Welcome to FUND Documentation’s documentation!

Contents:

Intro

The Climate Framework for Uncertainty, Negotiation and Distribution (FUND) is a so-called integrated assessment model of climate change. FUND was originally set-up to study the role of international capital transfers in climate policy, but it soon evolved into a test-bed for studying impacts of climate change in a dynamic context, and it is now often used to perform cost-benefit and cost-effectiveness analyses of greenhouse gas emission reduction policies, to study equity of climate change and climate policy, and to support game-theoretic investigations into international environmental agreements.

FUND links scenarios and simple models of population, technology, economics, emissions, atmospheric chemistry, climate, sea level, and impacts. Together, these elements describe not-implausible futures. The model runs in time-steps of one year from 1950 to 2300, and distinguishes 16 major world regions.

FUND further includes the option to reduce emissions of industrial carbon dioxide. Reductions can be set by the user, or calculated so as to meet certain criteria set by the user.

An integrated assessment model, FUND is used to advice policymakers about proper and not-so-proper strategies. The model, however, always reflects its developer’s world views. It is therefore regularly contrary to the rhetoric of politicians, and occasionally politically incorrect.

It is the developer’s firm belief that most researchers should be locked away in an ivory tower. Models are often quite useless in unexperienced hands, and sometimes misleading. No one is smart enough to master in a short period what took someone else years to develop. Not-understood models are irrelevant, half-understood models treacherous, and mis-understood models dangerous.

Therefore, FUND does not have a pretty interface, and you will have to make to real effort to let it do something, let alone to let it do something new. You can run FUND with the free Visual C# Express Edition.

FUND was originally developed by Richard Tol. It is now co-developed by David Anthoff and Richard Tol. FUND does not have an institutional home.

1. Resolution

FUND 3.9 is defined for 16 regions, specified in Table R. The model runs from 1950 to 3000 in time-steps of a year.

2. Population and income

Population and per capita income follow exogenous scenarios. There are five standard scenarios, specified in Tables P and Y. The FUND scenario is based on the EMF14 Standardised Scenario, and lies somewhere in between the IS92a and IS92f scenarios (Leggett et al., 1992). The other scenarios follow the SRES A1B, A2, B1 and B2 scenarios (Nakicenovic and Swart, 2001), as implemented in the IMAGE model (IMAGE Team, 2001).

We assume that all regions are in a steady state after the year 2300. For the years 2301-3000 per capita income growth rates are constant and equal to the values of the year 2300, while population does not change.

3. Emission, abatement and costs

3.1. Carbon dioxide (CO:sub:2)

Carbon dioxide emissions are calculated on the basis of the Kaya identity:

\[M_{t,r}=\frac{M_{t,r}}{E_{t,r}}\frac{E_{t,r}}{Y_{t,r}}\frac{Y_{t,r}}{P_{t,r}}P_{t,r}=\psi_{t,r}\varphi_{t,r}Y_{t,r}\qquad (\text{CO1.1})\]

where \(M\) denotes emissions, \(E\) denote energy use, \(Y\) denotes GDP and \(P\) denotes population; \(t\) is the index for time, \(r\) for region. The carbon intensity of energy use, and the energy intensity of production follow from:

\[\psi_{t,r} = g_{t - 1,r}^{\psi}\psi_{t - 1,r} - \alpha_{t - 1,r}\tau_{t - 1,r}\qquad (\text{CO2.2})\]

and

\[\varphi_{t,r} = g_{t - 1,r}^{\varphi}\varphi_{t - 1,r} - \alpha_{t - 1,r}\tau_{t - 1,r}\qquad (\text{CO2.3})\]

where \(\tau\) is policy intervention and \(\alpha\) is a parameter. The exogenous growth rates \(g\) are referred to as the Autonomous Energy Efficiency Improvement (AEEI) and the Autonomous Carbon Efficiency Improvement (ACEI). See Tables AEEI and ACEI for the five alternative scenarios (values for the years 2301-3000 again equal the values for the year 2300). Policy also affects emissions via

\[M_{t,r} = \left( \psi_{t,r} - \chi_{t,r}^{\psi} \right)\left( \varphi_{t,r} - \chi_{t,r}^{\varphi} \right)Y_{t,r}\]

{#eq:CO2_1b tag=”CO2.1’”}

\[\chi_{t,r}^{\psi} = \kappa_{\psi}\chi_{t - 1,r} + \left( 1 - \alpha_{t - 1,r} \right)\tau_{t - 1,r}^{\psi}\qquad (\text{CO2.4})\]

and

\[\chi_{t,r}^{\varphi} = \kappa_{\varphi}\chi_{t - 1,r} + \left( 1 - \alpha_{t - 1,r} \right)\tau_{t - 1,r}^{\varphi}\qquad (\text{CO2.5})\]

Thus, the variable \(0 < \alpha < 1\) governs which part of emission reduction is permanent (reducing carbon and energy intensities at all future times) and which part of emission reduction is temporary (reducing current energy consumptions and carbon emissions), fading at a rate of \(0 < \kappa < 1\). In the base case, \(\kappa_{\psi} = \kappa_{\varphi} = 0.9\) and

\[\alpha_{t,r} = 1 - \frac{\tau_{t,r}/100}{1 + \tau_{t,r}/100}\qquad (\text{CO2.6})\]

So that \(\alpha = 0.5\) if \(\tau = \$100/\text{tC}\). One may interpret the difference between permanent and temporary emission reduction as affecting commercial technologies and capital stocks, respectively. The emission reduction module is a reduced form way of modelling that part of the emission reduction fades away after the policy intervention is reversed, but that another part remains through technological lock-in. Learning effects are described below. The parameters of the model are chosen so that FUND roughly resembles the behaviour of other models, particularly those of the Energy Modeling Forum (Weyant, 2004; Weyant et al., 2006).

The costs of emission reduction \(C\) are given by

\[\frac{C_{t,r}}{Y_{t,r}} = \frac{\beta_{t,r}\tau_{t,r}^{2}}{H_{t,r}H_{t}^{g}}\qquad (\text{CO2.7})\]

\(H\) denotes the stock of knowledge. Equation (CO2.6) gives the costs of emission reduction in a particular year for emission reduction in that year. In combination with Equations (CO2.2)-(CO2.5), emission reduction is cheaper if smeared out over a longer time period. The parameter \(\beta\) follows from

\[\beta_{t,r} = 0.784 - 0.084\sqrt{\frac{M_{t,r}}{Y_{t,r}} - \operatorname{}\frac{M_{t,s}}{Y_{t,s}}}\qquad (\text{CO2.8})\]

That is, emission reduction is relatively expensive for the region that has the lowest emission intensity. The calibration is such that a 10% emission reduction cut in 2003 would cost 1.57% (1.38%) of GDP of the least (most) carbon-intensive region; this is calibrated to Hourcade et al. (1996, 2001). An 80% (85%) emission reduction would completely ruin the economy. Later emission reductions are cheaper by Equations (CO2.7) and (CO2.8). Emission reduction is relatively cheap for regions with high emission intensities. The thought is that emission reduction is cheap in countries that use a lot of energy and rely heavily on fossil fuels, while other countries use less energy and less fossil fuels and are therefore closer to the technological frontier of emission abatement. For relatively small emission reduction, the costs in FUND correspond closely to those reported by other top-down models, but for higher emission reduction, FUND finds higher costs, because FUND does not include backstop technologies, that is, a carbon-free energy supply that is available in unlimited quantities at fixed average costs.

The regional and global knowledge stocks follow from

\[H_{t,r} = H_{t - 1,r}\sqrt{1 + \gamma_{R}\tau_{t - 1,r}}\qquad (\text{CO2.9})\]

and

\[H_{t}^{G} = H_{t - 1}^{G}\sqrt{1 + \gamma_{G}\tau_{t,r}}\qquad (\text{CO2.10})\]

Knowledge accumulates with emission abatement. More knowledge implies lower emission reduction costs. The parameters \(\gamma\) determine which part of the knowledge is kept within the region, and which part spills over to other regions as well. In the base case, \(\gamma_{R} = 0.9\) and \(\gamma_{G} = 0.1\). The model is similar in structure and numbers to that of Goulder and Schneider (1999) and Goulder and Mathai (2000).

Emissions from land use change and deforestation are exogenous, and cannot be mitigated. Numbers are found in Tables CO2F, again for five alternative scenarios.

3.2. Methane (CH:sub:4)

Methane emissions are exogenous, specified in Table CH4 (emissions for the years 2301-3000 are equal to emissions in the year 2300). There is a single scenario only, based on IS92a (Leggett et al., 1992). The costs of emission reduction are quadratic. Table OC specifies the parameters, which are calibrated to USEPA (2003).

3.3. Nitrous oxide (N:sub:2O)

Nitrous oxide emissions are exogenous, specified in Table N2O (emissions for the years 2301-3000 are equal to emissions in the year 2300). There is a single scenario only, based on IS92a (Leggett et al., 1992). The costs of emission reduction are quadratic. Table OC specifies the parameters, which are calibrated to USEPA (2003).

3.4. Sulfurhexafluoride (SF:sub:6)

SF6 emissions are linear in GDP and GDP per capita. Table SF6 gives the parameters. The numbers for 1990 and 1995 are estimated from IEA data (http://data.iea.org/ieastore/product.asp?dept_id=101&pf_id=305). There is no option to reduce SF6 emissions.

3.5. Dynamic Biosphere

Emissions from the terrestrial biosphere follow

\[E_{t}^{B} = \beta\left( T_{t} - T_{2010} \right)\frac{B_{t}}{B_{\mathrm{\max}}}\qquad (\text{DB.1})\]

with

\[B_{t} = B_{t - 1} - E_{t - 1}^{B}\qquad (\text{DB.2})\]

where

  • \(E^{B}\) are emissions (in million metric tonnes of carbon);
  • \(t\) denotes time;
  • \(T\) is the global mean temperature (in degree Celsius);
  • \(B_{t}\) is the remaining stock of potential emissions (in million metric tonnes of carbon, GtC);
  • \(B_{\mathrm{\max}}\) is the total stock of potential emissions; \(B_{\mathrm{\max}} = 1,900\ GtC\);
  • \(\beta\) is a parameter; \(\beta = 2.6\frac{\text{GtC}}{C}\) (with a gamma distribution with shape=4.9 and scale=662.8).

The model is calibrated to the review of (Denman et al. 2007). Emissions from the terrestrial biosphere before the year 2010 are zero.

4. Atmosphere and climate

4.1. Concentrations

Methane, nitrous oxide and sulphur hexafluoride are taken up in the atmosphere, and then geometrically depleted:

\[C_{t} = C_{t - 1} + \alpha E_{t} - \beta\left( C_{t - 1} - C_{\text{pre}} \right)\qquad (\text{C.1})\]

where \(C\) denotes concentration, \(E\) emissions, \(t\) year, and \(\text{pre}\) pre-industrial. Table C displays the parameters \(\alpha\) and \(\beta\) for all gases. Parameters are taken from Forster et al. (2007).

The atmospheric concentration of carbon dioxide follows from a five-box model:

\[Box_{i,t} = \rho_{i}Box_{i,t - 1} + 0.000471\alpha_{i}E_{t}\qquad (\text{C.2a})\]

with

\[C_{t} = \sum_{i = 1}^{5}{\alpha_{i}\text{Bo}x_{i,t}}\qquad (\text{C.2b})\]

where \(\alpha_{i}\) denotes the fraction of emissions \(E\) (in million metric tonnes of carbon) that is allocated to \(Box_{i}\) (0.13, 0.20, 0.32, 0.25 and 0.10, respectively) and \(\rho\) the decay-rate of the boxes (\(\rho = exp( - \frac{1}{\mathrm{\text{lifetime}}})\), with life-times infinity, 363, 74, 17 and 2 years, respectively). The model is due to Maier-Reimer and Hasselmann (1987), its parameters are due to Hammitt et al. (1992). Thus, 13% of total emissions remains forever in the atmosphere, while 10% is—on average—removed in two years. Carbon dioxide concentrations are measured in parts per million by volume.

4.2. Radiative forcing

Radiative forcing is specified as follows:

\[\begin{split}\begin{aligned} RF_{t} = &5.35\ln\frac{\text{CO}2_{t}}{275}\\ &+ 0.036 \times 1.4\left( \sqrt{\text{CH}4_{t}} - \sqrt{790} \right) + 0.12\left( \sqrt{N2O_{t}} - \sqrt{285} \right) \\ &-0.47\ln\left( 1 + 2.01 \times 10^{- 5}\text{CH}4_{t}^{0.75}285^{0.75} + 5.31 \times 10^{- 15}\text{CH}4_{t}^{2.52}285^{1.52} \right) \\ &- 0.47\ln\left( 1 + 2.01 + 10^{- 5}790^{0.75}N2O_{t}^{0.75} + 5.31 \times 10^{- 15}790^{2.52}N2O_{t}^{1.52} \right) \\ &+ 2 \times 0.47\ln\left( 1 + 2.01 \times 10^{- 5}790^{0.75}285^{0.75} + 5.31 \times 10^{- 15}790^{2.52}285^{1.52} \right) \\ &+ 0.00052\left( \text{SF}6_{t} - 0.04 \right) + rfSO2_{t} \end{aligned}\qquad (\text{C.3})\end{split}\]

Parameters are taken from Ramaswamy et al. (2001) and Forster et al. (2007) for the indirect effect of methane on tropospheric ozone. Radiative forcing from SO2 at time t (\(\text{rfSO}2_{t}\)) is exogenous; the FUND scenario uses the forcing from RCP85 and the SRES scenarios use the forcing as interpreted by IMAGE 2.2.

4.3. Temperature and sea level rise

The global mean temperature \(T\) is governed by a geometric build-up to its equilibrium (determined by radiative forcing \(RF\)). In the base case, global mean temperature \(T\) rises in equilibrium by 3.0°C for a doubling of carbon dioxide equivalents, so:

\[T_{t} = \left( 1 - \frac{1}{\varphi} \right)T_{t - 1} + \frac{1}{\varphi}\frac{CS}{5.35\ln 2}RF_{t}\qquad (\text{C.4})\]

where \(CS\) is climate sensitivity, set to 3.0 (with a gamma distribution with shape=6.48 and scale=0.55). \(\varphi\) is the e-folding time and set to

\[\varphi = \max\left( \alpha + \beta^{l}CS + \beta^{q}CS^{2},1 \right)\qquad (\text{C.5})\]

where \(\alpha\) is set to -42.7, \(\beta^{l}\) is set to 29.1 and \(\beta^{q}\) is set to 0.001, such that the best guess e-folding time for a climate sensitvitiy of 3.0 is 44 years.

Regional temperature is derived by multiplying the global mean temperature by a fixed factor (see Table RT) which corresponds to the spatial climate change pattern averaged over 14 GCMs (Mendelsohn et al. 2000).

Global mean sea level is also geometric, with its equilibrium level determined by the temperature and a life-time of 500 years:

\[S_{t} = \left( 1 - \frac{1}{\rho} \right)S_{t - 1} + \gamma\frac{1}{\rho}T_{t}\qquad (\text{C.6})\]

where \(\rho = 500\) (with a triangular distribution bounded by 250 and 1000) is the e-folding time. \(\gamma = 2\) (with a gamma distribution with shape=6 and scale=0.4) is sea-level sensitivity to temperature.

Temperature and sea level are calibrated to the best guess temperature and sea level for the IS92a scenario of Kattenberg et al. (1996).

5. Impacts

5.1. Agriculture

The impacts of climate change on agriculture at time \(t\) in region \(r\) are split into three parts: impacts due to the rate of climate change \(A_{t,r}^{r}\); impacts due to the level of climate change \(A_{t,r}^{l}\); and impacts from carbon dioxide fertilisation \(A_{t,r}^{f}\):

\[A_{t,r} = A_{t,r}^{r} + A_{t,r}^{l} + A_{t,r}^{f}\qquad (\text{A.1})\]

The first part (rate) is always negative: As farmers have imperfect foresight and are locked into production practices, climate change implies that farmers are maladapted. Faster climate change means greater damages. The third part (fertilization) is always positive. CO2 fertilization means that plants grow faster and use less water. The second part (level) can be positive or negative. There is an optimal climate for agriculture. If climate change moves a region closer to (away from) the optimum, impacts are positive (negative); and impacts are smaller nearer to the optimum.

For the impact of the rate of climate change (i.e., the annual change of climate) on agriculture, the assumed model is:

\[A_{t,r}^{r} = \alpha_{r}\left( \frac{\Delta T_{t}}{0.04} \right)^{\beta} + \left( 1 - \frac{1}{\rho} \right)A_{t - 1,r}^{r}\qquad (\text{A.2})\]

where

  • \(A^{r}\) denotes damage in agricultural production as a fraction due the rate of climate change by time and region;
  • \(t\) denotes time;
  • \(r\) denotes region;
  • \(\Delta T\) denotes the change in the regional mean temperature (in degrees Celsius) between time \(t\) and \(t - 1\);
  • \(\alpha\) is a parameter, denoting the regional change in agricultural production for an annual warming of 0.04°C (see Table A, column 2-3);
  • \(\beta\) = 2.0 (1.5-2.5) is a parameter, equal for all regions, denoting the non-linearity of the reaction to temperature; \(\beta\) is an expert guess;
  • \(\rho\) = 10 (5-15) is a parameter, equal for all regions, denoting the speed of adaptation; \(\rho\) is an expert guess.

The model for the impact due to the level of climate change since 1990 is:

\[A_{t,r}^{l} = \delta_{r}^{l}T_{t} + \delta_{r}^{q}T_{t}^{2}\qquad (\text{A.3})\]

where

  • \(A^{l}\) denotes the damage in agricultural production as a fraction due to the level of climate change by time and region;
  • \(t\) denotes time;
  • \(r\) denotes region;
  • \(T\) denotes the change (in degree Celsius) in regional mean temperature relative to 1990;
  • \(\delta_{r}^{l}\) and \(\delta_{r}^{q}\) are parameters (see Table A), that follow from the regional change (in per cent) in agricultural production for a warming of 2.5°C above today or 3.2°C above pre-industrial and the the optimal temperature (in degree Celsius) for agriculture in each region.

CO2 fertilisation has a positive, but saturating effect on agriculture, specified by

\[A_{t,r}^{f} = \gamma_{r}\ln\frac{\text{CO}2_{t}}{275}\qquad (\text{A.4})\]

where

  • \(A^{f}\) denotes damage in agricultural production as a fraction due to the CO2 fertilisation by time and region;
  • \(t\) denotes time;
  • \(r\) denotes region;
  • \(CO2\) denotes the atmospheric concentration of carbon dioxide (in parts per million by volume);
  • 275 ppm is the pre-industrial concentration;
  • \(\gamma\) is a parameter (see Table A, column 8-9).

The parameters in Table A are calibrated, following the procedure described in Tol (2002a), to the results of Kane et al. (1992), Reilly et al. (1994), Morita et al. (1994), Fischer et al. (1996), and Tsigas et al. (1996). These studies all use a global computable general equilibrium model, and report results with and without adaptation, and with and without CO2 fertilisation. The regional results from these studies are assumed to hold for each country in the respective regions. They are averaged over the studies and the climate scenarios for each country, and aggregated to the FUND regions. The standard deviations in Table A follow from the spread between studies and scenarios. Equation (A.4) follows from the difference in results with and without CO2 fertilization. Equation (A.3) follows from the results with full adaptation. Equation (A.2) follows from the difference in results with and without adaptation.

Equations (A.1)-(A.4) express the impact of climate change as a percentage of agricultural production. In order to express this as a percentage of income, we need to know the share of agricultural production in total income. This is assumed to fall with per capita income, that is,

\[\frac{\text{GA}P_{t,r}}{Y_{t,r}} = \frac{\text{GA}P_{1990,r}}{Y_{1990,r}}\left( \frac{y_{1990,r}}{y_{t,r}} \right)^{\epsilon}\qquad (\text{A.5})\]

where

  • \(\text{GAP}\) denotes gross agricultural product (in 1995 US dollar per year) by time and region;
  • \(Y\) denotes gross domestic product (in 1995 US dollar per year) by time and region;
  • \(y\) denotes gross domestic product per capita (in 1995 US dollar per person per year) by time and region;
  • \(t\) denotes time;
  • \(r\) denotes region;
  • \(\epsilon\) = 0.31 (0.15-0.45) is a parameter; it is the income elasticity of the share of agriculture in the economy; it is taken from Tol (2002b), who regressed the regional share in agriculture on per capita income, using 1995 data from the World Resources Institute (http://earthtrends.wri.org).

5.2. Forestry

The model is:

\[F_{t,r} = \alpha_{r}\left( \frac{y_{t,r}}{y_{1990,r}} \right)^{\epsilon}\left( 0.5\left( \frac{T_{t}}{1.0} \right)^{\beta} + 0.5\gamma\ln\left( \frac{\text{CO}2_{t}}{275} \right) \right)\qquad (\text{F.1})\]

where

  • \(F\) denotes the change in forestry consumer and producer surplus (as a share of total income);
  • \(t\) denotes time;
  • \(r\) denotes region;
  • \(y\) denotes per capita income (in 1995 US dollar per person per year);
  • \(T\) denotes the global mean temperature (in degree centigrade);
  • \(\alpha\) is a parameter, that measures the impact of climate change of a 1ºC global warming on economic welfare; see Table EFW;
  • \(\epsilon\) = 0.31 (0.11-0.51) is a parameter, and equals the income elasticity for agriculture;
  • \(\beta\) = 1 (0.5-1.5) is a parameter; this is an expert guess;
  • \(\gamma\) = 0.44 (0.29-0.87) is a parameter; \(\gamma\) is such that a doubling of the atmospheric concentration of carbon dioxide would lead to a change of forest value of 15% (10-30%); this parameter is taken from Gitay et al., (2001).

The parameter \(\alpha\) is estimated as the average of the estimates by Perez-Garcia et al. (1995) and Sohngen et al. (2001). Perez-Garcia et al. (1995) present results for four different climate scenarios and two management scenarios, while Sohngen et al. (2001) use two different climate scenario and two alternative ecological scenarios. The results are mapped to the FUND regions assuming that the impact is uniform elative to GDP. The impact is averaged within the study results, and then the weighted average between the two studies is computed and shown in Table EFW. The standard deviation follows.

5.3. Water resources

The impact of climate change on water resources follows:

\[W_{t,r} = \min\left\{ \alpha_{r}Y_{1990,r}\left( 1 - \tau \right)^{t - 2000}\left( \frac{y_{t,r}}{y_{1990,r}} \right)^{\beta}\left( \frac{P_{t,r}}{P_{1990,r}} \right)^{\eta}\left( \frac{T_{t}}{1.0} \right)^{\gamma},\frac{Y_{t,r}}{10} \right\}\qquad (\text{W.1})\]

where

  • \(W\) denotes the change in water resources (in 1995 US dollar) at time \(t\) in region \(r\);
  • \(t\) denotes time;
  • \(r\) denotes region;
  • \(y\) denotes per capita income (in 1995 US dollar) at time \(t\) in region \(r\);
  • \(P\) denotes population at time \(t\) in region \(r\);
  • \(T\) denotes the global mean temperature above pre-industrial (in degree Celsius) at time \(t\);
  • \(\alpha\) is a parameter (in percent of 1990 GDP per degree Celsius) that specifies the benchmark impact; see Table EFW;
  • \(\beta\) = 0.85 (0.15, >0) is a parameter, that specifies how impacts respond to economic growth;
  • \(\eta\) = 0.85 (0.15,>0) is a parameter that specifies how impacts respond to population growth;
  • \(\gamma\) = 1 (0.5,>0) is a parameter, that determines the response of impact to warming;
  • \(\tau\) = 0.005 (0.005, >0) is a parameter, that measures technological progress in water supply and demand.

These parameters are from calibrating FUND to the results of Downing et al. (1995, 1996).

5.4. Energy consumption

For space heating, the model is:

\[SH_{t,r} = \frac{\alpha_{r}Y_{1990,r}\frac{\operatorname{atan}T_{t}}{\operatorname{atan}{1.0}}\left( \frac{y_{t,r}}{y_{1990,r}} \right)^{\epsilon}\left( \frac{P_{t,r}}{P_{1990,r}} \right)}{\prod_{s = 1990}^{t}{\text{AEE}I_{s,r}}}\qquad (\text{E.1})\]

where

  • \(\text{SH}\) denotes the decrease in expenditure on space heating (in 1995 US dollar) at time \(t\) in region \(r\);
  • \(\text{t\ }\)denotes time;
  • \(r\) denotes region;
  • \(Y\) denotes income (in 1995 US dollar) at time \(t\) in region \(r\);
  • \(T\) denotes the change in the global mean temperature relative to 1990 (in degree Celsius) at time \(t\);
  • \(y\) denotes per capita income (in 1995 US dollar per person per year) at time \(t\) in region \(r\);
  • \(P\) denotes population size at time \(t\) in region \(r\);
  • \(\alpha\) is a parameter (in dollar per degree Celsius), that specifies the benchmark impact; see Table EFW, column 6-7
  • \(\epsilon\) is a parameter; it is the income elasticity of space heating demand; \(\epsilon\) = 0.8 (0.1,>0,<1);
  • \(\text{AEEI}\) is a parameter (cf. Tables AEEI and Equation CO2.3); it is the Autonomous Energy Efficiency Improvement, measuring technological progress in energy provision; the global average value is about 1% per year in 1990, converging to 0.2% in 2200; its standard deviation is set at a quarter of the mean.

These parameters are from calibrating FUND to the results of Downing et al. (1995, 1996). Savings on space heating are assumed to saturate. The income elasticity of heating demand is taken from Hodgson and Miller (1995, cited in Downing et al., 1996), and estimated for the . Space heating demand is linear in the number of people for want of scenarios of number of households and house sizes. Energy efficiency improvements in space heating are assumed to be equal to the average energy efficiency improvements in the economy.

For space cooling, the model is:

\[SC_{t,r} = \frac{\alpha_{r}Y_{1990,r}\left( \frac{T_{t}}{1.0} \right)^{\beta}\left( \frac{y_{t,r}}{y_{1990,r}} \right)^{\epsilon}\left( \frac{P_{t,r}}{P_{1990,r}} \right)}{\prod_{s = 1990}^{t}{\text{AEE}I_{s,r}}}\qquad (\text{E.2})\]

where

  • \(\text{SC}\) denotes the increase in expenditure on space cooling (1995 US dollar) at time \(t\) in region \(r\);
  • \(t\) denotes time;
  • \(r\) denotes region;
  • \(Y\) denotes income (in 1995 US dollar) at time \(t\) in region \(r\);
  • \(T\) denotes the change in the global mean temperature relative to 1990 (in degree Celsius) at time \(t\);
  • \(y\) denotes per capita income (in 1995 US dollar per person per year) at time \(t\) in region \(r\);
  • \(P\) denotes population size at time \(t\) in region \(r\);
  • \(\alpha\) is a parameter (see Table EFW, column 8-9);
  • \(\beta\) is a parameter; \(\beta\) = 1.5 (1.0-2.0);
  • \(\epsilon\) is a parameter; it is the income elasticity of space heating demand; \(\epsilon\) = 0.8 (0.6-1.0);
  • \(\text{AEEI}\) is a parameter (cf. Tables AEEI and Equation CO2.3) ; it is the Autonomous Energy Efficiency Improvement, measuring technological progress in energy provision; the global average value is about 1% per year in 1990, converging to 0.2% in 2200; its standard deviation is set at a quarter of the mean.

These parameters are from calibrating FUND to the results of Downing et al. (1995, 1996). Space cooling is assumed to be more than linear in temperature because cooling demand accelerates as it gets warmer. The income elasticity of cooling demand is taken from Hodgson and Miller (1995, cited in Downing et al., 1996), and estimated for the . Space cooling demand is linear in the number of people for want of scenarios of number of households and house sizes. Energy efficiency improvements in space cooling are assumed to be equal to the average energy efficiency improvements in the economy.

5.5. Sea level rise

Table SLR shows the accumulated loss of drylands and wetlands for a one metre rise in sea level. The data are taken from Hoozemans et al. (1993), supplemented by data from Bijlsma et al. (1995), Leatherman and Nicholls (1995) and Nicholls and Leatherman (1995), following the procedures of Tol (2002a).

Potential cumulative dryland loss without protection is assumed to be a function of sea level rise:

\[{\overset{\overline{}}{\text{CD}}}_{t,r} = \min\left\lbrack \delta_{r}S_{t}^{\gamma_{r}},\zeta_{r} \right\rbrack\qquad (\text{SLR.1})\]

where

  • \({\overset{\overline{}}{\text{CD}}}_{t,r}\) is the potential cumulative dryland lost at time \(t\) in region \(r\) that would occur without protection;
  • \(t\) denotes time;
  • \(r\) denotes region;
  • \(\delta_{r}\) is the dryland loss due to one metre sea level rise (in square kilometre per metre) in region \(r\);
  • \(S_{t}\) is sea level rise above pre-industrial levels at time \(t\); note that is assumed to equal for all regions;
  • \(\gamma_{r}\) is a parameter, calibrated to a digital elevation model;
  • \(\zeta_{r}\) is the maximum dryland loss in region \(r\), which is equal to the area in the year 2000.

Potential dryland loss in the current year without protection is given by potential cumulative dryland loss without protection minus actual cumulative dryland lost in previous years:

\[{\overset{\overline{}}{D}}_{t,r} = {\overset{\overline{}}{\text{CD}}}_{t,r} - CD_{t - 1,r}\qquad (\text{SLR.2})\]

where

  • \({\overset{\overline{}}{D}}_{t,r}\) is potential dryland loss in year \(t\) and region \(r\) without protection;
  • \({\overset{\overline{}}{\text{CD}}}_{t,r}\) is the potential cumulative dryland lost at time \(t\) in region \(r\) that would occur without protection;
  • \(CD_{t,r}\) is the actual cumulative dryland lost at time \(t\) in region \(r\).

Actual dryland loss in the current year depends on the level of protection:

\[D_{t,r} = \left( 1 - P_{t,r} \right){\overset{\overline{}}{D}}_{t,r}\qquad (\text{SLR.3})\]

where

  • \(D_{t,r}\) is dryland loss in year \(t\) and region \(r\);
  • \(P_{t,r}\) is the fraction of the coastline protected in year \(t\) and region \(r\);
  • \({\overset{\overline{}}{D}}_{t,r}\) is potential dryland loss in year \(t\) and region \(r\) without protection.

Actual cumulative dryland loss is given by:

\[\text{CD}_{t,r} = CD_{t - 1,r} + D_{t,r}\qquad (\text{SLR.4})\]

where

  • \(CD_{t,r}\) is the actual cumulative dryland lost at time \(t\) in region \(r\);
  • \(D_{t,r}\) is dryland loss in year \(t\) and region \(r\).

The value of dryland is assumed to be linear in income density ($/km:sup:2):

\[VD_{t,r} = \varphi\left( \frac{\frac{Y_{t,r}}{A_{t,r}}}{YA_{0}} \right)^{\epsilon}\qquad (\text{SLR.5})\]

where

  • \(\text{VD}\) is the unit value of dryland (in million dollar per square kilometre) at time \(t\) in region \(r\);
  • \(t\) denotes time;
  • \(r\) denotes region;
  • \(Y\) is the total income (in billion dollar) at time \(t\) in region \(r\);
  • \(A\) is the area (in square kilometre) at time \(t\) of region \(r\);
  • \(\varphi\) is a parameter; \(\varphi\) = 4 (2,>0) million dollar per square kilometre (Darwin et al., 1995);
  • \(YA_{0}\) =0.635 (million dollar per square kilometre) is a normalisation constant, the average incomde density of the OECD in 1990;
  • \(\epsilon\) is a parameter, the income density elasticity of land value; \(\epsilon\) = 1 (0.25).

Wetland loss is assumed to be a linear function of sea level rise:

\[W_{t,r} = \omega_{r}^{S}\Delta S_{t} + \omega_{r}^{M}P_{t,r}\Delta S_{t}\qquad (\text{SLR.6})\]

where

  • \(W_{t,r}\) is the wetland lost at time \(t\) in region \(r\);
  • \(t\) denotes time;
  • \(r\) denotes region;
  • \(P_{t,r}\) is fraction of coast protected against sea level rise at time \(t\) in region \(r\);
  • \(\Delta S_{t}\) is sea level rise at time \(t\); note that is assumed to equal for all regions;
  • \(\omega^{S}\) is a parameter, the annual unit wetland loss due to sea level rise (in square kilometre per metre) in region \(r\); note that is assumed to be constant over time;
  • \(\omega^{M}\) is a parameter, the annual unit wetland loss due to coastal squeeze (in square kilometre per metre) in region \(r\); note that is assumed to be constant over time.

Cumulative wetland loss is given by

\[W_{t,r}^{C} = \min\left( W_{t - 1,r}^{C} + W_{t - 1,r},W_{r}^{M} \right)\qquad (\text{SLR.7})\]

where

  • \(W^{C}\) is cumulative wetland loss (in square kilometre) at time \(t\) in region \(r\)
  • \(W^{M}\) is a parameter, the total amount of wetland that is exposed to sea level rise; this is assumed to be smaller than the total amount of wetlands in 1990.

Wetland loss (SLR.6) goes to zero if all wetland threatened by sea-level rise in a region is lost.

Wetland value is assumed to increase with income and population density, and fall with wetland size:

\[VW_{t,r} = \alpha\left( \frac{y_{t,r}}{y_{0}} \right)^{\beta}\left( \frac{d_{t,r}}{d_{0}} \right)^{\gamma}\left( \frac{W_{1990,r} - W_{t,r}^{C}}{W_{1990,r}} \right)^{\delta}\qquad (\text{SLR.8})\]

where

  • \(\text{VW}\) is the wetland value (in dollar per square kilometre) at time \(t\) in region \(r\);
  • \(t\) denotes time;
  • \(r\) denotes region;
  • \(y\) is per capita income (in dollar per person per year) at time \(t\) in region \(r\);
  • \(d\) is population density (in person per square kilometre) at time \(t\) in region \(r\);
  • \(W^{C}\) is cumulative wetland loss (in square kilometre) at time \(t\) in region \(r\);
  • \(W_{1990}\) is the total amount of wetlands in 1990 in region \(r\);
  • \(\alpha\) is a parameter, the net present value of the future stream of wetland services; note that we thus account present and future wetland values in the year that the wetland is lost; \(\alpha = \alpha^{'}\frac{1 + \rho + \eta g_{t,r}}{\rho + \eta g_{t,r}} = \alpha^{'}\frac{1 + 0.03 + 1 \times 0.02}{0.03 + 1 \times 0.02} = 21\alpha^{'}\)
  • \(\alpha^{'}\) = 280,000 $/km2, with a standard deviation of 187,000 $/km2; \(\alpha\) is the average of the meta-analysis of Brander et al. (2006); the standard deviation is based on the coefficient of variation of the intercept in their analysis;
  • \(\beta\) is a parameter, the income elasticity of wetland value; \(\beta\) = 1.16 (0.46,>0); this value is taken from Brander et al. (2006);
  • \(y_{0}\) is a normalisation constant; \(y_{0}\) = 25,000 $/p/yr (Brander, personal communication);
  • \(d_{0}\) is a normalisation constant; \(d_{0}\) = 27.59;
  • \(\gamma\) is a parameter, the population density elasticity of wetland value; \(\gamma\) = 0.47 (0.12,>0,<1); this value is taken from Brander et al. (2006);
  • \(\delta\) is a parameter, the size elasticity of wetland value; \(\delta\) = -0.11 (0.05,>-1,<0); this value is taken from Brander et al. (2006);

If dryland gets lost, the people living there are forced to move. The number of forced migrants follows from the amount of land lost and the average population density in the region. The value of this is set at 3 (1.5,>0) times the regional per capita income per migrant (Tol, 1995). In the receiving country, costs equal 40% (20%,>0) of per capita income per migrant (Cline, 1992).

Table SLR displays the annual costs of fully protecting all coasts against a one metre sea level rise in a hundred years time. If sea level would rise slower, annual costs are assumed to be proportionally lower; that is, costs of coastal protection are linear in sea level rise. The level of protection, that is, the share of the coastline protected, is based on a cost-benefit analysis:

\[P_{t,r} = \max\left\{ 0,1 - \frac{1}{2}\left( \frac{\mathrm{\text{NPV}}VP_{t,r} + \mathrm{\text{NPV}}VW_{t,r}}{\mathrm{\text{NPV}}VD_{t,r}} \right) \right\}\qquad (\text{SLR.9})\]

where

  • \(P\) is the fraction of the coastline to be protected;
  • \(\mathrm{\text{NPV}}\text{VP}\) is the net present value of the protection if the whole coast is protected (defined below);
  • \(\mathrm{\text{NPV}}\text{VW}\) is the net present value of the wetland lost due to coastal squeeze if the whole coast is protected (defined below);
  • \(\mathrm{\text{NPV}}\text{VD}\) is the net present value of the land lost without any coastal protection (defined below).

Equation (SLR.9) is due to Fankhauser (1994). See below.

Table SLR reports average costs per year over the next century. \(\mathrm{\text{NPV}}\text{VP}\) is calculated assuming annual costs to be constant. This is based on the following. Firstly, the coastal protection decision makers anticipate a linear sea level rise. Secondly, coastal protection entails large infrastructural works which last for decades. Thirdly, the considered costs are direct investments only, and technologies for coastal protection are mature. Throughout the analysis, a pure rate of time preference, \(\rho\), of 1% per year is used. The actual discount rate lies thus 1% above the growth rate of the economy, \(g\). The net present costs of protection \(PC\) equal

\[\mathrm{\text{NPV}}VP_{t,r} = \sum_{s = t}^{\infty}{\left( \frac{1}{1 + \rho + \eta g_{t,r}} \right)^{s - t}\pi_{r}\Delta S_{t}} = \frac{1 + \rho + \eta g_{t,r}}{\rho + \eta g_{t,r}}\pi_{r}\Delta S_{t}\qquad (\text{SLR.10})\]

where

  • \(\mathrm{\text{NPV}}\text{VP}\) is the net present costs of coastal protection at time \(t\) in region \(r\);
  • \(t\) denotes time;
  • \(r\) denotes region;
  • \(\pi_{r}\) is the annual unit cost of coastal protection (in million dollar per vertical metre) in region \(r\); note that is assumed to be constant over time;
  • \(\Delta S_{t}\) is sea level rise at time \(t\); note that is assumed to equal for all regions;
  • \(g\) is the growth rate of per capita income at time \(t\) in region \(r\);
  • \(\rho\) is a parameter, the rate of pure time preference; \(\rho\) = 0.03;
  • \(\eta\) is a parameter, the consumption elasticity of marginal utility; \(\eta\) = 1;

\(\mathrm{\text{NPV}}\text{VW}\) is the net present value of the wetlands lost due to full coastal protection. Wetland values are assumed to rise in line with Equation (SLR.8). All growth rates and the rate of wetland loss are as in the current year. The net present costs of wetland loss \(\text{WL}\) follow from

\[\mathrm{\text{NPV}}VW_{t,r} = \sum_{s = t}^{\infty}{W_{t,r}VW_{s,r}\left( \frac{1}{1 + \rho + \eta g_{t,r}} \right)^{s - t}} = W_{t,r}VW_{t,r}\frac{1 + \rho + \eta g_{t,r}}{\rho + \eta g_{t,r} - \beta g_{t,r} - \gamma p_{t,r} - \delta w_{t,r}}\qquad (\text{SLR.11})\]

where

  • \(\mathrm{\text{NPV}}\text{VW}\) denotes the net present value of wetland loss. at time \(t\) in region \(r\);
  • \(t\) denotes time;
  • \(r\) denotes region;
  • \(\omega_{r}\) is the annual unit wetland loss due to full coastal protection (in square kilometre per metre sea level rise) in region \(r\); note that is assumed to be constant over time;
  • \(\Delta S_{t}\) is sea level rise at time \(t\); note that is assumed to equal for all regions;
  • \(g\) is the growth rate of per capita income at time \(t\) in region \(r\);
  • \(p\) is the population growth rate at time \(t\) in region \(r\);
  • \(w\) is the growth rate of wetland at time \(t\) in region \(r\); note that wetlands shrink, so that \(w < 0\);
  • \(\rho\) is a parameter, the rate of pure time preference; \(\rho\) = 0.03;
  • \(\eta\) is a parameter, the consumption elasticity of marginal utility; \(\eta\) = 1;
  • \(\beta\) is a parameter, the income elasticity of wetland value; \(\beta\) = 1.16 (0.46,>0); this value is taken from Brander et al. (2006);
  • \(\gamma\) is a parameter, the population density elasticity of wetland value; \(\gamma\) = 0.47 (0.12,>0,<1); this value is taken from Brander et al. (2006);
  • \(\delta\) is a parameter, the size elasticity of wetland value; \(\delta\) = -0.11 (0.05,>-1,<0); this value is taken from Brander et al. (2006);

\(\mathrm{\text{NPV}}\text{VD}\) denotes the net present value of the dryland lost if no protection takes place. Land values are assumed to rise at the rate of income growth. All growth rates and the rate of wetland loss are as in the current year. The net present costs of dryland loss are

\[\mathrm{\text{NPV}}VD_{t,r} = \sum_{s = t}^{\infty}{{\overset{\overline{}}{D}}_{t,r}VD_{t,r}\left( \frac{1 + \epsilon d_{t,r}}{1 + \rho + \eta g_{t,r}} \right)^{s - t}} = {\overset{\overline{}}{D}}_{t,r}VD_{t,r}\frac{1 + \rho + \eta g_{t,r}}{\rho + \eta g_{t,r} - \epsilon d_{t,r}}\qquad (\text{SLR.12})\]

where

  • \(\mathrm{\text{NPV}}\text{VD}\) is the net present value of dryland loss at time \(t\) in region \(r\);
  • \(t\) denotes time;
  • \(r\) denotes region;
  • \(\overset{\overline{}}{D}\) is the current dryland loss without protection at time \(t\) in region \(r\);
  • \(\text{VD}\) is the current dryland value;
  • \(g\) is the growth rate of per capita income at time \(t\) in region \(r\);
  • \(\rho\) is a parameter, the rate of pure time preference; \(\rho = 0.03\);
  • \(\eta\) is a parameter, the consumption elasticity of marginal utility; \(\eta = 1\);
  • \(\epsilon\) is a parameter, the income elasticity of dryland value; \(\epsilon = 1.0\), with a standard deviation of 0.2;
  • \(d\) is the current income density growth rate at time \(t\) in region \(r\).

Protection levels are bounded between 0 and 1.

5.6. Ecosystems

Tol (2002a) assesses the impact of climate change on ecosystems, biodiversity, species, landscape etcetera based on the “warm-glow” effect. Essentially, the value, which people are assumed to place on such impacts, are independent of any real change in ecosystems, of the location and time of the presumed change, etcetera – although the probability of detection of impacts by the “general public” is increasing in the rate of warming. This value is specified as

\[E_{t,r} = \alpha P_{t,r}\frac{\frac{y_{t,r}}{y_{r}^{b}}}{1 + \frac{y_{t,r}}{y_{r}^{b}}}\frac{\frac{\Delta T_{t}}{\tau}}{1 + \frac{\Delta T_{t}}{\tau}}\left( 1 - \sigma + \sigma\frac{B_{0}}{B_{t}} \right)\qquad (\text{E.1})\]

where

  • \(E\) denotes the value of the loss of ecosystems (in 1995 US dollar) at time \(t\) in region \(r\);
  • \(t\) denotes time;
  • \(r\) denotes region;
  • \(y\) denotes per capita income (in 1995 dollar per person per year) at time \(t\) in region \(r\);
  • \(P\) denotes population size (in millions) at time \(t\) in region \(r\);
  • \(\Delta T\) denotes the change in temperature (in degree Celsius);
  • \(B\) is the number of species, which makes that the value increases as the number of species falls – using Weitzman’s (1998) ranking criterion and Weitzman’s (1992, 1993) biodiversity index, the scarcity value of biodiversity is inversely proportional to the number of species;
  • \(\alpha\)=50 (0-100, >0) is a parameter such that the value equals $50 per person if per capita income equals the OECD average in 1990 (Pearce and Moran, 1994);
  • \(y^{b}\) = is a parameter; \(y^{b}\) = $30,000, with a standard deviation of $10,000; it is normally distributed, but knotted at zero.
  • \(\tau\)=0.025ºC is a parameter;
  • \(\sigma\)=0.05 (triangular distribution,>0,<1) is a parameter, based on an expert guess; and
  • \(B_{0}\) =14,000,000 is a parameter.

The number of species follows

\[B_{t} = \max\left\{ \frac{B_{0}}{100},B_{t - 1}\left( 1 - \rho - \gamma\frac{\Delta T^{2}}{\tau^{2}} \right) \right\}\qquad (\text{E.2})\]

where

  • \(\rho\) = 0.003 (0.001-0.005, >0.0) is a parameter;
  • \(\gamma\) = 0.001 (0.0-0.002, >0.0) is a parameter; and

These parameters are expert guesses. The number of species is assumed to be constant until the year 2000 at 14,000,000 species.

5.7. Human health: Diarrhoea

The number of additional diarrhoea deaths \(D_{t,r}^{d}\) in region \(r\) and time \(t\) is given by

\[D_{t,r}^{d} = \mu_{r}^{d}P_{t,r}\left( \frac{y_{t,r}}{y_{1990,r}} \right)^{\epsilon}\left( \frac{T_{t,r}}{T_{\mathrm{pre - industrial},r}} \right)^{\eta}\qquad (\text{HD.1})\]

where

  • \(P_{t,r}\) denotes population,
  • \(r\) indexes region
  • \(t\) indexes time,
  • \(y_{t,r}\) is the per capita income in region \(r\) and year \(t\) in 1995 US dollars,
  • \(T_{t,r}\) is regional temperature in year \(t\), in degrees Celcius (C);
  • \(\mu_{r}^{d}\) is the rate of mortality from diarrhoea in 2000 in region \(r\), taken from the WHO Global Burden of Disease (see Table HD, column 3);
  • \(\epsilon\) = -1.58 (0.23)is the income elasticity of diarrhoea mortality
  • \(\eta\) = 1.14 (0.51) is a parameter, the degree of non-linearity of the response of diarrhoea mortality to regional warming.

Equation (HD.1), specifically parameters \(\epsilon\) and \(\eta\), was estimated based on the WHO Global Burden of Diseases data (http://www.who.int/health_topics/global_burden_of_disease/en/). Diarrhoea morbidity has the same equation as mortality, but with \(\epsilon\)=-0.42 (0.12) and \(\eta\)=0.70 (0.26); base morbidity is given in Table HD, column 4. Table HD gives impact estimates, ignoring economic and population growth.

See section 5.12. for a description of the valuation of mortality and morbidity.

5.8. Human health: Vector-borne diseases

The number of additional deaths from vector-borne diseases, \(D_{t,r}^{v}\) is given by:

\[D_{t,r}^{v} = D_{1990,r}^{v}\alpha_{r}^{v}T_{t}^{\beta}\left( \frac{y_{t,r}}{y_{1990,r}} \right)^{\gamma}\qquad (\text{HV})\]

where

  • \(D_{t,r}^{v}\) denotes climate-change-induced mortality due to disease \(v\) in region \(r\) at time \(t\);
  • \(D_{1990,r}^{v}\) denotes mortality from vector-borne diseases in region \(r\) in 1990 (see Table HV, column “base”);
  • \(t\) denotes time;
  • \(r\) denotes region;
  • \(v\) denotes vector-borne disease (malaria, schistosomiasis, dengue fever);
  • \(\alpha\) is a parameter, indicating the benchmark impact of climate change on vector-borne diseases (see Table HV, column “impact”); the best guess is the average of Martin and Lefebvre (1995), Martens et al. (1995, 1997) and Morita et al. (1995), while the standard deviation is the spread between models and the scenarios.
  • \(y_{t,r}\) denotes per capita income;
  • \(T_{t}\) denotes the mean temperature in year \(t\), in degrees Celcius (C);
  • \(\beta\) = 1.0 (0.5) is a parameter, the degree of non-linearity of mortality in warming; the parameter is calibrated to the results of Martens et al. (1997);
  • \(\gamma\) = -2.65 (0.69) is the income elasticity of vector-borne mortality, taken from Link and Tol (2004), who regress malaria mortality on income for the 14 WHO regions..

See section 5.12. for a description of the valuation of mortality and morbidity. Morbidity is proportional to mortality, using the factor specified in Table HM.

5.9. Human health: Cardiovascular and respiratory mortality

Cardiovascular and respiratory disorders are worsened by both extreme cold and extreme hot weather. Martens (1998) assesses the increase in mortality for 17 countries. Tol (2002a) extrapolates these findings to all other countries, based on formulae of the shape:

\[D^{c} = \alpha^{c} + \beta^{c}T_{B}\qquad (\text{HC.1})\]

where

  • \(D^{c}\) denotes the change in mortality (in deaths per 100,000 people) due to a one degree global warming;
  • \(c\) indexes the disease (heat-related cardiovascular under 65, heat-related cardiovascular over 65, cold-related cardiovascular under 65, cold-related cardiovascular over 65, respiratory);
  • \(T_{B}\) is the current temperature of the hottest or coldest month in the country (in degree Celsius);
  • \(\alpha\) and \(\beta\) are parameters, specified in Table HC.1.

Equation (HC.1) is specified for populations above and below 65 years of age for cardiovascular disorders. Cardiovascular mortality is affected by both heat and cold. In the case of heat, \(T_{B}\) denotes the average temperature of the warmest month. In the case of cold, \(T_{B}\) denotes the average temperature of the coldest month. Respiratory mortality is not age-specific.

Equation (HC.1) is readily extrapolated. With warming, the baseline temperature \(T_{B}\) changes. If this change is proportional to the change in the global mean temperature, the equation becomes quadratic. Summing country-specific quadratic functions results in quadratic functions for the regions:

\[D_{t,r}^{c} = \alpha_{r}^{c}T_{t} + \beta_{r}^{c}T_{t}^{2}\qquad (\text{HC.2})\]

where

  • \(D_{t,r}^{c}\) denotes climate-change-induced mortality (in deaths per 100,000 people) due to disease \(c\) in region \(r\) at time \(t\);
  • \(c\) indexes the disease (heat-related cardiovascular under 65, heat-related cardiovascular over 65, cold-related cardiovascular under 65, cold-related cardiovascular over 65, respiratory);
  • \(r\) indexes region;
  • \(t\) indexes time;
  • \(T_{t}\) denotes the mean temperature in year \(t\), in degrees Celcius (C);
  • \(\alpha\) and \(\beta\) are parameters, specified in Tables HC.2-4 (in probabilistic mode all probablitiy distributions are constrained so that only values with the same sign as the mean can be sampled).

One problem with (HC.2) is that it is a non-linear extrapolation based on a data-set that is limited to 17 countries and, more importantly, a single climate change scenario. A global warming of 1°C leads to changes in cardiovascular and respiratory mortality in the order of magnitude of 1% of baseline mortality due to such disorders. Per cause, the total change in mortality is restricted to a maximum of 5% of baseline mortality, an expert guess. This restriction is binding. Baseline cardiovascular and respiratory mortality derives from the share of the population above 65 in the total population.

If the fraction of people over 65 increases by 1%, cardiovascular mortality increases by 0.0259% (0.0096%). For respiratory mortality, the change is 0.0016% (0.0005%). These parameters are estimated from the variation in population above 65 and cardiovascular and respiratory mortality over the nine regions in 1990, using data from http://www.who.int/health_topics/global_burden_of_disease/en/.

Mortality as in equations (HC.1) and (HC.2) is expressed as a fraction of population size. Cardiovascular mortality, however, is separately specified for younger and older people. In 1990, the per capita income elasticity of the share of the population over 65 is 0.25 (0.08). This is estimated using data from http://earthtrends.wri.org

Heat-related mortality is assumed to be limited to urban populations. Urbanisation is a function of per capita income and population density:

\[U_{t,r} = \frac{\alpha\sqrt{y_{t,r}} + \beta\sqrt{PD_{t,r}}}{1 + \alpha\sqrt{y_{t,r}} + \beta\sqrt{PD_{t,r}}}\qquad (\text{HC.3})\]

where

  • \(U\) is the fraction of people living in cities;
  • \(y\) is per capita income (in 1995 $ per person per year);
  • \(\text{PD}\) is population density (in people per square kilometre);
  • \(t\) is time;
  • \(r\) is region;
  • \(\alpha\) and \(\beta\) are parameters, estimated from a cross-section of countries for the year 1995, using data from http://earthtrends.wri.org; \(\alpha\)=0.031 (0.002) and \(\beta\)=-0.011 (0.005); R2=0.66.

See section 5.12. for a description of the valuation of mortality and morbidity. Morbidity is proportional to mortality, using the factor specified in Table HM.

5.10. Extreme weather: Tropical storms

The economic damage \(TD\) due to an increase in the intensity of tropical storms (hurricanes, typhoons) follows

\[TD_{t,r} = \alpha_{r}Y_{t,r}\left( \frac{y_{t,r}}{y_{1990,r}} \right)^{\epsilon}\left\lbrack \left( 1 + \delta T_{t,r} \right)^{\gamma} - 1 \right\rbrack\qquad (\text{TS.1})\]

where

  • \(t\) denotes time;
  • \(r\) denotes region
  • \(\text{TD}\) is the damage due to tropical storms (1995 $ per year) in region \(r\) at time \(t\);
  • \(Y\) is the gross domestic product (in 1995 $ per year) in region \(r\) at time \(t\);
  • \(\alpha\) is the current damage as fraction of GDP, specified in Table TS; the data are from the CRED EM-DAT database; http://www.emdat.be/;
  • \(y\) is per capita income (in 1995 $ per person per year) in region \(r\) at time \(t\);
  • \(\epsilon\) is the income elasticity of storm damage; \(\epsilon\) = -0.514 (0.027;>-1,<0) after Toya and Skidmore (2007);
  • \(\delta\) is a parameter, indicating how much wind speed increases per degree warming; \(\delta\)=0.04/ºC (0.005) after WMO (2006);
  • \(T\) is the temperature increase since pre-industrial times (in degree Celsius) in region \(r\) at time \(t\);
  • \(\gamma\) is a parameter; \(\gamma\)=3 because the power of the wind in the cube of its speed.

The mortality \(\text{TM}\) due to an increase in the intensity of tropical storms (hurricanes, typhoons) follows

\[TM_{t,r} = \beta_{r}P_{t,r}\left( \frac{y_{t,r}}{y_{1990,r}} \right)^{\eta}\left\lbrack \left( 1 + \delta T_{t,r} \right)^{\gamma} - 1 \right\rbrack\qquad (\text{TS.2})\]

where

  • \(t\) denotes time;
  • \(r\) denotes region
  • \(\text{TM}\) is the mortality due to tropical storms (in people per year) in region \(r\) at time \(t\);
  • \(P\) is the population (in people) in region \(r\) at time \(t\);
  • \(\beta\) is the current mortality (as a fraction of population), specified in Table TS; the data are from the CRED EM-DAT database; http://www.emdat.be/;
  • \(y\) is per capita income (in 1995 $ per person per year) in region \(r\) at time \(t\);
  • \(\eta\) is the income elasticity of storm damage; \(\eta\) = -0.501 (0.051;<0) after Toya and Skidmore (2007);
  • \(\delta\) is parameter, indicating how much wind speed increases per degree warming; \(\delta\)=0.04/ºC (0.005) after WMO (2006);
  • \(T\) is the temperature increase since pre-industrial times (in degree Celsius) in region \(r\) at time \(t\);
  • \(\gamma\) is a parameter; \(\gamma\)=3 because the power of the wind in the cube of its speed.

See section 5.12. for a description of the valuation of mortality and morbidity.

5.11. Extreme weather: Extratropical storms

The economic damage due to an increase in the intensity of extratropical storms follows the equation below:

\[\text{ET}D_{t,r} = \alpha_{r}Y_{t,r}\left( \frac{y_{t,r}}{y_{1990,r}} \right)^{\epsilon}\delta_{r}\left\lbrack \left( \frac{C_{CO2,t}}{C_{CO2,pre}} \right)^{\gamma} - 1 \right\rbrack\qquad (\text{ETS.1})\]

where

  • \(\text{ET}D_{t,r}\) is the damage from extratropical cyclones at time \(t\) in region \(r\);
  • \(Y_{t,r}\) is GDP in region \(r\) and time \(t\);
  • \(\alpha_{r}\) is benchmark damage from extratropical cyclones for region \(r\);
  • \(y\) is per capita income at time \(t\) in region \(r\);
  • \(\epsilon\)=-0.514(0.027,>-1,<0) is the income elasticity of extratropical storm damages (Toya and Skidmore 2007);
  • \(\delta_{r}\) is the storm sensitivity to atmospheric CO2 concentrations for region \(r\);
  • \(C_{CO2,t}\) is atmospheric CO2 concentrations;
  • \(C_{CO2,pre}\) is the CO2 concentrations in the pre-industrial era;
  • \(\gamma\)=1 is a parameter.
\[\text{ET}M_{t,r} = \beta_{r}P_{t,r}\left( \frac{y_{t,r}}{y_{1990,r}} \right)^{\varphi}\delta_{r}\left\lbrack \left( \frac{C_{CO2,t}}{C_{CO2,pre}} \right)^{\gamma} - 1 \right\rbrack\qquad (\text{EST.2})\]

where

  • \(\text{ET}M_{t,r}\) is the mortality from extratropical cyclones at time \(t\) in region \(r\);
  • \(P_{t,r}\) is population in region \(r\) and time \(t\);
  • \(\beta_{r}\) is benchmark mortality from extratropical cyclones for region \(r\);
  • \(y\) is per capita income at time \(t\) in region \(r\);
  • \(\varphi\)=-0.501(0.051,>-1,<0) is the income elasticity of extratropical storm mortality (Toya and Skidmore 2007);
  • \(\delta_{r}\) is the storm sensitivity to atmospheric CO2 concentrations for region \(r\);
  • \(C_{CO2,t}\) is atmospheric CO2 concentrations;
  • \(C_{CO2,pre}\) is the CO2 concentrations in the pre-industrial era;
  • \(\gamma\)=1 is a parameter.

See section 5.12. for a description of the valuation of mortality and morbidity.

5.12. Mortality and Morbidity

The value of a statistical life is given by

\[\text{VS}L_{t,r} = \alpha\left( \frac{y_{t,r}}{y_{0}} \right)^{\epsilon}\qquad (\text{MM.1})\]

where

  • \(\text{VSL}\) is the value of a statistical life at time \(t\) in region \(r\);
  • \(\alpha\)=4992523 (2496261,>0) is a parameter;
  • \(y\) is per capita income at time \(t\) in region \(r\);
  • \(y_{0}\) =24963 is a normalisation constant;
  • \(\epsilon\)=1 (0.2,>0) is the income elasticity of the value of a statistical life;

This calibration results in a best guess value of a statistical life that is 200 times per capita income (Cline, 1992).

The value of a year of morbidity is given by

\[VM_{t,r} = \beta\left( \frac{y_{t,r}}{y_{0}} \right)^{\eta}\qquad (\text{MM.2})\]

where

  • \(\text{VM}\) is the value of a statistical life at time \(t\) in region \(r\);
  • \(\beta\)= 19970 (29955,>0) is a parameter;
  • \(y\) is per capita income at time \(t\) in region \(r\);
  • \(y_{0}\)=24963 is a normalisation constant;
  • \(\eta\)=1 (0.2,>0) is the income elasticity of the value of a year of morbidity;

This calibration results in a best guess value of a year of morbidity that is 0.8 times per capita income (Navrud, 2001).

Acknowledgements

We thank Adriana Ciccone for helpful comments on this documentation.

References

Nakicenovic, N. and R.J. Swart (eds.) (2001), IPCC Special Report on Press, .

Bijlsma, L., C.N.Ehler, R.J.T.Klein, S.M.Kulshrestha, R.F.McLean, N.Mimura, R.J.Nicholls, L.A.Nurse, H.Perez Nieto, E.Z.Stakhiv, R.K.Turner, and R.A.Warrick (1996), ‘Coastal Zones and Small Islands’, in Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses – Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change, 1 edn, R.T. Watson, M.C. Zinyowera, and R.H. Moss (eds.), Cambridge University Press, Cambridge, pp. 289-324.

Cline, W.R. (1992), The Economics of Global Warming Institute for International Economics,

Darwin, R.F., M.Tsigas, J.Lewandrowski, and A.Raneses (1996), ‘Land use and cover in ecological economics’, Ecological Economics, 17, 157-181.

Darwin, R.F., M.Tsigas, J.Lewandrowski, and A.Raneses (1995), World Agriculture and Climate Change - Economic Adaptations, U.S. Department of Agriculture, Washington, D.C., 703.

Downing, T.E., N.Eyre, R.Greener, and D.Blackwell (1996), Full Fuel Cycle Study: Evaluation of the Global Warming Externality for Fossil Fuel Cycles with and without CO2 Abatament and for Two Reference Scenarios, Environmental Change Unit, University of Oxford, Oxford.

Downing, T.E., R.A.Greener, and N.Eyre (1995), The Economic Impacts of Climate Change: Assessment of Fossil Fuel Cycles for the ExternE Project, and Lonsdale, Environmental Change Unit and Eyre Energy Environment.

Fankhauser, S. (1994), ‘Protection vs. Retreat – The Economic Costs of Sea Level Rise’, Environment and Planning A, 27, 299-319.

Fischer, G., K.Frohberg, M.L.Parry, and C.Rosenzweig (1993), ‘Climate Change and World Food Supply, Demand and Trade’, in Costs, Impacts, and Benefits of CO:sub:`2` Mitigation, Y. Kaya et al. (eds.), pp. 133-152.

Fischer, G., K.Frohberg, M.L.Parry, and C.Rosenzweig (1996), ‘Impacts of Potential Climate Change on Global and Regional Food Production and Vulnerability’, in Climate Change and World Food Security, T.E. Downing (ed.), Springer-Verlag, Berlin, pp. 115-159.

Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz and R. V. Dorland (2007). Changes in Atmospheric Constituents and in Radiative Forcing. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon, D. Qin, M. Manning et al. Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press.

Gitay, H., S.Brown, W.Easterling, B.P.Jallow, J.M.Antle, M.Apps, R.Beamish, T.Chapin, W.Cramer, J.Frangi, J.Laine, E.Lin, J.J.Magnuson, I.Noble, J.Price, T.D.Prowse, T.L.Root, E.-D.Schulze, O.Sitotenko, B.L.Sohngen, and J.-F.Soussana (2001), ‘Ecosystems and their Goods and Services’, in Climate Change 2001: Impacts, Adaptation and Vulnerability – Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change, J.J. McCarthy et al. (eds.), Cambridge University Press, Cambridge, pp. 235-342.

Goulder, L.H. and S.H.Schneider (1999), ‘Induced technological change and the attractiveness of CO2 abatement policies’, Resource and Energy Economics, 21, 211-253.

Goulder, L.H. and K.Mathai (2000), ‘Optimal CO2 Abatement in the Presence of Induced Technological Change’, Journal of Environmental Economics and Management, 39, 1-38.

Hammitt, J.K., R.J.Lempert, and M.E.Schlesinger (1992), ‘A Sequential-Decision Strategy for Abating Climate Change’, Nature, 357, 315-318.

Hodgson, D. and K. Miller (1995), ‘Modelling UK Energy Demand’ in T. Barker, P. Ekins and N. Johnstone (eds.), Global Warming and Energy Demand, Routledge, London.

Hoozemans, F.M.J., M.Marchand, and H.A.Pennekamp (1993), A Global Vulnerability Analysis: Vulnerability Assessment for Population, Coastal Wetlands and Rice Production and a Global Scale (second, revised edition), Delft Hydraulics, .

Hourcade, J.-C., K.Halsneas, M.Jaccard, W.D.Montgomery, R.G.Richels, J.Robinson, P.R.Shukla, and P.Sturm (1996), ‘A Review of Mitigation Cost Studies’, in Climate Change 1995: Economic and Social Dimensions – Contribution of Working Group III to the Second Assessment Report of the Intergovernmental Panel on Climate Change, J.P. Bruce, H. Lee, and E.F. Haites (eds.), Cambridge University Press, Cambridge, pp. 297-366.

Hourcade, J.-C., P.R.Shukla, L.Cifuentes, D.Davis, J.A.Edmonds, B.S.Fisher, E.Fortin, A.Golub, O.Hohmeyer, A.Krupnick, S.Kverndokk, R.Loulou, R.G.Richels, H.Segenovic, and K.Yamaji (2001), ‘Global, Regional and National Costs and Ancillary Benefits of Mitigation’, in Climate Change 2001: Mitigation – Contribution of Working Group III to the Third Assessment Report of the Intergovernmental Panel on Climate Change, O.R. Davidson and B. Metz (eds.), Cambridge University Press, Cambridge, pp. 499-559.

IMAGE Team (2001), The IMAGE 2.2 Implementation of the SRES Scenarios: A Comprehensive Analysis of Emissions, Climate Change, and Impacts in the 21st Century, National Institute for Public Health and the Environment, Bilthoven, 481508018.

Kane, S., J.M.Reilly, and J.Tobey (1992), ‘An Empirical Study of the Economic Effects of Climate Change on World Agriculture’, Climatic Change, 21, 17-35.

Kattenberg, A., F.Giorgi, H.Grassl, G.A.Meehl, J.F.B.Mitchell, R.J.Stouffer, T.Tokioka, A.J.Weaver, and T.M.L.Wigley (1996), ‘Climate Models - Projections of Future Climate’, in Climate Change 1995: The Science of Climate Change – Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change, 1 edn, J.T. Houghton et al. (eds.), Cambridge University Press, Cambridge, pp. 285-357.

Leatherman, S.P. and R.J.Nicholls (1995), ‘Accelerated Sea-Level Rise and Developing Countries: An Overview’, Journal of Coastal Research, 14, 1-14.

Leggett, J., W.J.Pepper, and R.J.Swart (1992), ‘Emissions Scenarios for the IPCC: An Update’, in Climate Change 1992 - The Supplementary Report to the IPCC Scientific Assessment, 1 edn, vol. 1 J.T. Houghton, B.A. Callander, and S.K. Varney (eds.), Cambridge University Press, Cambridge, pp. 71-95.

Link, P.M. and R.S.J. Tol (2004), ‘Possible Economic Impacts of a Shutdown of the Thermohaline Circulation: An Application of FUND’, Portuguese Economic Journal, 3, 99-114.

Maier-Reimer, E. and K.Hasselmann (1987), ‘Transport and Storage of Carbon Dioxide in the Ocean: An Inorganic Ocean Circulation Carbon Cycle Model’, Climate Dynamics, 2, 63-90.

Martens, W.J.M. (1998), ‘Climate Change, Thermal Stress and Mortality Changes’, Social Science and Medicine, 46, (3), 331-344.

Martens, W.J.M., T.H. Jetten, J. Rotmans and L.W. Niessen (1995). Climate Change and Vector-Borne Diseases – A Global Modelling Perspective. Global Environmental Change 5 (3):195-209.

Martens, W.J.M., T.H. Jetten and D.A. Focks (1997). Sensitivity of Malaria, Schistosomiasis and Dengue to Global Warming. Climatic Change 35 145-156.

Martin, P.H. and M.G. Lefebvre (1995). Malaria and Climate: Sensitivity of Malaria Potential Transmission to Climate. Ambio 24 (4):200-207.

Mendelsohn, R.O., Schlesinger M.E., Williams L.J. (2000) Comparing impacts across climate models. Integr Assess 1:37–48. doi:10.1023/A:1019111327619

Morita, T., M.Kainuma, H.Harasawa, K.Kai, L.Dong-Kun, and Y.Matsuoka (1994), Asian-Pacific Integrated Model for Evaluating Policy Options to Reduce Greenhouse Gas Emissions and Global Warming Impacts, National Institute for Environmental Studies, Tsukuba.

Navrud, S. (2001), ‘Valuing Health Impacts from Air Pollution in ‘, Environmental and Resource Economics, 20, (4), 305-329.

Nicholls, R.J. and S.P.Leatherman (1995), ‘The Implications of Accelerated Sea-Level Rise for Developing Countries: A Discussion’, Journal of Coastal Research, 14, 303-323.

Pearce, D.W. and D.Moran (1994), The Economic Value of Biodiversity EarthScan, .

Perez-Garcia, J., Joyce, L. A., Binkley, C. S., & McGuire, A. D. “Economic Impacts of Climatic Change on the Global Sector: An Integrated Ecological/Economic Assessment”, Bergendal.

Ramaswamy, V., O.Boucher, J.Haigh, D.Hauglustaine, J.Haywood, G.Myhre, T.Nakajima, G.Y.Shi, and S.Solomon (2001), ‘Radiative Forcing of Climate Change’, in Climate Change 2001: The Scientific Basis – Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, J.T. Houghton and Y. Ding (eds.), Cambridge University Press, Cambridge, pp. 349-416.

Reilly, J.M., N.Hohmann, and S.Kane (1994), ‘Climate Change and Agricultural Trade: Who Benefits, Who Loses?’, Global Environmental Change, 4, (1), 24-36.

Sohngen, B.L., R.O.Mendelsohn, and R.A.Sedjo (2001), ‘A Global Model of Climate Change Impacts on Timber Markets’, Journal of Agricultural and Resource Economics, 26, (2), 326-343.

Tol, R.S.J. (2002), ‘Estimates of the Damage Costs of Climate Change - Part 1: Benchmark Estimates’, Environmental and Resource Economics, 21, 47-73.

Tol, R.S.J. (2002), ‘Estimates of the Damage Costs of Climate Change - Part II: Dynamic Estimates’, Environmental and Resource Economics, 21, 135-160.

Tol, R.S.J. (1995), ‘The Damage Costs of Climate Change Toward More Comprehensive Calculations’, Environmental and Resource Economics, 5, 353-374.

Toya, H. and M. Skidmore (2007), ‘Economic Development and the Impact of Natural Disasters’, Economics Letters, 94, 20-25.

, , G.B.Frisvold, and B.Kuhn (1996), ‘Global Climate Change in Agriculture’, in Global Trade Analysis: Modelling and Applications, T.W. Hertel (ed.), Press, .

USEPA (2003), International Analysis of Methane and Nitrous Oxide Abatement Opportunities: Report to Energy Modeling Forum, Working Group 21, Environmental , D.C..

Weitzman, M.L. (1992), ‘On Diversity’, Quarterly Journal of Economics, 364-405.

Weitzman, M.L. (1998), ‘The Noah’s Problem’, Econometrica, 66, (6), 1279-1298.

Weitzman, M.L. (1993), ‘What to preserve? An application of diversity theory to crane conservation’, Quarterly Journal of Economics, 157-183.

Weyant, J.P. (2004), ‘Introduction and overview’, Energy Economics, 26, 501-515.

Weyant, J.P., F.C.de la Chesnaye, and G.J.Blanford (2006), ‘Overview of EMF-21: Multigas Mitigation and Climate Policy’, Energy Journal (Multi-Greenhouse Gas Mitigation and Climate Policy Special Issue), 1-32.

WMO (2006), Summary Statement on Tropical Cyclones and Climate Change, World Meteorological Organization. http://www.wmo.ch/pages/prog/arep/tmrp/documents/iwtc_summary.pdf

Tables

Code Name Countries
USA USA United States of America
CAN Canada Canada
WEU Western Europe Andorra, Austria, Belgium, Cyprus, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Liechtenstein, Luxembourg, Malta, Monaco, Netherlands, Norway, Portugal, San Marino, Spain, Sweden, Switzerland, United Kingdom
JPK Japan and South Korea Japan, South Korea
ANZ Australia and New Zealand Australia, New Zealand
CEE Central and Eastern Europe Albania, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Hungary, FYR Macedonia, Poland, Romania, Slovakia, Slovenia, Yugoslavia
FSU Former Soviet Union Armenia, Azerbaijan, Belarus, Estonia, Georgia, Kazakhstan, Kyrgyzstan, Latvia, Lithuania, Moldova, Russia, Tajikistan, Turkmenistan, Ukraine, Uzbekistan
MDE Middle East Bahrain, Iran, Iraq, Israel, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, Syria, Turkey, United Arab Emirates, West Bank and Gaza, Yemen
CAM Central America Belize, Costa Rica, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panama
SAM South America Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, French Guiana, Guyana, Paraguay, Peru, Suriname, Uruguay, Venezuela
SAS South Asia Afghanistan, Bangladesh, Bhutan, India, Nepal, Pakistan, Sri Lanka
SEA Southeast Asia Brunei, Cambodia, East Timor, Indonesia, Laos, Malaysia, Myanmar, Papua New Guinea, Philippines, Singapore, Taiwan, Thailand, Vietnam
CHI China plus China, Hong Kong, North Korea, Macau, Mongolia
NAF North Africa Algeria, Egypt, Libya, Morocco, Tunisia, Western Sahara
SSA Sub-Saharan Africa Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Cape Verde, Central African Republic, Chad, Congo-Brazzaville, Congo- Kinshasa, Cote d’Ivoire, Djibouti, Equatorial Guinea, Eritrea, Ethiopia, Gabon, Gambia, Ghana, Guinea, Guinea- Bissau, Kenya, Lesotho, Liberia, Madagascar, Malawi, Mali, Mauritania, Mozambique, Namibia, Niger, Nigeria, Rwanda, Senegal, Sierra Leone, Somalia, South Africa, Sudan, Swaziland, Tanzania, Togo, Uganda, Zambia, Zimbabwe
SIS Small Island States Antigua and Barbuda, Aruba, Bahamas, Barbados, Bermuda, Comoros, Cuba, Dominica, Dominican Republic, Fiji, French Polynesia, Grenada, Guadeloupe, Haiti, Jamaica, Kiribati, Maldives, Marshall Islands, Martinique, Mauritius, Micronesia, Nauru, Netherlands Antilles, New Caledonia, Palau, Puerto Rico, Reunion, Samoa, Sao Tome and Principe, Seychelles, Solomon Islands, St Kitts and Nevis, St Lucia, St Vincent and Grenadines, Tonga, Trinidad and Tobago, Tuvalu, Vanuatu, Virgin Islands

Table: Table R: The regions in FUND

Year USA CAN WEU JPK ANZ EEU FSU MDE CAM SAM SAS SEA CHI NAF SSA SIS
1950 0.57 0.44 0.79 0.60 0.49 0.70 0.62 0.25 0.27 0.33 0.34 0.35 0.43 0.31 0.28 0.43
1960 0.67 0.57 0.84 0.69 0.61 0.79 0.74 0.32 0.36 0.43 0.42 0.43 0.51 0.39 0.34 0.52
1970 0.75 0.68 0.91 0.79 0.73 0.86 0.83 0.43 0.50 0.56 0.53 0.55 0.65 0.50 0.44 0.64
1980 0.83 0.79 0.94 0.89 0.81 0.94 0.91 0.58 0.66 0.70 0.67 0.69 0.78 0.64 0.58 0.75
1990 0.91 0.89 0.97 0.96 0.87 0.99 0.99 0.80 0.82 0.85 0.83 0.85 0.90 0.82 0.77 0.87
2000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2010 1.06 1.06 1.01 1.07 1.11 1.01 1.00 1.23 1.15 1.13 1.16 1.15 1.09 1.23 1.27 1.13
2020 1.07 1.08 1.02 1.16 1.19 1.01 1.01 1.47 1.26 1.24 1.30 1.29 1.16 1.50 1.55 1.23
2030 1.08 1.09 1.03 1.20 1.24 1.02 1.01 1.67 1.34 1.32 1.42 1.41 1.20 1.75 1.80 1.31
2040 1.08 1.09 1.03 1.23 1.27 1.02 1.01 1.82 1.41 1.39 1.53 1.51 1.24 1.96 2.01 1.38
2050 1.07 1.08 1.02 1.25 1.30 1.01 1.01 1.94 1.47 1.44 1.64 1.61 1.26 2.14 2.20 1.43
2060 1.07 1.08 1.02 1.27 1.31 1.01 1.01 2.04 1.50 1.48 1.72 1.70 1.27 2.31 2.37 1.47
2070 1.06 1.07 1.01 1.28 1.32 1.00 1.00 2.15 1.54 1.52 1.81 1.78 1.28 2.49 2.56 1.50
2080 1.06 1.07 1.01 1.29 1.33 1.00 1.00 2.23 1.57 1.54 1.88 1.85 1.29 2.65 2.72 1.53
2090 1.06 1.07 1.01 1.30 1.34 1.00 1.00 2.27 1.57 1.55 1.91 1.89 1.30 2.75 2.83 1.54
2100 1.06 1.07 1.01 1.30 1.34 1.00 1.00 2.29 1.58 1.55 1.93 1.90 1.30 2.81 2.88 1.54
2110 1.06 1.07 1.01 1.30 1.34 1.00 1.00 2.30 1.58 1.55 1.93 1.91 1.30 2.83 2.91 1.54
2120 1.06 1.07 1.01 1.30 1.34 1.00 1.00 2.30 1.58 1.55 1.93 1.91 1.30 2.83 2.91 1.54
2130 1.06 1.07 1.01 1.30 1.34 1.00 1.00 2.30 1.58 1.55 1.93 1.91 1.30 2.83 2.91 1.54
2140 1.06 1.07 1.01 1.30 1.34 1.00 1.00 2.30 1.58 1.55 1.93 1.91 1.30 2.83 2.91 1.54
2150 1.06 1.07 1.01 1.30 1.34 1.00 1.00 2.30 1.58 1.55 1.93 1.91 1.30 2.83 2.91 1.54
2160 1.06 1.07 1.01 1.30 1.34 1.00 1.00 2.30 1.58 1.55 1.93 1.91 1.30 2.83 2.91 1.54
2170 1.06 1.07 1.01 1.30 1.34 1.00 1.00 2.30 1.58 1.55 1.93 1.91 1.30 2.83 2.91 1.54
2180 1.06 1.07 1.01 1.30 1.34 1.00 1.00 2.30 1.58 1.55 1.93 1.91 1.30 2.83 2.91 1.54
2190 1.06 1.07 1.01 1.30 1.34 1.00 1.00 2.30 1.58 1.55 1.93 1.91 1.30 2.83 2.91 1.54
2200 1.06 1.07 1.01 1.30 1.34 1.00 1.00 2.30 1.58 1.55 1.93 1.91 1.30 2.83 2.91 1.54
2210 1.06 1.07 1.01 1.30 1.34 1.00 1.00 2.30 1.58 1.55 1.93 1.91 1.30 2.83 2.91 1.54
2220 1.06 1.07 1.01 1.30 1.34 1.00 1.00 2.30 1.58 1.55 1.93 1.91 1.30 2.83 2.91 1.54
2230 1.06 1.07 1.01 1.30 1.34 1.00 1.00 2.30 1.58 1.55 1.93 1.91 1.30 2.83 2.91 1.54
2240 1.06 1.07 1.01 1.30 1.34 1.00 1.00 2.30 1.58 1.55 1.93 1.91 1.30 2.83 2.91 1.54
2250 1.06 1.07 1.01 1.30 1.34 1.00 1.00 2.30 1.58 1.55 1.93 1.91 1.30 2.83 2.91 1.54
2260 1.06 1.07 1.01 1.30 1.34 1.00 1.00 2.30 1.58 1.55 1.93 1.91 1.30 2.83 2.91 1.54
2270 1.06 1.07 1.01 1.30 1.34 1.00 1.00 2.30 1.58 1.55 1.93 1.91 1.30 2.83 2.91 1.54
2280 1.06 1.07 1.01 1.30 1.34 1.00 1.00 2.30 1.58 1.55 1.93 1.91 1.30 2.83 2.91 1.54
2290 1.06 1.07 1.01 1.30 1.34 1.00 1.00 2.30 1.58 1.55 1.93 1.91 1.30 2.83 2.91 1.54
2300 1.06 1.07 1.01 1.30 1.34 1.00 1.00 2.30 1.58 1.55 1.93 1.91 1.30 2.83 2.91 1.54

Table: Table P.FUND: Population; 2000 = 100

Year USA CAN WEU JPK ANZ EEU FSU MDE CAM SAM SAS SEA CHI NAF SSA SIS
1950 0.57 0.44 0.79 0.60 0.49 0.70 0.62 0.25 0.27 0.33 0.34 0.35 0.43 0.31 0.28 0.43
1960 0.67 0.57 0.84 0.69 0.61 0.79 0.74 0.32 0.36 0.43 0.42 0.43 0.51 0.39 0.34 0.52
1970 0.75 0.68 0.91 0.79 0.73 0.86 0.83 0.43 0.50 0.56 0.53 0.55 0.65 0.50 0.44 0.64
1980 0.83 0.79 0.94 0.89 0.81 0.94 0.91 0.58 0.66 0.70 0.67 0.69 0.78 0.64 0.58 0.75
1990 0.91 0.89 0.97 0.96 0.87 0.99 0.99 0.80 0.82 0.85 0.83 0.85 0.90 0.82 0.77 0.87
2000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2010 1.06 1.07 1.03 1.04 1.07 1.01 1.01 1.16 1.19 1.18 1.14 1.12 1.09 1.20 1.23 1.17
2020 1.11 1.12 1.07 1.08 1.12 1.02 1.02 1.26 1.40 1.38 1.23 1.21 1.18 1.41 1.45 1.37
2030 1.14 1.15 1.11 1.12 1.15 1.02 1.02 1.31 1.57 1.54 1.29 1.27 1.23 1.58 1.62 1.53
2040 1.16 1.18 1.13 1.14 1.18 1.01 1.01 1.33 1.69 1.67 1.30 1.28 1.24 1.70 1.75 1.65
2050 1.18 1.19 1.14 1.15 1.19 0.98 0.98 1.30 1.78 1.75 1.28 1.26 1.22 1.79 1.84 1.74
2060 1.19 1.20 1.15 1.16 1.20 0.95 0.94 1.24 1.80 1.78 1.21 1.20 1.16 1.81 1.86 1.76
2070 1.19 1.20 1.15 1.16 1.20 0.91 0.90 1.17 1.80 1.77 1.14 1.13 1.09 1.81 1.86 1.76
2080 1.20 1.21 1.16 1.17 1.21 0.87 0.86 1.07 1.75 1.72 1.05 1.03 1.00 1.75 1.80 1.70
2090 1.20 1.22 1.17 1.18 1.22 0.82 0.82 0.96 1.66 1.63 0.94 0.93 0.90 1.67 1.71 1.62
2100 1.21 1.22 1.17 1.18 1.22 0.78 0.78 0.87 1.58 1.55 0.85 0.84 0.82 1.59 1.63 1.54
2110 1.22 1.23 1.18 1.19 1.23 0.75 0.75 0.79 1.51 1.48 0.77 0.76 0.74 1.51 1.55 1.47
2120 1.23 1.24 1.19 1.20 1.24 0.72 0.72 0.72 1.44 1.42 0.71 0.70 0.68 1.45 1.49 1.41
2130 1.23 1.24 1.19 1.20 1.24 0.69 0.69 0.67 1.39 1.37 0.66 0.65 0.63 1.40 1.43 1.36
2140 1.24 1.25 1.20 1.21 1.25 0.67 0.67 0.63 1.34 1.32 0.61 0.60 0.59 1.35 1.39 1.31
2150 1.24 1.25 1.20 1.21 1.25 0.65 0.65 0.59 1.31 1.29 0.58 0.57 0.55 1.31 1.35 1.28
2160 1.24 1.25 1.20 1.21 1.25 0.64 0.64 0.56 1.28 1.26 0.55 0.55 0.53 1.28 1.32 1.25
2170 1.25 1.26 1.21 1.22 1.26 0.63 0.63 0.54 1.25 1.24 0.53 0.53 0.51 1.26 1.30 1.23
2180 1.25 1.26 1.21 1.22 1.26 0.62 0.62 0.53 1.24 1.22 0.52 0.51 0.50 1.25 1.28 1.21
2190 1.25 1.26 1.21 1.22 1.26 0.61 0.61 0.52 1.23 1.21 0.51 0.50 0.49 1.24 1.27 1.20
2200 1.25 1.26 1.21 1.22 1.26 0.61 0.61 0.52 1.23 1.21 0.51 0.50 0.49 1.23 1.27 1.20
2210 1.25 1.26 1.21 1.22 1.26 0.61 0.61 0.52 1.23 1.21 0.51 0.50 0.49 1.23 1.27 1.20
2220 1.25 1.26 1.21 1.22 1.26 0.61 0.61 0.52 1.23 1.21 0.51 0.50 0.49 1.23 1.27 1.20
2230 1.25 1.26 1.21 1.22 1.26 0.61 0.61 0.52 1.23 1.21 0.51 0.50 0.49 1.23 1.27 1.20
2240 1.25 1.26 1.21 1.22 1.26 0.61 0.61 0.52 1.23 1.21 0.51 0.50 0.49 1.23 1.27 1.20
2250 1.25 1.26 1.21 1.22 1.26 0.61 0.61 0.52 1.23 1.21 0.51 0.50 0.49 1.23 1.27 1.20
2260 1.25 1.26 1.21 1.22 1.26 0.61 0.61 0.52 1.23 1.21 0.51 0.50 0.49 1.23 1.27 1.20
2270 1.25 1.26 1.21 1.22 1.26 0.61 0.61 0.52 1.23 1.21 0.51 0.50 0.49 1.23 1.27 1.20
2280 1.25 1.26 1.21 1.22 1.26 0.61 0.61 0.52 1.23 1.21 0.51 0.50 0.49 1.23 1.27 1.20
2290 1.25 1.26 1.21 1.22 1.26 0.61 0.61 0.52 1.23 1.21 0.51 0.50 0.49 1.23 1.27 1.20
2300 1.25 1.26 1.21 1.22 1.26 0.61 0.61 0.52 1.23 1.21 0.51 0.50 0.49 1.23 1.27 1.20

Table: Table P.A1B: Population; 2000 = 100.

Year USA CAN WEU JPK ANZ EEU FSU MDE CAM SAM SAS SEA CHI NAF SSA SIS
1950 0.57 0.44 0.79 0.60 0.49 0.70 0.62 0.25 0.27 0.33 0.34 0.35 0.43 0.31 0.28 0.43
1960 0.67 0.57 0.84 0.69 0.61 0.79 0.74 0.32 0.36 0.43 0.42 0.43 0.51 0.39 0.34 0.52
1970 0.75 0.68 0.91 0.79 0.73 0.86 0.83 0.43 0.50 0.56 0.53 0.55 0.65 0.50 0.44 0.64
1980 0.83 0.79 0.94 0.89 0.81 0.94 0.91 0.58 0.66 0.70 0.67 0.69 0.78 0.64 0.58 0.75
1990 0.91 0.89 0.97 0.96 0.87 0.99 0.99 0.80 0.82 0.85 0.83 0.85 0.90 0.82 0.77 0.87
2000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2010 1.07 1.08 1.04 1.05 1.08 1.02 1.02 1.19 1.21 1.19 1.16 1.15 1.12 1.22 1.25 1.19
2020 1.12 1.13 1.09 1.10 1.13 1.06 1.06 1.34 1.46 1.44 1.31 1.29 1.25 1.47 1.51 1.43
2030 1.18 1.19 1.14 1.15 1.19 1.12 1.12 1.51 1.77 1.74 1.47 1.45 1.41 1.78 1.83 1.73
2040 1.22 1.23 1.18 1.19 1.23 1.17 1.17 1.66 2.08 2.05 1.63 1.60 1.56 2.09 2.15 2.03
2050 1.26 1.27 1.22 1.23 1.27 1.22 1.22 1.75 2.26 2.23 1.72 1.69 1.64 2.28 2.34 2.21
2060 1.30 1.31 1.26 1.27 1.31 1.28 1.28 1.84 2.44 2.40 1.80 1.78 1.73 2.45 2.52 2.38
2070 1.36 1.37 1.32 1.33 1.37 1.36 1.35 1.94 2.64 2.60 1.90 1.88 1.82 2.65 2.73 2.58
2080 1.48 1.49 1.43 1.45 1.49 1.49 1.49 2.08 2.91 2.87 2.03 2.01 1.95 2.93 3.01 2.84
2090 1.58 1.59 1.53 1.54 1.59 1.59 1.59 2.15 3.06 3.01 2.11 2.08 2.02 3.08 3.16 2.99
2100 1.63 1.64 1.58 1.59 1.64 1.64 1.64 2.19 3.13 3.09 2.14 2.11 2.05 3.15 3.24 3.06
2110 1.68 1.69 1.63 1.64 1.69 1.69 1.69 2.22 3.21 3.16 2.18 2.15 2.09 3.22 3.31 3.13
2120 1.72 1.74 1.67 1.68 1.74 1.74 1.74 2.26 3.27 3.22 2.21 2.18 2.12 3.29 3.38 3.20
2130 1.76 1.78 1.71 1.72 1.78 1.78 1.78 2.29 3.33 3.28 2.24 2.21 2.14 3.35 3.44 3.26
2140 1.80 1.82 1.74 1.76 1.82 1.82 1.82 2.31 3.39 3.33 2.26 2.23 2.17 3.40 3.50 3.31
2150 1.83 1.85 1.77 1.79 1.85 1.85 1.85 2.33 3.43 3.38 2.28 2.25 2.19 3.45 3.54 3.35
2160 1.86 1.87 1.80 1.81 1.87 1.88 1.88 2.35 3.47 3.41 2.30 2.27 2.20 3.49 3.58 3.39
2170 1.88 1.89 1.82 1.83 1.89 1.90 1.90 2.37 3.50 3.44 2.32 2.29 2.22 3.52 3.61 3.42
2180 1.89 1.91 1.83 1.85 1.91 1.92 1.91 2.38 3.52 3.46 2.33 2.29 2.23 3.54 3.64 3.44
2190 1.90 1.92 1.84 1.86 1.92 1.93 1.92 2.38 3.53 3.48 2.33 2.30 2.23 3.55 3.65 3.45
2200 1.90 1.92 1.84 1.86 1.92 1.93 1.93 2.38 3.54 3.48 2.33 2.30 2.24 3.56 3.65 3.46
2210 1.90 1.92 1.84 1.86 1.92 1.93 1.93 2.38 3.54 3.48 2.33 2.30 2.24 3.56 3.65 3.46
2220 1.90 1.92 1.84 1.86 1.92 1.93 1.93 2.38 3.54 3.48 2.33 2.30 2.24 3.56 3.65 3.46
2230 1.90 1.92 1.84 1.86 1.92 1.93 1.93 2.38 3.54 3.48 2.33 2.30 2.24 3.56 3.65 3.46
2240 1.90 1.92 1.84 1.86 1.92 1.93 1.93 2.38 3.54 3.48 2.33 2.30 2.24 3.56 3.65 3.46
2250 1.90 1.92 1.84 1.86 1.92 1.93 1.93 2.38 3.54 3.48 2.33 2.30 2.24 3.56 3.65 3.46
2260 1.90 1.92 1.84 1.86 1.92 1.93 1.93 2.38 3.54 3.48 2.33 2.30 2.24 3.56 3.65 3.46
2270 1.90 1.92 1.84 1.86 1.92 1.93 1.93 2.38 3.54 3.48 2.33 2.30 2.24 3.56 3.65 3.46
2280 1.90 1.92 1.84 1.86 1.92 1.93 1.93 2.38 3.54 3.48 2.33 2.30 2.24 3.56 3.65 3.46
2290 1.90 1.92 1.84 1.86 1.92 1.93 1.93 2.38 3.54 3.48 2.33 2.30 2.24 3.56 3.65 3.46
2300 1.90 1.92 1.84 1.86 1.92 1.93 1.93 2.38 3.54 3.48 2.33 2.30 2.24 3.56 3.65 3.46

Table: Table P.A2: Population; 2000 = 100.

Year USA CAN WEU JPK ANZ EEU FSU MDE CAM SAM SAS SEA CHI NAF SSA SIS
1950 0.57 0.44 0.79 0.60 0.49 0.70 0.62 0.25 0.27 0.33 0.34 0.35 0.43 0.31 0.28 0.43
1960 0.67 0.57 0.84 0.69 0.61 0.79 0.74 0.32 0.36 0.43 0.42 0.43 0.51 0.39 0.34 0.52
1970 0.75 0.68 0.91 0.79 0.73 0.86 0.83 0.43 0.50 0.56 0.53 0.55 0.65 0.50 0.44 0.64
1980 0.83 0.79 0.94 0.89 0.81 0.94 0.91 0.58 0.66 0.70 0.67 0.69 0.78 0.64 0.58 0.75
1990 0.91 0.89 0.97 0.96 0.87 0.99 0.99 0.80 0.82 0.85 0.83 0.85 0.90 0.82 0.77 0.87
2000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2010 1.07 1.08 1.03 1.04 1.08 1.01 1.01 1.17 1.19 1.17 1.14 1.13 1.09 1.20 1.23 1.17
2020 1.11 1.12 1.08 1.09 1.12 1.02 1.02 1.25 1.39 1.37 1.22 1.21 1.17 1.40 1.44 1.36
2030 1.15 1.16 1.11 1.12 1.16 1.02 1.02 1.30 1.55 1.53 1.27 1.26 1.22 1.56 1.61 1.52
2040 1.17 1.18 1.13 1.14 1.18 1.01 1.00 1.31 1.67 1.65 1.29 1.27 1.23 1.68 1.73 1.63
2050 1.18 1.19 1.14 1.15 1.19 0.98 0.98 1.29 1.76 1.73 1.27 1.25 1.21 1.76 1.81 1.71
2060 1.18 1.19 1.15 1.16 1.19 0.94 0.94 1.24 1.80 1.77 1.21 1.20 1.16 1.81 1.86 1.76
2070 1.19 1.20 1.15 1.16 1.20 0.90 0.90 1.16 1.80 1.77 1.14 1.12 1.09 1.81 1.86 1.76
2080 1.20 1.21 1.17 1.18 1.21 0.86 0.86 1.07 1.75 1.72 1.05 1.03 1.00 1.75 1.80 1.71
2090 1.21 1.22 1.17 1.18 1.22 0.82 0.82 0.96 1.65 1.62 0.94 0.93 0.90 1.65 1.70 1.61
2100 1.21 1.22 1.18 1.19 1.23 0.78 0.78 0.85 1.52 1.50 0.83 0.82 0.80 1.53 1.57 1.49
2110 1.22 1.23 1.18 1.19 1.23 0.74 0.74 0.75 1.41 1.39 0.74 0.73 0.71 1.42 1.46 1.38
2120 1.22 1.23 1.18 1.19 1.23 0.71 0.71 0.68 1.32 1.30 0.67 0.66 0.64 1.33 1.37 1.29
2130 1.22 1.23 1.19 1.20 1.23 0.68 0.68 0.62 1.25 1.23 0.61 0.60 0.58 1.26 1.29 1.22
2140 1.23 1.24 1.19 1.20 1.24 0.66 0.66 0.57 1.19 1.17 0.56 0.55 0.54 1.19 1.23 1.16
2150 1.23 1.24 1.19 1.20 1.24 0.64 0.64 0.53 1.14 1.12 0.52 0.52 0.50 1.14 1.18 1.11
2160 1.23 1.24 1.19 1.20 1.24 0.63 0.63 0.51 1.10 1.08 0.49 0.49 0.47 1.10 1.13 1.07
2170 1.23 1.24 1.19 1.20 1.24 0.62 0.62 0.48 1.07 1.05 0.47 0.47 0.45 1.07 1.10 1.04
2180 1.23 1.24 1.19 1.20 1.24 0.61 0.61 0.47 1.05 1.03 0.46 0.45 0.44 1.05 1.08 1.02
2190 1.23 1.24 1.19 1.20 1.24 0.61 0.60 0.46 1.04 1.02 0.45 0.44 0.43 1.04 1.07 1.01
2200 1.23 1.24 1.19 1.20 1.24 0.60 0.60 0.46 1.03 1.01 0.45 0.44 0.43 1.04 1.07 1.01
2210 1.23 1.24 1.19 1.20 1.24 0.60 0.60 0.46 1.03 1.01 0.45 0.44 0.43 1.04 1.07 1.01
2220 1.23 1.24 1.19 1.20 1.24 0.60 0.60 0.46 1.03 1.01 0.45 0.44 0.43 1.04 1.07 1.01
2230 1.23 1.24 1.19 1.20 1.24 0.60 0.60 0.46 1.03 1.01 0.45 0.44 0.43 1.04 1.07 1.01
2240 1.23 1.24 1.19 1.20 1.24 0.60 0.60 0.46 1.03 1.01 0.45 0.44 0.43 1.04 1.07 1.01
2250 1.23 1.24 1.19 1.20 1.24 0.60 0.60 0.46 1.03 1.01 0.45 0.44 0.43 1.04 1.07 1.01
2260 1.23 1.24 1.19 1.20 1.24 0.60 0.60 0.46 1.03 1.01 0.45 0.44 0.43 1.04 1.07 1.01
2270 1.23 1.24 1.19 1.20 1.24 0.60 0.60 0.46 1.03 1.01 0.45 0.44 0.43 1.04 1.07 1.01
2280 1.23 1.24 1.19 1.20 1.24 0.60 0.60 0.46 1.03 1.01 0.45 0.44 0.43 1.04 1.07 1.01
2290 1.23 1.24 1.19 1.20 1.24 0.60 0.60 0.46 1.03 1.01 0.45 0.44 0.43 1.04 1.07 1.01
2300 1.23 1.24 1.19 1.20 1.24 0.60 0.60 0.46 1.03 1.01 0.45 0.44 0.43 1.04 1.07 1.01

Table: Table P.B1: Population; 2000 = 100.

Year USA CAN WEU JPK ANZ EEU FSU MDE CAM SAM SAS SEA CHI NAF SSA SIS
1950 0.57 0.44 0.79 0.60 0.49 0.70 0.62 0.25 0.27 0.33 0.34 0.35 0.43 0.31 0.28 0.43
1960 0.67 0.57 0.84 0.69 0.61 0.79 0.74 0.32 0.36 0.43 0.42 0.43 0.51 0.39 0.34 0.52
1970 0.75 0.68 0.91 0.79 0.73 0.86 0.83 0.43 0.50 0.56 0.53 0.55 0.65 0.50 0.44 0.64
1980 0.83 0.79 0.94 0.89 0.81 0.94 0.91 0.58 0.66 0.70 0.67 0.69 0.78 0.64 0.58 0.75
1990 0.91 0.89 0.97 0.96 0.87 0.99 0.99 0.80 0.82 0.85 0.83 0.85 0.90 0.82 0.77 0.87
2000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2010 1.06 1.07 1.02 1.03 1.07 1.00 1.00 1.17 1.21 1.19 1.15 1.13 1.10 1.21 1.24 1.18
2020 1.08 1.09 1.05 1.06 1.09 1.00 1.00 1.27 1.44 1.41 1.25 1.23 1.19 1.44 1.48 1.40
2030 1.09 1.10 1.05 1.06 1.10 0.99 0.99 1.36 1.65 1.63 1.33 1.31 1.27 1.66 1.71 1.62
2040 1.08 1.09 1.04 1.05 1.09 0.98 0.98 1.42 1.85 1.82 1.39 1.37 1.33 1.86 1.91 1.80
2050 1.06 1.07 1.03 1.04 1.07 0.96 0.96 1.46 2.01 1.98 1.43 1.41 1.37 2.02 2.08 1.97
2060 1.05 1.06 1.02 1.03 1.06 0.94 0.94 1.48 2.16 2.12 1.45 1.43 1.39 2.17 2.23 2.11
2070 1.04 1.05 1.00 1.01 1.05 0.93 0.93 1.50 2.27 2.24 1.47 1.45 1.41 2.28 2.35 2.22
2080 1.03 1.04 0.99 1.00 1.04 0.92 0.92 1.51 2.36 2.32 1.48 1.46 1.42 2.37 2.44 2.31
2090 1.02 1.03 0.99 1.00 1.03 0.91 0.91 1.52 2.42 2.39 1.49 1.47 1.43 2.44 2.50 2.37
2100 1.01 1.02 0.98 0.99 1.02 0.91 0.91 1.53 2.47 2.44 1.50 1.48 1.43 2.49 2.56 2.42
2110 1.01 1.02 0.98 0.99 1.02 0.90 0.90 1.54 2.52 2.49 1.51 1.49 1.44 2.54 2.61 2.47
2120 1.00 1.01 0.97 0.98 1.01 0.90 0.90 1.55 2.57 2.53 1.51 1.49 1.45 2.58 2.66 2.51
2130 1.00 1.01 0.97 0.98 1.01 0.90 0.89 1.55 2.61 2.57 1.52 1.50 1.46 2.62 2.70 2.55
2140 1.00 1.00 0.96 0.97 1.00 0.89 0.89 1.56 2.65 2.61 1.53 1.51 1.46 2.66 2.73 2.59
2150 0.99 1.00 0.96 0.97 1.00 0.89 0.89 1.57 2.68 2.64 1.53 1.51 1.47 2.69 2.77 2.62
2160 0.99 1.00 0.96 0.97 1.00 0.89 0.89 1.57 2.70 2.66 1.54 1.52 1.47 2.72 2.79 2.64
2170 0.99 1.00 0.96 0.96 1.00 0.89 0.89 1.57 2.72 2.68 1.54 1.52 1.47 2.74 2.81 2.66
2180 0.99 0.99 0.95 0.96 0.99 0.89 0.88 1.58 2.74 2.70 1.54 1.52 1.48 2.75 2.83 2.68
2190 0.98 0.99 0.95 0.96 0.99 0.89 0.88 1.58 2.75 2.71 1.54 1.52 1.48 2.76 2.84 2.68
2200 0.98 0.99 0.95 0.96 0.99 0.89 0.88 1.58 2.75 2.71 1.54 1.52 1.48 2.77 2.84 2.69
2210 0.98 0.99 0.95 0.96 0.99 0.89 0.88 1.58 2.75 2.71 1.54 1.52 1.48 2.77 2.84 2.69
2220 0.98 0.99 0.95 0.96 0.99 0.89 0.88 1.58 2.75 2.71 1.54 1.52 1.48 2.77 2.84 2.69
2230 0.98 0.99 0.95 0.96 0.99 0.89 0.88 1.58 2.75 2.71 1.54 1.52 1.48 2.77 2.84 2.69
2240 0.98 0.99 0.95 0.96 0.99 0.89 0.88 1.58 2.75 2.71 1.54 1.52 1.48 2.77 2.84 2.69
2250 0.98 0.99 0.95 0.96 0.99 0.89 0.88 1.58 2.75 2.71 1.54 1.52 1.48 2.77 2.84 2.69
2260 0.98 0.99 0.95 0.96 0.99 0.89 0.88 1.58 2.75 2.71 1.54 1.52 1.48 2.77 2.84 2.69
2270 0.98 0.99 0.95 0.96 0.99 0.89 0.88 1.58 2.75 2.71 1.54 1.52 1.48 2.77 2.84 2.69
2280 0.98 0.99 0.95 0.96 0.99 0.89 0.88 1.58 2.75 2.71 1.54 1.52 1.48 2.77 2.84 2.69
2290 0.98 0.99 0.95 0.96 0.99 0.89 0.88 1.58 2.75 2.71 1.54 1.52 1.48 2.77 2.84 2.69
2300 0.98 0.99 0.95 0.96 0.99 0.89 0.88 1.58 2.75 2.71 1.54 1.52 1.48 2.77 2.84 2.69

Table: Table P.B2: Population; 2000 = 100.

Year USA CAN WEU JPK ANZ EEU FSU MDE CAM SAM SAS SEA CHI NAF SSA SIS
1950 0.33 0.28 0.24 0.17 0.48 0.33 0.53 0.48 0.35 0.39 0.29 0.09 0.04 0.23 1.03 0.30
1960 0.39 0.37 0.32 0.23 0.54 0.44 0.69 0.60 0.50 0.54 0.31 0.15 0.05 0.33 1.12 0.40
1970 0.47 0.48 0.41 0.32 0.61 0.59 0.91 0.76 0.71 0.75 0.34 0.23 0.08 0.47 1.21 0.53
1980 0.57 0.63 0.54 0.44 0.68 0.78 1.20 0.96 1.01 1.04 0.36 0.35 0.12 0.67 1.30 0.71
1990 0.78 0.86 0.85 0.88 0.83 0.90 1.79 0.87 0.85 0.84 0.72 0.69 0.46 0.88 1.07 0.81
2000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2010 1.22 1.22 1.22 1.22 1.23 1.33 1.38 1.14 1.17 1.18 1.34 1.41 1.45 1.18 1.16 1.22
2020 1.45 1.46 1.46 1.46 1.47 1.88 1.96 1.46 1.49 1.50 1.71 1.80 1.91 1.51 1.49 1.56
2030 1.70 1.71 1.71 1.71 1.72 2.61 2.71 1.85 1.89 1.91 2.17 2.28 2.54 1.92 1.89 1.98
2040 1.96 1.98 1.97 1.96 1.98 3.43 3.56 2.35 2.40 2.42 2.75 2.89 3.39 2.43 2.40 2.52
2050 2.22 2.24 2.23 2.22 2.24 4.27 4.43 2.98 3.04 3.07 3.48 3.66 4.51 3.08 3.03 3.19
2060 2.49 2.51 2.50 2.48 2.50 5.15 5.35 3.78 3.87 3.89 4.43 4.65 6.00 3.91 3.85 4.05
2070 2.79 2.80 2.79 2.78 2.80 6.23 6.46 4.84 4.95 4.99 5.67 5.96 7.95 5.01 4.94 5.18
2080 3.11 3.13 3.11 3.11 3.13 7.51 7.79 6.24 6.38 6.42 7.30 7.68 10.50 6.45 6.36 6.68
2090 3.43 3.46 3.44 3.43 3.46 8.78 9.11 7.89 8.06 8.12 9.23 9.71 13.48 8.16 8.04 8.44
2100 3.75 3.77 3.75 3.75 3.78 9.90 10.27 9.74 9.96 10.03 11.40 11.99 16.73 10.07 9.93 10.42
2110 4.05 4.07 4.05 4.05 4.08 10.92 11.33 11.77 12.03 12.12 13.77 14.48 20.22 12.17 11.99 12.59
2120 4.36 4.39 4.36 4.36 4.39 11.99 12.44 13.94 14.25 14.36 16.32 17.16 23.95 14.42 14.21 14.92
2130 4.68 4.70 4.68 4.68 4.71 13.12 13.61 16.20 16.56 16.68 18.95 19.93 27.83 16.75 16.51 17.33
2140 4.99 5.03 5.00 4.99 5.03 14.29 14.83 18.45 18.86 19.00 21.59 22.70 31.70 19.08 18.80 19.74
2150 5.31 5.35 5.31 5.31 5.36 15.51 16.09 20.60 21.06 21.21 24.11 25.35 35.40 21.31 21.00 22.05
2160 5.64 5.68 5.64 5.64 5.69 16.80 17.43 22.76 23.26 23.43 26.63 28.00 39.10 23.54 23.19 24.35
2170 5.99 6.03 5.99 5.99 6.04 18.19 18.87 25.14 25.69 25.88 29.42 30.93 43.19 26.00 25.62 26.90
2180 6.36 6.40 6.36 6.36 6.41 19.70 20.44 27.77 28.38 28.59 32.49 34.17 47.71 28.72 28.30 29.72
2190 6.75 6.79 6.75 6.75 6.80 21.34 22.14 30.68 31.35 31.58 35.89 37.74 52.70 31.73 31.26 32.83
2200 7.17 7.21 7.17 7.17 7.22 23.10 23.97 33.89 34.63 34.89 39.65 41.69 58.21 35.05 34.53 36.26
2210 7.61 7.66 7.61 7.61 7.67 24.98 25.91 37.36 38.19 38.47 43.72 45.97 64.19 38.65 38.07 39.98
2220 8.08 8.13 8.08 8.08 8.14 26.89 27.90 41.04 41.94 42.25 48.02 50.49 70.50 42.44 41.82 43.91
2230 8.58 8.63 8.58 8.57 8.64 28.84 29.92 44.89 45.88 46.22 52.53 55.24 77.12 46.43 45.75 48.04
2240 9.10 9.16 9.11 9.10 9.18 30.81 31.96 48.92 49.99 50.36 57.23 60.19 84.03 50.59 49.85 52.34
2250 9.67 9.73 9.67 9.66 9.74 32.78 34.01 53.09 54.26 54.66 62.12 65.32 91.20 54.91 54.10 56.81
2260 10.26 10.33 10.26 10.26 10.34 34.80 36.11 57.39 58.65 59.09 67.15 70.61 98.59 59.36 58.48 61.41
2270 10.89 10.96 10.89 10.89 10.98 36.95 38.33 61.79 63.15 63.62 72.30 76.03 106.15 63.91 62.97 66.12
2280 11.57 11.64 11.57 11.56 11.66 39.22 40.69 66.27 67.73 68.23 77.54 81.54 113.85 68.54 67.53 70.91
2290 12.28 12.36 12.28 12.28 12.38 41.64 43.20 70.79 72.35 72.88 82.83 87.10 121.61 73.22 72.14 75.75
2300 13.04 13.12 13.04 13.03 13.14 44.21 45.87 75.32 76.98 77.54 88.13 92.67 129.39 77.90 76.75 80.60

Table: Table Y.FUND: Per capita income; 2000=1.00.

Year USA CAN WEU JPK ANZ EEU FSU MDE CAM SAM SAS SEA CHI NAF SSA SIS
1950 0.33 0.28 0.24 0.17 0.48 0.33 0.53 0.48 0.35 0.39 0.29 0.09 0.04 0.23 1.03 0.30
1960 0.39 0.37 0.32 0.23 0.54 0.44 0.69 0.60 0.50 0.54 0.31 0.15 0.05 0.33 1.12 0.40
1970 0.47 0.48 0.41 0.32 0.61 0.59 0.91 0.76 0.71 0.75 0.34 0.23 0.08 0.47 1.21 0.53
1980 0.57 0.63 0.54 0.44 0.68 0.78 1.20 0.96 1.01 1.04 0.36 0.35 0.12 0.67 1.30 0.71
1990 0.78 0.86 0.85 0.88 0.83 0.90 1.79 0.87 0.85 0.84 0.72 0.69 0.46 0.88 1.07 0.81
2000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2010 1.20 1.21 1.20 1.20 1.21 1.09 1.13 1.53 1.40 1.39 1.79 1.84 1.90 1.40 1.38 1.44
2020 1.42 1.42 1.41 1.41 1.42 2.00 2.07 3.02 2.29 2.28 3.52 3.63 3.73 2.29 2.25 2.37
2030 1.66 1.67 1.66 1.66 1.67 3.40 3.52 5.33 3.62 3.60 6.20 6.40 6.59 3.62 3.57 3.75
2040 1.95 1.95 1.94 1.94 1.96 5.27 5.47 8.17 5.48 5.45 9.52 9.82 10.10 5.47 5.39 5.66
2050 2.29 2.30 2.28 2.29 2.30 7.57 7.85 12.14 7.78 7.74 14.14 14.60 15.02 7.77 7.66 8.04
2060 2.70 2.71 2.69 2.69 2.71 9.90 10.27 17.36 10.22 10.17 20.22 20.87 21.47 10.21 10.06 10.57
2070 3.17 3.18 3.16 3.16 3.18 12.82 13.31 24.34 13.29 13.22 28.36 29.28 30.11 13.28 13.09 13.74
2080 3.69 3.70 3.68 3.68 3.70 16.27 16.88 32.72 16.88 16.80 38.12 39.35 40.48 16.88 16.63 17.46
2090 4.28 4.28 4.26 4.26 4.29 20.40 21.16 42.96 21.17 21.07 50.05 51.67 53.15 21.16 20.85 21.90
2100 4.96 4.97 4.94 4.94 4.97 25.26 26.21 55.77 26.22 26.08 64.97 67.07 68.99 26.20 25.82 27.11
2110 5.74 5.75 5.72 5.73 5.76 30.65 31.80 70.92 31.82 31.66 82.62 85.29 87.73 31.80 31.33 32.90
2120 6.61 6.63 6.60 6.60 6.64 36.84 38.22 88.87 38.24 38.04 103.53 106.88 109.94 38.22 37.65 39.54
2130 7.58 7.60 7.56 7.56 7.61 43.84 45.48 109.75 45.51 45.27 127.86 131.99 135.77 45.48 44.81 47.06
2140 8.65 8.67 8.63 8.63 8.68 51.66 53.60 133.56 53.62 53.35 155.59 160.62 165.22 53.59 52.80 55.45
2150 9.82 9.84 9.80 9.80 9.86 60.28 62.54 160.15 62.57 62.25 186.57 192.60 198.11 62.54 61.61 64.70
2160 11.10 11.12 11.07 11.07 11.14 69.65 72.26 189.23 72.29 71.93 220.45 227.57 234.09 72.26 71.19 74.76
2170 12.48 12.50 12.44 12.44 12.52 79.68 82.67 220.32 82.71 82.29 256.66 264.95 272.54 82.67 81.44 85.53
2180 13.96 13.98 13.92 13.92 14.00 90.26 93.65 252.74 93.70 93.22 294.43 303.95 312.65 93.65 92.26 96.89
2190 15.54 15.57 15.49 15.50 15.59 101.25 105.05 285.68 105.10 104.56 332.80 343.56 353.39 105.04 103.49 108.68
2200 17.21 17.24 17.16 17.16 17.27 112.45 116.67 318.15 116.73 116.13 370.63 382.61 393.57 116.66 114.94 120.70
2210 18.97 19.01 18.92 18.93 19.04 123.99 128.65 350.81 128.71 128.05 408.68 421.89 433.97 128.64 126.74 133.09
2220 20.84 20.88 20.78 20.79 20.91 136.18 141.29 385.30 141.36 140.64 448.85 463.36 476.62 141.29 139.20 146.18
2230 22.80 22.84 22.73 22.74 22.87 148.98 154.57 421.50 154.64 153.85 491.02 506.89 521.40 154.56 152.28 159.91
2240 24.84 24.89 24.77 24.78 24.92 162.33 168.42 459.27 168.50 167.64 535.03 552.32 568.13 168.41 165.93 174.24
2250 26.96 27.01 26.88 26.89 27.05 176.18 182.79 498.45 182.88 181.94 580.67 599.44 616.60 182.78 180.08 189.10
2260 29.14 29.20 29.06 29.07 29.24 190.45 197.59 538.83 197.69 196.68 627.71 648.00 666.55 197.58 194.67 204.42
2270 31.38 31.44 31.29 31.30 31.49 205.06 212.75 580.17 212.86 211.77 675.87 697.71 717.69 212.75 209.60 220.11
2280 33.65 33.72 33.56 33.57 33.77 219.92 228.17 622.21 228.28 227.12 724.84 748.27 769.69 228.16 224.79 236.06
2290 35.95 36.02 35.85 35.86 36.07 234.92 243.73 664.65 243.85 242.61 774.28 799.31 822.19 243.72 240.12 252.16
2300 38.25 38.32 38.14 38.15 38.38 249.95 259.32 707.17 259.45 258.13 823.81 850.44 874.79 259.31 255.49 268.29

Table: Table Y.A1: Per capita income; 2000 = 1.00.

Year USA CAN WEU JPK ANZ EEU FSU MDE CAM SAM SAS SEA CHI NAF SSA SIS
1950 0.33 0.28 0.24 0.17 0.48 0.33 0.53 0.48 0.35 0.39 0.29 0.09 0.04 0.23 1.03 0.30
1960 0.39 0.37 0.32 0.23 0.54 0.44 0.69 0.60 0.50 0.54 0.31 0.15 0.05 0.33 1.12 0.40
1970 0.47 0.48 0.41 0.32 0.61 0.59 0.91 0.76 0.71 0.75 0.34 0.23 0.08 0.47 1.21 0.53
1980 0.57 0.63 0.54 0.44 0.68 0.78 1.20 0.96 1.01 1.04 0.36 0.35 0.12 0.67 1.30 0.71
1990 0.78 0.86 0.85 0.88 0.83 0.90 1.79 0.87 0.85 0.84 0.72 0.69 0.46 0.88 1.07 0.81
2000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2010 1.15 1.15 1.15 1.16 1.16 0.92 0.96 1.17 1.15 1.16 1.37 1.42 1.46 1.17 1.15 1.21
2020 1.27 1.28 1.27 1.28 1.28 1.23 1.27 1.54 1.45 1.46 1.80 1.86 1.91 1.47 1.45 1.52
2030 1.45 1.45 1.44 1.45 1.45 1.73 1.80 2.09 1.87 1.88 2.44 2.52 2.59 1.89 1.86 1.96
2040 1.62 1.62 1.62 1.62 1.63 2.25 2.33 2.70 2.29 2.31 3.15 3.26 3.35 2.32 2.29 2.40
2050 1.75 1.75 1.75 1.76 1.76 2.66 2.76 3.19 2.64 2.66 3.73 3.86 3.97 2.67 2.63 2.76
2060 1.90 1.91 1.90 1.91 1.91 3.16 3.27 3.80 3.06 3.08 4.45 4.60 4.73 3.10 3.05 3.21
2070 2.10 2.11 2.10 2.11 2.11 3.87 4.02 4.71 3.66 3.69 5.51 5.69 5.85 3.71 3.65 3.84
2080 2.46 2.47 2.45 2.47 2.47 5.25 5.45 6.53 4.88 4.92 7.64 7.89 8.12 4.94 4.87 5.11
2090 2.74 2.75 2.73 2.75 2.75 6.44 6.68 8.17 5.97 6.02 9.56 9.87 10.15 6.05 5.96 6.26
2100 2.95 2.95 2.94 2.96 2.96 7.11 7.38 9.06 6.57 6.62 10.60 10.95 11.26 6.65 6.56 6.88
2110 3.26 3.26 3.25 3.27 3.27 7.85 8.15 10.01 7.26 7.32 11.70 12.09 12.44 7.35 7.24 7.60
2120 3.60 3.60 3.59 3.61 3.61 8.67 9.00 11.05 8.02 8.08 12.93 13.36 13.74 8.12 8.00 8.40
2130 3.97 3.98 3.96 3.99 3.99 9.58 9.94 12.21 8.86 8.93 14.28 14.75 15.18 8.97 8.84 9.28
2140 4.39 4.40 4.38 4.40 4.40 10.58 10.98 13.49 9.78 9.86 15.78 16.30 16.76 9.91 9.76 10.25
2150 4.85 4.86 4.83 4.86 4.86 11.69 12.13 14.90 10.81 10.89 17.43 18.00 18.52 10.94 10.78 11.32
2160 5.35 5.37 5.34 5.37 5.37 12.92 13.40 16.46 11.94 12.03 19.25 19.89 20.46 12.09 11.91 12.51
2170 5.92 5.93 5.90 5.93 5.94 14.27 14.80 18.18 13.18 13.29 21.26 21.97 22.60 13.35 13.16 13.82
2180 6.53 6.55 6.52 6.55 6.56 15.76 16.35 20.08 14.56 14.68 23.49 24.27 24.96 14.75 14.53 15.26
2190 7.22 7.23 7.20 7.24 7.24 17.41 18.06 22.18 16.09 16.22 25.95 26.80 27.57 16.29 16.05 16.86
2200 7.97 7.99 7.95 8.00 8.00 19.23 19.95 24.50 17.77 17.92 28.66 29.61 30.46 18.00 17.73 18.62
2210 8.79 8.81 8.77 8.82 8.82 21.20 22.00 27.02 19.60 19.76 31.60 32.65 33.58 19.85 19.55 20.53
2220 9.66 9.67 9.63 9.69 9.69 23.29 24.16 29.68 21.52 21.70 34.71 35.86 36.88 21.80 21.48 22.55
2230 10.56 10.58 10.53 10.60 10.60 25.48 26.43 32.46 23.54 23.74 37.97 39.23 40.35 23.84 23.49 24.67
2240 11.51 11.53 11.48 11.55 11.55 27.76 28.80 35.37 25.65 25.86 41.37 42.74 43.97 25.98 25.60 26.88
2250 12.49 12.52 12.46 12.53 12.53 30.13 31.26 38.39 27.84 28.07 44.90 46.39 47.72 28.20 27.78 29.17
2260 13.50 13.53 13.47 13.55 13.55 32.57 33.79 41.50 30.10 30.34 48.54 50.15 51.58 30.48 30.03 31.54
2270 14.54 14.57 14.50 14.59 14.59 35.07 36.38 44.69 32.41 32.67 52.26 53.99 55.54 32.82 32.34 33.96
2280 15.59 15.62 15.55 15.64 15.65 37.61 39.02 47.92 34.75 35.04 56.05 57.91 59.56 35.20 34.68 36.42
2290 16.66 16.69 16.61 16.71 16.71 40.17 41.68 51.19 37.12 37.43 59.87 61.86 63.63 37.60 37.05 38.90
2300 17.72 17.76 17.67 17.78 17.78 42.74 44.35 54.47 39.50 39.82 63.70 65.81 67.70 40.01 39.42 41.39

Table: Table Y.A2: Per capita income; 2000 = 1.00.

Year USA CAN WEU JPK ANZ EEU FSU MDE CAM SAM SAS SEA CHI NAF SSA SIS
1950 0.33 0.28 0.24 0.17 0.48 0.33 0.53 0.48 0.35 0.39 0.29 0.09 0.04 0.23 1.03 0.30
1960 0.39 0.37 0.32 0.23 0.54 0.44 0.69 0.60 0.50 0.54 0.31 0.15 0.05 0.33 1.12 0.40
1970 0.47 0.48 0.41 0.32 0.61 0.59 0.91 0.76 0.71 0.75 0.34 0.23 0.08 0.47 1.21 0.53
1980 0.57 0.63 0.54 0.44 0.68 0.78 1.20 0.96 1.01 1.04 0.36 0.35 0.12 0.67 1.30 0.71
1990 0.78 0.86 0.85 0.88 0.83 0.90 1.79 0.87 0.85 0.84 0.72 0.69 0.46 0.88 1.07 0.81
2000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2010 1.21 1.21 1.21 1.21 1.22 1.04 1.08 1.36 1.31 1.31 1.59 1.64 1.69 1.31 1.29 1.36
2020 1.42 1.42 1.41 1.41 1.42 1.71 1.78 2.25 1.96 1.96 2.63 2.71 2.79 1.97 1.94 2.04
2030 1.60 1.61 1.60 1.60 1.61 2.72 2.82 3.68 2.95 2.95 4.29 4.43 4.56 2.96 2.92 3.06
2040 1.80 1.80 1.79 1.79 1.80 4.12 4.27 5.79 4.31 4.31 6.75 6.97 7.17 4.33 4.27 4.48
2050 2.00 2.01 2.00 2.00 2.01 5.86 6.08 8.49 5.93 5.93 9.91 10.24 10.53 5.95 5.87 6.16
2060 2.19 2.19 2.18 2.18 2.20 7.85 8.15 11.62 7.71 7.71 13.56 14.01 14.41 7.74 7.63 8.01
2070 2.38 2.38 2.37 2.37 2.38 10.26 10.65 15.35 9.84 9.84 17.91 18.50 19.03 9.88 9.74 10.22
2080 2.61 2.62 2.61 2.60 2.62 13.16 13.65 19.92 12.38 12.38 23.24 24.00 24.69 12.43 12.25 12.86
2090 2.89 2.90 2.89 2.88 2.90 16.50 17.12 25.46 15.34 15.34 29.71 30.68 31.56 15.41 15.18 15.94
2100 3.21 3.21 3.20 3.20 3.22 20.31 21.07 31.74 18.85 18.84 37.05 38.26 39.35 18.92 18.64 19.58
2110 3.54 3.55 3.53 3.53 3.56 24.65 25.57 38.53 22.87 22.86 44.96 46.43 47.76 22.96 22.63 23.76
2120 3.91 3.92 3.90 3.90 3.93 29.62 30.73 46.30 27.49 27.47 54.03 55.80 57.39 27.60 27.19 28.55
2130 4.32 4.33 4.31 4.31 4.34 35.25 36.57 55.10 32.71 32.69 64.30 66.40 68.30 32.84 32.36 33.98
2140 4.78 4.78 4.76 4.76 4.79 41.54 43.10 64.93 38.55 38.52 75.77 78.24 80.48 38.70 38.13 40.04
2150 5.28 5.29 5.26 5.26 5.29 48.47 50.29 75.76 44.98 44.95 88.41 91.30 93.91 45.16 44.49 46.72
2160 5.83 5.84 5.81 5.81 5.85 56.00 58.10 87.53 51.97 51.94 102.15 105.49 108.51 52.18 51.41 53.98
2170 6.44 6.45 6.42 6.41 6.46 64.07 66.47 100.14 59.45 59.42 116.87 120.68 124.14 59.69 58.81 61.76
2180 7.11 7.12 7.09 7.09 7.13 72.58 75.30 113.44 67.35 67.31 132.39 136.71 140.63 67.62 66.62 69.96
2190 7.85 7.87 7.83 7.83 7.88 81.41 84.47 127.25 75.55 75.50 148.50 153.35 157.74 75.85 74.73 78.48
2200 8.68 8.69 8.65 8.65 8.71 90.42 93.81 141.33 83.90 83.86 164.93 170.32 175.19 84.24 83.00 87.16
2210 9.57 9.59 9.54 9.53 9.60 99.70 103.44 155.84 92.52 92.47 181.86 187.80 193.18 92.89 91.52 96.11
2220 10.51 10.53 10.48 10.47 10.54 109.50 113.61 171.16 101.61 101.56 199.74 206.26 212.17 102.02 100.52 105.55
2230 11.49 11.52 11.46 11.45 11.53 119.79 124.29 187.24 111.16 111.10 218.50 225.64 232.10 111.61 109.96 115.47
2240 12.52 12.55 12.49 12.48 12.57 130.53 135.42 204.02 121.12 121.05 238.09 245.86 252.90 121.61 119.82 125.82
2250 13.59 13.62 13.55 13.54 13.64 141.66 146.98 221.42 131.45 131.38 258.40 266.84 274.48 131.98 130.04 136.55
2260 14.69 14.72 14.65 14.64 14.74 153.14 158.88 239.36 142.10 142.02 279.33 288.45 296.71 142.68 140.57 147.62
2270 15.82 15.85 15.78 15.76 15.87 164.89 171.07 257.73 153.01 152.92 300.76 310.59 319.48 153.62 151.36 158.94
2280 16.97 17.00 16.92 16.91 17.02 176.84 183.47 276.40 164.09 164.00 322.56 333.09 342.63 164.76 162.32 170.46
2290 18.12 18.16 18.07 18.06 18.19 188.90 195.98 295.25 175.28 175.19 344.56 355.81 366.00 175.99 173.39 182.08
2300 19.28 19.32 19.23 19.22 19.35 200.98 208.52 314.14 186.50 186.39 366.60 378.57 389.41 187.25 184.49 193.73

Table: Table Y.B1: Per capita income; 2000 = 1.00.

Year USA CAN WEU JPK ANZ EEU FSU MDE CAM SAM SAS SEA CHI NAF SSA SIS
1950 0.33 0.28 0.24 0.17 0.48 0.33 0.53 0.48 0.35 0.39 0.29 0.09 0.04 0.23 1.03 0.30
1960 0.39 0.37 0.32 0.23 0.54 0.44 0.69 0.60 0.50 0.54 0.31 0.15 0.05 0.33 1.12 0.40
1970 0.47 0.48 0.41 0.32 0.61 0.59 0.91 0.76 0.71 0.75 0.34 0.23 0.08 0.47 1.21 0.53
1980 0.57 0.63 0.54 0.44 0.68 0.78 1.20 0.96 1.01 1.04 0.36 0.35 0.12 0.67 1.30 0.71
1990 0.78 0.86 0.85 0.88 0.83 0.90 1.79 0.87 0.85 0.84 0.72 0.69 0.46 0.88 1.07 0.81
2000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2010 1.16 1.16 1.15 1.16 1.16 0.99 1.03 1.37 1.13 1.14 1.60 1.65 1.70 1.15 1.13 1.19
2020 1.27 1.27 1.26 1.27 1.27 1.52 1.57 2.18 1.46 1.48 2.55 2.63 2.70 1.48 1.46 1.53
2030 1.37 1.38 1.37 1.38 1.38 2.41 2.50 3.14 2.06 2.08 3.67 3.78 3.89 2.09 2.06 2.17
2040 1.49 1.49 1.49 1.50 1.50 3.77 3.91 4.22 2.99 3.02 4.93 5.09 5.24 3.03 2.98 3.13
2050 1.61 1.62 1.61 1.62 1.62 5.34 5.54 5.40 4.11 4.15 6.30 6.51 6.70 4.17 4.11 4.31
2060 1.76 1.76 1.75 1.76 1.76 6.90 7.16 6.59 5.27 5.32 7.69 7.94 8.17 5.34 5.26 5.53
2070 1.93 1.93 1.92 1.93 1.93 8.28 8.59 7.79 6.31 6.37 9.08 9.38 9.65 6.40 6.30 6.62
2080 2.10 2.11 2.10 2.11 2.11 9.39 9.75 8.94 7.18 7.25 10.43 10.77 11.08 7.28 7.18 7.54
2090 2.30 2.31 2.30 2.31 2.31 10.44 10.84 10.11 7.99 8.06 11.80 12.18 12.53 8.10 7.98 8.38
2100 2.53 2.54 2.53 2.54 2.54 11.54 11.97 11.28 8.82 8.90 13.16 13.59 13.98 8.94 8.81 9.25
2110 2.80 2.80 2.79 2.80 2.81 12.74 13.22 12.46 9.74 9.83 14.54 15.01 15.44 9.88 9.73 10.22
2120 3.09 3.10 3.08 3.10 3.10 14.08 14.61 13.76 10.76 10.86 16.06 16.58 17.06 10.91 10.75 11.29
2130 3.41 3.42 3.40 3.42 3.42 15.55 16.13 15.20 11.88 12.00 17.74 18.32 18.84 12.05 11.87 12.47
2140 3.77 3.78 3.76 3.78 3.78 17.18 17.82 16.79 13.13 13.25 19.59 20.23 20.81 13.31 13.12 13.77
2150 4.16 4.17 4.15 4.18 4.18 18.97 19.69 18.55 14.50 14.64 21.64 22.35 22.99 14.71 14.49 15.21
2160 4.60 4.61 4.59 4.61 4.62 20.96 21.75 20.49 16.02 16.17 23.91 24.69 25.39 16.24 16.00 16.81
2170 5.08 5.09 5.07 5.10 5.10 23.15 24.02 22.63 17.69 17.86 26.41 27.27 28.05 17.94 17.68 18.56
2180 5.61 5.62 5.60 5.63 5.63 25.57 26.53 25.00 19.55 19.73 29.17 30.12 30.99 19.82 19.53 20.51
2190 6.20 6.21 6.18 6.22 6.22 28.25 29.31 27.61 21.59 21.79 32.22 33.27 34.23 21.89 21.57 22.65
2200 6.85 6.86 6.83 6.87 6.87 31.21 32.38 30.50 23.85 24.07 35.59 36.76 37.81 24.19 23.83 25.02
2210 7.55 7.57 7.53 7.57 7.58 34.41 35.70 33.64 26.30 26.55 39.25 40.53 41.69 26.67 26.27 27.59
2220 8.29 8.31 8.27 8.32 8.32 37.79 39.21 36.94 28.88 29.16 43.11 44.51 45.79 29.29 28.86 30.30
2230 9.07 9.09 9.05 9.10 9.11 41.34 42.89 40.41 31.60 31.89 47.16 48.69 50.09 32.04 31.57 33.15
2240 9.89 9.91 9.86 9.91 9.92 45.05 46.74 44.03 34.43 34.75 51.38 53.06 54.58 34.91 34.40 36.12
2250 10.73 10.75 10.70 10.76 10.77 48.89 50.72 47.79 37.37 37.72 55.77 57.59 59.23 37.89 37.33 39.20
2260 11.60 11.62 11.57 11.63 11.64 52.85 54.83 51.66 40.39 40.77 60.28 62.25 64.03 40.96 40.36 42.38
2270 12.49 12.51 12.45 12.52 12.53 56.91 59.04 55.63 43.49 43.90 64.91 67.03 68.95 44.10 43.45 45.63
2280 13.39 13.42 13.36 13.43 13.44 61.03 63.32 59.66 46.64 47.08 69.61 71.88 73.94 47.30 46.60 48.94
2290 14.31 14.34 14.27 14.35 14.36 65.19 67.64 63.73 49.82 50.29 74.36 76.79 78.98 50.53 49.78 52.27
2300 15.22 15.25 15.18 15.26 15.28 69.36 71.96 67.80 53.01 53.51 79.12 81.70 84.04 53.76 52.96 55.62

Table: Table Y.B2: Per capita income; 2000 = 1.00.

Year USA CAN WEU JPK ANZ EEU FSU MDE CAM SAM SAS SEA CHI NAF SSA SIS
1950 0.66 0.60 0.60 1.42 1.05 0.80 1.21 2.75 1.12 0.97 1.76 1.65 1.23 1.23 1.53 1.25
1960 0.74 0.70 0.59 1.16 1.06 0.70 1.03 1.91 1.08 0.98 1.51 1.33 0.46 1.32 1.36 1.02
1970 0.71 0.68 0.59 0.79 1.11 0.65 1.00 1.41 1.15 1.01 1.39 1.03 0.62 1.06 1.17 0.87
1980 0.79 0.73 0.65 0.86 1.11 0.66 0.99 1.34 1.04 1.09 1.14 1.08 0.60 0.99 1.10 0.85
1990 0.96 0.98 0.90 1.04 0.98 0.86 1.20 1.09 1.01 1.04 1.02 1.11 0.81 1.04 0.99 1.06
2000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2010 1.08 1.07 1.09 1.05 1.07 1.09 0.99 1.00 1.06 1.05 1.06 1.02 1.16 1.05 1.07 1.03
2020 1.17 1.16 1.16 1.14 1.16 1.16 1.09 1.06 1.16 1.15 1.16 1.12 1.27 1.15 1.17 1.11
2030 1.23 1.22 1.21 1.19 1.22 1.25 1.18 1.14 1.26 1.25 1.26 1.22 1.39 1.25 1.27 1.21
2040 1.27 1.26 1.26 1.24 1.26 1.34 1.27 1.23 1.36 1.35 1.36 1.32 1.52 1.35 1.37 1.30
2050 1.31 1.30 1.30 1.28 1.30 1.42 1.34 1.32 1.46 1.45 1.46 1.41 1.65 1.45 1.47 1.40
2060 1.35 1.34 1.34 1.31 1.34 1.49 1.41 1.42 1.57 1.55 1.56 1.51 1.78 1.55 1.58 1.50
2070 1.39 1.38 1.37 1.35 1.38 1.55 1.47 1.51 1.67 1.65 1.66 1.61 1.92 1.65 1.68 1.60
2080 1.42 1.41 1.41 1.38 1.41 1.62 1.53 1.60 1.77 1.75 1.77 1.71 2.06 1.75 1.79 1.69
2090 1.46 1.45 1.44 1.42 1.45 1.68 1.59 1.70 1.87 1.85 1.87 1.81 2.20 1.85 1.89 1.79
2100 1.49 1.48 1.47 1.45 1.48 1.73 1.64 1.79 1.97 1.95 1.97 1.91 2.34 1.95 1.99 1.89
2110 1.52 1.51 1.50 1.48 1.51 1.78 1.69 1.88 2.07 2.05 2.06 2.00 2.48 2.05 2.09 1.98
2120 1.55 1.54 1.53 1.50 1.54 1.82 1.73 1.96 2.16 2.14 2.16 2.09 2.61 2.14 2.18 2.07
2130 1.58 1.57 1.56 1.54 1.57 1.86 1.76 2.04 2.25 2.23 2.25 2.18 2.75 2.23 2.27 2.15
2140 1.61 1.60 1.60 1.57 1.60 1.90 1.80 2.12 2.34 2.31 2.33 2.26 2.88 2.31 2.36 2.23
2150 1.65 1.63 1.63 1.60 1.63 1.94 1.83 2.19 2.41 2.39 2.40 2.33 3.00 2.39 2.43 2.31
2160 1.68 1.67 1.66 1.63 1.67 1.98 1.87 2.26 2.49 2.46 2.48 2.41 3.13 2.46 2.51 2.38
2170 1.71 1.70 1.69 1.66 1.70 2.02 1.91 2.34 2.58 2.55 2.57 2.50 3.27 2.55 2.60 2.47
2180 1.75 1.73 1.73 1.70 1.73 2.06 1.95 2.41 2.66 2.63 2.65 2.57 3.40 2.63 2.68 2.54
2190 1.78 1.77 1.76 1.73 1.77 2.10 1.99 2.46 2.71 2.68 2.70 2.62 3.49 2.68 2.73 2.59
2200 1.82 1.80 1.80 1.77 1.80 2.14 2.03 2.51 2.77 2.74 2.76 2.67 3.57 2.74 2.79 2.64
2210 1.86 1.84 1.84 1.80 1.84 2.18 2.07 2.56 2.82 2.79 2.81 2.73 3.64 2.79 2.84 2.70
2220 1.89 1.88 1.87 1.84 1.88 2.23 2.11 2.61 2.88 2.85 2.87 2.78 3.72 2.85 2.90 2.75
2230 1.93 1.92 1.91 1.87 1.92 2.27 2.15 2.66 2.94 2.90 2.93 2.84 3.79 2.90 2.96 2.81
2240 1.97 1.95 1.95 1.91 1.95 2.32 2.20 2.71 3.00 2.96 2.99 2.90 3.87 2.96 3.02 2.86
2250 2.01 1.99 1.99 1.95 1.99 2.37 2.24 2.77 3.06 3.02 3.05 2.96 3.95 3.02 3.08 2.92
2260 2.05 2.03 2.03 1.99 2.03 2.41 2.28 2.82 3.12 3.08 3.11 3.01 4.03 3.08 3.14 2.98
2270 2.09 2.08 2.07 2.03 2.08 2.46 2.33 2.88 3.18 3.15 3.17 3.08 4.11 3.15 3.21 3.04
2280 2.13 2.12 2.11 2.07 2.12 2.51 2.38 2.94 3.25 3.21 3.23 3.14 4.19 3.21 3.27 3.10
2290 2.18 2.16 2.15 2.11 2.16 2.56 2.43 3.00 3.31 3.27 3.30 3.20 4.28 3.27 3.34 3.17
2300 2.22 2.20 2.20 2.16 2.20 2.61 2.47 3.06 3.38 3.34 3.37 3.27 4.36 3.34 3.41 3.23

Table: Table AEEI.FUND: Energy efficiency; 2000 = 1.00.

Year USA CAN WEU JPK ANZ EEU FSU MDE CAM SAM SAS SEA CHI NAF SSA SIS
1950 0.66 0.60 0.60 1.42 1.05 0.80 1.21 2.75 1.12 0.97 1.76 1.65 1.23 1.23 1.53 1.25
1960 0.74 0.70 0.59 1.16 1.06 0.70 1.03 1.91 1.08 0.98 1.51 1.33 0.46 1.32 1.36 1.02
1970 0.71 0.68 0.59 0.79 1.11 0.65 1.00 1.41 1.15 1.01 1.39 1.03 0.62 1.06 1.17 0.87
1980 0.79 0.73 0.65 0.86 1.11 0.66 0.99 1.34 1.04 1.09 1.14 1.08 0.60 0.99 1.10 0.85
1990 0.96 0.98 0.90 1.04 0.98 0.86 1.20 1.09 1.01 1.04 1.02 1.11 0.81 1.04 0.99 1.06
2000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2010 1.08 1.07 1.09 1.05 1.07 1.09 0.99 1.00 1.06 1.05 1.06 1.02 1.16 1.05 1.07 1.03
2020 1.21 1.20 1.20 1.17 1.20 1.26 1.19 1.14 1.22 1.20 1.25 1.21 1.37 1.20 1.23 1.17
2030 1.37 1.36 1.35 1.33 1.36 1.70 1.61 1.51 1.51 1.49 1.66 1.61 1.82 1.49 1.52 1.44
2040 1.54 1.53 1.53 1.50 1.53 2.16 2.05 1.88 1.82 1.80 2.06 2.00 2.26 1.80 1.84 1.74
2050 1.71 1.69 1.69 1.66 1.69 2.63 2.49 2.23 2.14 2.12 2.45 2.37 2.68 2.12 2.16 2.05
2060 1.84 1.83 1.82 1.79 1.83 3.04 2.88 2.50 2.41 2.39 2.75 2.66 3.01 2.39 2.43 2.31
2070 1.99 1.98 1.97 1.93 1.98 3.50 3.32 2.79 2.74 2.71 3.07 2.98 3.36 2.71 2.77 2.62
2080 2.16 2.15 2.14 2.10 2.15 4.03 3.82 3.11 3.18 3.14 3.41 3.31 3.74 3.14 3.20 3.04
2090 2.36 2.34 2.33 2.29 2.34 4.64 4.39 3.44 3.71 3.67 3.78 3.67 4.14 3.67 3.74 3.55
2100 2.56 2.54 2.53 2.49 2.54 5.24 4.96 3.76 4.23 4.18 4.14 4.02 4.53 4.18 4.26 4.04
2110 2.76 2.73 2.73 2.68 2.73 5.78 5.47 4.05 4.66 4.61 4.46 4.32 4.88 4.61 4.70 4.45
2120 2.96 2.94 2.93 2.87 2.94 6.34 6.00 4.35 5.11 5.05 4.78 4.64 5.24 5.05 5.15 4.89
2130 3.17 3.14 3.13 3.08 3.14 6.91 6.54 4.66 5.58 5.52 5.12 4.97 5.61 5.52 5.62 5.33
2140 3.39 3.36 3.35 3.29 3.36 7.51 7.11 4.98 6.06 5.99 5.47 5.31 5.99 5.99 6.11 5.79
2150 3.61 3.58 3.57 3.50 3.58 8.11 7.68 5.31 6.54 6.47 5.83 5.66 6.39 6.47 6.60 6.26
2160 3.84 3.81 3.79 3.72 3.81 8.72 8.26 5.64 7.04 6.96 6.20 6.02 6.79 6.96 7.09 6.73
2170 4.07 4.04 4.02 3.95 4.04 9.33 8.83 5.98 7.53 7.44 6.58 6.38 7.20 7.44 7.59 7.20
2180 4.30 4.27 4.26 4.18 4.27 9.93 9.40 6.33 8.01 7.92 6.96 6.75 7.62 7.92 8.08 7.66
2190 4.54 4.51 4.49 4.41 4.50 10.52 9.96 6.68 8.49 8.39 7.34 7.12 8.04 8.39 8.56 8.11
2200 4.78 4.74 4.73 4.64 4.74 11.09 10.50 7.03 8.95 8.85 7.73 7.50 8.46 8.85 9.02 8.55
2210 5.02 4.98 4.97 4.88 4.98 11.66 11.03 7.39 9.40 9.30 8.12 7.88 8.89 9.30 9.48 8.99
2220 5.28 5.24 5.22 5.13 5.24 12.26 11.60 7.76 9.89 9.78 8.54 8.29 9.35 9.78 9.96 9.45
2230 5.55 5.51 5.49 5.39 5.51 12.88 12.19 8.16 10.39 10.28 8.98 8.71 9.82 10.28 10.47 9.93
2240 5.83 5.79 5.77 5.66 5.79 13.54 12.82 8.58 10.92 10.80 9.43 9.15 10.33 10.80 11.01 10.44
2250 6.13 6.09 6.07 5.95 6.08 14.23 13.47 9.02 11.48 11.35 9.92 9.62 10.86 11.35 11.57 10.98
2260 6.45 6.40 6.38 6.26 6.40 14.96 14.16 9.48 12.07 11.93 10.42 10.11 11.41 11.93 12.17 11.54
2270 6.78 6.72 6.70 6.58 6.72 15.73 14.88 9.96 12.69 12.54 10.96 10.63 11.99 12.54 12.79 12.13
2280 7.12 7.07 7.04 6.91 7.07 16.53 15.64 10.47 13.33 13.19 11.52 11.18 12.61 13.19 13.44 12.75
2290 7.49 7.43 7.41 7.27 7.43 17.38 16.44 11.01 14.02 13.86 12.11 11.75 13.25 13.86 14.13 13.40
2300 7.87 7.81 7.78 7.64 7.81 18.26 17.29 11.57 14.73 14.57 12.73 12.35 13.93 14.57 14.85 14.08

Table: Table AEEI.A1B: Energy efficiency; 2000 = 1.00.

Year USA CAN WEU JPK ANZ EEU FSU MDE CAM SAM SAS SEA CHI NAF SSA SIS
1950 0.66 0.60 0.60 1.42 1.05 0.80 1.21 2.75 1.12 0.97 1.76 1.65 1.23 1.23 1.53 1.25
1960 0.74 0.70 0.59 1.16 1.06 0.70 1.03 1.91 1.08 0.98 1.51 1.33 0.46 1.32 1.36 1.02
1970 0.71 0.68 0.59 0.79 1.11 0.65 1.00 1.41 1.15 1.01 1.39 1.03 0.62 1.06 1.17 0.87
1980 0.79 0.73 0.65 0.86 1.11 0.66 0.99 1.34 1.04 1.09 1.14 1.08 0.60 0.99 1.10 0.85
1990 0.96 0.98 0.90 1.04 0.98 0.86 1.20 1.09 1.01 1.04 1.02 1.11 0.81 1.04 0.99 1.06
2000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2010 1.08 1.07 1.09 1.05 1.07 1.09 0.99 1.00 1.06 1.05 1.06 1.02 1.16 1.05 1.07 1.03
2020 1.20 1.19 1.19 1.16 1.19 1.23 1.15 1.09 1.20 1.19 1.20 1.16 1.31 1.19 1.21 1.15
2030 1.35 1.34 1.33 1.31 1.34 1.58 1.49 1.33 1.47 1.45 1.46 1.42 1.60 1.45 1.48 1.40
2040 1.47 1.46 1.45 1.43 1.46 1.90 1.80 1.55 1.71 1.69 1.71 1.66 1.87 1.69 1.72 1.63
2050 1.55 1.53 1.53 1.50 1.53 2.11 2.00 1.67 1.79 1.77 1.84 1.78 2.01 1.77 1.81 1.72
2060 1.64 1.63 1.63 1.60 1.63 2.40 2.27 1.86 1.92 1.90 2.05 1.98 2.24 1.90 1.94 1.84
2070 1.77 1.75 1.75 1.72 1.75 2.83 2.68 2.17 2.16 2.13 2.38 2.31 2.61 2.13 2.18 2.06
2080 2.00 1.99 1.98 1.94 1.99 3.74 3.54 2.85 2.72 2.69 3.13 3.04 3.43 2.69 2.74 2.60
2090 2.10 2.08 2.08 2.04 2.08 4.35 4.12 3.31 3.03 2.99 3.64 3.53 3.98 2.99 3.05 2.89
2100 2.11 2.09 2.08 2.05 2.09 4.50 4.26 3.43 3.09 3.05 3.77 3.66 4.13 3.05 3.11 2.95
2110 2.22 2.20 2.19 2.15 2.20 4.73 4.48 3.60 3.24 3.21 3.96 3.84 4.34 3.21 3.27 3.10
2120 2.33 2.31 2.30 2.26 2.31 4.97 4.71 3.79 3.41 3.37 4.16 4.04 4.56 3.37 3.44 3.26
2130 2.45 2.43 2.42 2.38 2.43 5.23 4.95 3.98 3.58 3.54 4.38 4.25 4.79 3.54 3.61 3.43
2140 2.57 2.55 2.54 2.50 2.55 5.50 5.20 4.18 3.77 3.72 4.60 4.46 5.04 3.72 3.80 3.60
2150 2.70 2.68 2.67 2.63 2.68 5.78 5.47 4.40 3.96 3.91 4.84 4.69 5.29 3.91 3.99 3.78
2160 2.84 2.82 2.81 2.76 2.82 6.07 5.75 4.62 4.16 4.11 5.08 4.93 5.56 4.12 4.19 3.98
2170 2.99 2.96 2.96 2.90 2.96 6.38 6.04 4.86 4.37 4.33 5.34 5.18 5.85 4.33 4.41 4.18
2180 3.14 3.12 3.11 3.05 3.12 6.71 6.35 5.11 4.60 4.55 5.62 5.45 6.15 4.55 4.63 4.40
2190 3.30 3.28 3.27 3.20 3.28 7.05 6.68 5.37 4.83 4.78 5.90 5.73 6.46 4.78 4.87 4.62
2200 3.47 3.44 3.43 3.37 3.44 7.41 7.02 5.64 5.08 5.02 6.21 6.02 6.79 5.02 5.12 4.86
2210 3.65 3.62 3.61 3.54 3.62 7.79 7.38 5.93 5.34 5.28 6.52 6.33 7.14 5.28 5.38 5.10
2220 3.83 3.80 3.79 3.72 3.80 8.19 7.75 6.23 5.61 5.55 6.86 6.65 7.51 5.55 5.66 5.37
2230 4.03 4.00 3.99 3.91 4.00 8.61 8.15 6.55 5.90 5.83 7.21 6.99 7.89 5.83 5.95 5.64
2240 4.24 4.20 4.19 4.11 4.20 9.05 8.57 6.89 6.20 6.13 7.58 7.35 8.29 6.13 6.25 5.93
2250 4.45 4.42 4.40 4.32 4.42 9.51 9.00 7.24 6.52 6.45 7.96 7.73 8.72 6.45 6.57 6.23
2260 4.68 4.64 4.63 4.54 4.64 10.00 9.46 7.61 6.85 6.78 8.37 8.12 9.16 6.78 6.91 6.55
2270 4.92 4.88 4.87 4.78 4.88 10.51 9.95 8.00 7.20 7.12 8.80 8.54 9.63 7.12 7.26 6.89
2280 5.17 5.13 5.11 5.02 5.13 11.05 10.46 8.41 7.57 7.49 9.25 8.97 10.12 7.49 7.63 7.24
2290 5.44 5.39 5.38 5.28 5.39 11.61 10.99 8.84 7.96 7.87 9.72 9.43 10.64 7.87 8.02 7.61
2300 5.71 5.67 5.65 5.55 5.67 12.21 11.55 9.29 8.37 8.27 10.22 9.92 11.19 8.27 8.43 8.00

Table: Table AEEI.A2: Energy efficiency; 2000 = 1.00.

Year USA CAN WEU JPK ANZ EEU FSU MDE CAM SAM SAS SEA CHI NAF SSA SIS
1950 0.66 0.60 0.60 1.42 1.05 0.80 1.21 2.75 1.12 0.97 1.76 1.65 1.23 1.23 1.53 1.25
1960 0.74 0.70 0.59 1.16 1.06 0.70 1.03 1.91 1.08 0.98 1.51 1.33 0.46 1.32 1.36 1.02
1970 0.71 0.68 0.59 0.79 1.11 0.65 1.00 1.41 1.15 1.01 1.39 1.03 0.62 1.06 1.17 0.87
1980 0.79 0.73 0.65 0.86 1.11 0.66 0.99 1.34 1.04 1.09 1.14 1.08 0.60 0.99 1.10 0.85
1990 0.96 0.98 0.90 1.04 0.98 0.86 1.20 1.09 1.01 1.04 1.02 1.11 0.81 1.04 0.99 1.06
2000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2010 1.08 1.07 1.09 1.05 1.07 1.09 0.99 1.00 1.06 1.05 1.06 1.02 1.16 1.05 1.07 1.03
2020 1.23 1.22 1.22 1.20 1.22 1.26 1.19 1.15 1.22 1.21 1.26 1.22 1.38 1.21 1.23 1.17
2030 1.49 1.48 1.48 1.45 1.48 1.72 1.63 1.59 1.54 1.52 1.74 1.69 1.91 1.52 1.55 1.47
2040 1.84 1.82 1.82 1.78 1.82 2.38 2.25 2.34 1.99 1.97 2.57 2.50 2.82 1.97 2.01 1.90
2050 2.21 2.20 2.19 2.15 2.20 3.34 3.16 3.46 2.64 2.61 3.80 3.69 4.16 2.61 2.66 2.52
2060 2.60 2.58 2.58 2.53 2.58 4.62 4.38 4.89 3.60 3.56 5.38 5.22 5.89 3.56 3.63 3.44
2070 3.02 3.00 2.99 2.93 3.00 6.38 6.04 6.71 4.94 4.88 7.38 7.16 8.08 4.88 4.98 4.72
2080 3.52 3.49 3.48 3.42 3.49 8.64 8.18 8.96 6.66 6.58 9.85 9.56 10.79 6.58 6.71 6.36
2090 4.07 4.04 4.03 3.95 4.04 11.41 10.80 11.62 8.94 8.85 12.78 12.40 13.99 8.85 9.02 8.55
2100 4.61 4.58 4.56 4.48 4.57 14.43 13.66 14.60 11.52 11.39 16.05 15.57 17.57 11.39 11.61 11.01
2110 5.08 5.04 5.03 4.93 5.04 17.47 16.54 17.67 13.95 13.79 19.44 18.86 21.28 13.79 14.06 13.33
2120 5.57 5.53 5.51 5.41 5.53 20.85 19.74 21.09 16.64 16.46 23.19 22.50 25.39 16.46 16.78 15.91
2130 6.08 6.04 6.02 5.90 6.03 24.52 23.20 24.80 19.57 19.35 27.27 26.46 29.85 19.35 19.73 18.71
2140 6.60 6.55 6.53 6.41 6.55 28.40 26.88 28.73 22.67 22.42 31.59 30.65 34.58 22.42 22.85 21.67
2150 7.14 7.08 7.06 6.93 7.08 32.42 30.69 32.80 25.88 25.59 36.06 34.99 39.48 25.59 26.09 24.74
2160 7.67 7.61 7.59 7.45 7.61 36.47 34.52 36.89 29.11 28.78 40.56 39.36 44.40 28.78 29.34 27.83
2170 8.21 8.15 8.12 7.97 8.14 40.41 38.25 40.88 32.26 31.90 44.95 43.61 49.20 31.90 32.52 30.84
2180 8.74 8.67 8.64 8.48 8.67 44.13 41.76 44.63 35.22 34.83 49.08 47.62 53.72 34.83 35.50 33.67
2190 9.26 9.19 9.16 8.99 9.18 47.47 44.92 48.01 37.89 37.46 52.79 51.23 57.79 37.46 38.19 36.22
2200 9.76 9.68 9.65 9.47 9.68 50.31 47.61 50.88 40.15 39.70 55.95 54.29 61.25 39.71 40.47 38.39
2210 10.26 10.18 10.14 9.96 10.18 52.88 50.05 53.48 42.20 41.73 58.81 57.06 64.38 41.74 42.54 40.35
2220 10.78 10.70 10.66 10.47 10.70 55.58 52.60 56.22 44.36 43.87 61.82 59.98 67.67 43.87 44.72 42.41
2230 11.33 11.24 11.21 11.00 11.24 58.42 55.30 59.09 46.63 46.11 64.98 63.05 71.13 46.11 47.01 44.58
2240 11.91 11.82 11.78 11.56 11.82 61.41 58.12 62.11 49.02 48.47 68.30 66.28 74.77 48.47 49.41 46.86
2250 12.52 12.42 12.38 12.16 12.42 64.55 61.10 65.29 51.52 50.95 71.80 69.66 78.59 50.95 51.94 49.26
2260 13.16 13.06 13.02 12.78 13.06 67.85 64.22 68.63 54.16 53.55 75.47 73.23 82.61 53.56 54.59 51.78
2270 13.83 13.73 13.68 13.43 13.73 71.32 67.50 72.14 56.93 56.29 79.33 76.97 86.84 56.30 57.39 54.42
2280 14.54 14.43 14.38 14.12 14.43 74.97 70.96 75.83 59.84 59.17 83.39 80.91 91.28 59.17 60.32 57.21
2290 15.28 15.17 15.12 14.84 15.17 78.81 74.58 79.71 62.90 62.20 87.65 85.05 95.95 62.20 63.40 60.13
2300 16.07 15.94 15.89 15.60 15.94 82.84 78.40 83.78 66.12 65.38 92.13 89.40 100.85 65.38 66.65 63.21

Table: Table AEEI.B1: Energy efficiency; 2000 = 1.00.

Year USA CAN WEU JPK ANZ EEU FSU MDE CAM SAM SAS SEA CHI NAF SSA SIS
1950 0.66 0.60 0.60 1.42 1.05 0.80 1.21 2.75 1.12 0.97 1.76 1.65 1.23 1.23 1.53 1.25
1960 0.74 0.70 0.59 1.16 1.06 0.70 1.03 1.91 1.08 0.98 1.51 1.33 0.46 1.32 1.36 1.02
1970 0.71 0.68 0.59 0.79 1.11 0.65 1.00 1.41 1.15 1.01 1.39 1.03 0.62 1.06 1.17 0.87
1980 0.79 0.73 0.65 0.86 1.11 0.66 0.99 1.34 1.04 1.09 1.14 1.08 0.60 0.99 1.10 0.85
1990 0.96 0.98 0.90 1.04 0.98 0.86 1.20 1.09 1.01 1.04 1.02 1.11 0.81 1.04 0.99 1.06
2000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2010 1.08 1.07 1.09 1.05 1.07 1.09 0.99 1.00 1.06 1.05 1.06 1.02 1.16 1.05 1.07 1.03
2020 1.18 1.17 1.17 1.14 1.17 1.23 1.16 1.10 1.21 1.20 1.20 1.17 1.32 1.20 1.22 1.16
2030 1.24 1.24 1.23 1.21 1.24 1.61 1.52 1.33 1.48 1.47 1.46 1.42 1.60 1.47 1.49 1.42
2040 1.32 1.31 1.31 1.28 1.31 2.12 2.01 1.58 1.85 1.83 1.74 1.69 1.91 1.83 1.86 1.76
2050 1.37 1.36 1.36 1.33 1.36 2.68 2.54 1.84 2.21 2.19 2.02 1.96 2.21 2.19 2.23 2.12
2060 1.43 1.42 1.41 1.39 1.42 3.16 2.99 2.04 2.52 2.49 2.25 2.18 2.46 2.49 2.54 2.41
2070 1.50 1.48 1.48 1.45 1.48 3.48 3.29 2.21 2.72 2.69 2.43 2.36 2.66 2.69 2.74 2.60
2080 1.56 1.54 1.54 1.51 1.54 3.77 3.57 2.32 2.80 2.77 2.55 2.47 2.79 2.77 2.82 2.68
2090 1.66 1.65 1.64 1.61 1.65 4.04 3.82 2.42 2.91 2.87 2.66 2.58 2.91 2.87 2.93 2.78
2100 1.77 1.76 1.76 1.72 1.76 4.24 4.01 2.54 3.06 3.03 2.79 2.71 3.05 3.03 3.09 2.93
2110 1.87 1.85 1.84 1.81 1.85 4.45 4.21 2.67 3.22 3.18 2.93 2.84 3.21 3.18 3.25 3.08
2120 1.96 1.95 1.94 1.90 1.95 4.68 4.43 2.80 3.39 3.35 3.08 2.99 3.37 3.35 3.41 3.24
2130 2.06 2.04 2.04 2.00 2.04 4.92 4.66 2.95 3.56 3.52 3.24 3.14 3.55 3.52 3.59 3.40
2140 2.17 2.15 2.14 2.10 2.15 5.17 4.90 3.10 3.74 3.70 3.41 3.30 3.73 3.70 3.77 3.58
2150 2.28 2.26 2.25 2.21 2.26 5.44 5.15 3.25 3.93 3.89 3.58 3.47 3.92 3.89 3.96 3.76
2160 2.39 2.38 2.37 2.32 2.37 5.71 5.41 3.42 4.13 4.09 3.76 3.65 4.12 4.09 4.17 3.95
2170 2.52 2.50 2.49 2.44 2.50 6.01 5.69 3.60 4.34 4.30 3.95 3.84 4.33 4.30 4.38 4.15
2180 2.64 2.62 2.62 2.57 2.62 6.31 5.98 3.78 4.57 4.52 4.16 4.03 4.55 4.52 4.60 4.37
2190 2.78 2.76 2.75 2.70 2.76 6.64 6.28 3.97 4.80 4.75 4.37 4.24 4.78 4.75 4.84 4.59
2200 2.92 2.90 2.89 2.84 2.90 6.98 6.60 4.18 5.04 4.99 4.59 4.46 5.03 4.99 5.09 4.82
2210 3.07 3.05 3.04 2.98 3.05 7.33 6.94 4.39 5.30 5.24 4.83 4.68 5.28 5.24 5.35 5.07
2220 3.23 3.20 3.19 3.13 3.20 7.71 7.30 4.61 5.57 5.51 5.07 4.92 5.56 5.51 5.62 5.33
2230 3.39 3.37 3.36 3.29 3.37 8.10 7.67 4.85 5.86 5.79 5.33 5.18 5.84 5.79 5.91 5.60
2240 3.57 3.54 3.53 3.46 3.54 8.52 8.06 5.10 6.16 6.09 5.61 5.44 6.14 6.09 6.21 5.89
2250 3.75 3.72 3.71 3.64 3.72 8.95 8.47 5.36 6.47 6.40 5.89 5.72 6.45 6.40 6.53 6.19
2260 3.94 3.91 3.90 3.83 3.91 9.41 8.91 5.63 6.80 6.73 6.20 6.01 6.78 6.73 6.86 6.51
2270 4.14 4.11 4.10 4.02 4.11 9.89 9.36 5.92 7.15 7.07 6.51 6.32 7.13 7.07 7.21 6.84
2280 4.35 4.32 4.31 4.23 4.32 10.40 9.84 6.22 7.52 7.43 6.85 6.64 7.49 7.44 7.58 7.19
2290 4.58 4.54 4.53 4.44 4.54 10.93 10.34 6.54 7.90 7.82 7.20 6.98 7.88 7.82 7.97 7.56
2300 4.81 4.77 4.76 4.67 4.77 11.49 10.87 6.88 8.31 8.21 7.56 7.34 8.28 8.22 8.37 7.94

Table: Table AEEI.B2: Energy efficiency; 2000 = 1.00.

Year USA CAN WEU JPK ANZ EEU FSU MDE CAM SAM SAS SEA CHI NAF SSA SIS
1950 0.67 0.60 0.60 1.42 1.05 0.80 1.21 2.72 1.12 0.97 1.76 1.65 1.24 1.21 1.51 1.25
1960 0.74 0.70 0.60 1.16 1.06 0.70 1.03 1.90 1.08 0.98 1.51 1.33 0.46 1.30 1.34 1.02
1970 0.72 0.68 0.59 0.79 1.11 0.65 1.00 1.40 1.15 1.01 1.38 1.03 0.62 1.05 1.15 0.87
1980 0.79 0.73 0.66 0.86 1.11 0.66 0.99 1.33 1.04 1.09 1.14 1.08 0.60 0.98 1.08 0.84
1990 0.96 0.98 0.90 1.04 0.98 0.86 1.20 1.08 1.01 1.04 1.02 1.10 0.81 1.03 0.98 1.06
2000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2010 1.07 1.07 1.07 1.05 1.07 1.09 0.99 1.07 1.06 1.05 1.07 1.04 1.12 1.14 1.16 1.04
2020 1.14 1.15 1.11 1.14 1.16 1.13 1.07 1.23 1.16 1.14 1.20 1.17 1.17 1.39 1.41 1.12
2030 1.15 1.16 1.12 1.19 1.21 1.14 1.08 1.39 1.23 1.22 1.31 1.27 1.21 1.61 1.65 1.20
2040 1.15 1.16 1.12 1.22 1.24 1.14 1.08 1.51 1.30 1.28 1.41 1.37 1.24 1.81 1.84 1.26
2050 1.15 1.16 1.12 1.24 1.26 1.14 1.08 1.61 1.35 1.33 1.51 1.46 1.27 1.98 2.01 1.31
2060 1.15 1.16 1.12 1.25 1.28 1.14 1.08 1.70 1.38 1.37 1.58 1.54 1.28 2.13 2.17 1.34
2070 1.15 1.16 1.12 1.26 1.29 1.14 1.08 1.78 1.42 1.40 1.66 1.62 1.29 2.29 2.34 1.37
2080 1.15 1.16 1.12 1.27 1.30 1.14 1.08 1.85 1.44 1.42 1.73 1.68 1.30 2.44 2.49 1.40
2090 1.15 1.17 1.12 1.28 1.31 1.15 1.08 1.90 1.45 1.43 1.77 1.72 1.31 2.55 2.60 1.41
2100 1.17 1.19 1.14 1.30 1.33 1.16 1.10 1.94 1.47 1.46 1.81 1.76 1.34 2.62 2.68 1.43
2110 1.19 1.21 1.16 1.33 1.36 1.19 1.12 1.98 1.50 1.49 1.85 1.79 1.36 2.68 2.73 1.46
2120 1.22 1.23 1.19 1.36 1.39 1.21 1.14 2.02 1.53 1.52 1.88 1.83 1.39 2.73 2.78 1.49
2130 1.24 1.26 1.21 1.38 1.41 1.23 1.17 2.06 1.57 1.55 1.92 1.86 1.42 2.79 2.84 1.52
2140 1.27 1.29 1.24 1.41 1.44 1.26 1.19 2.10 1.60 1.58 1.96 1.90 1.45 2.84 2.90 1.55
2150 1.29 1.31 1.26 1.44 1.47 1.28 1.22 2.14 1.63 1.61 2.00 1.94 1.48 2.90 2.96 1.58
2160 1.32 1.34 1.29 1.47 1.50 1.31 1.24 2.19 1.66 1.64 2.04 1.98 1.51 2.96 3.02 1.61
2170 1.35 1.36 1.31 1.50 1.53 1.34 1.27 2.23 1.70 1.68 2.08 2.02 1.54 3.02 3.08 1.64
2180 1.37 1.39 1.34 1.53 1.56 1.36 1.29 2.28 1.73 1.71 2.12 2.06 1.57 3.08 3.14 1.68
2190 1.40 1.42 1.37 1.56 1.59 1.39 1.32 2.32 1.76 1.74 2.17 2.10 1.60 3.14 3.20 1.71
2200 1.43 1.45 1.39 1.59 1.63 1.42 1.34 2.37 1.80 1.78 2.21 2.14 1.63 3.21 3.27 1.75
2210 1.46 1.48 1.42 1.62 1.66 1.45 1.37 2.42 1.84 1.82 2.25 2.19 1.66 3.27 3.33 1.78
2220 1.49 1.51 1.45 1.66 1.69 1.48 1.40 2.46 1.87 1.85 2.30 2.23 1.70 3.34 3.40 1.82
2230 1.52 1.54 1.48 1.69 1.73 1.51 1.43 2.51 1.91 1.89 2.35 2.28 1.73 3.40 3.47 1.85
2240 1.55 1.57 1.51 1.72 1.76 1.54 1.46 2.56 1.95 1.93 2.39 2.32 1.77 3.47 3.54 1.89
2250 1.58 1.60 1.54 1.76 1.80 1.57 1.48 2.62 1.99 1.97 2.44 2.37 1.80 3.54 3.61 1.93
2260 1.61 1.63 1.57 1.79 1.83 1.60 1.51 2.67 2.03 2.01 2.49 2.42 1.84 3.61 3.68 1.97
2270 1.64 1.67 1.60 1.83 1.87 1.63 1.55 2.72 2.07 2.05 2.54 2.47 1.88 3.69 3.76 2.01
2280 1.68 1.70 1.63 1.87 1.91 1.66 1.58 2.78 2.11 2.09 2.59 2.52 1.91 3.76 3.83 2.05
2290 1.71 1.73 1.67 1.91 1.95 1.70 1.61 2.83 2.15 2.13 2.65 2.57 1.95 3.84 3.91 2.09
2300 1.74 1.77 1.70 1.94 1.99 1.73 1.64 2.89 2.20 2.17 2.70 2.62 1.99 3.91 3.99 2.13

Table: Table ACEI.FUND: Energy efficiency; 2000 = 1.00.

Year USA CAN WEU JPK ANZ EEU FSU MDE CAM SAM SAS SEA CHI NAF SSA SIS
1950 0.67 0.60 0.60 1.43 1.05 0.80 1.21 2.72 1.14 0.98 1.77 1.66 1.24 1.24 1.55 1.25
1960 0.74 0.70 0.60 1.17 1.07 0.70 1.03 1.90 1.09 0.99 1.52 1.34 0.46 1.33 1.37 1.02
1970 0.72 0.68 0.59 0.80 1.11 0.65 1.00 1.40 1.16 1.02 1.40 1.04 0.62 1.07 1.18 0.87
1980 0.79 0.73 0.66 0.87 1.11 0.66 0.99 1.33 1.05 1.10 1.15 1.09 0.60 1.01 1.11 0.84
1990 0.96 0.98 0.90 1.04 0.98 0.86 1.20 1.08 1.02 1.06 1.03 1.12 0.81 1.06 1.00 1.06
2000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2010 1.07 1.07 1.07 1.01 1.04 1.09 0.99 1.07 0.97 0.96 1.00 0.97 1.12 0.96 0.98 1.04
2020 1.16 1.17 1.13 1.07 1.10 1.18 1.11 1.22 0.99 0.98 1.05 1.02 1.20 0.98 1.00 1.15
2030 1.24 1.26 1.21 1.15 1.17 1.33 1.26 1.38 1.12 1.10 1.18 1.14 1.34 1.10 1.13 1.32
2040 1.33 1.35 1.30 1.23 1.26 1.56 1.47 1.63 1.28 1.27 1.39 1.35 1.58 1.27 1.29 1.51
2050 1.51 1.53 1.47 1.39 1.42 1.83 1.73 1.93 1.49 1.47 1.64 1.59 1.87 1.47 1.50 1.75
2060 1.81 1.84 1.77 1.67 1.71 2.18 2.06 2.28 1.76 1.74 1.94 1.88 2.21 1.74 1.78 2.08
2070 2.15 2.18 2.10 1.98 2.03 2.55 2.41 2.67 2.05 2.02 2.27 2.20 2.59 2.02 2.06 2.41
2080 2.49 2.52 2.43 2.29 2.35 2.90 2.74 3.05 2.28 2.25 2.59 2.52 2.95 2.25 2.29 2.68
2090 2.84 2.88 2.77 2.62 2.67 3.24 3.06 3.44 2.47 2.44 2.93 2.84 3.33 2.44 2.49 2.91
2100 3.19 3.24 3.11 2.94 3.01 3.56 3.37 3.84 2.64 2.61 3.27 3.17 3.72 2.61 2.66 3.11
2110 3.52 3.57 3.43 3.24 3.32 3.83 3.62 4.23 2.78 2.74 3.60 3.50 4.10 2.74 2.80 3.27
2120 3.86 3.91 3.76 3.56 3.64 4.11 3.89 4.64 2.92 2.88 3.95 3.83 4.50 2.88 2.94 3.44
2130 4.21 4.27 4.11 3.88 3.97 4.40 4.17 5.06 3.07 3.03 4.31 4.18 4.91 3.03 3.09 3.61
2140 4.58 4.64 4.46 4.22 4.31 4.70 4.45 5.50 3.22 3.19 4.68 4.54 5.33 3.19 3.25 3.80
2150 4.94 5.01 4.82 4.56 4.66 5.01 4.74 5.94 3.39 3.35 5.06 4.91 5.76 3.35 3.42 3.99
2160 5.32 5.39 5.18 4.90 5.01 5.33 5.04 6.39 3.56 3.52 5.44 5.28 6.19 3.52 3.59 4.20
2170 5.69 5.77 5.54 5.24 5.36 5.65 5.35 6.84 3.74 3.70 5.82 5.65 6.63 3.70 3.77 4.41
2180 6.05 6.14 5.90 5.58 5.70 5.98 5.66 7.28 3.94 3.89 6.20 6.01 7.06 3.89 3.97 4.64
2190 6.41 6.50 6.25 5.91 6.04 6.31 5.97 7.71 4.14 4.09 6.56 6.37 7.47 4.09 4.17 4.87
2200 6.76 6.85 6.59 6.23 6.37 6.64 6.28 8.12 4.35 4.30 6.92 6.71 7.88 4.30 4.38 5.12
2210 7.10 7.20 6.93 6.55 6.69 6.98 6.61 8.54 4.57 4.52 7.27 7.05 8.28 4.52 4.61 5.38
2220 7.47 7.57 7.28 6.88 7.03 7.33 6.94 8.98 4.80 4.75 7.64 7.42 8.70 4.75 4.84 5.66
2230 7.85 7.96 7.65 7.23 7.39 7.71 7.30 9.44 5.05 4.99 8.03 7.79 9.15 4.99 5.09 5.95
2240 8.25 8.37 8.04 7.60 7.77 8.10 7.67 9.92 5.31 5.25 8.45 8.19 9.62 5.25 5.35 6.25
2250 8.67 8.79 8.46 7.99 8.17 8.52 8.06 10.43 5.58 5.52 8.88 8.61 10.11 5.52 5.62 6.57
2260 9.12 9.24 8.89 8.40 8.59 8.95 8.48 10.96 5.87 5.80 9.33 9.05 10.62 5.80 5.91 6.91
2270 9.58 9.72 9.34 8.83 9.03 9.41 8.91 11.52 6.17 6.10 9.81 9.52 11.17 6.10 6.22 7.26
2280 10.07 10.21 9.82 9.28 9.49 9.89 9.37 12.11 6.48 6.41 10.31 10.00 11.74 6.41 6.53 7.63
2290 10.59 10.74 10.32 9.76 9.97 10.40 9.84 12.73 6.81 6.74 10.84 10.51 12.34 6.74 6.87 8.02
2300 11.13 11.29 10.85 10.26 10.48 10.93 10.35 13.38 7.16 7.08 11.39 11.05 12.97 7.08 7.22 8.43

Table: Table ACEI.A1B: Energy efficiency; 2000 = 1.00.

Year USA CAN WEU JPK ANZ EEU FSU MDE CAM SAM SAS SEA CHI NAF SSA SIS
1950 0.67 0.60 0.60 1.44 1.06 0.80 1.21 2.72 1.13 0.97 1.77 1.66 1.24 1.24 1.54 1.25
1960 0.74 0.70 0.60 1.17 1.07 0.70 1.03 1.90 1.09 0.98 1.52 1.34 0.46 1.33 1.37 1.02
1970 0.72 0.68 0.59 0.80 1.12 0.65 1.00 1.40 1.16 1.02 1.40 1.04 0.62 1.07 1.17 0.87
1980 0.79 0.73 0.66 0.87 1.12 0.66 0.99 1.33 1.04 1.09 1.15 1.09 0.60 1.00 1.11 0.84
1990 0.96 0.98 0.90 1.05 0.99 0.86 1.20 1.08 1.02 1.05 1.03 1.11 0.81 1.05 1.00 1.06
2000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2010 1.07 1.07 1.07 0.98 1.01 1.09 0.99 1.07 1.00 0.99 1.01 0.98 1.12 0.99 1.01 1.04
2020 1.15 1.16 1.12 1.00 1.02 1.15 1.08 1.19 1.03 1.02 1.03 1.00 1.17 1.02 1.04 1.12
2030 1.19 1.21 1.16 1.03 1.05 1.20 1.14 1.24 1.09 1.08 1.06 1.03 1.20 1.08 1.10 1.19
2040 1.22 1.24 1.19 1.05 1.08 1.30 1.23 1.29 1.18 1.17 1.11 1.08 1.25 1.17 1.19 1.29
2050 1.25 1.27 1.22 1.08 1.10 1.36 1.28 1.32 1.20 1.19 1.13 1.10 1.28 1.19 1.21 1.32
2060 1.27 1.29 1.24 1.09 1.12 1.38 1.31 1.31 1.17 1.15 1.13 1.09 1.27 1.15 1.18 1.28
2070 1.29 1.31 1.26 1.11 1.13 1.40 1.33 1.31 1.14 1.13 1.13 1.10 1.27 1.13 1.15 1.25
2080 1.31 1.33 1.28 1.13 1.15 1.41 1.33 1.32 1.13 1.11 1.14 1.10 1.28 1.11 1.13 1.23
2090 1.33 1.35 1.29 1.14 1.17 1.41 1.33 1.33 1.12 1.10 1.14 1.11 1.29 1.10 1.12 1.22
2100 1.37 1.39 1.33 1.18 1.20 1.44 1.37 1.37 1.14 1.12 1.17 1.14 1.33 1.12 1.14 1.24
2110 1.44 1.46 1.40 1.24 1.27 1.52 1.44 1.44 1.19 1.18 1.23 1.20 1.39 1.18 1.20 1.31
2120 1.51 1.53 1.47 1.30 1.33 1.59 1.51 1.51 1.25 1.24 1.30 1.26 1.47 1.24 1.26 1.37
2130 1.59 1.61 1.55 1.37 1.40 1.68 1.59 1.59 1.32 1.30 1.36 1.32 1.54 1.30 1.33 1.44
2140 1.67 1.69 1.63 1.44 1.47 1.76 1.67 1.67 1.39 1.37 1.43 1.39 1.62 1.37 1.40 1.52
2150 1.75 1.78 1.71 1.51 1.55 1.85 1.75 1.76 1.46 1.44 1.51 1.46 1.70 1.44 1.47 1.59
2160 1.84 1.87 1.80 1.59 1.62 1.95 1.84 1.85 1.53 1.51 1.58 1.54 1.79 1.51 1.54 1.68
2170 1.94 1.97 1.89 1.67 1.71 2.05 1.94 1.94 1.61 1.59 1.67 1.62 1.88 1.59 1.62 1.76
2180 2.04 2.07 1.99 1.76 1.79 2.15 2.04 2.04 1.69 1.67 1.75 1.70 1.98 1.67 1.71 1.85
2190 2.14 2.17 2.09 1.85 1.89 2.26 2.14 2.14 1.78 1.76 1.84 1.79 2.08 1.76 1.79 1.95
2200 2.25 2.28 2.19 1.94 1.98 2.38 2.25 2.25 1.87 1.85 1.93 1.88 2.18 1.85 1.89 2.05
2210 2.37 2.40 2.31 2.04 2.08 2.50 2.36 2.37 1.97 1.94 2.03 1.97 2.30 1.94 1.98 2.15
2220 2.49 2.52 2.42 2.14 2.19 2.62 2.48 2.49 2.07 2.04 2.14 2.07 2.41 2.04 2.08 2.26
2230 2.61 2.65 2.55 2.25 2.30 2.76 2.61 2.62 2.17 2.15 2.25 2.18 2.54 2.15 2.19 2.38
2240 2.75 2.79 2.68 2.37 2.42 2.90 2.75 2.75 2.28 2.26 2.36 2.29 2.67 2.26 2.30 2.50
2250 2.89 2.93 2.82 2.49 2.54 3.05 2.89 2.89 2.40 2.37 2.48 2.41 2.80 2.37 2.42 2.63
2260 3.04 3.08 2.96 2.62 2.67 3.20 3.03 3.04 2.52 2.49 2.61 2.53 2.95 2.49 2.54 2.76
2270 3.19 3.24 3.11 2.75 2.81 3.37 3.19 3.19 2.65 2.62 2.74 2.66 3.10 2.62 2.67 2.90
2280 3.35 3.40 3.27 2.89 2.95 3.54 3.35 3.36 2.79 2.76 2.88 2.80 3.25 2.76 2.81 3.05
2290 3.53 3.58 3.44 3.04 3.11 3.72 3.52 3.53 2.93 2.90 3.03 2.94 3.42 2.90 2.95 3.20
2300 3.71 3.76 3.61 3.19 3.26 3.91 3.70 3.71 3.08 3.04 3.19 3.09 3.60 3.05 3.10 3.37

Table: Table ACEI.A2: Energy efficiency; 2000 = 1.00.

Year USA CAN WEU JPK ANZ EEU FSU MDE CAM SAM SAS SEA CHI NAF SSA SIS
1950 0.67 0.60 0.60 1.43 1.05 0.80 1.21 2.72 1.14 0.98 1.77 1.66 1.24 1.24 1.55 1.25
1960 0.74 0.70 0.60 1.17 1.07 0.70 1.03 1.90 1.09 0.99 1.52 1.34 0.46 1.33 1.38 1.02
1970 0.72 0.68 0.59 0.80 1.11 0.65 1.00 1.40 1.16 1.03 1.39 1.04 0.62 1.07 1.18 0.87
1980 0.79 0.73 0.66 0.87 1.11 0.66 0.99 1.33 1.05 1.10 1.15 1.09 0.60 1.01 1.11 0.84
1990 0.96 0.98 0.90 1.04 0.98 0.86 1.20 1.08 1.03 1.06 1.03 1.11 0.81 1.06 1.00 1.06
2000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2010 1.07 1.07 1.07 1.01 1.04 1.09 0.99 1.07 0.96 0.95 1.01 0.98 1.12 0.95 0.97 1.04
2020 1.17 1.18 1.14 1.08 1.10 1.16 1.10 1.20 0.93 0.92 1.05 1.02 1.17 0.92 0.94 1.10
2030 1.27 1.29 1.24 1.17 1.19 1.28 1.21 1.26 0.91 0.90 1.10 1.06 1.22 0.90 0.92 1.08
2040 1.39 1.41 1.36 1.28 1.31 1.36 1.29 1.35 1.02 1.01 1.17 1.13 1.30 1.01 1.03 1.22
2050 1.58 1.60 1.54 1.45 1.48 1.40 1.33 1.48 1.11 1.09 1.29 1.25 1.44 1.09 1.12 1.32
2060 1.76 1.78 1.72 1.62 1.66 1.56 1.48 1.65 1.19 1.18 1.43 1.39 1.60 1.18 1.20 1.42
2070 1.84 1.87 1.79 1.69 1.73 1.78 1.68 1.84 1.27 1.25 1.59 1.55 1.78 1.25 1.28 1.51
2080 1.89 1.92 1.84 1.74 1.78 1.94 1.83 2.05 1.35 1.33 1.78 1.72 1.98 1.33 1.36 1.61
2090 1.97 2.00 1.93 1.82 1.86 1.95 1.85 2.25 1.40 1.38 1.95 1.89 2.18 1.38 1.41 1.67
2100 2.07 2.10 2.02 1.91 1.95 1.84 1.74 2.39 1.45 1.43 2.07 2.01 2.31 1.43 1.46 1.73
2110 2.18 2.21 2.12 2.01 2.05 1.84 1.75 2.51 1.52 1.50 2.18 2.11 2.43 1.50 1.53 1.81
2120 2.29 2.32 2.23 2.11 2.15 1.86 1.76 2.64 1.60 1.58 2.29 2.22 2.56 1.58 1.61 1.91
2130 2.41 2.44 2.35 2.22 2.26 1.88 1.78 2.77 1.68 1.66 2.41 2.33 2.69 1.66 1.69 2.00
2140 2.53 2.57 2.47 2.33 2.38 1.91 1.81 2.91 1.76 1.74 2.53 2.45 2.83 1.75 1.78 2.11
2150 2.66 2.70 2.59 2.45 2.50 1.96 1.85 3.06 1.86 1.83 2.66 2.58 2.97 1.83 1.87 2.21
2160 2.80 2.84 2.73 2.57 2.63 2.01 1.90 3.22 1.95 1.93 2.79 2.71 3.12 1.93 1.97 2.33
2170 2.94 2.98 2.87 2.71 2.77 2.08 1.97 3.39 2.05 2.03 2.94 2.85 3.28 2.03 2.07 2.45
2180 3.09 3.13 3.01 2.84 2.91 2.15 2.04 3.56 2.15 2.13 3.09 2.99 3.45 2.13 2.17 2.57
2190 3.25 3.29 3.17 2.99 3.06 2.25 2.13 3.74 2.26 2.24 3.24 3.15 3.63 2.24 2.28 2.70
2200 3.41 3.46 3.33 3.14 3.21 2.36 2.23 3.93 2.38 2.35 3.41 3.31 3.81 2.35 2.40 2.84
2210 3.59 3.64 3.50 3.30 3.38 2.48 2.34 4.13 2.50 2.47 3.59 3.48 4.01 2.47 2.52 2.99
2220 3.77 3.83 3.68 3.47 3.55 2.60 2.46 4.34 2.63 2.60 3.77 3.66 4.21 2.60 2.65 3.14
2230 3.97 4.02 3.87 3.65 3.73 2.74 2.59 4.57 2.76 2.73 3.96 3.84 4.43 2.73 2.79 3.30
2240 4.17 4.23 4.06 3.84 3.92 2.88 2.72 4.80 2.91 2.87 4.16 4.04 4.65 2.87 2.93 3.47
2250 4.38 4.44 4.27 4.03 4.12 3.02 2.86 5.04 3.05 3.02 4.38 4.25 4.89 3.02 3.08 3.65
2260 4.61 4.67 4.49 4.24 4.33 3.18 3.01 5.30 3.21 3.17 4.60 4.46 5.14 3.17 3.24 3.83
2270 4.84 4.91 4.72 4.45 4.55 3.34 3.16 5.57 3.37 3.34 4.84 4.69 5.40 3.34 3.40 4.03
2280 5.09 5.16 4.96 4.68 4.79 3.51 3.32 5.86 3.55 3.51 5.08 4.93 5.68 3.51 3.58 4.24
2290 5.35 5.42 5.21 4.92 5.03 3.69 3.49 6.16 3.73 3.69 5.34 5.18 5.97 3.69 3.76 4.45
2300 5.62 5.70 5.48 5.17 5.29 3.88 3.67 6.47 3.92 3.88 5.62 5.45 6.28 3.88 3.95 4.68

Table: Table ACEI.B1: Energy efficiency; 2000 = 1.00.

Year USA CAN WEU JPK ANZ EEU FSU MDE CAM SAM SAS SEA CHI NAF SSA SIS
1950 0.67 0.60 0.60 1.43 1.05 0.80 1.21 2.72 1.13 0.97 1.77 1.66 1.24 1.23 1.54 1.25
1960 0.74 0.70 0.60 1.17 1.07 0.70 1.03 1.90 1.08 0.98 1.52 1.33 0.46 1.32 1.36 1.02
1970 0.72 0.68 0.59 0.80 1.11 0.65 1.00 1.40 1.15 1.02 1.39 1.03 0.62 1.06 1.17 0.87
1980 0.79 0.73 0.66 0.87 1.11 0.66 0.99 1.33 1.04 1.09 1.15 1.09 0.60 1.00 1.10 0.84
1990 0.96 0.98 0.90 1.04 0.99 0.86 1.20 1.08 1.02 1.05 1.03 1.11 0.81 1.05 1.00 1.06
2000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2010 1.07 1.07 1.07 1.01 1.03 1.09 0.99 1.07 1.02 1.01 1.02 0.99 1.12 1.01 1.03 1.04
2020 1.16 1.17 1.13 1.05 1.07 1.13 1.07 1.20 1.08 1.07 1.08 1.05 1.18 1.07 1.09 1.12
2030 1.23 1.25 1.20 1.12 1.14 1.15 1.09 1.29 1.15 1.14 1.15 1.11 1.25 1.14 1.16 1.21
2040 1.33 1.35 1.30 1.20 1.23 1.16 1.10 1.41 1.27 1.25 1.25 1.21 1.37 1.25 1.28 1.32
2050 1.42 1.44 1.39 1.29 1.32 1.21 1.15 1.56 1.36 1.34 1.38 1.34 1.51 1.34 1.37 1.42
2060 1.51 1.53 1.48 1.37 1.40 1.31 1.24 1.70 1.45 1.44 1.51 1.47 1.65 1.44 1.46 1.52
2070 1.60 1.63 1.56 1.45 1.48 1.38 1.30 1.82 1.57 1.55 1.59 1.54 1.74 1.55 1.58 1.64
2080 1.65 1.68 1.61 1.49 1.53 1.43 1.35 1.86 1.67 1.65 1.59 1.54 1.74 1.65 1.68 1.74
2090 1.68 1.70 1.64 1.52 1.55 1.51 1.43 1.81 1.76 1.74 1.55 1.51 1.70 1.74 1.77 1.84
2100 1.73 1.76 1.69 1.57 1.60 1.60 1.51 1.82 1.85 1.83 1.55 1.51 1.70 1.83 1.86 1.93
2110 1.82 1.85 1.78 1.65 1.68 1.68 1.59 1.91 1.94 1.92 1.63 1.58 1.79 1.92 1.96 2.03
2120 1.91 1.94 1.87 1.73 1.77 1.77 1.67 2.01 2.04 2.02 1.72 1.67 1.88 2.02 2.06 2.13
2130 2.01 2.04 1.96 1.82 1.86 1.86 1.76 2.11 2.15 2.12 1.80 1.75 1.97 2.12 2.16 2.24
2140 2.12 2.15 2.06 1.91 1.96 1.95 1.85 2.22 2.26 2.23 1.90 1.84 2.07 2.23 2.28 2.36
2150 2.22 2.25 2.17 2.01 2.06 2.05 1.94 2.33 2.37 2.35 1.99 1.93 2.18 2.35 2.39 2.48
2160 2.34 2.37 2.28 2.11 2.16 2.16 2.04 2.45 2.49 2.47 2.10 2.03 2.29 2.47 2.51 2.60
2170 2.46 2.49 2.40 2.22 2.27 2.27 2.14 2.58 2.62 2.59 2.20 2.14 2.41 2.59 2.64 2.74
2180 2.58 2.62 2.52 2.34 2.39 2.38 2.25 2.71 2.76 2.72 2.32 2.25 2.53 2.72 2.78 2.88
2190 2.71 2.75 2.65 2.45 2.51 2.50 2.37 2.85 2.90 2.86 2.43 2.36 2.66 2.86 2.92 3.02
2200 2.85 2.89 2.78 2.58 2.64 2.63 2.49 2.99 3.04 3.01 2.56 2.48 2.80 3.01 3.07 3.18
2210 3.00 3.04 2.92 2.71 2.77 2.77 2.62 3.14 3.20 3.16 2.69 2.61 2.94 3.16 3.23 3.34
2220 3.15 3.20 3.07 2.85 2.91 2.91 2.75 3.31 3.36 3.33 2.83 2.74 3.09 3.33 3.39 3.51
2230 3.31 3.36 3.23 3.00 3.06 3.06 2.89 3.47 3.54 3.50 2.97 2.88 3.25 3.50 3.56 3.69
2240 3.48 3.53 3.40 3.15 3.22 3.21 3.04 3.65 3.72 3.68 3.12 3.03 3.42 3.68 3.75 3.88
2250 3.66 3.71 3.57 3.31 3.38 3.38 3.20 3.84 3.91 3.86 3.28 3.19 3.59 3.86 3.94 4.08
2260 3.85 3.90 3.75 3.48 3.56 3.55 3.36 4.04 4.11 4.06 3.45 3.35 3.77 4.06 4.14 4.29
2270 4.05 4.10 3.94 3.66 3.74 3.73 3.53 4.24 4.32 4.27 3.63 3.52 3.97 4.27 4.35 4.51
2280 4.25 4.31 4.15 3.85 3.93 3.92 3.71 4.46 4.54 4.49 3.81 3.70 4.17 4.49 4.57 4.74
2290 4.47 4.53 4.36 4.04 4.13 4.12 3.90 4.69 4.77 4.72 4.01 3.89 4.38 4.72 4.81 4.98
2300 4.70 4.76 4.58 4.25 4.34 4.33 4.10 4.93 5.01 4.96 4.21 4.09 4.61 4.96 5.05 5.23

Table: Table ACEI.B2: Energy efficiency; 2000 = 1.00.

Year USA CAN WEU JPK ANZ EEU FSU MDE CAM SAM SAS SEA CHI NAF SSA SIS
1950 3 3 0 0 0 0 0 0 47 426 60 180 19 0 175 0
1960 3 3 0 0 0 0 0 0 47 426 60 180 19 0 175 0
1970 3 3 0 0 0 0 0 0 47 426 60 180 19 0 175 0
1980 3 3 0 0 0 0 0 0 47 426 60 180 19 0 175 0
1990 3 3 0 0 0 0 0 0 47 426 60 180 19 0 175 0
2000 3 3 0 0 0 0 0 0 47 426 60 180 19 0 175 0
2010 3 3 0 0 0 0 0 0 44 400 56 169 18 0 164 0
2020 3 3 0 0 0 0 0 0 41 373 53 158 17 0 153 0
2030 2 2 0 0 0 0 0 0 38 341 48 144 15 0 140 0
2040 2 2 0 0 0 0 0 0 33 301 42 127 13 0 124 0
2050 2 2 0 0 0 0 0 0 29 262 37 111 12 0 108 0
2060 1 1 0 0 0 0 0 0 23 203 29 86 9 0 83 0
2070 1 1 0 0 0 0 0 0 16 144 20 61 6 0 59 0
2080 1 1 0 0 0 0 0 0 9 85 12 36 4 0 35 0
2090 0 0 0 0 0 0 0 0 3 26 4 11 1 0 11 0
2100 0 0 0 0 0 0 0 0 -4 -33 -5 -14 -1 0 -13 0
2110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2160 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2170 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2190 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2220 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2230 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2240 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2270 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2280 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2290 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table: Table CO2F.FUND: Carbon dioxide emissions from land use; million metric tonnes of carbon.

Year USA CAN WEU JPK ANZ EEU FSU MDE CAM SAM SAS SEA CHI NAF SSA SIS
1950 3 3 0 0 0 0 0 0 47 426 60 180 19 0 175 0
1960 3 3 0 0 0 0 0 0 47 426 60 180 19 0 175 0
1970 3 3 0 0 0 0 0 0 47 426 60 180 19 0 175 0
1980 3 3 0 0 0 0 0 0 47 426 60 180 19 0 175 0
1990 3 3 0 0 0 0 0 0 47 426 60 180 19 0 175 0
2000 8 8 6 0 6 0 100 0 39 355 51 152 92 0 245 0
2010 13 13 13 0 13 0 200 0 32 284 41 124 165 0 315 0
2020 8 8 8 0 8 0 30 0 20 180 6 19 25 0 200 0
2030 5 5 5 0 5 0 10 0 16 144 15 45 60 0 160 0
2040 0 0 0 0 0 0 -60 0 15 131 21 64 85 0 145 0
2050 -3 -3 -3 0 -3 0 -130 0 13 117 31 94 125 0 130 0
2060 3 3 3 0 3 0 -110 0 13 113 20 60 80 0 125 0
2070 15 15 15 0 15 0 -90 0 12 104 14 41 55 0 115 0
2080 28 28 28 0 28 0 -70 0 11 95 13 38 50 0 105 0
2090 23 23 23 0 23 0 -50 0 10 86 18 53 70 0 95 0
2100 18 18 18 0 18 0 -30 0 8 72 24 71 95 0 80 0
2110 16 16 16 0 16 0 -27 0 7 65 21 64 86 0 72 0
2120 14 14 14 0 14 0 -24 0 6 58 19 57 76 0 64 0
2130 12 12 12 0 12 0 -21 0 6 50 17 50 67 0 56 0
2140 11 11 11 0 11 0 -18 0 5 43 14 43 57 0 48 0
2150 9 9 9 0 9 0 -15 0 4 36 12 36 48 0 40 0
2160 7 7 7 0 7 0 -12 0 3 29 10 29 38 0 32 0
2170 5 5 5 0 5 0 -9 0 2 22 7 21 29 0 24 0
2180 4 4 4 0 4 0 -6 0 2 14 5 14 19 0 16 0
2190 2 2 2 0 2 0 -3 0 1 7 2 7 10 0 8 0
2200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2220 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2230 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2240 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2270 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2280 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2290 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table: Table CO2F.A1B: Carbon dioxide emissions from land use; million metric tonnes of carbon.

Year USA CAN WEU JPK ANZ EEU FSU MDE CAM SAM SAS SEA CHI NAF SSA SIS
1950 3 3 0 0 0 0 0 0 47 426 60 180 19 0 175 0
1960 3 3 0 0 0 0 0 0 47 426 60 180 19 0 175 0
1970 3 3 0 0 0 0 0 0 47 426 60 180 19 0 175 0
1980 3 3 0 0 0 0 0 0 47 426 60 180 19 0 175 0
1990 3 3 0 0 0 0 0 0 47 426 60 180 19 0 175 0
2000 2 2 0 0 0 0 0 0 43 386 51 154 94 0 280 0
2010 0 0 0 0 0 0 0 0 39 347 43 128 170 0 385 0
2020 0 0 0 0 0 0 0 0 43 383 49 146 195 0 425 0
2030 0 0 0 0 0 0 0 0 42 378 44 131 175 0 420 0
2040 0 0 0 0 0 0 0 0 39 351 35 105 140 0 390 0
2050 0 0 0 0 0 0 0 0 36 320 28 83 110 0 355 0
2060 0 0 0 0 0 0 0 0 26 234 19 56 75 0 260 0
2070 0 0 0 0 0 0 0 0 16 144 10 30 40 0 160 0
2080 0 0 0 0 0 0 0 0 11 95 5 15 20 0 105 0
2090 0 0 0 0 0 0 0 0 9 81 4 11 15 0 90 0
2100 0 0 0 0 0 0 0 0 8 72 3 8 10 0 80 0
2110 0 0 0 0 0 0 0 0 7 65 2 7 9 0 72 0
2120 0 0 0 0 0 0 0 0 6 58 2 6 8 0 64 0
2130 0 0 0 0 0 0 0 0 6 50 2 5 7 0 56 0
2140 0 0 0 0 0 0 0 0 5 43 2 5 6 0 48 0
2150 0 0 0 0 0 0 0 0 4 36 1 4 5 0 40 0
2160 0 0 0 0 0 0 0 0 3 29 1 3 4 0 32 0
2170 0 0 0 0 0 0 0 0 2 22 1 2 3 0 24 0
2180 0 0 0 0 0 0 0 0 2 14 1 2 2 0 16 0
2190 0 0 0 0 0 0 0 0 1 7 0 1 1 0 8 0
2200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2220 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2230 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2240 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2270 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2280 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2290 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table: Table CO2F.A2: Carbon dioxide emissions from land use; million metric tonnes of carbon.

Year USA CAN WEU JPK ANZ EEU FSU MDE CAM SAM SAS SEA CHI NAF SSA SIS
1950 3 3 0 0 0 0 0 0 47 426 60 180 19 0 175 0
1960 3 3 0 0 0 0 0 0 47 426 60 180 19 0 175 0
1970 3 3 0 0 0 0 0 0 47 426 60 180 19 0 175 0
1980 3 3 0 0 0 0 0 0 47 426 60 180 19 0 175 0
1990 3 3 0 0 0 0 0 0 47 426 60 180 19 0 175 0
2000 14 14 13 0 13 0 -5 0 35 314 45 135 69 0 200 0
2010 25 25 25 0 25 0 -10 0 23 203 30 90 120 0 225 0
2020 15 15 15 0 15 0 -100 0 23 203 28 83 110 0 225 0
2030 -5 -5 -5 0 -5 0 -310 0 2 18 26 79 105 0 20 0
2040 -18 -18 -18 0 -18 0 -350 0 -13 -113 24 71 95 0 -125 0
2050 -23 -23 -23 0 -23 0 -360 0 -7 -59 23 68 90 0 -65 0
2060 -20 -20 -20 0 -20 0 -380 0 -8 -68 20 60 80 0 -75 0
2070 -15 -15 -15 0 -15 0 -410 0 -5 -45 19 56 75 0 -50 0
2080 -35 -35 -35 0 -35 0 -360 0 -11 -95 14 41 55 0 -105 0
2090 -30 -30 -30 0 -30 0 -340 0 -11 -99 -11 -34 -45 0 -110 0
2100 -28 -28 -28 0 -28 0 -290 0 -11 -99 -44 -131 -175 0 -110 0
2110 -25 -25 -25 0 -25 0 -261 0 -10 -89 -39 -118 -158 0 -99 0
2120 -22 -22 -22 0 -22 0 -232 0 -9 -79 -35 -105 -140 0 -88 0
2130 -19 -19 -19 0 -19 0 -203 0 -8 -69 -31 -92 -123 0 -77 0
2140 -17 -17 -17 0 -17 0 -174 0 -7 -59 -26 -79 -105 0 -66 0
2150 -14 -14 -14 0 -14 0 -145 0 -6 -50 -22 -66 -88 0 -55 0
2160 -11 -11 -11 0 -11 0 -116 0 -4 -40 -18 -53 -70 0 -44 0
2170 -8 -8 -8 0 -8 0 -87 0 -3 -30 -13 -39 -53 0 -33 0
2180 -6 -6 -6 0 -6 0 -58 0 -2 -20 -9 -26 -35 0 -22 0
2190 -3 -3 -3 0 -3 0 -29 0 -1 -10 -4 -13 -18 0 -11 0
2200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2220 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2230 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2240 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2270 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2280 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2290 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table: Table CO2F.B1: Carbon dioxide emissions from land use; million metric tonnes of carbon.

Year USA CAN WEU JPK ANZ EEU FSU MDE CAM SAM SAS SEA CHI NAF SSA SIS
1950 3 3 0 0 0 0 0 0 47 426 60 180 19 0 175 0
1960 3 3 0 0 0 0 0 0 47 426 60 180 19 0 175 0
1970 3 3 0 0 0 0 0 0 47 426 60 180 19 0 175 0
1980 3 3 0 0 0 0 0 0 47 426 60 180 19 0 175 0
1990 3 3 0 0 0 0 0 0 47 426 60 180 19 0 175 0
2000 -1 -1 -3 0 -3 0 -5 0 39 355 42 127 59 0 245 0
2010 -5 -5 -5 0 -5 0 -10 0 32 284 25 75 100 0 315 0
2020 -15 -15 -15 0 -15 0 -180 0 21 189 -19 -56 -75 0 210 0
2030 -20 -20 -20 0 -20 0 -140 0 6 54 -20 -60 -80 0 60 0
2040 -15 -15 -15 0 -15 0 -90 0 1 5 -11 -34 -45 0 5 0
2050 -13 -13 -13 0 -13 0 -40 0 -6 -50 -4 -11 -15 0 -55 0
2060 -15 -15 -15 0 -15 0 -40 0 -6 -50 -4 -11 -15 0 -55 0
2070 -20 -20 -20 0 -20 0 -30 0 -5 -45 -5 -15 -20 0 -50 0
2080 -28 -28 -28 0 -28 0 -30 0 -6 -54 -6 -19 -25 0 -60 0
2090 -38 -38 -38 0 -38 0 -40 0 -8 -72 -6 -19 -25 0 -80 0
2100 -48 -48 -48 0 -48 0 -40 0 -10 -90 -8 -23 -30 0 -100 0
2110 -43 -43 -43 0 -43 0 -36 0 -9 -81 -7 -20 -27 0 -90 0
2120 -38 -38 -38 0 -38 0 -32 0 -8 -72 -6 -18 -24 0 -80 0
2130 -33 -33 -33 0 -33 0 -28 0 -7 -63 -5 -16 -21 0 -70 0
2140 -29 -29 -29 0 -29 0 -24 0 -6 -54 -5 -14 -18 0 -60 0
2150 -24 -24 -24 0 -24 0 -20 0 -5 -45 -4 -11 -15 0 -50 0
2160 -19 -19 -19 0 -19 0 -16 0 -4 -36 -3 -9 -12 0 -40 0
2170 -14 -14 -14 0 -14 0 -12 0 -3 -27 -2 -7 -9 0 -30 0
2180 -10 -10 -10 0 -10 0 -8 0 -2 -18 -2 -5 -6 0 -20 0
2190 -5 -5 -5 0 -5 0 -4 0 -1 -9 -1 -2 -3 0 -10 0
2200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2220 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2230 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2240 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2270 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2280 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2290 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table: Table CO2F.B2: Carbon dioxide emissions from land use; million metric tonnes of carbon.

Year USA CAN WEU JPK ANZ EEU FSU MDE CAM SAM SAS SEA CHI NAF SSA SIS
1950 0.59 0.59 0.59 0.61 0.59 0.60 0.59 0.59 0.60 0.59 0.60 0.60 0.60 0.60 0.60 0.63
1960 0.76 0.77 0.76 0.79 0.77 0.75 0.76 0.75 0.75 0.76 0.76 0.76 0.76 0.77 0.76 0.75
1970 0.91 0.92 0.91 0.93 0.91 0.91 0.91 0.91 0.90 0.91 0.91 0.91 0.91 0.91 0.91 0.94
1980 1.06 1.08 1.07 1.07 1.07 1.06 1.07 1.07 1.06 1.06 1.06 1.06 1.07 1.06 1.07 1.06
1990 1.22 1.23 1.21 1.21 1.22 1.21 1.21 1.21 1.21 1.21 1.21 1.21 1.21 1.21 1.22 1.25
2000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2010 1.08 1.28 1.08 1.11 0.74 1.00 1.17 1.41 1.37 1.18 1.19 1.33 1.14 1.38 1.43 1.13
2020 1.14 1.64 1.09 1.11 0.74 1.39 1.47 1.92 1.77 1.46 1.36 1.64 1.27 1.84 1.75 1.25
2030 1.27 1.54 1.09 1.14 0.77 1.31 1.65 2.58 2.13 1.79 1.57 1.85 1.49 2.43 1.90 1.38
2040 1.34 1.38 1.08 1.18 0.78 1.22 1.69 3.51 2.40 1.96 1.77 2.01 1.77 3.25 2.34 1.50
2050 1.34 1.64 1.06 1.21 0.77 1.17 1.67 4.54 2.58 2.16 2.00 2.14 2.08 4.06 2.81 1.63
2060 1.39 1.79 1.04 1.21 0.90 1.16 1.92 5.63 2.77 2.37 2.14 2.32 2.42 4.25 3.44 1.75
2070 1.42 1.87 1.05 1.21 1.07 1.23 2.25 6.30 3.00 2.59 2.02 2.68 2.76 3.94 4.00 1.88
2080 1.52 2.03 1.10 1.25 1.29 1.36 2.52 5.88 3.29 2.77 1.91 2.77 3.12 4.38 4.23 1.94
2090 1.70 2.28 1.19 1.32 1.51 1.47 2.66 5.11 3.56 3.27 1.88 2.74 3.41 5.04 4.27 2.00
2100 1.90 2.56 1.30 1.32 1.96 1.44 2.79 4.67 3.73 3.59 1.89 2.70 3.61 5.40 4.29 2.06
2110 1.99 2.69 1.35 1.39 2.03 1.51 2.91 4.87 3.88 3.74 1.97 2.81 3.76 5.62 4.47 2.19
2120 2.06 2.79 1.41 1.43 2.12 1.56 3.03 5.07 4.04 3.89 2.05 2.93 3.91 5.86 4.66 2.25
2130 2.15 2.90 1.46 1.50 2.20 1.62 3.14 5.26 4.21 4.05 2.13 3.04 4.07 6.08 4.84 2.38
2140 2.23 3.00 1.52 1.54 2.29 1.69 3.26 5.46 4.37 4.20 2.21 3.15 4.22 6.31 5.02 2.44
2150 2.31 3.13 1.57 1.61 2.36 1.75 3.38 5.66 4.52 4.35 2.29 3.27 4.37 6.55 5.21 2.50
2160 2.39 3.23 1.62 1.64 2.45 1.81 3.50 5.86 4.67 4.50 2.37 3.38 4.52 6.77 5.38 2.63
2170 2.47 3.33 1.68 1.71 2.54 1.87 3.62 6.05 4.83 4.66 2.45 3.50 4.68 7.00 5.57 2.69
2180 2.55 3.44 1.73 1.75 2.61 1.94 3.73 6.25 5.00 4.81 2.53 3.61 4.83 7.22 5.75 2.81
2190 2.63 3.56 1.79 1.82 2.70 1.99 3.85 6.45 5.15 4.96 2.61 3.73 4.98 7.45 5.93 2.88
2200 2.71 3.67 1.84 1.89 2.78 2.05 3.97 6.64 5.31 5.11 2.69 3.84 5.13 7.68 6.11 3.00
2210 2.83 3.82 1.92 1.96 2.90 2.14 4.14 6.92 5.54 5.33 2.80 4.00 5.35 8.00 6.37 3.13
2220 2.94 3.97 1.99 2.07 3.01 2.22 4.31 7.21 5.75 5.55 2.92 4.17 5.57 8.32 6.62 3.25
2230 3.05 4.13 2.07 2.14 3.13 2.31 4.47 7.49 5.98 5.76 3.04 4.33 5.79 8.65 6.88 3.44
2240 3.17 4.31 2.15 2.21 3.25 2.40 4.64 7.76 6.21 5.98 3.15 4.49 6.01 8.96 7.14 3.56
2250 3.28 4.46 2.23 2.29 3.38 2.48 4.81 8.05 6.42 6.20 3.26 4.65 6.22 9.29 7.40 3.69
2260 3.40 4.62 2.30 2.39 3.49 2.57 4.98 8.33 6.65 6.41 3.38 4.81 6.44 9.61 7.66 3.81
2270 3.51 4.77 2.38 2.46 3.61 2.66 5.14 8.61 6.88 6.63 3.49 4.98 6.66 9.94 7.92 3.94
2280 3.63 4.92 2.46 2.54 3.72 2.75 5.31 8.89 7.10 6.84 3.60 5.14 6.87 10.26 8.18 4.06
2290 3.74 5.08 2.53 2.64 3.84 2.83 5.48 9.17 7.33 7.06 3.72 5.30 7.09 10.58 8.43 4.25
2300 3.86 5.23 2.62 2.71 3.96 2.92 5.65 9.45 7.56 7.27 3.83 5.47 7.31 10.91 8.69 4.38

Table: Table CH4: Methane emissions; 2000 = 100.

Year USA CAN WEU JPK ANZ EEU FSU MDE CAM SAM SAS SEA CHI NAF SSA SIS
1950 0.16 0.17 0.17 0.11 0.13 0.16 0.18 0.15 0.14 0.17 0.16 0.16 0.17 0.17 0.16 0.00
1960 0.29 0.25 0.29 0.33 0.25 0.26 0.27 0.31 0.29 0.29 0.29 0.28 0.29 0.30 0.28 0.00
1970 0.44 0.42 0.43 0.44 0.38 0.42 0.45 0.46 0.43 0.44 0.44 0.44 0.43 0.43 0.44 0.00
1980 0.74 0.75 0.74 0.78 0.75 0.74 0.73 0.77 0.71 0.74 0.73 0.75 0.74 0.73 0.74 1.00
1990 0.78 0.75 0.78 0.78 0.75 0.79 0.82 0.85 0.79 0.78 0.79 0.78 0.80 0.77 0.79 1.00
2000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2010 1.06 1.08 1.00 1.11 1.00 1.11 1.18 1.38 1.14 1.06 1.11 1.16 1.03 1.33 1.21 1.00
2020 1.09 1.08 0.97 1.11 1.13 1.16 1.36 1.62 1.36 1.16 1.21 1.25 1.03 1.57 1.42 1.00
2030 1.09 1.08 0.93 1.22 1.25 1.16 1.55 2.00 1.50 1.26 1.30 1.34 1.03 1.73 1.58 1.00
2040 1.08 1.17 0.90 1.22 1.38 1.11 1.73 2.15 1.57 1.32 1.38 1.44 1.03 1.83 1.79 1.00
2050 1.15 1.25 0.92 1.33 1.38 1.05 1.91 2.31 1.57 1.40 1.46 1.50 1.06 1.97 1.95 1.00
2060 1.21 1.33 0.94 1.33 1.50 1.05 2.09 2.38 1.64 1.52 1.53 1.56 1.11 2.10 2.12 1.00
2070 1.30 1.42 0.99 1.33 1.50 1.05 2.27 2.46 1.71 1.61 1.55 1.72 1.09 2.20 2.23 1.00
2080 1.40 1.58 1.03 1.33 1.63 1.05 2.45 2.54 1.71 1.69 1.58 1.75 1.14 2.23 2.28 1.00
2090 1.53 1.67 1.10 1.44 1.63 1.05 2.73 2.62 1.86 1.87 1.62 1.81 1.17 2.30 2.30 1.00
2100 1.67 1.83 1.17 1.44 1.63 1.05 2.91 2.62 1.86 1.99 1.63 1.91 1.20 2.43 2.30 1.00
2110 1.68 1.83 1.17 1.44 1.63 1.05 2.91 2.62 1.86 2.00 1.64 1.91 1.20 2.47 2.32 1.00
2120 1.69 1.83 1.17 1.44 1.63 1.05 2.91 2.69 1.86 2.01 1.65 1.91 1.20 2.47 2.32 1.00
2130 1.70 1.83 1.18 1.44 1.63 1.05 2.91 2.69 1.93 2.03 1.66 1.94 1.20 2.47 2.33 1.00
2140 1.70 1.83 1.18 1.44 1.63 1.11 2.91 2.69 1.93 2.04 1.67 1.94 1.23 2.50 2.35 1.00
2150 1.71 1.92 1.19 1.56 1.63 1.11 3.00 2.69 1.93 2.05 1.68 1.94 1.23 2.50 2.37 1.00
2160 1.72 1.92 1.19 1.56 1.75 1.11 3.00 2.69 1.93 2.06 1.69 1.97 1.23 2.53 2.37 1.00
2170 1.74 1.92 1.21 1.56 1.75 1.11 3.00 2.77 1.93 2.06 1.70 1.97 1.23 2.53 2.39 1.00
2180 1.75 1.92 1.21 1.56 1.75 1.11 3.00 2.77 1.93 2.08 1.71 1.97 1.26 2.57 2.40 1.00
2190 1.76 1.92 1.22 1.56 1.75 1.11 3.00 2.77 2.00 2.09 1.71 2.00 1.26 2.57 2.42 1.00
2200 1.76 1.92 1.22 1.56 1.75 1.11 3.00 2.77 2.00 2.10 1.72 2.00 1.26 2.57 2.42 1.00
2210 1.77 1.92 1.22 1.56 1.75 1.11 3.00 2.77 2.00 2.12 1.73 2.00 1.26 2.57 2.44 1.00
2220 1.78 1.92 1.24 1.56 1.75 1.11 3.00 2.77 2.00 2.13 1.74 2.03 1.26 2.60 2.44 1.00
2230 1.79 1.92 1.24 1.56 1.75 1.11 3.00 2.85 2.07 2.14 1.75 2.03 1.29 2.60 2.46 1.00
2240 1.79 1.92 1.25 1.56 1.75 1.11 3.00 2.85 2.07 2.16 1.76 2.03 1.29 2.63 2.47 1.00
2250 1.80 2.00 1.25 1.67 1.88 1.16 3.09 2.85 2.07 2.17 1.77 2.06 1.29 2.63 2.49 1.00
2260 1.82 2.00 1.26 1.67 1.88 1.16 3.09 2.85 2.07 2.18 1.78 2.06 1.29 2.67 2.49 1.00
2270 1.83 2.00 1.26 1.67 1.88 1.16 3.09 2.85 2.14 2.19 1.79 2.06 1.29 2.67 2.51 1.00
2280 1.84 2.00 1.26 1.67 1.88 1.16 3.09 2.92 2.14 2.21 1.79 2.09 1.31 2.67 2.53 1.00
2290 1.85 2.00 1.28 1.67 1.88 1.16 3.09 2.92 2.14 2.22 1.80 2.09 1.31 2.70 2.54 1.00
2300 1.85 2.00 1.28 1.67 1.88 1.16 3.09 2.92 2.14 2.23 1.82 2.09 1.31 2.70 2.54 1.00

Table: Table N2O: Nitrous oxide emissions; 2000 = 100.

Region Methane Nitrous oxide
USA 5.74E-04 (4.15E-04 7.90E-04) 2.14E-05 (1.91E-05 2.39E-05)
CAN 1.20E-03 (8.70E-04 1.64E-03) 6.92E-05 (6.29E-05 7.60E-05)
WEU 3.71E-04 (2.34E-04 5.80E-04) 7.26E-06 (6.60E-06 7.98E-06)
JPK 1.27E-04 (8.75E-05 1.84E-04) 5.32E-07 (3.21E-07 8.57E-07)
ANZ 4.12E-03 (3.03E-03 5.57E-03) 2.08E-04 (1.89E-04 2.29E-04)
EEU 3.90E-03 (2.81E-03 5.38E-03) 9.39E-05 (8.89E-05 9.93E-05)
FSU 8.87E-03 (7.49E-03 1.05E-02) 1.05E-05 (1.00E-05 1.10E-05)
MDE 6.32E-03 (4.86E-03 8.19E-03) 1.05E-05 (1.00E-05 1.10E-05)
CAM 3.65E-03 (2.87E-03 4.62E-03) 2.35E-04 (2.19E-04 2.53E-04)
SAM 2.75E-02 (1.81E-02 4.14E-02) 1.05E-05 (1.00E-05 1.10E-05)
SAS 3.16E-02 (2.43E-02 4.08E-02) 5.64E-04 (5.29E-04 6.01E-04)
SEA 1.43E-02 (1.06E-02 1.91E-02) 2.55E-15 (2.16E-15 3.01E-15)
CHI 1.26E-02 (9.50E-03 1.67E-02) 2.16E-05 (2.02E-05 2.30E-05)
NAF 1.43E-02 (1.06E-02 1.91E-02) 1.05E-05 (1.00E-05 1.10E-05)
SSA 1.43E-02 (1.06E-02 1.91E-02) 1.05E-05 (1.00E-05 1.10E-05)
SIS 1.43E-02 (1.06E-02 1.91E-02) 1.05E-05 (1.00E-05 1.10E-05)

Table: Table OC: Parameters of the methane and nitrous oxide emission reduction cost curve; the 67% confidence interval is given in brackets.

  C GDP GDP/cap
1990 1.6722E-01 (1.9297E-01) 5.0931E-06 (2.3482E-07) -5.7537E-05 (1.8505E-05)
1995 1.6255E-01 (2.1143E-01) 5.7234E-06 (2.3082E-07) -6.0384E-05 (1.8727E-05)
Used 1.6489E-01 (1.4312E-01) 5.4083E-06 (1.6464E-07) -5.8961E-05 (1.3164E-05)

Table: Table SF6: Determinants of SF6 emissions.

SF6 emissions are in million metric tonnes of carbon dioxide equivalent. GDP is in million dollar (1995, MEX). GDP/capita is in dollar (1995, MEX)

Gas \(\alpha\)a \(\beta\)b pre-industrial concentration
Methane (CH:sub:4) 0.3597 1/12 790 ppb
Nitrous oxide (N:sub:2O) 0.2079 1/114 285 ppb
Sulphur hexafluoride (SF:sub:6) 0.0398 1/3200 0.04 ppt

Table: Table C: Parameters of equation (C.1).

a The parameter \(\alpha\) translates emissions (in million metric tonnes) into concentrations (in parts per billion or trillion by volume).

b The parameter \(\beta\) determines how fast concentrations return to their pre-industrial (and assumedly equilibrium) concentrations; \(1/\beta\) is the atmospheric life-time (in years) of the gases.

USA 1.1941
CAN 1.4712
WEU 1.1248
JPK 1.0555
ANZ 0.9676
EEU 1.1676
FSU 1.2866
MDE 1.1546
CAM 0.8804
SAM 0.8504
SAS 0.9074
SEA 0.7098
CHI 1.1847
NAF 1.143
SSA 0.878
SIS 0.7517

Table: Table RT: Regional temperature conversion factor

  Rate of change (% Ag. Prod/ 0.04ºC) \(\delta_{r }^{l}\) \(\delta_{r }^{q}\) CO2 fertilisation (% Ag. Prod)
USA -0.021 (0.176) 0.026 (0.021) -0.012 (0.018) 8.90 (14.84)
CAN -0.029 (0.073) 0.092 (0.080) -0.016 (0.009) 4.02 (6.50)
WEU -0.039 (0.138) 0.022 (0.002) -0.014 (0.013) 15.41 (11.83)
JPK -0.033 (0.432) 0.046 (0.022) -0.024 (0.030) 23.19 (36.60)
ANZ -0.015 (0.142) 0.040 (0.071) -0.016 (0.037) 10.48 (8.50)
EEU -0.027 (0.062) 0.048 (0.097) -0.018 (0.048) 9.52 (5.14)
FSU -0.018 (0.066) 0.042 (0.075) -0.016 (0.039) 6.71 (5.48)
MDE -0.022 (0.032) 0.042 (0.071) -0.017 (0.037) 9.43 (2.66)
CAM -0.034 (0.061) 0.064 (0.043) -0.030 (0.043) 16.41 (5.38)
SAM -0.009 (0.060) 0.003 (0.005) -0.004 (0.003) 5.96 (5.04)
SAS -0.014 (0.021) 0.025 (0.024) -0.011 (0.018) 5.80 (1.64)
SEA -0.009 (0.482) 0.014 (0.004) -0.010 (0.008) 8.45 (41.81)
CHI -0.013 (0.075) 0.043 (0.076) -0.017 (0.040) 19.21 (6.13)
NAF -0.016 (0.023) 0.033 (0.043) -0.014 (0.027) 7.27 (1.90)
SSA -0.011 (0.026) 0.024 (0.034) -0.010 (0.020) 5.05 (2.20)
SIS -0.050 (0.103) 0.043 (0.077) -0.017 (0.040) 23.77 (8.64)

Table: Table A: Impacts of climate change on agriculture

Standard deviations are given in brackets.

  Forestry Water Heating Cooling
USA 0.000053 (0.000014) -0.000650 (0.000650) 0.00429 (0.00429) -0.00212 (0.00212)
CAN 0.000011 (0.000072) -0.000570 (0.000570) 0.00378 (0.00378) -0.00186 (0.00186)
WEU 0.000025 (0.000006) -0.000270 (0.000270) 0.00241 (0.00241) -0.00372 (0.00372)
JPK 0.000042 (0.000012) 0.000003 (0.000003) 0.00207 (0.00207) -0.00029 (0.00029)
ANZ -0.000121 (0.000033) 0.000003 (0.000003) 0.00151 (0.00151) -0.00021 (0.00021)
EEU 0.000055 (0.000025) -0.006970 (0.006970) 0.00456 (0.00456) -0.00185 (0.00185)
FSU -0.000023 (0.000053) -0.027540 (0.027540) 0.01663 (0.01663) -0.00674 (0.00674)
MDE 0.000000 (0.000034) -0.001330 (0.001330) 0.02074 (0.02074) -0.00233 (0.00233)
CAM 0.000018 (0.000034) -0.001300 (0.001300) 0.00366 (0.00366) -0.00239 (0.00239)
SAM 0.000024 (0.000012) -0.001400 (0.001400) 0.00395 (0.00395) -0.00259 (0.00259)
SAS 0.000062 (0.000023) -0.001560 (0.001560) 0.00361 (0.00361) -0.00384 (0.00384)
SEA 0.000067 (0.000028) -0.003140 (0.003140) 0.00695 (0.00695) -0.00740 (0.00740)
CHI 0.000087 (0.000032) 0.005690 (0.005690) 0.03971 (0.03971) -0.02891 (0.02891)
NAF 0.000000 (0.000034) -0.009020 (0.009020) 0.00015 (0.00015) -0.01892 (0.01892)
SSA 0.000011 (0.000035) -0.003600 (0.003600) 0.00006 (0.00006) -0.00797 (0.00797)
SIS 0.000000 (0.000034) -0.001300 (0.001300) 0.00366 (0.00366) -0.00239 (0.00239)

Table: Table EFW: Impact of a 1°C warming on forestry, water, heating, and cooling, in fraction of GDP.

Standard deviations are given in brackets.

Regi on \(\ delta\) \(\gam ma\)
math:

`zeta `

\(\o mega^{S}\) \(\ omega^{M }\) :math:` W^M` \(W_{ 1990}\)
math:

pi

USA 20000 (10000,> 0) 0.583 (0.031,>0,< 1) 137349 8 11400 (5700,>0) 789 (8344,>0 ) 31049 42828.8 95.3 (95.3, >0)
CAN 970 (970,>0) 0.261 (0.014,>0,< 1) 117058 5 0 0 0 130509.75 13 (13,>0 )
WEU 4212 (1273,>0 ) 0.273 (0.015,>0,< 1) 100458 6 3210 (1335,>0) 903 (2188,>0 ) 37202 95000.79 153.9 (52.6, >0)
JPK 2687 (1213,>0 ) 0.412 (0.027,>0,< 1) 171553 573 (573,>0) 7 (815,>0) 3763 4609.85 75.5 (54.7, >0)
ANZ 3135 (2920,>0 ) 0.548 (0.035,>0,< 1) 151475 9 256 (256,>0) 183 (508,>0) 2511 55385.64 36.6 (26.8, >0)
EEU 1889 (860,>0) 0.193 (0.012,>0,< 1) 220274 38 (18,>0) 0 (26,>0) 5 11297.61 3.1 (1.7,> 0)
FSU 15138 (15138,> 0) 0.555 (0.034,>0,< 1) 552720 4 0 0 0 118955.64 54 (54,>0 )
MDE 1621 (1025,>0 ) 0.628 (0.009,>0,< 1) 601498 0 0 140 16247.05 18.9 (9.6,> 0)
CAM 12004 (8033,>0 ) 0.678 (0.026,>0,< 1) 509083 14775 (11171,>0 ) 238 (15832,> 0) 54279 76001.27 42.3 (33.8, >0)
LAM 29407 (11847,> 0) 0.756 (0.020,>0,< 1) 313162 7 27234 (19016,>0 ) 4748 (28997,> 0) 278791 1 394296.21 117.6 (79,>0 )
SAS 81275 (49361,> 0) 0.930 (0.024,>0,< 1) 124178 5 14303 (6005,>0) 0 (8492,>0 ) 65483 74226.89 172 (153.6 ,>0)
SEA 157286 (90170,> 0) 0.812 (0.043,>0,< 1) 190885 3 50885 (29599,>0 ) 4 (41860,> 0) 289431 1 299546.88 169.7 (84.4, >0)
CHI 35000 (17500,> 0) 0.708 (0.024,>0,< 1) 973897 5879 (5879,>0) 1779 (9654,>0 ) 19132 31321.6 118.4 (118.4 ,>0)
MAF 8354 (3478,>0 ) 0.337 (0.020,>0,< 1) 445413 2649 (1989,>0) 0 (2814,>0 ) 7928 9304.2 19 (10.2, >0)
SSA 126602 (63820,> 0) 0.799 (0.044,>0,< 1) 139541 9 27847 (9024,>0) 345 (12768,> 0) 92617 236097.24 84.3 (38.3, >0)
SIS 1505 (628,>0) 0.667 (0.041,>0,< 1) 206778 1528 (1067,>0) 169 (1516,>0 ) 5606 6271.74 16 (5.7,> 0)

Table: Table SLR: Impact of sea level rise.

Standard deviations in brackets

  USA CAN WEU JPK ANZ EEU FSU MDE CAM SAM SAS SEA CHI NAF SSA SIS
USA 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.040 0.100 0.100 0.040 0.040 0.040 0.010 0.030 0.150
  (0.100) (0.050) (0.050) (0.050) (0.050) (0.050) (0.050) (0.040) (0.100) (0.100) (0.040) (0.040) (0.040) (0.010) (0.030) (0.150)
CAN 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.010 0.000 0.000 0.010 0.010 0.010 0.000 0.005 0.100
  (0.050) (0.100) (0.020) (0.020) (0.020) (0.020) (0.020) (0.010) (0.050) (0.050) (0.010) (0.010) (0.010) (0.005) (0.005) (0.100)
WEU 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.040 0.000 0.000 0.040 0.020 0.020 0.090 0.060 0.150
  (0.020) (0.020) (0.100) (0.020) (0.020) (0.020) (0.020) (0.040) (0.050) (0.050) (0.040) (0.020) (0.020) (0.090) (0.060) (0.150)
JPK 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.010 0.010 0.000 0.000 0.050
  (0.010) (0.010) (0.010) (0.100) (0.010) (0.001) (0.001) (0.005) (0.010) (0.010) (0.005) (0.010) (0.010) (0.001) (0.001) (0.050)
ANZ 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.010 0.000 0.000 0.005 0.020 0.020 0.000 0.005 0.150
  (0.020) (0.020) (0.020) (0.020) (0.100) (0.010) (0.010) (0.010) (0.010) (0.010) (0.005) (0.020) (0.020) (0.005) (0.005) (0.150)
EEU 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
  (0.001) (0.001) (0.001) (0.001) (0.001) (0.100) (0.050) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
FSU 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
  (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.100) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
MDE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.900 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
  (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.900) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
CAM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.900 0.000 0.000 0.000 0.000 0.000 0.000 0.100
  (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.900) (0.005) (0.001) (0.001) (0.001) (0.001) (0.001) (0.100)
SAM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.900 0.000 0.000 0.000 0.000 0.000 0.100
  (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.005) (0.900) (0.001) (0.001) (0.001) (0.001) (0.001) (0.100)
SAS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.900 0.000 0.000 0.000 0.000 0.100
  (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.900) (0.005) (0.001) (0.001) (0.001) (0.100)
SEA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.900 0.000 0.000 0.000 0.100
  (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.005) (0.900) (0.005) (0.001) (0.001) (0.100)
CHI 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.900 0.000 0.000 0.000
  (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.900) (0.001) (0.001) (0.001)
NAF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.900 0.000 0.000
  (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.900) (0.005) (0.001)
SIS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.900 0.000
  (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.900) (0.001)
SIS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
  (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000)

Table: Table I: Migration from row to column.

Region Populationa Mortalityb Morbidityc \(\Delta T\)d Additional Mortalitye Additional Morbidityf
USA 278357 0.041 1.704 3.0 40 (23 70) 1019 (767 1354)
CAN 31147 0.041 1.704 3.7 6 (3 11) 132 (94 185)
WEU 388581 0.015 0.632 2.8 18 (11 31) 506 (387 662)
JPK 173558 0.009 0.166 2.6 5 (3 8) 57 (44 73)
ANZ 22748 0.001 0.083 2.4 0 (0 0) 3 (3 4)
EEU 121191 0.018 0.847 2.9 7 (4 13) 217 (164 287)
FSU 291538 0.122 6.735 3.2 135 (74 244) 4443 (3279 6020)
MDE 237590 0.030 0.166 2.9 24 (14 41) 83 (63 109)
CAM 135222 0.162 0.643 2.2 54 (36 81) 151 (123 185)
LAM 345779 0.168 0.650 2.1 138 (94 202) 381 (313 463)
SAS 1366902 0.229 0.896 2.3 798 (526 1212) 2171 (1755 2687)
SEA 522462 0.135 0.631 1.8 136 (102 182) 492 (424 571)
CHI 1311659 0.033 0.401 3.0 150 (86 261) 1122 (846 1488)
NAF 143482 0.415 0.990 2.9 197 (116 337) 296 (225 389)
SSA 637887 3.167 5.707 2.2 4958 (3321 7404) 6306 (5141 7737)
SIS 44002 0.252 1.092 1.9 23 (17 31) 75 (63 88)

Table: Table HD:  Diarrhoea mortality and morbidity due to a 2.5C global warming.

a Thousands of people, 2000. b Deaths per thousand people, 2000. c Years of life diseased per thousand people, 2000. d Regional temperature change for a 2.5C global warming. e Additional deaths, thousands of people (67% confidence interval in brackets). f Additional years of life diseased, thousands (67% confidence interval in brackets).

  Malaria   Dengue fever   Schistosomiasis  
  Basea Impactb Basea Impactb Basea Impactb
USA 0.023 0.0794 (0.0575) 0.000 0.3534 (0.0614) 0.007 -0.1149 (0.0614)
CAN 0.023 0.0794 (0.0575) 0.000 0.3534 (0.0614) 0.007 -0.1149 (0.0614)
WEU 0.240 0.0794 (0.0575) 0.000 0.3534 (0.0614) 0.020 -0.1149 (0.0614)
JPK 2.358 0.0794 (0.0575) 0.125 0.3534 (0.0614) 0.423 -0.1149 (0.0614)
ANZ 0.069 0.0794 (0.0575) 0.000 0.3534 (0.0614) 0.037 -0.1149 (0.0614)
EEU 0.377 0.0794 (0.0575) 0.000 0.3534 (0.0614) 0.012 -0.1149 (0.0614)
FSU 0.133 0.0794 (0.0575) 0.000 0.3534 (0.0614) 0.003 -0.1149 (0.0614)
MDE 24.113 0.0794 (0.0575) 0.286 0.3534 (0.0614) 4.229 -0.1149 (0.0614)
CAM 2.913 0.0794 (0.0575) 0.508 0.3534 (0.0614) 1.235 -0.1149 (0.0614)
SAM 3.090 0.0794 (0.0575) 0.541 0.3534 (0.0614) 1.217 -0.1149 (0.0614)
SAS 48.413 0.0794 (0.0575) 6.896 0.3534 (0.0614) 0.898 -0.1149 (0.0614)
SEA 22.129 0.0794 (0.0575) 2.072 0.3534 (0.0614) 0.629 -0.1149 (0.0614)
CHI 8.987 0.0794 (0.0575) 0.593 0.3534 (0.0614) 1.430 -0.1149 (0.0614)
NAF 458.133 0.0794 (0.0575) 1.089 0.3534 (0.0614) 7.474 -0.1149 (0.0614)
SSA 1414.284 0.0794 (0.0575) 0.351 0.3534 (0.0614) 8.275 -0.1149 (0.0614)
SIS 116.586 0.0794 (0.0575) 1.010 0.3534 (0.0614) 1.296 -0.1149 (0.0614)

Table: Table HV: Parameters for vector-borne mortality.

a Mortality (deaths per million people) in 1990. b The change in mortality due to a one-degree global warming.

      Constant   Temperature  
Cardiovascular Cold 65- -2.9787 (0.5914) 0.0946 (0.0464)
    65+ -162.6459 (18.3041) 5.6628 (1.4367)
  Heat 65- -1.4610 (0.9599) 0.0941 (0.0406)
    65+ -40.9953 (3.4570) 3.4570 (1.6218)
Respiratory     -17.9222 (6.0196) 0.8683 (0.2545)

Table: Table HC1: Parameters of Equation (HC.1).

  65-       65+      
  Linear   Quadratic   Linear   Quadratic  
USA 151.6768 (3.4583) -155.1251 (2.8292) -161.4521 (62.3397) 2.8314 (62.3080)
CAN 195.6424 (3.4583) -199.0906 (2.8292) -205.4176 (62.3397) 2.8314 (62.3080)
WEU 19.2327 (1.2716) -21.7191 (1.0403) -145.9539 (23.8362) 2.8279 (23.8241)
JPK 65.5934 (3.5211) -67.1850 (2.8805) -33.6830 (24.9641) 1.2018 (24.9514)
ANZ 67.1775 (2.9403) -68.9576 (2.4054) -91.0606 (53.2451) 2.8314 (53.2180)
EEU 61.4840 (1.5395) -65.2217 (1.2594) -201.8789 (27.0842) 2.8314 (27.0704)
FSU -3.4422 (3.4583) 0.0473 (2.8292) -190.3936 (62.3397) 2.8314 (62.3080)
MDE -2.4508 (1.5732) 0.0457 (1.2870) -136.8033 (30.2768) 2.7443 (30.2614)
CAM -0.6855 (2.6117) -0.4840 (2.1366) -54.1635 (45.5739) 2.7085 (45.5507)
SAM 16.6942 (1.8829) -18.2021 (1.5404) -78.4126 (32.7397) 2.8094 (32.7230)
SAS -1.6072 (2.6242) 0.0473 (2.1468) -80.2320 (51.2055) 2.8314 (51.1794)
SEA -0.6838 (1.4722) 0.0413 (1.2044) 12.0899 (12.0535) -1.1081 (12.0474)
CHI 81.1077 (3.4522) -84.8815 (2.8242) -66.6796 (43.8249) 2.0193 (43.8025)
NAF -1.9826 (1.9196) 0.0473 (1.5704) -102.4339 (35.4522) 2.8314 (35.4341)
SSA -1.0407 (0.9609) 0.0448 (0.7861) -49.9700 (16.5999) 2.6771 (16.5915)
SIS 1.6035 (1.1897) -2.3428 (0.9733) -10.4503 (7.4943) 0.5138 (7.4905)

Table: Table HC.2: Parameters of Equation (HC.2) for cold-related cardiovascular mortality (death per 100,000 people).

  65-       65+      
  linear   quadratic   linear   quadratic  
USA 1.0988 (1.0738) 0.0471 (0.8815) 34.9374 (42.9155) 1.7285 (35.2319)
CAN 1.0705 (1.0738) 0.0471 (0.8815) 27.3280 (42.9155) 1.7285 (35.2319)
WEU 0.4022 (0.4226) 0.0467 (0.3469) 25.7570 (17.8447) 1.7966 (14.6498)
JPK 1.0356 (1.1234) 0.0559 (0.9223) 8.2986 (17.7713) 0.7493 (14.5895)
ANZ 0.4493 (0.9147) 0.0470 (0.7509) 18.8372 (36.7267) 1.7286 (30.1512)
EEU 0.6119 (0.4767) 0.0470 (0.3914) 29.6249 (18.8672) 1.7531 (15.4893)
FSU 0.6468 (1.0738) 0.0471 (0.8815) 36.4415 (42.9155) 1.7285 (35.2319)
MDE 1.0931 (0.4791) 0.0452 (0.3933) 50.5493 (20.6547) 1.7011 (16.9568)
CAM 0.9144 (0.8887) 0.0471 (0.7296) 44.7697 (34.4286) 1.6620 (28.2646)
SAM 0.5893 (0.5874) 0.0470 (0.4823) 33.7621 (23.0347) 1.7535 (18.9106)
SAS 1.6317 (0.8373) 0.0470 (0.6874) 74.5092 (36.2131) 1.7378 (29.7296)
SEA 0.8545 (0.4641) 0.0411 (0.3810) -18.7223 (8.1867) -0.6683 (6.7210)
CHI 0.7565 (1.0335) 0.0474 (0.8485) 82.0355 (29.0776) 1.2095 (23.8716)
NAF 1.0409 (0.5662) 0.0471 (0.4648) 50.4842 (23.0206) 1.7096 (18.8991)
SSA 0.8682 (0.3408) 0.0440 (0.2798) 43.4397 (13.5145) 1.6578 (11.0949)
SIS 1.0227 (0.4957) 0.0324 (0.4070) 16.9938 (8.0489) 0.4223 (6.6079)

Table: Table HC.3: Parameters of Equation (HC.2) for heat-related cardiovascular mortality (deaths per 100,000 people).

  Linear   Quadratic  
USA 0.9452 (6.7337) 0.4342 (5.5281)
CAN -1.9284 (6.7337) 0.4342 (5.5281)
WEU -0.7650 (2.4863) 0.4341 (2.0412)
JPK 0.4185 (5.8130) 0.4342 (4.7723)
ANZ 0.2579 (5.7279) 0.4342 (4.7024)
EEU -1.2946 (2.9883) 0.4342 (2.4533)
FSU 1.5277 (6.7337) 0.4342 (5.5281)
MDE 5.6711 (3.0690) 0.4194 (2.5196)
CAM 3.8894 (5.0789) 0.4342 (4.1696)
SAM 1.0893 (3.6563) 0.4335 (3.0017)
SAS 10.2485 (5.1264) 0.4342 (4.2086)
SEA 4.8562 (3.2809) 0.4339 (2.6935)
CHI 4.4083 (6.5634) 0.4319 (5.3883)
NAF 5.1980 (3.7408) 0.4341 (3.0711)
SSA 3.6196 (1.8681) 0.411 (1.5337)
SIS 4.1354 (2.0330) 0.2522 (1.6690)

Table: Table HC.4: Parameters of Equation (HC.2) for (heat-related) respiratory mortality (death per 100,000 people).

  Malaria Schistosomiasis Dengue fever Cardiovascular Respiratory
USA 0.0000 0.0000 0.0000 0.9609 8.7638
CAN 0.0000 0.0000 0.0000 0.9609 8.7638
WEU 0.0000 0.0000 0.0000 0.9609 8.7638
JPK 0.0000 0.0000 0.0000 0.9609 8.7638
ANZ 0.0000 0.0000 0.0000 0.9609 8.7638
EEU 0.0000 0.0000 0.0000 0.8986 11.8101
FSU 0.0000 0.0000 0.0000 0.8986 11.8101
MDE 24.8571 51.5000 0.0000 1.3459 21.8098
CAM 4.5714 69.0000 0.0000 1.2548 22.1552
SAM 4.5714 69.0000 0.0000 1.2548 22.1552
SAS 16.3462 0.0000 0.2500 1.3879 16.5094
SEA 3.2727 6.0000 0.4286 1.3729 20.0541
CHI 0.0000 11.0000 0.0000 1.2399 8.3072
NAF 24.8571 51.5000 0.0000 1.3459 21.8098
SSA 3.6940 293.7500 0.0000 1.3301 21.5857
SIS 4.5714 69.0000 0.0000 1.2548 22.1552

Table: Table HM: Ratio of morbidity impacts (measured in years of life disabled) to mortality impacts (measured in number of cases).

  Damage Mortality
USA 0.001469567 3.90602E-07
CAN 7.35509E-06 4.8608E-09
WEU 1.72941E-08 2.12624E-09
JPK 0.000328676 5.43398E-07
ANZ 0.000100282 6.68407E-08
EEU 0 0
FSU 1.71639E-05 7.09183E-09
MDE 0 1.39312E-09
CAM 0.0017726 8.21967E-06
SAM 1.3063E-05 2.36703E-08
SAS 0.000936454 6.91678E-06
SEA 0.000414319 2.39815E-06
CHI 0.001972917 2.86767E-07
NAF 0 0
SSA 5.91057E-05 1.43921E-07
SIS 0.00573135 4.91454E-06

Table: Table TS: Current impact of tropical cyclones on property (damage, fraction of GDP) and health (mortality, fraction of population).

  \(\alpha\) \(\delta\) \(\beta\)
USA 0.000120686 0.04 0.2912144
CAN 0.000169725 0.04 0.063117456
WEU 0.000209185 0.04 0.121209462
JPK 1.04096E-05 0.04 0.114939831
ANZ 0.000276264 0.21 0.116317932
EEU 4.58675E-05 0.04 0.050081393
FSU 4.4056E-05 0.04 0.12684268
MDE 1.56247E-05 0.04 0.052986905
CAM 4.4056E-05 0.04 0.12684268
SAM 3.57676E-06 0.21 0.046527794
SAS 0.000550631 0.21 0.204864801
SEA 6.27064E-05 0.04 0.08572204
CHI 0.000167734 0.04 0.114203457
NAF 2.81278E-07 0.04 0.038346516
SSA 0.000550631 0.04 0.204864801
SIS 0.000426887 0.13 1.577927496

Table: Table ETS: Current impact of extra tropical cyclones

Parameter Distribution      
Methane emissions Normal \(\mu\) = Table CH4 \(\sigma\) = 6.83/yr  
Nitrous oxide emissions Normal \(\mu\) = Table N2O \(\sigma\) = 0.0059/yr  
Climate sensitivity Gamma M = 2.85 \(\sigma\) = 1.00  
Sea level sensitivity Gamma M = 0.31 \(\sigma\) = 0.15  
Life time methane Triangular L = 8.00 M = 8.60 U = 16.00
Life time nitrous oxide Triangular L = 100 M = 120 U = 170
Response time temperature Triangular L = 25 M = 50 U = 100
Response time sea level Triangular L = 25 M = 50 U = 100
Life time carbon dioxide Trunc. normal \(\mu\) = 363.00 \(\sigma\) = 90.75 L = 0.00
Life time carbon dioxide Trunc. normal \(\mu\) = 74.00 \(\sigma\) = 18.50 L = 0.00
Life time carbon dioxide Trunc. normal \(\mu\) = 17.00 \(\sigma\) = 4.25 L = 0.00
Life time carbon dioxide Trunc. normal \(\mu\) = 2.00 \(\sigma\) = 0.50 L = 0.00
Baseline loss biodiversity Trunc. normal \(\mu\) = 0.003 \(\sigma\) = 0.002 L = 0.000
Sensitivity biodiversity Trunc. normal \(\mu\) = 0.001 \(\sigma\) = 0.001 L = 0.000
Share biodiversity Triangular L = 0.00 M = 0.05 U = 1.00
Water technology rate Trunc. normal \(\mu\) = 0.005 \(\sigma\) = 0.005 L = 0.000
Population growth Normal \(\mu\) = Table P \(\sigma\) = 0.0048/yr  
Income growth Normal \(\mu\) = Table Y \(\sigma\) = 0.0026/yr  
Energy efficiency Normal \(\mu\) = Table AEEI \(\sigma\) = 0.0005/yr  
Decarbonisation Normal \(\mu\) = Table ACEI \(\sigma\) = 0.0009/yr  
Land use emissions Normal \(\mu\) = Table CO2F \(\sigma\) = 0.20/yr  
Ecosystem value Trunc. normal \(\mu\) = 50 \(\sigma\) = 50 L = 0
Anchor income Trunc. normal \(\mu\) = 30,000 \(\sigma\) = 10,000 L = 0
Value of a statistical life Trunc. normal \(\mu\) = 200 \(\sigma\) = 100 L = 0
Value of a year diseased Trunc. normal \(\mu\) = 0.8 \(\sigma\) = 1.2 L = 0
Sensitivity malaria Trunc. normal \(\mu\) = 0.0794 \(\sigma\) = 0.0575 L = 0.0000
Non-linearity malaria Trunc. normal \(\mu\) = 1.0 \(\sigma\) = 0.5 L = 0.0
Sensitivity dengue fever Trunc. normal \(\mu\) = 0.3534 \(\sigma\) = 0.0614 L = 0.0000
Non-linearity dengue fever Trunc. normal \(\mu\) = 1.0 \(\sigma\) = 0.5 L = 0.0
Sensitivity schistosomiasis Trunc. normal \(\mu\) = -0.1149 \(\sigma\) = 0.0614 U = 0.0000
Non-linearity schistosomiasis Trunc. normal \(\mu\) = 1.0 \(\sigma\) = 0.5 L = 0.0
Income elasticity vector-borne diseases Trunc. normal \(\mu\) = -2.65 \(\sigma\) = 0.69 U = 0.00
Income elasticity diarrhoea mortality Trunc. normal \(\mu\) = -1.58 \(\sigma\) = 0.23 U = 0.00
Income elasticity diarrhoea morbidity Trunc. normal \(\mu\) = -0.42 \(\sigma\) = 0.12 U = 0.00
Non-linearity diarrhoea mortality Trunc. normal \(\mu\) = 1.14 \(\sigma\) = 0.51 L = 0.00
Non-linearity diarrhoea morbidity Trunc. normal \(\mu\) = 0.70 \(\sigma\) = 0.26 L = 0.00
Cardiovascular and respiratory mortality Normal Table HC Table HC  
Change in baseline cardiovascular disease Trunc. normal \(\mu\) = 0.0259 \(\sigma\) = 0.0096 L = 0.0000
Change in baseline respiratory disease Trunc. normal \(\mu\) = 0.0016 \(\sigma\) = 0.0005 L = 0.0000
Change in population above 65 Trunc. normal \(\mu\) = 0.25 \(\sigma\) = 0.08 L = 0.00
Maximum increase cardiovascular and respiratory disease Trunc. normal \(\mu\) = 0.05 \(\sigma\) = 0.02 L = 0.00
Sensitivity water Normal Table EFW Table EFW  
Income elasticity water Trunc. normal \(\mu\) = 0.85 \(\sigma\) = 0.15 U = 0.00
Non-linearity water Trunc. normal \(\mu\) = 1.00 \(\sigma\) = 0.50 U = 0.00
Sensitivity forestry Normal Table EFW Table EFW  
Income elasticity forestry Trunc. normal \(\mu\) = 0.31 \(\sigma\) = 0.20 U = 0.00
Non-linearity forestry Trunc. normal \(\mu\) = 1.00 \(\sigma\) = 0.50 U = 0.00
Sensitivity heating Trunc. normal Table EFW Table EFW L = 0.00
Non-linearity heating Trunc. normal \(\mu\) = 1.00 \(\sigma\) = 0.50 U = 0.00
Income elasticity heating Trunc. normal \(\mu\) = 0.80 \(\sigma\) = 0.20 L = 0.00
Sensitivity cooling Trunc. normal Table EFW Table EFW U = 0.00
Non-linearity cooling Trunc. normal \(\mu\) = 1.00 \(\sigma\) = 0.50 U = 0.00
Income elasticity cooling Trunc. normal \(\mu\) = 0.80 \(\sigma\) = 0.20 L = 0.00
Agriculture, rate Trunc. normal \(\mu\) =Table A \(\sigma\) = Table A U = 0.00
Adaptation time Trunc. normal \(\mu\) = 10.0 \(\sigma\) = 5.0 U = 0.0
Non-linearity Trunc. normal \(\mu\) = 2.0 \(\sigma\) = 0.5 U = 0.0
Agriculture, level Normal \(\mu\) =Table A \(\sigma\) = Table A  
Agriculture, optimum Normal \(\mu\) =Table A \(\sigma\) = Table A  
Agriculture, CO2 Trunc. normal \(\mu\) =Table A \(\sigma\) = Table A U = 0.00
Income elasticity agriculture Trunc. normal \(\mu\) = 0.31 \(\sigma\) = 0.15 U = 0.00
Dryland value Trunc. normal \(\mu\) = 4.0 \(\sigma\) = 2.0 U = 0.0
Adaptation time Exponential   \(\sigma\) = 0.1  
Wetland value Trunc. normal \(\mu\) = 5.0 \(\sigma\) = 2.5 U = 0.0
Adaptation time Exponential   \(\sigma\) = 0.1  
Dryland loss Trunc. normal \(\mu\) = Table SLR \(\sigma\) = Table SLR U = 0.0
Protection cost Trunc. normal \(\mu\) = Table SLR \(\sigma\) = Table SLR U = 0.0
Dryland value Trunc. normal \(\mu\) = Table SLR \(\sigma\) = Table SLR U = 0.0
Wetland value Trunc. normal \(\mu\) = Table SLR \(\sigma\) = Table SLR U = 0.0
Immigration Trunc. normal \(\mu\) = Table I \(\sigma\) = Table I U = 0.0
Immigration cost Trunc. normal \(\mu\) = 0.4 \(\sigma\) = 0.2 U = 0.0
Adaptation time Trunc. normal \(\mu\) = 3.0 \(\sigma\) = 1.0 U = 0.0
Emigration cost Trunc. normal \(\mu\) = 3.0 \(\sigma\) = 1.5 U = 0.0
Adaptation time Exponential   \(\sigma\) = 0.1  

Table: Table MC: Parameters of the analysis (\(\mu\): expected value; \(\sigma\): standard deviation; M: mode; L: lower bound; U: upper bound)

Indices and tables