

 Navigation

 	
 index

 	
 next |

 	Full Stack Development 1.0 documentation

Welcome to Full Stack Development’s documentation!

In this course we will explore the concept of Full Stack Development. The
course is divided into three main parts:

	Development Tools

	Team Project Workflow

	Complete Web development

The objective of the course is to make you familiar with the terminology
and the tools that are used in modern web development.

The first week will be about the essential tools required to build a project and
set up a local environment. The focus is on the interaction between you,
the developer and your machine. The more you know about your machine the faster you
become at fixing problems.

The second week we will focus on the interactions between you and your peers.
It is a fact of modern development that all big projects are done in teams and
development velocity is measured by the average velocity of all team members,
not the velocity of any individual. In this week we will introduce some of the
tools that help developers work simulataneously and effectively.
Team development is all about increasing the Bus-factor [http://en.wikipedia.org/wiki/Bus_factor]
of your team.

The third course is going to take two weeks. We will try to make you
more familiar with the tools from the first two weeks by working through
a demo project. We will introduce the concpets of automated deployment and
replication of the development environment in production machines. This course
will discuss best practices when it comes to design architecture of web applications.
We will also compare between IAAS and PAAS and how to take advantage of them.

Contents

	Introduction
	Definition

	Modern Application Architecture
	System parts

	Modern Front-End frameworks

	Modern Development Frameworks

	Phase I: Development Tools
	Introduction
	The purpose of the workshop

	What’s covered

	Contents
	 Virtual Machines

	 Command Line Interface

	 Software Package Managers

	 Editors and IDEs

	 Basic Stack Configuration Exercise

	Phase II: Team Project Workflow
	Introduction
	The purpose of the workshop

	What’s covered

	Contents
	What you need to know and have installed before you begin

	Virtualenv and pip

	Git and GitHub

	Automated testing in Python and Django

	Documentation using Sphinx and ReadTheDocs.org

	Contributing your work

	Cheatsheet - a handy summary of key commands and techniques

	A record of people who attended a workshop or followed the tutorial

	Notes for anyone planning a workshop

	Credits

	Phase III: Complete Web Development
	Introduction
	The purpose of the workshop

	What’s covered

	Contents
	Vagrant

	Ansible

	Python

	Django

	Toy project

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Abdulrahman Alotaibi and Abdulaziz Alsaffar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Full Stack Development 1.0 documentation

Introduction

Definition

The industry definition of a Full Stack Developer is an engineer who can work on
different levels of an application stack.
The term stack refers to the combination of components and tools that make up the
application. The components could be in the front-end or the back-end of the system.

The main objective of full stack engineer is to keep every part of the system
running smoothly. A Full Stack Developer can performs tasks ranging from resizing an
image or text in a webpage to patching the kernel.

[image: Stackoverflow Job Post]
This image shows a job position at stackoverflow [http://stackoverflow.com/] definition of the term.

Modern Application Architecture

Modern applications are developed to be installed on mobile devices or hosted
on the web. This is a result of trends in faster internet speeds, greater web
access and penetration, and the development of more powerful mobile devices.
This has created the need to rethink application development. Instead of an
isolated desktop or mobile application, modern applications have a distributed
back-end infrastructure interactively serving a variety of front-end clients
over the web.

[image: AWS Load Balancer Architecture]

System parts

	
	Back-End

	
	Operating System (OS)

	Firewall

	Web server

	Database (SQL or NoSQL)

	Caches

	Message queuing software

	Application

	
	Front-End

	
	HTML

	CSS

	JavaScript

	Dart

Modern Front-End frameworks

We have seen the big shift in the web from HTML 4 to HTML5 which has built-in
APIs to help you accomplish many tasks to built a richer web application.
This has resulted in a variety of front-end MVC frameworks such as:

	Polymer [https://www.polymer-project.org/]

	AngularJS [https://angularjs.org/]

	React [http://facebook.github.io/react/index.html]

Modern Development Frameworks

The changing computing world has led to and been led by
the fast growing world of web development frameworks such as:

	NodeJS [http://nodejs.org/]

	Django [https://www.djangoproject.com/]

	RoR [http://rubyonrails.org/]

 Copyright 2014, Abdulrahman Alotaibi and Abdulaziz Alsaffar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Full Stack Development 1.0 documentation

Phase I: Development Tools

Introduction

The purpose of the workshop

A workshop/tutorial for software developers who want to explore
and learn about some of the tools required to set up a productive
development environment and then utilise it effectively.

The workshop will walk partcipants thorugh some of the basic
development tools and how to use them and then conclude with
manually setting up a basic stack using these tools.

Phase I: Development Tools will help put you in a position to
set up a development environment and then interact with that
environment effectively to create your projects.

What’s covered

Virtual Machines will help you set up a fresh development
machine on which you can build the environment that you need for
your project.

Command Line Interface will give you the tools you need to
interact with your development machine and environment directly
or remotely, with or without a GUI.

Software Package Managers will introduce you to the tools
that will help you manage and set up the software in your
development environment.

Editors and IDEs will give you the ability to create and edit
files in your development environment.

Basic Stack Configuration Ecercise - this final section will
bring all the tools encountered earlier to help us set up a stack
for serving up a blank Django application.

Contents

	 Virtual Machines

	 Command Line Interface

	 Software Package Managers

	 Editors and IDEs

	 Basic Stack Configuration Exercise

 Copyright 2014, Abdulrahman Alotaibi and Abdulaziz Alsaffar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Full Stack Development 1.0 documentation

 	Phase I: Development Tools

Virtual Machines

Definition

In computing, a virtual machine (VM) is an emulation of a particular
computer system. Virtual machines operate based on the computer architecture
and functions of a real or hypothetical computer, and their implementations
may involve specialized hardware, software, or a combination of both [1].

Software

	VirtualBox

	VMware

	LinuxKVM

	etc...

We will focus entirely on VirtualBox [https://www.virtualbox.org/].

Exercises

	Download and install the VirtualBox

	Download an image of an operating system. We will use Ubuntu [http://www.ubuntu.com/]
in this course. Download the ISO image [http://www.ubuntu.com/download/desktop/]

	In VirtualBox Create a Virtual Machine

	Configure the RAM to be allocated

	Configure a hard drive for the image

	[1]	Wikipedia [http://en.wikipedia.org/wiki/Virtual_machine]

 Copyright 2014, Abdulrahman Alotaibi and Abdulaziz Alsaffar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Full Stack Development 1.0 documentation

 	Phase I: Development Tools

Command Line Interface

Command Line Interface or CLI is the fastest way of communicating with a
computer. CLI can retrive data from the current system or run a task on a remote
server. Also, CLI provides a way to run periodic commands and runs long running
commands in the background, Daemons,.

In this chapter, we will discover the import commands, and we will teach you to
use them. After opening up a terminal in Ubuntu, type in the following command
ls. As you can see in the terminal, a list of files and directories showed
up. ls is the command to list the contents of the current directory.

Important commands

As you might expect, anything that you can do in the GUI you can do in the
command line. CLI has many Shells e.g. Bourne Shell [http://en.wikipedia.org/wiki/Bourne_shell],
Korn SHell [http://en.wikipedia.org/wiki/Korn_shell],
Bourne_Again_SHell [http://en.wikipedia.org/wiki/Bash_%28Unix_shell%29]
...etc. Shells are program that help you execute commands on the computer.
They have a special language, and they provide basic programming capabilities.
Below are a list of important commands that you should be comfortable with.

	
pwd

Stands for Print Working Directory:

pwd prints the current working directory from / or root directory

	
mkdir

Make Directory:

mkdir foo creates a directory called foo

mkdir -p foo/bar/baz creates baz and all the missing directories in the path to it

Exercise:

	Make a directory called temp

	Make a directory at the path temp/stuff

	Make a directory at the path temp/stuff/things

	Can you create a directory at temp/stuff/things/frank/joe/alex/john using a single command?

	
cd

Change Directory.

Once invoked it will change your working directory to a new one:

cd temp to change to the temp directory you created in the last exercise

Exercise:

	Change to the temp directory. Check where you are using pwd.

	Change to the stuff directory. Check where you are.

	Change directly to the john directory in one command.

	Use the command cd ... Where did you end up?

	Where does cd ../../.. take you?

	What about cd .?

	Just cd?

	
ls

Lists the contents of the current directory:

ls -a to list all files and directory including hidden directory or dotfiles

ls -l to list the files and directory with more information about their permissions, owner, group that owns it, disk size and creation date

Exercise:

	Navigate back to your home directory ~.

	Go to temp and use ls to see what is in it.

	While in temp try ls -lR. What did it do?

	Use a combination of cd, ls and pwd to explore the files on your machine.

	
touch

Creates an empty file in the current directory:

touch CaptainAwesomesauce.txt creates a blank text file called CaptainAwesomesauce.txt

	
cp

Copy file or directory from one location to another:

cp file1 file2 copies the contents of file1 into file2

cp file1 Documents/ copies file1 into the Documents directory

cp -r /tmp Documents/tmp copies the contents of /tmp into Documents/tmp

Exercise:

	Inside temp create a file called iamcool.txt.

	Make a copy of it called awesome.txt.

	Make a directory called stuff and copy awesome.txt into it.

	Without leaving temp check the contents of stuff

	Copy stuff and all its contents into a new directory called things.

	Without leaving temp check the contents of things.

	
mv

Moves files or directories to different location (path). Also it can be used

to rename files or directories:

mv file file.txt renames file to file.txt

mv Downloads/file.zip Documents/ moves file.zip from Downloads/ to Documents/

Exercise:

	Change the name of the file awesome.txt to notawesome.txt

	Change the name of the directory stuff to foo

	Move the file iamcool.txt from temp into foo

Warning

Be careful when passing paths!

	Paths can be:

	
	
Absolute Paths relative to root

e.g. /etc/init/, ~/Desktop/bar.py

	
Realtive Paths from your current working directory

e.g. ../foo/bar/, temp/stuff/awesome.txt

	
nano

Nano is an easy to use terminal text editor:

nano file1 opens file1 for editing

	
less

Less is a file viewer, and it has search features. The name came from the

Unix philosophy “Less is more, more is less”[1]:

less foo.txt page through foo.txt

	
cat

Concatenate files and prints them to stdout:

cat file1 spits the content of file1 to stdout

cat file1 file2 concatenates file1 to file2 then spits the contents to stdout

Exercise:

	Create a file called zen.txt with the following content:

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

	View it using less and cat. What’s the difference?

	
rm

Removes a file or directory:

rm /path/to/file1 to delete file1

rm -r /path/to/dir1 to recursively delete dir1 and all its contents

Exercise:

	Go to the temp directory

	Remove the file notawesome.txt.

	Remove the directory things and all its content.

	
echo

Takes a string of text and prints it to stdout

echo Hello world

	
|

The Pipe character which takes the output of the left command and inputs it to the right command

ls | grep ""

	
>

Redirect to character; it redirect the output of the command to a file

echo Hello > foo.txt

	
>>

Append character; it appends the output to a file

echo Hello >> foo.txt

	
<

Input in character; it inputs the text of a file to the command

cat < foo.txt

	
man

Return the help manual for any command in the system:

man shell-command

	
find

Find is a powerful command. Take a look at the manual of find to see all

the options that you can use with it:

find . -type f -name foo looks for a file that’s named foo

	
diff

Differences between two files. The command diff prints out the difference

between two files:

diff v1/foo1 v2/foo1

	
comm

Common is a command that compares two files and print the common bytes

between them:

comm v1/foo1 v2/foo1

	
head

Head prints out first lines of a file:

head foo.txt

	
tail

Tail is simliar to head but it prints out the last lines of a file:

tail foo.txt

	
sort

Sort sorts text:

sort foo

	
* - The Wildcard

* is known as the wildcard because it matches everything.

It’s great when you want to do a command on a set of files all at once:

ls *.py lists all the files in the current directory ending in .py

rm -r h* removes all files and directories beginning with h

rm h*.* removes only files beginning with h

Exercise:

	
	Create the following files in temp:

	
	ex12.txt

	ex13.txt

	ex14.py

	stupid.vb

	useless.vb

	wasteoftime.vb

	List all the .txt files in temp.

	List all the files that begin with ex.

	Delete all the vb files!

	Use find and less to see all the .txt files under your home directory.

Hint

You will need a | pipe for that last exercise

	
grep

Grep is a pattern search that uses regular expressions [http://en.wikipedia.org/wiki/Regular_expression] to look for a pattern

in text. It’s powerful if you know regular expressions:

grep this words.txt looks for the word this inside a file named words.txt

Exercise:

	Create a file in temp called newfile.txt with the following text:

This is a new file.
This is a new file.
This is a new file.

	Create another file called oldfile.txt but with:

This is an old file.
This is an old file.
This is an old file.

	Search for all occurences of the word new in all the .txt files in temp.

	Search for all occurences of old.

	Search for all occurences of file.

	How would you search for the words This is?

Hint

You can quickly type text into a file using cat > file.txt

This will overwrite file.txt with whatever you type until you close the file using CTRL-c.

See also

Take a look at the Python Docs [https://docs.python.org/2/howto/regex.html] for more information

	
env

Prints out all the environments variables

env

Exercise:

	Print all your environment variables.

	Use | and grep to print only the variables that have your username in them.

	
export

Export a local varialble to become an environment variable

export VAR

Exercises:

	Create an environment variable called TESTING and set it to "1 2 3".

	echo your new varialble.

Note

Environment variables are reset every time a new terminal session starts.

	
ssh

SecureShell is a program that connects you to remote computers and execute

commands on them:

ssh alice@foo.com

	
scp

Secure copy like FTP but uses SSH protocol to transmit data:

scp words.txt alice@foo.com:Desktop/store

	
sudo

Super User DO is a command that escalates and runs the given command as root

	
`` or ${}

Backticks command; which executes the command inside it and returns the output:

cat `ls *txt`

	
ifconfig

To check the network cards and the ip address

	
alias

To alias command and modify them

alias l="ls -al"

See also

Here is a comprehensive Command Line Cheatsheet [http://cli.learncodethehardway.org/bash_cheat_sheet.pdf]

Dot files/directories

Dot files and directories play a big role in the Unix/Linux operating system. Once a file or directory starts with a . it will be hidden from the regular ls command, and to display it you need to run ls with -a flag. The flag display the all the files in the current directory. There are many special dotfiles that you need to be aware of. The list below lists couple of them.

	~/.bashrc

	~/.vimrc

	~/.emacs

	~/.bash_history

Exercises

run ls -a ~ to display the files and try to get familiar with them

	[1]	Less history [http://en.wikipedia.org/wiki/Less_%28Unix%29#History]

 Copyright 2014, Abdulrahman Alotaibi and Abdulaziz Alsaffar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Full Stack Development 1.0 documentation

 	Phase I: Development Tools

Software Package Managers

So far in the course we have learned how to set up a fresh Ubuntu virtual
machine and how to use some of the basic built in shell commands. Plain Ubuntu
is extremely powerful and we can do a lot with it but at some point, whether
we are setting up a development machine or a production server, we will need
to install and manage software, tools, programming libraries, etc...
As a devloper you’ll often find yourself rapidly installing, configuring, testing,
uninstalling, adjusting, reinstalling multiple version of multiple software
packages.
And if you don’t keep track of them they can conflict with each other.
And break each other.
And make your life miserable.

Luckily, back in the stone-age of Linux (the 90s), the combined efforts of many
distressed developers resulted in the concept of a package manager!
Package managers will search for and install or uninstall software on your system,
ensure that dependencies and conflicts are taken care of, and generally help you
manage the software on your machine.

	
Aptitude

This is Linux’s very powerful built-in package manager.

Basic Usage:

apt-get install foo-package

	
PIP

PIP is the software manager for Python libraries and packages.

(PIP stands for “PIP Installs Python”. Developers are weird)

Basic Usage:

pip install pyfoo

Exercises

	Read the Aptitude man page

	Install PIP, python3, nginx using Aptitude

	Read the PIP help file pip help

	Install django, selenium, uwsgi using PIP

More Information:

There are many more package managers than we mentioned in this section
depending on what kind of web development you are doing.
We would recomment looking at:

	npm (node.js)

	yum (Linux)

	rpm (Linux)

	homebrew (Mac OSX)

	macports (Mac OSX)

 Copyright 2014, Abdulrahman Alotaibi and Abdulaziz Alsaffar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Full Stack Development 1.0 documentation

 	Phase I: Development Tools

Editors and IDEs

There are many editors in the Linux environment such as:

	nano

	pico

	vi

	vim

	emacs

	Sublime

	etc...

They are divided into GUI and terminal, and you can also divide
them into advance text editors and normal text editors.
Explore them and choose the one that works best for you.

Tip

Combining the power of GUI and non-GUI text editors would give you more power.

In addition to basic text editors, there is also a class of software packages known
as Integrated Development Environments such as:

	PyCharm (python)

	Eclipse (java)

	XCode (objective-c and swift)

	Android Studio (android specific java)

	etc...

As you can see, IDEs are highly specialized for specific types of projects and applications.
They are full of language and project specific features.

As a very general rule you would use basic editors to sporadically modify individual files
from the command line such as when you are SSHed into one of your production machines.
And you would use IDEs to set up, manage and develop an entire application and all its files
locally such as developing a Django application.

Exercises

	Navigate to foo directory again

	Launch one of the text editors and create hello.txt

	Write the following in it:

Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Cras fermentum dolor purus, quis lobortis arcu volutpat ac.
Nullam consequat dapibus bibendum. Donec at libero at mi pulvinar sagittis.
Mauris et risus molestie, porta justo vel, suscipit erat.
Maecenas sed diam a nisi finibus ultrices eu et felis.
Nulla ornare elementum mi, vel dignissim tellus bibendum sed.
Vivamus diam nulla, hendrerit non dapibus at, pharetra non arcu.
Mauris posuere erat nibh, volutpat venenatis mi ultricies quis.
Duis hendrerit lacus lacus, eget viverra justo rhoncus ac.
Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos.
Vestibulum id orci ut tortor fringilla imperdiet volutpat id orci.
Sed bibendum mauris ac dolor efficitur, ut pharetra neque lobortis.
Fusce malesuada ultricies feugiat. Interdum et malesuada fames ac ante ipsum primis in faucibus.
Praesent facilisis ultricies accumsan.
Quisque lectus neque, faucibus in egestas interdum, euismod at lacus.
Sed imperdiet nisl justo, eget porta tortor molestie sed.
Aenean consectetur varius ante, nec malesuada lorem pretium in.
Donec feugiat sapien non justo scelerisque vestibulum sed vel libero.
Suspendisse lobortis arcu nec ultrices vehicula.
Phasellus gravida nulla sed nunc sollicitudin, a vehicula enim commodo.
Sed eu convallis augue. Donec in eros malesuada, pretium sapien quis, eleifend est.
Ut vel venenatis turpis.

	Save and Exit from the text editor.

Vim Exercise

	Launch your terminal and follow and the instructions.

	Finish all the 7 chapters.

 Copyright 2014, Abdulrahman Alotaibi and Abdulaziz Alsaffar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Full Stack Development 1.0 documentation

 	Phase I: Development Tools

Stack Configuration Exercise

In this exercise we are going to use many of the tools we have
learned about during the week to set up our first stack.

This stack will run on a virtual machine and consist of the
following components:

	Application Framework (Django)

	Python WSGI HTTP Server (Gunicorn)

	Web Server (NGINX)

	Database (PostgreSQL)

Step One: Setup Your Virtual Machine

At this point you should already have a virtual machine up and
running but if you don’t, set one up using the image you created
on the first day of this course.

Step Two: Install and Create Virtualenv

In Phase II we will go into more details about how to install, configure and
use python virtual environments but for now just use the following commands.

Install virtualenv:

sudo apt-get install python-virtualenv

Create a virtualenv for our python packages:

virtualenv ~/myenv

Step Three: Install and Configure PostgreSQL

Most Django users prefer to use PostgreSQL as their database server. It is much more robust than MySQL and the
Django ORM works much better with PostgreSQL than MySQL, MSSQL, or others.

Install

First we need to install dependencies for PostgreSQL to work with Django:

sudo apt-get install libpq-dev python-dev

Then we install PostgreSQL itself:

sudo apt-get install postgresql postgresql-contrib

Configure

Now we can start configuring PostgrSQL. We need to create a database, create a user, and grant the user we created
access to the database we created. Start off by running the following command:

sudo su - postgres

Your terminal prompt should now say postgres@yourserver. Run the following command to create a database:

createdb mydb

You now have a database named mydb. Now create a database user:

createuser -P {{username}}

Note

Replace the place holder {{username}} with the new username without {{}}

You will now be met with a series of 6 prompts. The first one will ask you for the name of the new user. Use whatever
name you would like. The next two prompts are for your password and confirmation of password for the new user.
For the last 3 prompts just enter “n” and hit “enter”. This just ensures your new users only has access to what you
give it access to and nothing else. Now activate the PostgreSQL command line interface:

psql

Grant the new user access to the new database:

GRANT ALL PRIVILEGES ON DATABASE mydb TO myuser;

You now have a PostgreSQL database and a user to access that database with.

Step Four: Install Django and Create a Project

Install

We activate our virtualenv before we install any python packages:

source ~/myenv/bin/activate

You should now see that “(myenv)” has been appended to the beginning of your terminal prompt.
This will help you to know when your virtualenv is active and which virtualenv is active.

We can now install Django in our virtualenv using pip:

pip install django

Note

After running this command you will have Django 1.7 installed in your system

Configure a New Project

With django installed we can now create a new project to test that our stack is working.
First change to the directory where you want your project source to live (we chose home ~):

cd ~

Now run the following command to create a project directory:

djang-admin.py startproject myproject

If we want django to talk to our database, we need to install a backend for PostgreSQL:

pip install psycopg2

Now we can edit the django database settings in the settings.py file using a command line editor:

cd ~/myproject/myproject
vim settings.py

Find the database settings and edit them to look like this:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql_psycopg2', # Add 'postgresql_psycopg2', 'mysql', 'sqlite3' or 'oracle'.
 'NAME': 'mydb', # Or path to database file if using sqlite3.
 # The following settings are not used with sqlite3:
 'USER': 'myuser',
 'PASSWORD': 'password',
 'HOST': 'localhost', # Empty for localhost through domain sockets or '127.0.0.1' for localhost through TCP.
 'PORT': '', # Set to empty string for default.
 }
}

Save and exit the file. Then move up to your main project directory and run django’s database configurtion tool:

cd ~/myproject/
python manage.py syncdb

Note

Familiarize yourself wuth ./manage.py makemigrations and ./manage.py migrate commands

You should see some output describing what tables were installed, followed by a prompt asking if you want to create a superuser.
Just say no for now.

Step Five: Install and Configure Gunicorn

Gunicorn is a very powerful Python WSGI HTTP server.

Install

Gunicorn is a python package so activate your virtualenv and install it using pip:

source ~/myenv/bin/activate
pip install gunicorn

Configure

For now we are going to configure gunicorn using the most basic configuration with default settings:

gunicorn --bind localhost:8001 myproject.wsgi:application

Note

Please be careful it’s a Python import syntax not a file system path

Also to make the command run in the background append & to the end of the line

Now go to your web browser and visit localhost:8001 and see what you get.
You should get the Django welcome screen.

Step Six: Install and Configure NGINX

NGINX is an incredibly fast and light-weight web server. We will use it to serve up our static files for
our Django app.

Install

To install nginx just run this command:

sudo apt-get install nginx

Configure

Make sure that nginx is running:sten:

sudo service nginx start

We’re going to be using NGINX to serve our static files so first we need to decide where our static files
will live. Edit the django settings.py file and add STATIC_ROOT setting it
to the following:

STATIC_ROOT = '/home/{{ user }}/static/'

Tip

Remember to replace {{ user }} with your own username on your VM

Now we can set up NGINX to handle the files in our static directory.
Open a new NGINX config file:

sudo vim /etc/nginx/sites-available/myproject

Now add the following to the file:

server {
 listen 80; # to listen on the default HTTP port but you need to be root ;)
 server_name {{your ip}};

 access_log off;

 location /static/ {
 alias /home/{{user}}/static/;
 }

 location / {
 proxy_pass http://127.0.0.1:8001;
 proxy_set_header Host $host;
 }
}

Now we need to set up a symbolic link in the /etc/nginx/sites-enabled directory that points to this
configuration file. That is how NGINX knows this site is active. Change directories to /etc/nginx/sites-enabled like this:

cd /etc/nginx/sites-enabled
sudo ln -s ../sites-available/myproject

Warning

Dont’ forget to disable the default website in /etc/nginx/site-enabled

Now restart NGINX:

sudo service nginx restart

And that’s it! You now have Django installed and working with PostgreSQL and your app is web accessible with NGINX
serving static content and Gunicorn serving as your app server.

Tip

If it doesn’t work that means you forgot to run gunicorn in the background

 Copyright 2014, Abdulrahman Alotaibi and Abdulaziz Alsaffar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Full Stack Development 1.0 documentation

Phase II: Team Project Workflow

Introduction

A workshop/tutorial for Python/Django developers who would like to contribute
more to the projects they use, but need more grounding in some of the tools
required.

The workshop will take participants through the complete cycle of identifying
a simple issue in a Django or Python project, writing a patch with tests and
documentation, and submitting it.

The purpose of the workshop

Don’t be afraid to commit will help put you in a position to commit
successfully to collaborative projects.

You’ll find it particularly useful if you think you have some good coding
ideas, but find that managing the development process sometimes gets in the
way of your actual development.

What’s covered

virtualenv and pip will help you manage your own work in a more
streamlined and efficient way.

Git and GitHub will also help you manage your own workflow and
development, and will make it possible for you to collaborate effectively with
others. The Django Project, like many other open projects, uses both.

Automated tests will help you develop your software faster,
better and more easily and give other developers more confidence in your
contributions.

Documentation - being able to create, manage and publish documentation in
an efficient and orderly way will make your work more accessible and more
interesting to other people.

Contributing - how to submit your work

Contents

	What you need to know and have installed before you begin

	Virtualenv and pip

	Git and GitHub
	Git and GitHub

	Git on the commandline

	Working with remotes

	Resolving conflicts

	More key Git techniques

	Automated testing in Python and Django

	Documentation using Sphinx and ReadTheDocs.org

	Contributing your work

	Cheatsheet - a handy summary of key commands and techniques

	A record of people who attended a workshop or followed the tutorial

	Notes for anyone planning a workshop

Credits

“Don’t be afraid to commit” was created by Daniele Procida. Other contributors
include:

	Daniel Quinn

	Brian Crain (@crainbf)

	Paul Grau

	Nimesh Ghelani https://github.com/nims11

	Robert Dragan https://github.com/rmdragan

	David Garcia https://github.com/davideire

	Jason Blum https://github.com/jasonblum

	Kevin Daum https://github.com/kevindaum

Many thanks are also due to the members of #django, #python, #git and #github
on irc.freenode.net for their endless online help.

... and if I have neglected to mention someone, please let me know.

Please feel free to use and adapt the tutorial.

 Copyright 2014, Abdulrahman Alotaibi and Abdulaziz Alsaffar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Full Stack Development 1.0 documentation

 	Phase II: Team Project Workflow

Prerequisites

What you need to know

The tutorial assumes some basic familiarity with the commandline prompt in a
terminal.

You’ll need to know how to install software. Some of the examples given refer
to Debian/Ubuntu’s apt-get; you ought to know what the equivalent is on
whatever operating system you’re using.

You’ll also need to know how to edit plain text or source files of various
kinds.

It will be very useful to have some understanding of Python, but it’s not
strictly necessary. However, if you’ve never done any programming, that will
probably be an obstacle.

Software

The tutorial assumes that you’re using a Unix-like system, but there should be
no reason why (for example) it would not work for Windows users.

You’ll need a suitable text editor, that you’re comfortable using.

Other software will be used, but the tutorial will discuss its installation.

However, your environment does need to be set up appropriately, and you
will need to know how to use it effectively.

If your system already has Django and/or Python packages running that you’ve
installed, you probably already have what you need and know what you need to
know. All the same:

Platform-specific notes

GNU/Linux

Please make sure that you know how to use your system’s package manager, whether
it’s aptitude or YUM or something else.

Mac OS X

There are two very useful items that you should install.

	Command Line Tools for Xcode [https://developer.apple.com/downloads/],
various useful components (requires registration)

	Homebrew [http://brew.sh], a command line package manager

Python

You’ll need a reasonably up-to-date version of Python installed on your
machine. 2.6 or newer should be fine.

Git

Please do check you can install Git:

sudo apt-get install git # for Debian/Ubuntu users

or:

brew install git # for Mac OS X users with Homebrew installed

There are other ways of installing Git; you can even get a graphical Git application, that will include the commandline tools. These are described at:

http://git-scm.com/book/en/Getting-Started-Installing-Git

 Copyright 2014, Abdulrahman Alotaibi and Abdulaziz Alsaffar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Full Stack Development 1.0 documentation

 	Phase II: Team Project Workflow

Virtualenv and pip

In this section you will:

	use pip to install packages

	install virtualenv

	create and destroy, activate and deactivate virtual environments

	use pip freeze to show installed items

What is virtualenv?

Virtualenv lets you create and manage virtual Python environments.

If you’re running a Python project for deployment or development, the chances
are that you’ll need more than one version of it, or the numerous other Python
applications it depends upon, at any one time.

For example, when a new version of Django is released, you might want to check
your project is still compatible. You don’t want to have to set up a whole new
server with a different version of Django to find out.

With virtualenv, you can quickly set up a a brand new Python environment, and
install your components into it - along with the new version of Django,
without touching or affecting what you already have running.

You can have literally dozens of virtualenvs on the same machine, all running
different versions of your Python software, all independently of each other,
and can safely make changes to one without affecting anything else.

pip goes hand-in-hand with virtualenv; in fact, it comes with virtualenv
(as well as separately). It’s an installer, and is the easiest way to install
things into a virtualenv.

Install virtualenv

Try:

virtualenv --version

Do you have a version lower than 1.9? Upgrade it:

sudo pip install --upgrade virtualenv
hash -r # purge shell's PATH, though this may not be necessary for you

If you got a “Command not found” when you tried to use virtualenv, try:

sudo pip install virtualenv

or:

sudo apt-get install python-virtualenv # for a Debian-based system - but
it may not be up-to-date

If that fails or you’re using a different system, you might need more help:

Virtualenv installation documentation [http://www.virtualenv.org/en/latest/#installation]

Create and activate a virtual environment

virtualenv my-first-virtualenv
cd my-first-virtualenv
source bin/activate

Notice how your command prompt tells you that the virtualenv is active (and it remains active even while you’re not in its directory):

(my-first-virtualenv)~/my-first-virtualenv$

Using pip

pip freeze

pip freeze lists installed Python packages:

(my-first-virtualenv)daniele@v029:~/my-first-virtualenv$ pip freeze
argparse==1.2.1
distribute==0.6.24
pyasn1==0.1.7
virtualenv==1.9.1
wsgiref==0.1.2

pip install

Earlier, you may have used sudo pip install. You don’t need sudo
now, because you’re in a virtualenv. Let’s install something.

pip install rsa

pip will visit PyPI, the Python Package Index, and will install Python-RSA (a
“Pure-Python RSA implementation”). It will also install its dependencies -
things it needs - if any have been listed at PyPI.

Now see what pip freeze reports. You will probably find that as well as
Python-RSA it installed some other packages - they were ones that Python-RSA
needed.

And try:

(my-first-virtualenv)~/my-first-virtualenv$ python
Python 2.7.2+ (default, Jul 20 2012, 22:15:08)
[GCC 4.6.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import rsa

To uninstall it:

pip uninstall rsa

To install a particular version:

pip install rsa==3.0

To ugrade the package to the latest version:

pip install --upgrade rsa

Where packages get installed

Your virtualenv has a site-packages directory, in the same way your system does. So now rsa can be found in:

~/my-first-virtualenv/lib/python2.7/site-packages/rsa

(It’s possible that you’ll have a different version of Python listed in that
path.)

Dependencies

Python-RSA doesn’t have any dependencies, but if it did, and if those
dependencies had dependencies, pip would install them all.

So if all the package authors have done a good job of informing PyPI about
their software’s requirements, you can install a Django application, for
example, and pip will will install it, and Django, and possibly dozens of other
pieces of software, all into your virtualenv, and without your having to make
sure that everything required is in place.

Managing virtualenvs

Create a second virtualenv

cd ~/ # let's not create it inside the other...
virtualenv my-second-virtualenv

When you activate your new virtualenv, it will deactivate the first:

cd my-second-virtualenv
source bin/activate

pip freeze will show you that you don’t have Python-RSA installed in this
one - it’s a completely different Python environment from the other, and both
are isolated from the system-wide Python setup.

Deactivate a virtualenv manually

Activating a virtualenv automatically deactivates one that was previously
active, but you can also do this manually:

deactivate

Now you’re no longer in any virtualenv.

–system-site-packages

When you create a virtualenv, it doesn’t include any Python packages already
installed on your system. But sometimes, that is what you want. In that
case you’d do:

virtualenv --system-site-packages my-third-virtualenv

remove a virtualenv

virtualenvs are disposable. You can get rid of these:

cd ~/
rm -r my-first-virtualenv my-second-virtualenv my-third-virtualenv

And that’s pretty much all you need to get started and to use pip and
virtualenv effectively.

 Copyright 2014, Abdulrahman Alotaibi and Abdulaziz Alsaffar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Full Stack Development 1.0 documentation

 	Phase II: Team Project Workflow

Git and GitHub

	Git and GitHub

	Git on the commandline

	Working with remotes

	Resolving conflicts

	More key Git techniques

Git is a source code management system, designed to support collaboration.

GitHub is a web-based service that hosts Git projects, including Django
itself: https://github.com/django/django.

Git is a quite remarkable tool. It’s fearsomely complex, but you can start
using it effectively without needing to know very much about it. All you really
need is to be familiar with some basic operations.

The key idea in Git is that it’s distributed. If you’re not already familiar
with version control systems, then explaining why this is important will only
introduce distinctions and complications that you don’t need to worry about,
so that’s the last thing I will say on the subject.

 Copyright 2014, Abdulrahman Alotaibi and Abdulaziz Alsaffar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Full Stack Development 1.0 documentation

 	Phase II: Team Project Workflow

 	Git and GitHub

Git and GitHub

In this section you will:

	create a GitHub account

	create your own fork of a repository

	create a new Git branch

	edit and commit a file on GitHub

	make a pull request

	merge upstream changes into your fork

What is it?

Git is a source code management system, designed to support collaboration.

GitHub is a web-based service that hosts Git projects, including Django
itself: https://github.com/django/django.

The key idea in Git is that it’s distributed. If you’re not already familiar
with version control systems, then explaining why this is important will only
introduce distinctions and complications that you don’t need to worry about,
so that’s the last thing I will say on the subject.

Set up a GitHub account

	sign up at GitHub [https://github.com/] if you don’t already have an
account

It’s free.

Some basic editing on GitHub

Forking

	visit https://github.com/evildmp/afraid-to-commit/

You can do various things there, including browsing through all the code and files.

	hit the Fork button

A few moments later, you’ll have your own copy, on GitHub, of everything in
that repository, and from now on you’ll do your work on your copy of it.

Your copy is at https://github.com/<your github account>/afraid-to-commit/.

You will typically do this for any Git project you want to contribute to. It’s
good for you because it means you don’t have to sign up for access to a
central repository to be permitted to work on it, and even better for the
maintainers because they certainly don’t want to be managing an small army of
volunteers on top of all their other jobs.

Note

Don’t worry about all the forks

You’ll notice that there might be a few forks of
https://github.com/evildmp/afraid-to-commit; if you have a look at
https://github.com/django/django you’ll see thousands. There’ll even be
forks of the forks. Every single one is complete and independent. So,
which one is the real one - which one is the Django repository?

In a technical sense, they all are, but the more useful answer is: the
one that most people consider to be the canonical or official version.

In the case of Django, the version at https://github.com/django/django is
the one that forms the basis of the package on PyPI, the one behind the
https://djangoproject.com/ website, and above all, it’s the one that the
community treats as cannonical and official, not because it’s the original
one, but because it’s the most useful one to rally around.

The same goes for https://github.com/evildmp/afraid-to-commit and its
more modest collection of forked copies. If I stop updating it, but
someone else is making useful updates to their own fork, then in time
theirs might start to become the one that people refer to and contribute
to. This could even happen to Django itself, though it’s not likely to
any time soon.

The proliferation of forks doesn’t somehow dilute the original. Don’t be
afraid to create more. Forks are simply the way collaboration is made
possible.

Create a new branch

Don’t edit the master (default) branch of the repository. It’s much better to
edit the file in a new branch, leaving the master branch clean and untouched:

	select the branch menu

	in Find or create a branch... enter add-my-name

	hit Create branch: add-my-name

Note

Don’t hesitate to branch

As you may have noticed on GitHub, a repository can have numerous branches
within it. Branches are ways of organising work on a project: you can have
a branch for a new feature, for trying out something new, for exploring an
issue - anything at all.

Just as virtualenvs are disposable, so are branches in Git. You can
have too many branches, but don’t hesitate to create new ones; it costs
almost nothing.

It’s a good policy to create a new branch for every new bit of work you
start doing, even if it’s a very small one.

It’s especially useful to create a new branch for every new feature you
start work on.

Branch early and branch often. If you’re in any doubt, create a new
branch.

Edit a file

GitHub allows you to edit files online. This isn’t the way you will normally
use Git, and it’s certainly not something you’ll want to spend very much time
doing, but it’s handy for very small changes, for example typos and spelling
mistakes you spot.

	go to https://github.com/<your github account>/afraid-to-commit

	find the attendees_and_learners.rst file

	hit the Edit button

	add your name (just your name, you will add other information later) to the
appropriate place in the file. If you’re following the tutorial by yourself,
add your details in the I followed the tutorial online section.

Commit your changes

	hit Commit Changes

Now your copy of the file, the one that belongs to your fork of the
project, has been changed; it’s reflected right away on GitHub.

If you managed to mis-spell your name, or want to correct what you entered,
you can simply edit it again.

What you have done now is make some changes, in a new branch, in your own fork
of the repository. You can see them there in the file.

Make a Pull Request

When you’re ready to have your changes incorporated into my
original/official/canonical repository, you do this by making a Pull
Request.

	go back to https://github.com/<your github account>/afraid-to-commit

You’ll see that GitHub has noted your recent changes, and now offers various
buttons to allow you to compare them with the original or make a pull request.

	hit Compare & pull request

This will show you a compare view, from which you can make your pull request.

When preparing for a pull request, GitHub will show you what’s being compared:

evildmp:master ... <your github account>:add-my-name

On the left is the base for the comparison, my fork and branch. On the
right is the head, your fork and branch, that you want to compare with
it.

A pull request goes from the head to the base - from right to left.

You can change the bases of the comparison if you need to:

	hit Edit

	select the forks and branches as appropriate

You want your version, the head branch of the head fork - on the
right - with some commits containing file changes, to be sent to my base
repo - on the left.

	hit the Pull Request button

	add a comment if you like (e.g. “please add me to the attendees list”)

	hit Send pull request

You have now made a pull request to an open-source community
project - if it’s your first one, congratulations.

GitHub will notify me (by email and on the site, and will show me the changes
you’re proposing to make). It’ll tell me whether they can be merged in
automatically, and I can reject, or accept, or defer a decision on, or comment
on, your pull request.

GitHub can automatically merge your contribution into my repository if mine
hasn’t changed too much since you forked it. If I want to accept it but GitHub
can’t do it automatically, I will have to merge the changes manually (we will
cover this later).

Once they’re merged, your contributions will become a part of
https://github.com/evildmp/afraid-to-commit. And this is the basic lifecycle of
a contribution using git: fork > edit > commit > pull request >
merge.

Incorporate upstream changes into your master

In the meantime, other people may have made their own forks, edits, commits,
and pull requests, and I may have merged those too - other people’s names may
now be in the list of attendees. Your own version of afraid-to-commit,
downstream from mine, doesn’t yet know about those.

Since your work is based on mine, you can think of my repository as being
upstream of yours. You need to merge any upstream changes into your
version, and you can do this with a pull request on GitHub too.

This time though you will need to switch the bases of the comparison around,
because the changes will be coming from my version to yours.

	hit Pull Request once more

	hit Edit, to switch the bases

	change the head repo on the right to my version,
evildmp/afraid-to-commit, branch master

	change the base repo to yours, and the base branch to master, so
the comparison bar looks like:

<your github account>:master ... evildmp:master

	hit Click to create a pull request for this comparison

	add a Title (e.g. “merging upstream master on Github) and hit Send
pull request

You’re sending a pull request to to yourself, based on updates in my
repository. And in fact if you check in your Pull Requests on GitHub,
you’ll see one there waiting for you, and you too can review, accept, reject
or comment on it.

If you decide to Merge it, your fork will now contain any changes that
other people sent to me and that I merged.

The story of your work is this: you forked away from my codebase, and then
created a new branch in your fork.

Then you committed changes to your branch, and sent them upstream back
to me (with a pull request).

I merged your changes, and perhaps those from other people, into my
codebase, and you pulled all my recent changes back into your master
branch (again with a pull request).

So now, your master and mine are once more in step.

 Copyright 2014, Abdulrahman Alotaibi and Abdulaziz Alsaffar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Full Stack Development 1.0 documentation

 	Phase II: Team Project Workflow

 	Git and GitHub

Git on the commandline

In this section you will:

	install and configure Git locally

	create your own local clone of a repository

	create a new Git branch

	edit a file and stage your changes

	commit your changes

	push your changes to GitHub

	make a pull request

	merge upstream changes into your fork

	merge changes on GitHub into your local clone

So far we’ve done all our Git work using the GitHub website, but that’s usually
not the most appropriate way to work.

You’ll find that most of your Git-related operations can and need to be done on the commandline.

Install/set up Git

sudo apt-get install git # for Debian/Ubuntu users
brew install git # for Mac OS X users with Homebrew installed

There are other ways of installing Git; you can even get a graphical Git application, that will include the commandline tools. These are described at:

http://git-scm.com/book/en/Getting-Started-Installing-Git

Tell Git who you are

First, you need to tell Git who you are:

git config --global user.email "you@example.com"
git config --global user.name "Your Name"

Give GitHub your public keys

This is a great timesaver: if GitHub has your public keys, you can do all
kinds of things from your commandline without needing to enter your GitHub
password.

	https://github.com/settings/ssh

https://help.github.com/articles/generating-ssh-keys explains much better than
I can how to generate a public key.

This tutorial assumes you have now added your public key to your GitHub
account. If you haven’t, you’ll have to use https instead, and translate
from the format of GitHub’s ssh URLS.

For example, when you see:

git@github.com:evildmp/afraid-to-commit.git

you will instead need to use:

https://github.com/evildmp/afraid-to-commit.git

See https://gist.github.com/grawity/4392747 for a discussion of the different
protocols.

Some basic Git operations

When we worked on GitHub, the basic work cycle was fork > edit > commit
> pull request > merge. The same cycle, with a few differences, is what we
will work through on the commandline.

Clone a repository

When you made a copy of the Don’t be afraid to commit repository on GitHub,
that was a fork. Getting a copy of a repository onto your local machine is
called cloning. Copy the ssh URL from
https://github.com/<your github account>/afraid-to-commit, then:

git clone git@github.com:<your github account>/afraid-to-commit.git

Change into the newly-created afraid-to-commit directory, where you’ll find
all the source code of the Don’t be afraid to commit project.

Now you’re in the working directory, the set of files that you currently
have in front of you, available to edit. We want to know its status:

$ git status
On branch master
nothing to commit (working directory clean)

Create a new branch

Just as you did on GitHub, once again you’re going to create a new branch,
based on master, for new work to go into:

$ git checkout -b amend-my-name
Switched to a new branch 'amend-my-name

git checkout is a command you’ll use a lot, to switch between branches. The
-b flag tells it to create a new branch at the same time. By default,
the new branch is based upon whatever branch you were on.

You can also choose what to base the new branch on. A very common thing to do is:

git checkout -b new-branch-name upstream/master

This creates a new branch new-branch-name, based on upstream/master.

Edit a file

	find the attendees_and_learners.rst file in your working directory

	after your name and email address, add your Github account name

	save the file

git status is always useful:

$ git status
On branch amend-my-name
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: attendees_and_learners.rst
#
no changes added to commit (use "git add" and/or "git commit -a")

What this is telling us:

	we’re on the amend-my-name branch

	that we have one modified file

	that there’s nothing to commit

These changes will only be applied to this branch when they’re committed. You
can git add changed files, but until you commit they won’t belong to any
particular branch.

Note

When to branch

You didn’t actually need to create your new amend-my-name branch until
you decided to commit. But creating your new branches before you start
making changes makes it less likely that you will forget later, and commit
things to the wrong branch.

Stage your changes

Git has a staging area, for files that you want to commit. On GitHub
when you edit a file, you commit it as soon as you save it. On your
machine, you can edit a number of files and commit them altogether.

Staging a file in Git’s terminology means adding it to the staging
area, in preparation for a commit.

Add your amended file to the staging area:

git add attendees_and_learners.rst

and check the result:

$ git status
On branch amend-my-name
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
modified: attendees_and_learners.rst
#

If there are other files you want to change, you can add them when you’re
ready; until you commit, they’ll all be together in the staging area.

What gets staged?

It’s not your files, but the changes to your files, that are staged. Make
some further change to attendees_and_learners.rst, and run git status:

$ git status
On branch amend-my-name
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
modified: attendees_and_learners.rst
#
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: attendees_and_learners.rst
#

Some of the changes in attendees_and_learners.rst will be committed, and the
more recent ones will not.

	run git add on the file again to stage the newer changes

Commit your changes

When you’re happy with your files, and have added the changes you want to
commit to the staging area:

git commit -m "added my github name"

The -m flag is for the message (“added my github name”) on the commit -
every commit needs a commit message.

Push your changes to GitHub

When you made a change on GitHub, it not only saved the change and committed
the file at the same time, it also showed up right away in your GitHub
repository. Here there is an extra step: we need to push the files to
GitHub.

If you were pushing changes from master locally to master on GitHub, you
could just issue the command git push and let Git work out what needs to go
where.

It’s always better to be explicit though. What’s more, you have multiple
branches here, so you need to tell git where to push (i.e. back to the remote
repository you cloned from, on GitHub) and what exactly to push (your new
branch).

The repository you cloned from - yours - can be referred to as origin. The
new branch is called amend-my-name. So:

$ git push origin amend-my-name
Counting objects: 34, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (21/21), done.
Writing objects: 100% (28/28), 6.87 KiB, done.
Total 28 (delta 13), reused 12 (delta 7)
To git@github.com:evildmp/afraid-to-commit.git
 * [new branch] amend-my-name -> amend-my-name

Note

Be explicit!

Next time you want to push committed changes in amend-my-name, you won’t
need to specify the branch - you can simply do git push, because now
amend-my-name exists at both ends. However, it’s still a good idea to
be explict. That way you’ll be less likely to get a surprise you didn’t
want, when the wrong thing gets pushed.

Check your GitHub repository

	go to https://github.com/<your GitHub name>/afraid-to-commit

	check that your new amend-my-name branch is there

	check that your latest change to attendees_and_learners.rst is in it

Send me a pull request

You can make more changes locally, and continue committing them, and pushing
them to GitHub. When you’ve made all the changes that you’d like me to accept
though, it’s time to send me a pull request.

Important: make sure that you send it from your new branch amend-my-name
(not from your master) the way you did before.

And if I like your changes, I’ll merge them.

Note

Keeping master ‘clean’

You could of course have merged your new branch into your master
branch, and sent me a pull request from that. But, once again, it’s a good
policy to keep your master branch, on GitHub too, clean of changes you
make, and only to pull things into it from upstream.

In fact the same thing goes for other branches on my upstream that you
want to work with. Keeping them clean isn’t strictly necessary, but it’s
nice to know that you’ll always be able to pull changes from upstream
without having to tidy up merge conflicts.

Incorporate upstream changes

Once again, I may have merged other people’s pull requests too. Assuming that
you want to keep up-to-date with my changes, you’re going to want to merge
those into your GitHub fork as well as your local clone.

So:

	on GitHub, pull the upstream changes into your fork the way you did
previously

Then switch back to your master branch in the usual way (git checkout
master). Now, fetch updated information from your GitHub fork (origin),
and merge the master:

git fetch
git merge origin/master

So now we have replicated the full cycle of work we described in the previous
module.

Note

git pull

Note that here instead of git fetch followed by git merge, you
could have run git pull. The pull operation does two things: it
fetches updates from your GitHub fork (origin), and merges
them.

However, be warned that occasionally git pull won’t always work in the
way you expect, and doing things the explicit way helps make what you are
doing clearer.

git fetch followed by git merge is generally the safer option.

Switching between branches locally

Show local branches:

git branch

You can switch between local branches using git checkout. To switch back to
the master branch:

git checkout master

If you have a changed tracked file - a tracked file is one that Git is
managing - it will warn you that you can’t switch branches without either
committing, abandoning or ‘stashing’ the changes:

Commit

You already know how to commit changes.

Abandon

You can abandon changes in a couple of ways. The recommended one is:

git checkout <file>

This checks out the previously-committed version of the file.

The one that is not recommended is:

git checkout -f <branch>

The -f flag forces the branch to be checked out.

Note

Forcing operations with -f

Using the -f flag for Git operations is to be avoided. It offers plenty
of scope for mishap. If Git tells you about a problem and you force your
way past it, you’re inviting trouble. It’s almost always better to find a
different way around the problem than forcing it.

git push -f in particular has ruined a nice day for many people.

Stash

If you’re really interested, look up git stash, but it’s beyond the scope of this tutorial.

 Copyright 2014, Abdulrahman Alotaibi and Abdulaziz Alsaffar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Full Stack Development 1.0 documentation

 	Phase II: Team Project Workflow

 	Git and GitHub

Working with remotes

In this section you will:

	add a remote repository to your local clone

	fetch remote information

	checkout a remote branch

	merge an upstream branch

Managing remotes

Your repository on GitHub is the remote for the clone on your local
machine. By default, your clone refers to that remote as origin. At
the moment, it’s the only remote you have:

$ git remote
origin

$ git remote show origin
 * remote origin
 Fetch URL: git@github.com:evildmp/afraid-to-commit.git
 Push URL: git@github.com:evildmp/afraid-to-commit.git
 HEAD branch: master
 Remote branches:
 amend-my-name tracked
 master tracked
 Local branch configured for 'git pull':
 master merges with remote master
 Local refs configured for 'git push':
 amend-my-name pushes to amend-my-name (up to date)
 master pushes to master (up to date)

It’s very useful for Git to know about other remote repositories too. For
example, at the end of the previous section, we considered a conflict between
your GitHub fork and and the upstream GitHub repository. The only way to fix
that is locally, on the command line, and by being able to refer to both those
remotes.

Now you can refer to a remote using its full address:

https://github.com/evildmp/afraid-to-commit

But just as your remote is called origin, you can give any remote a more
memorable name. Your own origin has an upstream repository (mine); it’s a
convention to name that upstream.

Add a remote

git remote add upstream git@github.com:evildmp/afraid-to-commit.git

Fetch remote data

The remote’s there, but you don’t yet have any information about it. You need
to fetch that:

git fetch upstream

This means: get the latest information about the branches on upstream.

List remote branches

git branch shows your local branches.

To see a list of them all, including the remote branches:

git branch -a

Checkout a remote branch

You’ll have seen from git branch -a that there’s a branch called
additional-branch on the upstream repository.

You can check this out:

git checkout -b additional-branch upstream/additional-branch

This means: create and switch to a new local branch called additional-branch,
based on branch additional-branch of the remote upstream.

Managing master on the commandline

Until now, you have only updated your master on GitHub using GitHub itself.
Sometimes it will be much more convenient to do it from your commandline.
There are various ways to do it, but here’s one:

git checkout master # switch back to the master branch
git fetch upstream # update information about the remote
git merge upstream/master # merge the changes referred to by
upstream/master

git status will tell you that your local master is ahead of your master
at origin.

Push your changes to master:

git push origin master

And now your master on GitHub contains everything my master does; it’s
up-to-date and clean.

 Copyright 2014, Abdulrahman Alotaibi and Abdulaziz Alsaffar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Full Stack Development 1.0 documentation

 	Phase II: Team Project Workflow

 	Git and GitHub

Resolving conflicts

In this section you will:

	encounter a merge conflict on GitHub

	encounter a merge conflict on the commandline

	resolve the conflict in a new temporary Git branch

Encountering a merge conflict on GitHub

Sometimes you’ll discover that your GitHub fork and the upstream repository
have changes that GitHub can’t merge.

There’s an unmergeable-branch at https://github.com/evildmp/afraid-to-commit.
It’s unmergeable because it deliberately contains changes that conflict with
other changes made in master.

Using the GitHub interface, try creating a pull request from
unmergeable-branch to your master on GitHub. If you do, GitHub will tell
you:

We can’t automatically merge this pull request.

Use the command line to resolve conflicts before continuing.

GitHub will in fact tell you the steps you need to take to solve this, but to
understand what’s actually happening, and to do it yourself when you need to,
we need to cover some important concepts.

Merging changes from a remote branch

make sure you have the latest data from upstream
$ git fetch upstream
create and switch to a new branch based on master to explore the conflict
$ git checkout -b explore-conflict upstream/master
now try merging the unmergeable-branch into it
$ git merge upstream/unmergeable-branch
Auto-merging attendees_and_learners.rst
CONFLICT (content): Merge conflict in attendees_and_learners.rst
Automatic merge failed; fix conflicts and then commit the result.

When there’s a conflict, Git marks them for you in the files. You’ll see
sections like this:

<<<<<<< HEAD
* Daniel Pass <daniel.antony.pass@googlemail.com>
* Kieran Moore
=======
* Kermit the Frog
* Miss Piggy
>>>>>>> upstream/unmergeable-branch

The first section, HEAD is what you have in your version. The second
section, upstream/unmergeable-branch is what Git found in the version you
were trying to pull in.

You’ll have to decide what the file should contain, and you’ll need to edit
it. If you decide you want the changes from both versions:

* Daniel Pass <daniel.antony.pass@googlemail.com>
* Kieran Moore
* Kermit the Frog
* Miss Piggy

$ git add attendees_and_learners.rst
$ git commit -m "fixed conflict"
[explore-conflict 91a45ac] fixed conflict

Note

Create new branches when resolving conflicts

It’s very sensible not to do merging work in a branch you have done
valuable work in. In the example above, your explore-conflict branch is
based on master and doesn’t contain anything new, so it will be easy to
re-create if it all goes wrong.

If you had a branch that contained many complex changes however, you
certainly wouldn’t want to discover dozens of conflicts making a mess in
the files containing all your hard work.

So remember, branches are cheap and disposable. Rather than risk
messing up the branch you’ve been working on, create a new one specially
for the purpose of discovering what sort of conflicts arise, and to give
you a place to work on resolving them without disturbing your work so far.

You might have conflicts across dozens of files, if you were unlucky, so
it’s very important to be able to backout gracefully and at the very least
leave things as they were.

 Copyright 2014, Abdulrahman Alotaibi and Abdulaziz Alsaffar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Full Stack Development 1.0 documentation

 	Phase II: Team Project Workflow

 	Git and GitHub

More key Git techniques

There are a few more key Git commands and techniques that you need to know
about.

.gitignore

When you’re working with Git, there are lots of things you won’t want to push, including:

	hidden system files

	.pyc files

	rendered documentation files

	... and many more

.gitignore,
https://github.com/evildmp/afraid-to-commit/blob/master/.gitignore, is what
controls this. You should have a .gitignore in your projects, and they
should reflect your way of working. Mine include the things that my
operating system and tools throw into the repository; you’ll find soon enough
what yours are.

With a good .gitignore, you can do things like:

git add docs/

and add whole directories at a time without worrying about including unwanted
files.

Starting a new Git project

You’ve been working so far with an existing Git project. It’s very easy to
start a brand new project, or turn an existing one into a Git project. On
GitHub, just hit the New repository button and follow the instructions.

Combining Git and pip

When you used pip to install a package inside a virtualenv, it put it on your
Python path, that is, in the virtualenv’s site-packages directory. When
you’re actually working on a package, that’s not so convenient - a Git project
is the most handy thing to have.

On the other hand, cloning a Git repository doesn’t install it on your Python
path (assuming that it’s a Python application), so though you can work on it,
you can’t actually use it and test it as an installed package.

However, pip is Git-aware, and can install packages and put them in a
convenient place for editing - so you can get both:

cd ~/
virtualenv git-pip-test
source git-pip-test/bin/activate
pip install -e git+git@github.com:python-parsley/parsley.git#egg=parsley

The -e flag means editable; git+ tells it to use the Git protocol; #egg=parsley tells it what to call it.

(Should you find that this causes an error, try using quotes around the target:

pip install -e "git+git@github.com:python-parsley/parsley.git#egg=parsley"

)

You can also specify the branch:

pip install -e git+git@github.com:python-parsley/parsley.git@master#egg=parsley

And now you will find an editable Git repository installed at:

~/git-pip-test/src/parsley

which is where any other similarly-installed packages will be, and just to prove that it really is installed:

$ pip freeze
-e git+git@github.com:python-parsley/parsley.git@e58c0c6d67142bf3ceb6eceffd50cf0f8dae9da1#egg=Parsley-master
wsgiref==0.1.2

 Copyright 2014, Abdulrahman Alotaibi and Abdulaziz Alsaffar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Full Stack Development 1.0 documentation

 	Phase II: Team Project Workflow

Testing Django applications

The Django Project tutorials include a testing tutorial, which is what we’ll
follow. It assumes you have built the Polls application over the previous four
parts of the tutorial.

To save you having to create it now, I’ve made the tutorial project
application on GitHub. If you haven’t followed the Django tutorial right the
way through though, you really should.

This section of the workshop will follow roughly the tutorial at
https://docs.djangoproject.com/en/1.5/intro/tutorial05/.

Get the code set up

Create a virtualenv

$ virtualenv testingtutorial
New python executable in testingtutorial/bin/python
Installing setuptools............done.
Installing pip...............done.
$ cd testingtutorial/
$ source bin/activate

Install Django using pip

(testingtutorial)$ pip install django==1.5.1
Downloading/unpacking django
[...]

Clone the repository

Visit https://github.com/evildmp/django-tutorials-project. Fork the
repository.

(testingtutorial)$ git clone git@github.com:<your git name>/django-tutorials-project.git
Cloning into 'django-tutorials-project'...
[...]

Checkout the code we want

(testingtutorial)$ cd django-tutorials-project/
(testingtutorial)$ git checkout tutorial-four
Branch tutorial-four set up to track remote branch tutorial-four from origin.
Switched to a new branch 'tutorial-four'

Fire it up

python manage.py syncdb # set up the database

Note

ImportError: No module named django.core.management

Maybe you don’t have Django installed. That’s no problem; you already know
the answer to this:

pip install django # install Django into your virtualenv

You will need to be a superuser, so enter a username and password.

python manage.py runserver 0.0.0.0:8000 # start the runserver

Developing tests

The first bug

Visit the site’s admin, and create a new poll. You’ll soon see that you can
expose a little bug. In the list of polls in the admin, you’ll see that polls
published in the last day are considered to have been published recently,
but so are polls whose pub_date is in the future.

We can fix that bug easily enough, but in order to be sure that it stays
fixed, a test will help. So, we should:

	create a test that exposes the bug

	work on the bug

	run the test, and go back to step 2 until the test passes

https://docs.djangoproject.com/en/1.5/intro/tutorial05/#we-identify-a-bug

Following good Git working practices, before you change a single byte of code,
create a new branch to work in:

git checkout -b test-for-published-recently

When you’ve worked through that section in the tutorial, you’ll have fixed the
bug and created three tests. This would be a good moment to add your changed
files, commit your changes, and push them to your GitHub repository before
continuing.

Your next bugfix and tests

What about your next bugfix and tests? Should they be in a branch based on
tutorial-four, or based on test-for-published-recently?

That really depends on whether your next bugfix and tests can be regarded as
independent of the ones in test-for-published-recently, in which case it
might be better to start again based on tutorial-four:

git checkout -b improve-list-view tutorial-four

This will mean that you can make a pull request for those changes
independently of the previous ones, meaning your pull request will be smaller,
simpler and easier to understand - maintainers love that.

On the other hand, if you’re going to build on the work you’ve just done,
you’ll need:

git checkout -b improve-list-view

Keep creating new branches as appropriate, as you work through the tutorial.

Following the tutorial

The Django testing tutorial covers a number of key ideas and approaches. It’s
worth following the whole thing, and making sure you understand the points
its making.

 Copyright 2014, Abdulrahman Alotaibi and Abdulaziz Alsaffar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Full Stack Development 1.0 documentation

 	Phase II: Team Project Workflow

Documentation using Sphinx and ReadTheDocs.org

Without documentation, however wonderful your software, other potential
adopters and developers simply won’t be very interested in it.

The good news is that there are several tools that will make presenting and
publishing it very easy, leaving you only to write the content and mark it up
appropriately.

For documentation, we’ll use Sphinx to generate it, and Read the Docs
to publish it. GitHub will be a helpful middleman.

If you have a package for which you’d like to create documentation, you might
as well start producing that right away. If not, you can do it in a new
dummy project.

Set up your working environment

The virtualenv

As usual, create and activate a new virtualenv:

virtualenv documentation-tutorial
[...]
cd documentation-tutorial/
source bin/activate

The package or project

If you have an existing package to write documentation for

If your package is on GitHub already and you want to start writing documention
for, clone it now using Git. And of course, start a new branch:

git checkout -b first-docs

You can merge your docs into your master branch when they start to look
respectable.

If you don’t have an existing package that needs docs

If you don’t have a suitable existing package on GitHub, create
a repository on GitHub the way you did before. Call it my-first-docs. Then
create a Git repository locally:

mkdir my-first-docs
cd my-first-docs/
Converts the directory into a git repository
git init
Point this repo at the GitHub repo you just created
git remote add origin git@github.com:<your git username>/my-first-docs.git
Create a new branch in which to do your work
git checkout -b first-docs

Create a docs directory

And either way, create a docs directory for your docs to live in:

mkdir docs

Sphinx

Install Sphinx

pip install sphinx

It might take a minute or so, it has quite a few things to download and install.

sphinx-quickstart

sphinx-quickstart will set up the source directory for your documentation.
It’ll ask you a number of questions. Mostly you can just accept the defaults
it offers, and some are just obvious, but there are some you will want to set
yourself as noted below:

sphinx-quickstart

	Root path for the documentation

	docs

	Project name

	<your name>'s first docs, or the name of your application

	Source file suffix

	.rst is the default. (Django’s own documentation uses .txt. It
doesn’t matter too much.)

You’ll find a number of files in your docs directory now, including
index.rst. Open that up.

Using Sphinx & reStructuredText

reStructuredText elements

Sphinx uses reStructuredText. http://sphinx-doc.org/rest.html#rst-primer will tell you most of what
you need to know to get started. Focus on the basics:

	paragraphs

	lists

	headings (‘sections’, as Sphinx calls them)

	quoted blocks

	code blocks

	emphasis, strong emphasis and literals

Edit a page

Create an Introduction section in the index.rst page, with a little text
in it; save it.

Create a new page

You have no other pages yet. In the same directory as index.rst, create
one called all-about-me.rst or something appropriate. Perhaps it might
look like:

############
All about me
############

I'm Daniele Procida, a Django user and developer.

I've contributed to:

* django CMS
* Arkestra
* Django

Sphinx needs to know about it, so in index.rst, edit the .. toctree::
section to add the all-about-me page:

.. toctree::
 :maxdepth: 2

 all-about-me

Save both pages.

Render your documentation

In the docs directory:

make html

This tells Sphinx to render your source pages. Pay attention to its warnings
- they’re helpful!

Note

Sphinx can be fussy, and sometimes about things you weren’t expecting. For
example, you well encounter something like:

WARNING: toctree contains reference to nonexisting document u'all-about-me'
...
checking consistency...
<your repository>/my-first-docs/docs/all-about-me.rst::
WARNING: document isn't included in any toctree

Quite likely, what has happened here is that you indented all-about-me
in your .. toctree:: with four spaces, when Sphinx is expecting
three.

If you accepted the sphinx-quickstart defaults, you’ll find the rendered
pages in docs/_build/html. Open the index.html it has created in your
browser. You should find in it a link to your new all-about-me page too.

Publishing your documentation

Exclude unwanted rendered directories

Remember .gitignore? It’s really useful here, because you don’t want to
commit your rendered files, just the source files.

In my .gitignore, I make sure that directories I don’t want committed are
listed. Check that:

_build
_static
_templates

are listed in .gitignore.

Add, commit and push

git add the files you want to commit; commit them, and push to GitHub.

If this is your first ever push to GitHub for this project, use:

git push origin master

otherwise:

git push origin first-docs # or whatever you called this branch

Now have a look at the .rst documentation files on GitHub. GitHub does a
good enough job of rendering the files for you to read them at a glance,
though it doesn’t always get it right (and sometimes seems to truncate them).

readthedocs.org

However, we want to get them onto Read the Docs. So go to
https://readthedocs.org, and sign up for an account if you don’t have one.

You need to Import a project: https://readthedocs.org/dashboard/import/.

Give it the details of your GitHub project in the repo field -
git@github.com:<your git username>/my-first-docs.git, or whatever it is -
and hit Create.

And now Read the Docs will actually watch your GitHub project, and build,
render and host your documents for you automatically.

It will update every night, but you can do better still: on GitHub:

	select settings for your project (not for your account) in the
navigation panel on the right-hand side

	choose Webhooks & Services

	enable ReadTheDocs under Add Service dropdown

... and now, every time you push documents to GitHub, Read the Docs will be
informed that you have new documents to be published. It’s not magic, but it’s
pretty close.

 Copyright 2014, Abdulrahman Alotaibi and Abdulaziz Alsaffar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Full Stack Development 1.0 documentation

 	Phase II: Team Project Workflow

Contributing

Having identified a contribution you think you can usefully make to a project,
how are you actually going to make it?

For nearly every project, the best first step is:

Talk to somebody about it

You may have been eating, sleeping, dreaming and otherwise living your
idea for days, but until you discuss it, no-one else knows anything about it.
To them, your patch will come flying out of the blue.

You need - usually - to introduce your idea, and - particularly if you’re new
to the community - yourself.

In the case of Django, this will typically mean posting to the Django
Developers email list, django-developers@googlegroups.com (sign up at
http://groups.google.com/group/django-developers), or raising it on
#django-dev on irc.freenode.net.

Quite apart from letting people know about what you have to offer, it’s an
opportunity to get some feedback on your proposal.

Don’t automatically expect your proposal to be considered a great idea. Be
prepared to explain the need it meets and why you think your solution is a
good one. Be prepared to do some more work.

Above all, you will need to be patient, polite and persistent.

File it

If one doesn’t exist already, lay down a formal public marker raising the
issue your contribution addresses. In Django’s case, this will be a ticket on
https://code.djangoproject.com/. For others, it’s likely to be an issue on
GitHub or whatever system they use. Mention your earlier discussion!

Do your homework

Every project has its standards for things like code and documentation, and
its ways of working. They tend to follow a general pattern, but they often
have their own little quirks or preferences - so learn them.

If you think that sounds tedious, it’s nothing compared to the potential pain
of having to manage or use code and documentation written according to the
individual preferences of all its different contributors.

	https://docs.djangoproject.com/en/1.7/internals/contributing/

	https://docs.djangoproject.com/en/1.7/internals/contributing/writing-code/working-with-git/

Note that the Django Project’s Git guidelines ask contributors to use
rebase - which is firstly a little unusual, and secondly explained in the
documentation above better than I can here - so read that.

And be prepared to get it wrong the first few times, and even the subsequent
ones. It happens to everyone.

Submit it

Now you can make your pull request. Having prepared the way for it, and
having provided the accompaniments - tests and documentation - that might be
required, it has a good chance of enjoying a smooth passage into the project.

What to start with?

Documentation! It’s the easy way in.

Everyone loves documentation, and unlike code where incompleteness or
vagueness can make it worse than useless, documentation has to be really quite
bad to be worse than no documentation.

What’s more, writing documentation will help you better understand the things
you’re writing about, and if you’re new to all this, that’s going to put you
in a better position to understand and improve code.

Some suitable Django Project tickets

Have a look at one of the tickets specially selected for people doing this
tutorial [https://code.djangoproject.com/query?keywords=~afraid-to-commit&groupdesc=1&group=status&col=id&col=summary&col=keywords&col=owner&col=type&col=status&order=priority]. They’re not all for documentation, though most are.

 Copyright 2014, Abdulrahman Alotaibi and Abdulaziz Alsaffar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Full Stack Development 1.0 documentation

 	Phase II: Team Project Workflow

Cheatsheet

virtualenv

	create

	virtualenv [name-of-virtualenv]

	include system’s Python packages

	virtualenv [name-of-virtualenv] --install-site-packages

	activate

	source bin/activate

	deactivate

	deactivate

pip

	install

	pip install [name-of-package]

	install a particular version

	pip install [name-of-package]==[version-number]

	upgrade

	pip install --upgrade [name-of-package]

	uninstall

	pip uninstall [name-of-package]

	show what’s installed

	pip freeze

git

	tell git who you are

	git config --global user.email "you@example.com"

git config --global user.name "Your Name"

	clone a repository

	git clone [repository URL]

	checkout

	git checkout [branch] switches to another branch

git checkout -b [new-branch] creates and switches to a new branch

git checkout -b [new-branch] [existing branch] creates and
switches to a new branch based on an existing one

git checkout -b [new-branch] [remote/branch] creates and
switches to a new branch based on remote/branch

git checkout [commit sha] checks out the state of the repository at a
particular commit

	current status of your local branches

	git status

	show the commit you’re on in the current working directory

	git show

	commit

	git commit -m "[your commit message]"

	add

	git add [filename] adds a file to the staging areas

git add -u [filename] - the -u flag will also remove deleted files

	remote

	git remote add [name] [remote repository URL] sets up remote

git remote show lists remotes

git remote show -v lists remotes and their URLs

	branch

	git branch

git branch -a to show remote branches too

	fetch

	git fetch gets the latest information about the branches on the default
remote

git fetch [remote] gets the latest information about the branches on the
named remote

	merge

	git merge [branch] merges the named branch into the working directory

git merge [remote/branch] -m "[message]" merges the branch referred to
into the working directory - don’t forget to fetch the remote before the
merge

	pull

	fetch followed by merge is often safer than pull - don’t assume
that pull will do what you expect it to

git pull fetches updates from the default remote and merges into the
working directory

	push

	git push pushes committed changes to the default remote, in branches
that exist at both ends

git push [remote] [branch] pushes the current branch to the named
branch on remote

	log

	git log will show you a list of commits

Notes

Throughout Git, anything in the form remote/branchname is a reference, not
a branch.

Documentation

	initialise Sphinx documentation

	sphinx-quickstart

	render documentation

	make html

 Copyright 2014, Abdulrahman Alotaibi and Abdulaziz Alsaffar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Full Stack Development 1.0 documentation

 	Phase II: Team Project Workflow

Attendees

This is a record of people who attended a Don’t be afraid to commit workshop,
or followed the tutorial in their own time.

Workshops

Full Stack Development Course in Kuwait, 17th November 2014

	Ghada Alnaqi https://github.com/gnaqi <ghnaqi@gmail.com>

	Nasser Hussain <nasser.bader@outlook.com> https://github.com/nasser-bader

	Musab Alshatti <m93b85@gmail.com> (https://githup.com/m93b85)

	Lulwah AlKulaib <lkulaib@kisr.edu.kw> https://github.com/lalkulaib

	Ebtisam (e.al-slama@hotmail.com)https://github.com/ealsalamah

	Muneera Aljeri <mujeri@kisr.edu.kw> (https://github.com/muneera88)

	Abdulaziz Al-Massaeed (abdulaziz.almassaeed@ahliunited.com) (https://github.com/hackfoo)

	Nasser AlSnayen (nasser.lc9@gmail.com) <https://github.com/LC9>

Honor Guests

	Kermit the frog

	Captain Awesomesauce

PyCon Ireland in Dublin, 13th October 2014

	Randal McGuckin <randal.mcguckin@gmail.com>

	Laura Duggan https://github.com/labhra

	Jenny McGee

	Conor McGee <mcgeeco@tcd.ie> https://github.com/mcgeeco

	Nadja Deininger https://github.com/machinelady

	Andrew McCarthy

	Brian McDonnell <https://github.com/brianmcdonnell/>

	Brendan Cahill (https://github.com/brencahill/)

	Adam Dickey

	Paul O’Grady (Twitter: @paul_ogrady; GitHub: paulogrady)

	Jenny DiMiceli - https://github.com/jdimiceli

	Stephen Kerr

	Wayne Tong

	Vinicius Mayer (viniciusmayer@gmail.com) https://github.com/viniciusmayer

	Dori Czapari https://github.com/doriczapari (@doriczapari)

	Karl Griffin (karl_griffin@hotmail.com) https://github.com/karlgriffin

PyCon UK in Coventry, 20th September 2014

	Matthew Power https://github.com/mthpower

	Brendan Oates <brenoates@gmail.com>

	Waldek Herka (https://github.com/wherka)

	Stephen Newey (@stevenewey) - https://github.com/stevenewey

	Walter Kummer (work.walter at gmail.com)

	Craig Barnes

	Justin Wing Chung Hui

	Davide Ceretti

	Paul van der Linden https://github.com/pvanderlinden

	Gary Martin https://github.com/garym

	Cedric Da Costa Faro https://github.com/cdcf

	Sebastien Charret <sebastien.charret@gmail.com> https://github.com/moerin

	Nick Smith

	Jonathan Lake-Thomas https://github.com/jonathlt

	Ben Mansbridge

	Glen Davies (@GlenDaviesDev) - https://github.com/glen442

DjangoCon US in Portland, 5th September 2014

	Joseph Metzinger (joseph.metzinger@gmail.com) https://github.com/joetheone

	Abdulaziz Alsaffar (alsaff1987@gmail.com) https://github.com/Octowl

	Patrick Beeson (@patrickbeeson) https://github.com/patrickbeeson

	Vishal Shah - https://github.com/shahv

	Kevin Daum (@kevindaum, kevin.daum@gmail.com) https://github.com/kevindaum

	Nasser AlSnayen (nasser.lc9@gmail.com) https://github.com/LC9

	Nicholas Colbert (@45cali) 45cali@gmail.com

	Chris Cauley https://github.com/chriscauley

	Joe Larson (@joelarson)

	Jeff Kile

	Orlando Romero

	Chad Hansen (chadgh@gmail.com) https://github.com/chadgh

DjangoVillage in Orvieto, 14th June 2014

	Gioele

	Christian Barra (@christianbarra) https://github.com/barrachri

	Luca Ippoliti https://github.com/lucaippo

	@joke2k (https://github.com/joke2k)

	Domenico Testa (@domtes)

	Alessio

	Diego Magrini (http://github.com/magrinidiego)

	Matteo (@loacker) https://github.com/loacker

	Simone (@simodalla) https://github.com/simodalla

DjangoCon Europe on The Île des Embiez, 16th May 2014

	Niclas Åhdén (niclas@brightweb.se) https://github.com/niclas-ahden

	Sabine Maennel (sabine.maennel@gmail.com) http://github.com/sabinem

	JB (Juliano Binder)

	Laurent Paoletti

	Alex Semenyuk (https://github.com/gtvblame)

	Moritz Windelen

	Marie-Cécile Gohier

	Isabella Pezzini

	Pavel Meshkoy (@rasstreli)

Dutch Django Association Sprint in Amsterdam, 22nd February 2014

	Stomme poes (@stommepoes)

	Rigel Di Scala (zedr) <zedr@zedr.com> http://github.com/zedr

	Nikalajus Krauklis (@dzhibas) http://github.com/dzhibas

	Ivo Flipse (@ivoflipse5) https://github.com/ivoflipse

	Martin Matusiak

	Jochem Oosterveen https://github.com/jochem

	Pieter Marres

	Nicolaas Heyning (L1NDA)

	Henk Vos h.vos@rapasso.nl https://github.com/henkvos

	Adam Kaliński @ https://github.com/adamkal

	Marco B

	Greg Chapple http://github.com/gregchapple/

	Vincent D. Warmerdam vincentwarmerdam@gmail.com

	Lukasz Gintowt (syzer)

	Bastiaan van der Weij

	Maarten Zaanen <maarten at PZvK.com><Maarten at Zaanen.net>

	Markus Holtermann (@m_holtermann)

Django Weekend Cardiff, 7th February 2014

	Jakub Jarosz (@qba73) jakub.s.jarosz@gmail.com https://github.com/qba73

	Stewart Perrygrove

	Adrian Chu

	Baptiste Darthenay

PyCon Ireland in Dublin, 14th October 2013

	Vincent Hussey vincent.hussey@opw.ie https://github.com/VincentHussey

	Padraic Harley <@pauricthelodger> <padraic@thelodgeronline.com>

	Paul Cunnane <paul.cunnane@gmail.com> https://github.com/paulcunnane

	Sorcha Bowler <saoili @ github, twitter, gmail, most of the internet>

	Jennifer Parak https://github.com/jenpaff

	Andrea Fagan

	Jennifer Casavantes

	Pablo Porto https://github.com/portovep

	Tianyi Wang <wty52133@gmail.com> @TianyiWang33

	James Heslin <program.ix.j@gmail.com> https://github.com/PROGRAM-IX

	Sorcha Bowler <saoili@gmail.com. saoili on github, twitter, most of the
internet>

	Larry O’Neill (larryone)

	Samuel <satiricallaught@gmail.com>

	Frank Healy

	Robert McGivern <Robert.bob.mcgivern@gmail.com>

	James Hickey

	Tommy Gibbons

PyCon UK in Coventry, 22nd September 2013

	Adeel Younas <aedil12155@gmail.com>

	Giles Richard Greenway github: augeas

	Mike Gleen

	Arnav Khare https://github.com/arnav

	Daniel Levy https://github.com/daniell

	Ben Huckvale https://github.com/benhuckvale

	Helen Sherwood-Taylor (helenst)

	Tim Garner

	Stephen Newey @stevenewey (stevenewey)

	Mat Brunt <matbrunt@gmail.com>

	John S

	Carl Reynolds (@drcjar)

	Jon Cage & John Medley (http://www.zephirlidar.com)

	Stephen Paulger (github:stephenpaulger twitter:@aimaz)

	Alasdair Nicol

	Dave Coutts https://github.com/davecoutts

	Daley Chetwynd https://github.com/dchetwynd

	Haris A Khan (harisakhan)

	Chung Dieu https://github.com/chungdieu

	Colin Moore-Hill

	John Hoyland (@datainadequate) https://github.com/datainadequate

	Joseph Francis (joseph@skyscanner.net)

	Åke Forslund <ake.forslund@gmail.com> github:forslund

	Ben McAlister https://github.com/bmcjamin

	Lukasz Prasol <lprasol@gmail.com> github: https://github.com/phoenix85

	Jorge Gueorguiev <yefo.akira@gmail.com> https://github.com/MiyamotoAkira

	Dan Ward (danielward) (dan@regenology.co.uk)

	Kristian Roebuck <roebuck86@gmail.com> https://github.com/kristianroebuck

	Louis Fill tkman220@yahoo.com

	Karim Lameer https://github.com/klameer

	John Medley <john.medley@zephirlidar.com>

DjangoCon US in Chicago, 2nd September 2013

	Barbara Hendrick (bahendri)

	Keith Edmiston <keith.edmiston@mccombs.utexas.edu>

	David Garcia (davideire)

	Ernesto Rodriguez <ernesto@tryolabs.com> https://github.com/ernestorx @ernestorx

	Jason Blum

	Hayssam Hajar <hayssam.hajar@gmail.com> github: hhajar

Cardiff Dev Workshop, 8th June 2013

	Daniel Pass <daniel.antony.pass@googlemail.com>

	Kieran Moore

	Dale Bradley

	Howard Dickins <hdickins@gmail.com> https://github.com/hdickins

	Robert Dragan https://github.com/rmdragan

	Chris Davies

	Gwen Williams

	Chris Lovell <chrisl1991@hotmail.co.uk> https://github.com/polyphant1

	Nezam Shah

	Gwen Williams https://github.com/gwenopeno

	Daniel Pass <daniel.antony.pass@googlemail.com>

	Bitarabe Edgar

DjangoCon Europe in Warsaw, 18th May 2013

	Amjith Ramanujam - The Dark Knight

	@zlatkoc

	larssos@github

	@erccy is my name

	Patrik Gärdeman https://github.com/gardeman

	Gustavo Jimenez-Maggiora https://github.com/gajimenezmaggiora

	Jens Ådne Rydland <jensadne@pvv.ntnu.no> https://github.com/jensadne

	Chris Reeves @krak3n

	Alexander Hansen <alexander@geekevents.org> https://github.com/wckd

	Brian Crain (@crainbf)

	Nicolas Noé <nicolas@niconoe.eu> https://github.com/niconoe

	Peter Bero

	schacki

	Michał Karzyński <djangoconwrkshp@karzyn.com> https://github.com/postrational

	@graup

I followed the tutorial online

	Daniel Quinn - 18th May 2013

	Paul C. Anagnostopoulos - 19 August 2013

	Ben Rowett - 27 August 2013

	Chris Miller, <chris@chrismiller.org> - 5th September 2013

	David Lewis - 7th September 2013

	Josh Chandler - 11th September 2013

	Richie Arnold - <richard@ambercouch.co.uk> - 22nd September 2013

	Padraic Stack - https://github.com/padraic7a

	Patrick Nsukami - <patrick@soon.pro> - lemeteore

	Can Ibanoglu - http://github.com/canibanoglu

	Pedro J. Lledó - http://github.com/pjlledo - 11th October 2013

	Ken Tam - 4th Jan 2014

	Óscar M. Lage - http://github.com/oscarmlage

	Bob Aalsma - https://github.com/BobAalsma/

	Andy Venet - https://github.com/avenet/

	Vathsala Achar - 22nd September, 2014

	Amine Zyad <amizya@gmail.com> http://github.com/amizya

 Copyright 2014, Abdulrahman Alotaibi and Abdulaziz Alsaffar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Full Stack Development 1.0 documentation

 	Phase II: Team Project Workflow

Running a workshop

If you’d like to run a workshop based on this material, please do, and please
let me know about it.

Notes on running a workshop

To cover all the workshop material seems to take about four and a half hours.

Any of the following will make it take longer:

	attendees who aren’t already a little familiar with the terminal and using a
text editor to edit source files

	attendees whose machines aren’t already suitably-configured for the workshop
and need software installed

	attendees using operating systems you’re not familiar with

If you’re lucky, you’ll find that the majority of attendees have the same
expertise and the same gaps in expertise. This makes it much easier to decide
which parts to dwell upon and which ones you can skim over. If you’re not
lucky, they will each have a completely different skillset.

You’ll do a lot of running around to look at people’s screens, so it helps to
be able to get around the room easily.

The Git on the commandline section is the one where you will be in most
demand - it helps great if at this stage you have one or two helpers who are
familiar with Git.

Watch out for wireless network limitations - at one session the promised
network turned out to block both github.com and ssh, and we had to rely on an
access point created by someone’s mobile telephone.

Things that might look odd

If you’re experienced with things virtualenv and Git, some of the way things
are done here might strike you as odd. For example:

Virtualenvs and code

The workshop has users put all the code they’re working with into their
virtualenv directories. This is done to help associate a particular project and
set of packages with each virtualenv, and saves excessive moving around between
directories.

Editing and committing on GitHub

That’s certainly not what we’d normally do, but we do it here for three main
reasons:

	GitHub’s interface is a friendly, low-barrier introduction to Git operations

	it’s easy for people to see the effects of their actions straight away

	they get to make commits, pull requests and merges as soon as possible after
being introduced to the concepts

The last of these is the most significant.

Other oddities

There may be others, which might be for a good reason or just because I don’t
know better. If you think that something could be done better, please let me
know.

 Copyright 2014, Abdulrahman Alotaibi and Abdulaziz Alsaffar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Full Stack Development 1.0 documentation

Phase III: Complete Web Development

Introduction

The purpose of the workshop

At this point in the course we have all the tools and workflows
we would need to do the following:

	Manually set up a development environment

	Manually set up a stack on any machine

	Collaborate on a project remotely

In this workshop, through the process of building and deploying
and actual live web application, we will learn to automate and
streamline those processes.

Phase III: Complete Web Development will help put you in
a position to collaboratively develop a live web application
which can be shared, deployed, and installed by anyone from
anywhere to any machine.

What’s covered

Vagrant will help you automate setting up multiple, identical
virtual development environments and share those settings with
your team.

Ansible will help you automate the provisioning and
deployment of your application to any machine and share those
settings with your team.

Python and Django - We will introduce the basics of
Python and the Django framework and let you take it from there!

Toy Project - This workshop will revolve around an actual
Django toy project that we will develop, deploy and iterate on over
the duration of this course.

Contents

	Vagrant

	Ansible

	Python

	Django

	Toy project

 Copyright 2014, Abdulrahman Alotaibi and Abdulaziz Alsaffar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Full Stack Development 1.0 documentation

 	Phase III: Complete Web Development

Vagrant

In Phase I we learned how to:

	Setup individual virtual machines

	Setup an environment with the software packages we needed

	Configure and network our machines

	Configure a basic stack

And we did it all manually and individually!

Vagrant is a tool that changes all of that by providing us with
a way automate the entire process using a single file that we can
share along with the project code.

Vagrant helps you create, provision, share and destroy virtual machines. Vagrant can interact with different hypervisors e.g. VirtualBox, VMware ...etc. Instead of you going and writing scripts to interact with your hypervisor softwre of choice, it does it for you. It has simple commands to launch and create VM. In this course, we will touch the surface of what it can do.

Prerequisite

You need to install VirtualBox or any hypervisor you wish to use. The following instruction will focus on VirtualBox since it’s our presonal preference. After that Download and install Vagrant [https://www.vagrantup.com/]. After you done the previous two steps move to the next section.

Init

To initialize the vagrant you have to run the following command $vagrant init, and you should get the following out put.

A `Vagrantfile` has been placed in this directory. You are now
ready to `vagrant up` your first virtual environment! Please read
the comments in the Vagrantfile as well as documentation on
`vagrantup.com` for more information on using Vagrant.

Now, you should have a new file created in the same directory called Vagrantfile. This is a ruby file and it has the initial settup for the VM. Take a moment and open the file and be familair of the different configuration that you can do with your VM. If you open the file you should see the following.

-*- mode: ruby -*-
vi: set ft=ruby :

Vagrantfile API/syntax version. Don't touch unless you know what you're doing!
VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 # All Vagrant configuration is done here. The most common configuration
 # options are documented and commented below. For a complete reference,
 # please see the online documentation at vagrantup.com.

 # Every Vagrant virtual environment requires a box to build off of.
 config.vm.box = "base"

 # Disable automatic box update checking. If you disable this, then
 # boxes will only be checked for updates when the user runs
 # `vagrant box outdated`. This is not recommended.
 # config.vm.box_check_update = false

 # Create a forwarded port mapping which allows access to a specific port
 # within the machine from a port on the host machine. In the example below,
 # accessing "localhost:8080" will access port 80 on the guest machine.
 # config.vm.network "forwarded_port", guest: 80, host: 8080

 # Create a private network, which allows host-only access to the machine
 # using a specific IP.
 # config.vm.network "private_network", ip: "192.168.33.10"

 # Create a public network, which generally matched to bridged network.
 # Bridged networks make the machine appear as another physical device on
 # your network.
 # config.vm.network "public_network"

 # If true, then any SSH connections made will enable agent forwarding.
 # Default value: false
 # config.ssh.forward_agent = true

 # Share an additional folder to the guest VM. The first argument is
 # the path on the host to the actual folder. The second argument is
 # the path on the guest to mount the folder. And the optional third
 # argument is a set of non-required options.
 # config.vm.synced_folder "../data", "/vagrant_data"

 # Provider-specific configuration so you can fine-tune various
 # backing providers for Vagrant. These expose provider-specific options.
 # Example for VirtualBox:
 #
 # config.vm.provider "virtualbox" do |vb|
 # # Don't boot with headless mode
 # vb.gui = true
 #
 # # Use VBoxManage to customize the VM. For example to change memory:
 # vb.customize ["modifyvm", :id, "--memory", "1024"]
 # end
 #
 # View the documentation for the provider you're using for more
 # information on available options.

 # Enable provisioning with CFEngine. CFEngine Community packages are
 # automatically installed. For example, configure the host as a
 # policy server and optionally a policy file to run:
 #
 # config.vm.provision "cfengine" do |cf|
 # cf.am_policy_hub = true
 # # cf.run_file = "motd.cf"
 # end
 #
 # You can also configure and bootstrap a client to an existing
 # policy server:
 #
 # config.vm.provision "cfengine" do |cf|
 # cf.policy_server_address = "10.0.2.15"
 # end

 # Enable provisioning with Puppet stand alone. Puppet manifests
 # are contained in a directory path relative to this Vagrantfile.
 # You will need to create the manifests directory and a manifest in
 # the file default.pp in the manifests_path directory.
 #
 # config.vm.provision "puppet" do |puppet|
 # puppet.manifests_path = "manifests"
 # puppet.manifest_file = "site.pp"
 # end

 # Enable provisioning with chef solo, specifying a cookbooks path, roles
 # path, and data_bags path (all relative to this Vagrantfile), and adding
 # some recipes and/or roles.
 #
 # config.vm.provision "chef_solo" do |chef|
 # chef.cookbooks_path = "../my-recipes/cookbooks"
 # chef.roles_path = "../my-recipes/roles"
 # chef.data_bags_path = "../my-recipes/data_bags"
 # chef.add_recipe "mysql"
 # chef.add_role "web"
 #
 # # You may also specify custom JSON attributes:
 # chef.json = { mysql_password: "foo" }
 # end

 # Enable provisioning with chef server, specifying the chef server URL,
 # and the path to the validation key (relative to this Vagrantfile).
 #
 # The Opscode Platform uses HTTPS. Substitute your organization for
 # ORGNAME in the URL and validation key.
 #
 # If you have your own Chef Server, use the appropriate URL, which may be
 # HTTP instead of HTTPS depending on your configuration. Also change the
 # validation key to validation.pem.
 #
 # config.vm.provision "chef_client" do |chef|
 # chef.chef_server_url = "https://api.opscode.com/organizations/ORGNAME"
 # chef.validation_key_path = "ORGNAME-validator.pem"
 # end
 #
 # If you're using the Opscode platform, your validator client is
 # ORGNAME-validator, replacing ORGNAME with your organization name.
 #
 # If you have your own Chef Server, the default validation client name is
 # chef-validator, unless you changed the configuration.
 #
 # chef.validation_client_name = "ORGNAME-validator"
end

After making your adjustments on the file move the next section.

Up

The VagrantFile has all the configuration for the VM, and once you fnish configuring run the following command $vagrant up. The command will aply the configuration to your VM and instantiate the machine. The output of the command should look like the following.

Bringing machine 'default' up with 'virtualbox' provider...
==> default: Importing base box 'base.box'...
==> default: Matching MAC address for NAT networking...
==> default: Setting the name of the VM: test_default_1416676086074_86409
==> default: Clearing any previously set forwarded ports...
==> default: Clearing any previously set network interfaces...
==> default: Preparing network interfaces based on configuration...
 default: Adapter 1: nat
==> default: Forwarding ports...
 default: 80 => 8080 (adapter 1)
 default: 22 => 2222 (adapter 1)
==> default: Booting VM...
==> default: Waiting for machine to boot. This may take a few minutes...
 default: SSH address: 127.0.0.1:2222
 default: SSH username: vagrant
 default: SSH auth method: private key
 default: Warning: Connection timeout. Retrying...
 default: Warning: Remote connection disconnect. Retrying...
==> default: Machine booted and ready!
==> default: Checking for guest additions in VM...
==> default: Mounting shared folders...
 default: /vagrant => /private/tmp/test

After completing the command, you should have a VM running in the background. The VM is running without GUI, and you should interact with it using vagrant commands. To check if there is a machine or not open up VirtualBox GUI and you should see a machine running.

SSH

$vagrant ssh is the command that you should use in order to log in to the machine and run your commands. After running the command, you will be logged in into the machine.

Provision

Provision is the way to set up your development environment. You can put your configuration inside VagrantFile and let Vagrant run and configure your machine the way you like. There are multiple options to accomplish that you could use Puppet, Chef, Ansible or Shell. In this section will talk about how you can provision using shell commands and then we will talk about Ansible provisioning later in this course. Follow the next instructions to provision using shell

	Open VagrantFile

	Append config.vm.provision "shell", path: "myscript.sh"

	Create a file called myscript.sh

	Copy the following into the file

#!/bin/sh
set -e

installing Nginx
sudo apt-get install -y --force-yes nginx

starting nginx
sudo service nginx start

Note

The script will install and start nginx with the default configuration. It should listen to port 80 on the guest machine and you should port-forward that port to a port on the host machine by changing the configuration in the VagrantFile.

Tutorial

We will be following the official vagrant tutorial [https://docs.vagrantup.com/v2/getting-started/index.html].

Exercise

Let’s create a Vagrantfile to set up the box we will need for our
toy project.

 Copyright 2014, Abdulrahman Alotaibi and Abdulaziz Alsaffar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Full Stack Development 1.0 documentation

 	Phase III: Complete Web Development

Ansible

 Copyright 2014, Abdulrahman Alotaibi and Abdulaziz Alsaffar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Full Stack Development 1.0 documentation

 	Phase III: Complete Web Development

Python

Python is an general purpose object oriented programming language that was
created by Guido Van Rossum [http://en.wikipedia.org/wiki/Guido_van_Rossum].
The language has many implementations e.g. CPython [https://www.python.org/], Jython [http://www.jython.org/], Pypy [http://pypy.org/], ...etc. We focus on the CPython implementaion in this
course, and feel free to check the rest of them out.

Python is widly used programing language, therefore it is being taught by many
schools as an introductory programming language in computer science classes. In
this course we will try to teach you how to use it.

From now on when we use the word python we mean the CPython
implementation of the Python programming language.

Now to start a terminal session using ALT+CTRL+T and launch the python
REPL [http://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop].
Once you started the interpreter you should see the following output

Python 2.7.5 (default, Mar 9 2014, 22:15:05)
[GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.0.68)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

This is the python prompt it, and it shows useful information about the
current python version and the compiler that python was compiled with.

The >>> is the begining of the REPL and anything you type and hit Enter
it will evaluate on the second line and print out the result. Once it’s done
executing it will display the same prompt again waiting for the next command.

Now we will learn about the useful operations that python offers in the
command line.

Integer Operations

>>> 3 + 7 # Addition
10
>>> 10 - 9 # Subtraction
1
>>> 9 - 100 # Handles negative numbers
-91
>>> 5 * 6 # Multiplications
30
>>> 15 / 5 # division
3
>>> 14 / 3 # integer division
4
>>> 14 // 3 # forcing integer division
4
>>> 5 ** 7 # Power operator
78125
>>> 10 % 4 # modules operations
2
>>> 1 << 4 # Left bitshift
16
>>> 16 >> 2 # Right bitshift
4
>>> 3 & 2 # Bit And operator
2
>>> 1 | 4 # Bit Or operator
5
>>> ~ 1 # 2's complement
-2
>>> 1 ^ 10 # XOr operator
11

Complex numbers

Python supports complex numbers by default. To use or create a complex number just append a j to a number.

>>> 4 + 6j
(4+6j)

Float point operations

Just like integers, Python supports float point operations

>>> 0.5 + 6.9
7.4
>>> 7 / 3.0
2.3333333333333335
>>> 7 / 2.0
3.5
>>> 4 * 8.4
33.6
>>> .5 - 8.4
-7.9

Boolean operations

>>> True
True
>>> False
False
>>> True or False
True
>>> True and True
True
>>> True and False
False
>>> False or False
False
>>> not False or False
True

Variables

To create a variable in Python, you have to use the assignment operator which is =. The has to start with latin alphabets or _

Note

This was changed in Python 3 where you can use any unicode charector so you can do the following س = 10 and Python would accept that.

>>> x = 3
>>> _r = 100
>>> x
3
>>> _r
100
>>> y = x + _r
>>> y
103

Strings

Python would treat any thing inside ", ' or ''' as a valid string.

>>> "This is a string"
'This is a string'
>>> 'Single quotes can be used like "'
'Single quotes can be used like "'
>>> x = """
... This is a multiline string
... The idea behind it is that you don't
... have to escape charactors
... like ' or "
... or even a new line \n
... """
>>> x
'\nThis is a multiline string\nThe idea behind it is that you don\'t \nhave to escape charactors\nlike \' or "\nor even a new line \n\n'
>>> print x

This is a multiline string
The idea behind it is that you don't
have to escape charactors
like ' or "
or even a new line

>>>

Print

Python has a keyword to print to the screen just like printf or cout in different languages. Print is very easy to use and it appends \n at the end of the output unless you append , where that behavior will be over written.

>>> y = "This is a line"
>>> g = "This is another line"
>>> print y
This is a line
>>> print g
This is another line
>>> print y,g
This is a line This is another line
>>> print y,g,
This is a line This is another line

Functions

To define a function is Python, you have to use the keyword def and then the name of the function. The name of the function can be any valid identifier. After the name of the function you have to add () to denotes function can be called without arguments or (x,y,z) to denotes a function that takes three arguments. Then, to start implementing the body of the function you have to end the function declaration with :. The body of the function must be indented by four spaces.

Note

The word must is from PEP 8 to stay consistent across files. The previous paragraph assumes mulitline functions without ;

>>> def main():
... print "Hello world"
...
>>>
>>> main()
Hello world
>>> def another_main(x,y,z):
... return (x/y)**z
...
>>>
>>>
>>> another_main(4,6,2)
0
>>> another_main(40,6,2)
36
>>> another_main(40,6.0,2)
44.44444444444445

Note

Because the language is dynamiclly typed I didn’t have to specify the type for x, y or z and I can pass anything as x, y and z. So I passed integers or floats.

 Copyright 2014, Abdulrahman Alotaibi and Abdulaziz Alsaffar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Full Stack Development 1.0 documentation

 	Phase III: Complete Web Development

Django

 Copyright 2014, Abdulrahman Alotaibi and Abdulaziz Alsaffar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Full Stack Development 1.0 documentation

 	Phase III: Complete Web Development

Toy project

Reservation Application

Sharing

Userful URLs

	https://docs.djangoproject.com/en/1.7/topics/auth/default/#django.contrib.auth.login

 Copyright 2014, Abdulrahman Alotaibi and Abdulaziz Alsaffar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Full Stack Development 1.0 documentation

Index

 Copyright 2014, Abdulrahman Alotaibi and Abdulaziz Alsaffar.
 Created using Sphinx 1.3.5.

 _images/aws.png
www.yourDomain.com

Auto Scating nstance Group

e g i TRl

_images/stackoverflow.png
@ @ careers.stackoverflow.com/ jobs/ 34229/full-stack-web-developer-stack-exchange

v ¢ (@ ou

Q
|=1 stackoverflowcareers

view all

Full-Stack Web Developer
Stack Exchange New York, NY (allows remote)

ot sqlsever aspnetmvo fquery reds

Job Description

Come help us create the future of Stack Overflow and Stack Overfiow Careers. We're looking for passionate, creative
developers who are excited about solving new problems. As a full-stack developer, you'll work with everything from
front-end HTML, CSS and JS to server-side C# and several different data stores including MSSQL Server, Redis, and
Elasticsearch. We don't expect you to know everything coming in, 50 we'll pair you with mentors who will help you grow.
and develop your skills.

We want to hire the right person wherever you are in the world. If you're in New York or interested in relocating to our
office, you'll enjoy some amazing amenities like private offices and in-house chefs. If not, we'll help you create your
dream office at home, wherever that might be.

_static/comment-close.png

_static/facebook.png
@ hitps://www.facebook.com/careers#teams ¢ | (@~ puckpuckco YRR 2

Software Engineering Legal, Finance, Facilities & ~ Communications & Public Product Management
Admin Policy

=

O =
==
IT & Security People & Recruiting Design & User Experience Infrastructure
Data & Analytics Online Operations Marketing

Mobile Find Friends Badges People Pages Places Games Locations About

_static/minus.png

_static/comment.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		Full Stack Development 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Abdulrahman Alotaibi and Abdulaziz Alsaffar.
 Created using Sphinx 1.3.5.

_static/file.png

_static/plus.png

_static/aws.png
www.yourDomain.com

Auto Scating nstance Group

e g i TRl

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/stackoverflow.png
@ @ careers.stackoverflow.com/ jobs/ 34229/full-stack-web-developer-stack-exchange

v ¢ (@ ou

Q
|=1 stackoverflowcareers

view all

Full-Stack Web Developer
Stack Exchange New York, NY (allows remote)

ot sqlsever aspnetmvo fquery reds

Job Description

Come help us create the future of Stack Overflow and Stack Overfiow Careers. We're looking for passionate, creative
developers who are excited about solving new problems. As a full-stack developer, you'll work with everything from
front-end HTML, CSS and JS to server-side C# and several different data stores including MSSQL Server, Redis, and
Elasticsearch. We don't expect you to know everything coming in, 50 we'll pair you with mentors who will help you grow.
and develop your skills.

We want to hire the right person wherever you are in the world. If you're in New York or interested in relocating to our
office, you'll enjoy some amazing amenities like private offices and in-house chefs. If not, we'll help you create your
dream office at home, wherever that might be.

_static/up.png

_static/up-pressed.png

