

 Navigation

 	
 index

 	
 next |

 	The OpenStack Telemetry plugin for Fuel 1.0.1 documentation

Welcome to the OpenStack Telemetry Plugin for Fuel Documentation

Overview

	Introduction

	Architecture overview

	Requirements

	Compatibilities

	Prerequisites

	Limitations

	Licenses

	References

Installing the OpenStack Telemetry Plugin for Fuel

	Introduction

	Install using the RPM file

	Install from source

Configuring the OpenStack Telemetry Plugin for Fuel

	Configure the plugin

 Copyright 2016, Mirantis Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	The OpenStack Telemetry plugin for Fuel 1.0.1 documentation

Introduction

The OpenStack Telemetry plugin collects metrics about OpenStack resources and
provides this data through the Ceilometer API. By default, the plugin supports
only sample and statistics API. However, you can enable full Ceilometer API
support. The OpenStack Telemetry plugin implements all the Ceilometer
functionality except complex queries with InfluxDB and Elasticsearch as back
ends for samples and events.

The OpenStack Telemetry plugin uses the following Ceilometer components:

	Polling agents (both central and computes)

	Notification agent

	Ceilometer API agent

Ceilometer collector is not used. Instead, the Telemetry plugin uses its own
tools to collect telemetry data from the Ceilometer agents.

The Telemetry plugin provides a better functionality if deployed together
with the Kafka plugin. In this case, the Telemetry plugin configures Kafka as
a message bus for the Ceilometer agents and OpenStack services still send
notifications to RabbitMQ. To process this correctly, the Ceilometer
notification agent listens to Kafka and RabbitMQ simultaneously.
However, the Telemetry plugin works without Kafka as well, but there are some
scalability limitations. For more information, see Limitations.

Depending on the message broker installed, Hindsight or Heka are used as
collectors:

	Hindsight – fetches Ceilometer samples from Kafka and is installed on the
same nodes as Kafka.

	Heka – works with RabbitMQ and is installed on controller nodes under
Pacemaker.

We recommend installing the Telemetry plugin along with the StackLight plugins.
In this case, the Telemetry plugin will use the same databases as StackLight:
InfluxDB and Elasticsearch. Otherwise, you can configure external storages.

See also

	Architecture overview

 Copyright 2016, Mirantis Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	The OpenStack Telemetry plugin for Fuel 1.0.1 documentation

Architecture overview

The Telemetry plugin uses Ceilometer agents to collect data and its own
processing mechanism to put the data into storages. Ceilometer API is used
to retrieve the data and present it to the end user.
The following diagram shows the OpenStack Telemetry plugin architecture:

[image: _images/arch_diagram.png]
Ceilometer agents are deployed as follows:

	The central agents service is placed on controllers. This service polls
metrics about OpenStack services. A central agent obtains the measurements
and sends them to the notifications.sample queue.

Note

If Kafka is not deployed, only one central agent will be running
in the environment under Pacemaker. If Kafka is deployed, the
coordination mechanism with Zookeeper will be automatically
enabled.

	Compute agents work on compute nodes and use the same code base as the
central agents. The main difference is the configuration and the fact
that compute agents use metadata cache that is enabled by the Telemetry
plugin. The compute agents request instance metadata from Nova
API every 10 minutes, but not each polling interval. For more information,
see the corresponding
specification [https://github.com/openstack/telemetry-specs/blob/master/specs/mitaka/Improve-instance-metering.rst].
A compute agent obtains the measurements and sends them to the
notifications.sample queue.

	Notification agents are placed on controllers. Each notification agent
performs the following:

	Obtains data from polling agents and OpenStack services. In other words,
it listens to the notifications.sample and notifications.info
queues. The Telemetry plugin may be customized at this point. By default,
Ceilometer notification agents do not convert OpenStack notifications to
Ceilometer Events. If you enable Event API, notification agents will write
Events directly to Elasticsearch with the direct:// publisher.

	Performs transformations and sends the data further to the
metering.sample queue.

Note

In Mirantis OpenStack, Ceilometer notification agents do not require
coordination. For more details, see
Custom transformed metrics [https://docs.mirantis.com/openstack/fuel/fuel-9.0/mos-planning-guide.html#monitoring-custom-transformed-metrics].

A notification agent is the last Ceilometer-related processor. As a result,
all the data collected is placed in the metering.sample queue and
Ceilometer Events are written into Elasticsearch (if Event API is enabled).
Ceilometer agents work with the message brokers through oslo.messaging and
do not depend on the message broker we use.

To continue data processing, Hindsight or Heka are used. The diagram above
shows Heka/Hindsight separately because their placement depends on what is
actually chosen. For information about Heka, see
Heka documentation [https://hekad.readthedocs.io/en/stable/message/index.html].
For proper work with Kafka, we use a new generation of Heka called
Hindsight [https://github.com/mozilla-services/hindsight/tree/master/docs].
Hindsight supports all the required Kafka functionality but cannot be used
to work with RabbitMQ. Therefore, these instruments are used depending on the
message broker type:

	If Kafka is deployed, Hindsight is deployed on the same nodes where Kafka is
running. Hindsight is started with four input plugins to make data
consumption fast enough. Analysis plugins are not used. The output plugins
have a batching mechanism to deliver data into the storages in an optimal
manner. Hindsight services are not running under Pacemaker but will be
restarted automatically in case of any failures. Heka is not used in this
scenario.

	If Kafka is not deployed, RabbitMQ is used as a transport system and Heka is
running on each controller under Pacemaker. Hindsight is not used in this
scenario.

Once Heka or Hindsight receives a data sample, it is processed through a chain
of plugins and finally sent to InfluxDB or Elasticsearch.

 Copyright 2016, Mirantis Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	The OpenStack Telemetry plugin for Fuel 1.0.1 documentation

Requirements

The OpenStack Telemetry plugin has the following requirements:

	Requirement
	Version/Comment

	Fuel
	9.0 on Mitaka

If you use external back ends:

	Requirement
	Version/Comment

	An Elasticsearch server (for
Ceilometer Resources and Events)
	2.0.0 or higher, the RESTful API must be
enabled over port 9200

	A running InfluxDB server (for
Ceilometer Samples)
	0.10.0 or higher, the RESTful API must
be enabled over port 8086

Compatibilities

The OpenStack Telemetry plugin is compatible with the following plugins:

	To install the back-end services automatically, use the following StackLight
plugins:

	Plugin
	Version/Comment

	StackLight InfluxDB-Grafana
	0.10.0 or newer

	StackLight Elasticsearch-Kibana
	0.10.2 or newer. If the Resource API
is disabled, the version may be 0.10.0

	To use Kafka as a message queue, install:

	Plugin
	Version/Comment

	Kafka
	1.0.0

 Copyright 2016, Mirantis Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	The OpenStack Telemetry plugin for Fuel 1.0.1 documentation

Prerequisites

Prior to installing the OpenStack Telemetry plugin, you may want to install
the back-end services the plugin uses to store the data. These back-end
services include the following:

	Elasticsearch

	InfluxDB

To install the back-end services, use one of the options:

	Automatic installation within a Fuel environment using the following Fuel
plugins:
	StackLight Elasticsearch-Kibana plugin [http://fuel-plugin-elasticsearch-kibana.readthedocs.io/en/latest]

	StackLight InfluxDB-Grafana plugin [http://fuel-plugin-influxdb-grafana.readthedocs.io/en/latest]

	Manual installation outside of a Fuel environment. The installation must
comply with the Requirements of the OpenStack Telemetry plugin.

 Copyright 2016, Mirantis Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	The OpenStack Telemetry plugin for Fuel 1.0.1 documentation

Limitations

The OpenStack Telemetry plugin for Fuel has the following limitations:

	Ceilometer API is not fully supported by default. The following Ceilometer
commands are supported:

	By default:
	ceilometer sample-list

	ceilometer statistics

	If the Resource API is enabled:
	ceilometer resource-list

	ceilometer meter-list

	If the Event API is enabled:
	ceilometer event-list

Ceilometer
complex queries [http://docs.openstack.org/developer/ceilometer/webapi/v2.html#complex-query]
are not supported.

	The Telemetry plugin does not store all the OpenStack resources metadata
along with the Ceilometer Samples. The default list is as follows:

status

deleted

container_format

min_ram

updated_at

min_disk

is_public size

checksum

created_at disk_format

protected

instance_host

host

display_name

instance_id

instance_type

status

state

user_metadata.stack

To use the Ceilometer API requests based on metadata, add the required
metadata as described in Configure the plugin.

	The coordination for Ceilometer central agent and Aodh alarm evaluator
services is switched off if RabbitMQ is used. The Telemetry plugin is based
on the Ceilometer used in Mirantis OpenStack. Therefore, the notification
agents do not require coordination. The coordination through tooz with
Zookeeper back end is supported if the Kafka plugin is installed.

	The OpenStack Telemetry plugin cannot be used if the
Redis plugin [https://github.com/openstack/fuel-plugin-ceilometer-redis]
is already enabled in the environment.

 Copyright 2016, Mirantis Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	The OpenStack Telemetry plugin for Fuel 1.0.1 documentation

Licenses

Third-party components

	Name
	Project website
	License

	Heka
	https://github.com/mozilla-services/heka
	Mozilla Public License

	Hindsight
	https://github.com/mozilla-services/hindsight
	Mozilla Public License

 Copyright 2016, Mirantis Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	The OpenStack Telemetry plugin for Fuel 1.0.1 documentation

References

For more information about the software discussed in this document, see the
following links:

	The StackLight Collector plugin [https://github.com/openstack/fuel-plugin-lma-collector]
project at GitHub

	The StackLight Elasticsearch-Kibana plugin [https://github.com/openstack/fuel-plugin-elasticsearch-kibana]
project at GitHub

	The StackLight InfluxDB-Grafana plugin [https://github.com/openstack/fuel-plugin-influxdb-grafana]
project at GitHub

	The official Kibana documentation [https://www.elastic.co/guide/en/kibana/3.0/index.html]

	The official Elasticsearch documentation [https://www.elastic.co/guide/en/elasticsearch/reference/1.4/index.html]

	The official InfluxDB documentation [https://docs.influxdata.com/influxdb/v0.10/]

	The official Grafana documentation [http://docs.grafana.org/v2.6/]

	The official Heka documentation [https://hekad.readthedocs.io/en/stable/message/index.html]

	The official Hindsight documentation [https://github.com/mozilla-services/hindsight/tree/master/docs]

 Copyright 2016, Mirantis Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	The OpenStack Telemetry plugin for Fuel 1.0.1 documentation

Introduction

Before you install the OpenStack Telemetry plugin, verify that your
environment meets the requirements described in Requirements.
You must have the Fuel Master node installed and configured before you can
install the plugin.

You can install the OpenStack Telemetry plugin using one of the following
options:

	Install using the RPM file

	Install from source

Install using the RPM file

To install the OpenStack Telemetry plugin using the RPM file of the Fuel
plugins catalog:

	Download the OpenStack Telemetry plugin from the Fuel plugins catalog [https://www.mirantis.com/validated-solution-integrations/fuel-plugins/].

	Copy the plugin .rpm file to the Fuel Master node:

Example:

scp telemetry-1.0-1.0.1-1.noarch.rpm root@fuel-master:/tmp

	Log in to the Fuel Master node CLI as root.

	Install the plugin using the
Fuel Plugins CLI [http://docs.openstack.org/developer/fuel-docs/userdocs/fuel-user-guide/cli/cli_plugins.html]:

fuel plugins --install telemetry-1.0-1.0.0-1.noarch.rpm

	Verify that the plugin is installed correctly:

fuel plugins
id	name	version	package_version	releases
1 | telemetry | 1.0.1 | 4.0.0 | ubuntu (mitaka-9.0)

	Proceed to Configure the plugin.

Install from source

Alternatively, you may want to build the plugin RPM file from source if, for
example, you want to test the latest features of the master branch or
customize the plugin.

Note

Running a Fuel plugin that you built yourself is at your own risk
and will not be supported.

To install the OpenStack Telemetry plugin from source, first prepare an
environment to build the RPM file. The recommended approach is to build the
RPM file directly onto the Fuel Master node so that you will not have to copy
that file later on.

To prepare an environment and build the plugin:

	Install the standard Linux development tools:

[root@home ~] yum install createrepo rpm rpm-build dpkg-devel

	Install the Fuel Plugin Builder. To do that, you should first get pip:

[root@home ~] easy_install pip

	Then install the Fuel Plugin Builder (the fpb command line) with pip:

[root@home ~] pip install fuel-plugin-builder

Note

You may also need to build the Fuel Plugin Builder if the package
version of the plugin is higher than the package version supported by
the Fuel Plugin Builder you get from pypi. For instructions on how
to build the Fuel Plugin Builder, see the Install Fuel Plugin Builder
section of the
Fuel Plugin SDK Guide [http://docs.openstack.org/developer/fuel-docs/plugindocs/fuel-plugin-sdk-guide/create-plugin/install-plugin-builder.html].

	Clone the plugin repository:

[root@home ~] git clone https://github.com/openstack/fuel-plugin-openstack-telemetry

	Verify that the plugin is valid:

[root@home ~] fpb --check ./fuel-plugin-openstack-telemetry

	Build the plugin:

[root@home ~] fpb --build ./fuel-plugin-openstack-telemetry

To install the plugin:

	Once you create the RPM file, install the plugin:

[root@fuel ~] fuel plugins --install ./fuel-plugin-openstack-telemetry/*.noarch.rpm

	Verify that the plugin is installed correctly:

fuel plugins
id	name	version	package_version	releases
1 | telemetry | 1.0.1 | 4.0.0 | ubuntu (mitaka-9.0)

	Proceed to Configure the plugin.

 Copyright 2016, Mirantis Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	The OpenStack Telemetry plugin for Fuel 1.0.1 documentation

Configure the plugin

Once installed, configure the OpenStack Telemetry plugin.

To configure the OpenStack Telemetry plugin:

	Log in to the Fuel web UI.

	Verify that the Telemetry plugin is listed in the Plugins tab:

[image: _images/installed_telemetry_plugin.png]

	Create an OpenStack environment as described in the
Fuel User Guide [http://docs.openstack.org/developer/fuel-docs/userdocs/fuel-user-guide/create-environment.html]
or use an existing one.

	To enable the plugin, navigate to the Environments tab and
select The OpenStack Telemetry Plugin:

[image: _images/settings.png]

	Optional. To enable Event API and Resource API, select
Advanced Settings:

[image: _images/advanced_settings.png]
Once selected, configure the Elasticsearch cluster that stores Ceilometer
events and resources:

	Select Use local Elasticsearch if you have deployed the
Elasticsearch-Kibana plugin.

	Otherwise, select Use External Elasticsearch and define the
IP or DNS name and port for the Elasticsearch cluster you want to use.

	Configure InfluxDB:

[image: _images/influx.png]

	Select Use local InfluxDB if you have deployed the
InfluxDB-Grafana plugin.

	Otherwise, select Use External InfluxDB and define the IP or
DNS name, port, database name, username, and password for the
InfluxDB server you want to use to store the Ceilometer-related data.

	Configure additional metadata to be stored along with Ceilometer samples in
InfluxDB:

[image: _images/metadata.png]
By default, the Telemetry plugin keeps the list of metadata fields
described in the Limitations section. If this list is not
sufficient, add the names of metadata fields.

 Copyright 2016, Mirantis Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	The OpenStack Telemetry plugin for Fuel 1.0.1 documentation

Index

 Copyright 2016, Mirantis Inc..
 Created using Sphinx 1.3.5.

 _static/up-pressed.png

_images/installed_telemetry_plugin.png
Plugin version:
Description:
Authors:
Licenses:
Releases:

The OpenStack Telemetry Plugin

101

Deploy/configure Cellometer and Aodh with InfluxDB and Elasticsearch backends
Mirantis Inc.

Apache License Version 2.0

Ubuntu: mitaka-9.0

_images/arch_diagram.png
Swift/Ceph

Controller

Central
agent

Notification agent
1. Transforms samples

events
3. Publish

2. Translates notifications to i

—

notify:// publishing

Ceilometer API

Gire,

Compute
Nova
& el
@ Q"] Ceilometer Co
5’0‘(\ Agent
notifications.sample
M
MQ (green At
queues may lpou
live in
Kafka) Virtual
manager
metering.sampl
Heka/Hindsight

CE:; b
Pupy
Shing

_images/metadata.png
Extra Metadata for Ceilometer samples

(®) yes
Extra Metadata can be added if set

O no
Default values for ‘metadata’ will be used if set

Specify the required metadata to be kept along with Ceilometer samples.
“This field is important f you are going to perform metadata-based
Ceilometer queries.

Extra Metadata

_images/advanced_settings.png
The OpenStack Telemetry Plugin

Versions 1041

Advanced settings
Enable Ceilometer Event APl and Resource API

Enable Cellometer Event API
Enable Ceilometer Event AP with Elasticsearch as a backend

Enable Cellometer Resource API
Enable Ceilometer Resource AP with Elasticsearch as a backend

Elasticsearch mode

) Use local Elasticsearch
If selected, Elasticsearch installed via the StackLight Elasticsearch-Kibana plugin will be used

() Use external Elasticsearch

External Elasticsearch IP or
DNS name

External Elasticsearch port | 9200

_images/settings.png
Ceilometer-9.0-mos-495

OpenStack Settings

General | The OpenStack Telemetry Plugin
Securit .

v Versions (®) 1.0.1
Compute

[7) Advanced settings
storage Enable Cellometer Event APl and Resource API
Logging
InfluxDB mode

OpensStack
Services @) Use local InfluxDB

If selected, InfluxDB installed via The StackLight InfluxDB-Grafana plugin will be used

Use external InfluxDB

_images/influx.png
InfluxDB mode

(®) Use local InfluxDB
If selected, InfluxD8 installed via The StackLight InfluxDB-Grafana plugin will be used

() use external InfluxDB

External InfluxDB

External InfluxDB port 8086
Extenal database name cellometer
External InfluxDB user Username for external InfluxD8

External InfluxDB password ® | Password for external InfluxDB

_static/comment-close.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

