message object.

'-mode'
function (channel, by, mode, argument, message) { }

Emitted when a mode is removed from a user or channel. channel is the channel which the mode is
being set on/in. by is the user setting the mode. mode is the single character mode identifier. If the
mode is being set on a user, argument is the nick of the user. If the mode is being set on a channel,
argument is the argument to the mode. If a channel mode doesn’t have any arguments, argument will
be ‘undefined’. See the raw event for details on the message object.

'whois'
function (info) { }

Emitted whenever the server finishes outputting a WHOIS response. The information should look something
like:

{
nick: "Ned",
user: "martyn",
host: "10.0.0.18",

(continues on next page)

1.1. API 7

funsociety-ircclient Documentation, Release 2.1

(continued from previous page)

realname: "Unknown",
channels: ["@#purpledishwashers", "#blah", "#mmmmbacon"],
server: "*.dollyfish.net.nz",
serverinfo: "The Dollyfish Underworld",
operator: "is an IRC Operator"

}

'watch'
function (message) { }

Emitted whenever the server sees or stops seeing a nickname in the watch list. The information should look
something like:

// when user goes online:
{

"prefix":"calisto.chathispano.com",
"server":"calisto.chathispano.com",
"command":"rpl_watchoffline",
"rawCommand":"600",
"commandType":"reply",
"args":[

"asdfoiuqwoer__1", // this is our nickname
"aaaaa5", // here goes the nickname in our watch list
"joqiwjelkj",
"D6huCU.AWxGvE.virtual",
"1561727250",
"logged online"

]
}
// when user goes offline:
{

"prefix":"calisto.chathispano.com",
"server":"calisto.chathispano.com",
"command":"rpl_watchoffline",
"rawCommand":"601",
"commandType":"reply",
"args":[

"asdfoiuqwoer__1", // this is our nickname
"aaaaa5", // here goes the nickname in our watch list
"joqiwjelkj",
"D6huCU.AWxGvE.virtual",
"1561727250",
"logged offline"

]
}

'watchonline'
function (nickname) { }

Emitted whenever nickname in our watch list goes online

'watchoffline'
function (nickname) { }

Emitted whenever nickname in our watch list goes offline

'watchlist'
function (nicknames) { }

8 Chapter 1. More detailed docs:

funsociety-ircclient Documentation, Release 2.1

Emitted whenever the watch list is updated after calling watch or unwatch functions. nicknames is an array with
the nicknames in our watching list

'channellist_start'
function () {}

Emitted whenever the server starts a new channel listing

'channellist_item'
function (channel_info) {}

Emitted for each channel the server returns. The channel_info object contains keys ‘name’, ‘users’ (number of
users on the channel), and ‘topic’.

'channellist'
function (channel_list) {}

Emitted when the server has finished returning a channel list. The channel_list array is simply a list of the
objects that were returned in the intervening channellist_item events.

This data is also available via the Client.channellist property after this event has fired.

'raw'
function (message) { }

Emitted when ever the client receives a “message” from the server. A message is basically a single line of data
from the server, but the parameter to the callback has already been parsed and contains:

message = {
prefix: "The prefix for the message (optional)",
nick: "The nickname portion of the prefix (optional)",
user: "The username portion of the prefix (optional)",
host: "The hostname portion of the prefix (optional)",
server: "The servername (if the prefix was a servername)",
rawCommand: "The command exactly as sent from the server",
command: "Human readable version of the command",
commandType: "normal, error, or reply",
args: ['arguments', 'to', 'the', 'command'],

}

You can read more about the IRC protocol by reading RFC 1459

'error'
function (message) { }

Emitted when ever the server responds with an error-type message. The message parameter is exactly as in the
‘raw’ event.

'unhandled'
function (message) { }

Emitted when ever the server responds with an unhandled error. The message parameter is exactly as in the
‘raw’ event.

'action'
function (from, to, text, message) { }

Emitted whenever a user performs an action (e.g. /me waves). The message parameter is exactly as in the ‘raw’
event.

1.1. API 9

http://www.ietf.org/rfc/rfc1459.txt

funsociety-ircclient Documentation, Release 2.1

1.1.3 Colors

irc.colors.wrap(color, text[, reset_color])
Takes a color by name, text, and optionally what color to return.

Arguments

• color (string) – the name of the color as a string

• text (string) – the text you want colorized

• reset_color (string) – the name of the color you want set after the text (defaults to
‘reset’)

irc.colors.codes
This contains the set of colors available and a function to wrap text in a color.

The following color choices are available:

{ white: ‘u000300’, black: ‘u000301’, dark_blue: ‘u000302’, dark_green: ‘u000303’, light_red: ‘u000304’,
dark_red: ‘u000305’, magenta: ‘u000306’, orange: ‘u000307’, yellow: ‘u000308’, light_green:
‘u000309’, cyan: ‘u000310’, light_cyan: ‘u000311’, light_blue: ‘u000312’, light_magenta: ‘u000313’,
gray: ‘u000314’, light_gray: ‘u000315’, reset: ‘u000f’,

}

1.1.4 Internal

Client.conn
Socket to the server. Rarely, if ever needed. Use Client.send instead.

Client.chans
Channels joined. Includes channel modes, user list, and topic information. Only updated after the server
recognizes the join.

Client.nick
The current nick of the client. Updated if the nick changes (e.g. nick collision when connecting to a server).

client._whoisData()
Buffer of whois data as whois is sent over multiple lines.

client._addWhoisData()
Self-explanatory.

client._clearWhoisData()
Self-explanatory.

10 Chapter 1. More detailed docs:

Index

Symbols
’+mode’ (global variable or constant), 7
’-mode’ (global variable or constant), 7
’abort’ (global variable or constant), 5
’action’ (global variable or constant), 9
’channellist’ (global variable or constant), 9
’channellist_item’ (global variable or constant),

9
’channellist_start’ (global variable or con-

stant), 9
’connectionEnd’ (global variable or constant), 5
’ctcp’ (global variable or constant), 7
’ctcp-notice’ (global variable or constant), 7
’ctcp-privmsg’ (global variable or constant), 7
’ctcp-version’ (global variable or constant), 7
’error’ (global variable or constant), 9
’invite’ (global variable or constant), 7
’join’ (global variable or constant), 5
’join#channel’ (global variable or constant), 5
’kick’ (global variable or constant), 6
’kick#channel’ (global variable or constant), 6
’kill’ (global variable or constant), 6
’message’ (global variable or constant), 6
’message#’ (global variable or constant), 6
’message#channel’ (global variable or constant), 6
’motd’ (global variable or constant), 5
’names’ (global variable or constant), 5
’names#channel’ (global variable or constant), 5
’netError’ (global variable or constant), 5
’nick’ (global variable or constant), 7
’notice’ (global variable or constant), 6
’part’ (global variable or constant), 5
’part#channel’ (global variable or constant), 5
’ping’ (global variable or constant), 6
’pm’ (global variable or constant), 6
’quit’ (global variable or constant), 5
’raw’ (global variable or constant), 9
’registered’ (global variable or constant), 4
’selfMessage’ (global variable or constant), 6

’topic’ (global variable or constant), 5
’unhandled’ (global variable or constant), 9
’watch’ (global variable or constant), 8
’watchlist’ (global variable or constant), 8
’watchoffline’ (global variable or constant), 8
’watchonline’ (global variable or constant), 8
’whois’ (global variable or constant), 7

C
client._addWhoisData() (client method), 10
client._clearWhoisData() (client method), 10
client._whoisData() (client method), 10
Client.action() (Client method), 3
Client.activateFloodProtection() (Client

method), 4
Client.chans (global variable or constant), 10
Client.conn (global variable or constant), 10
Client.connect() (Client method), 4
Client.ctcp() (Client method), 3
Client.disconnect() (Client method), 4
Client.join() (Client method), 2
Client.list() (Client method), 4
Client.nick (global variable or constant), 10
Client.notice() (Client method), 3
Client.part() (Client method), 3
Client.say() (Client method), 3
Client.send() (Client method), 2
Client.unwatch() (Client method), 4
Client.watch() (Client method), 4
Client.watchRaw() (Client method), 3
Client.whois() (Client method), 3

I
irc.Client() (irc method), 1
irc.colors.codes (global variable or constant), 10
irc.colors.wrap() (irc.colors method), 10

11

	More detailed docs:
	API

	Index

