

fsnix: file system API for Python 2.x

Introduction

This library provides modules for Python 2.x that expose some of the
useful File System related API calls, including some of those added
in POSIX.1-2008. This includes the functions openat, mkdirat, unlinkat,
and other similar calls suffixed
with “at”. These calls exist to help defend against race conditions and
support thread-level working directories. Typically these functions take
one or more directory file descriptor and a relative path as arguments.
This library also comes with custom directory listing functions that
mimic os.listdir by default but can provide additional information
(d_type) when passed a flag. Similarly, file descriptor and iterator
based versions are also available.

Additionally, this library provides a util module that has a higher level
interface for working with open directories and other functions that
use the lower level library calls.

Examples

Open a directory, and create a file in that directory, then remove it.

>>> import tempfile, os
>>> from fsnix import fs
>>> root = tempfile.mkdtemp()
>>> dirfd = os.open(root, os.O_RDONLY)
>>> fd = fs.openat(dirfd, "foobar.txt", os.O_CREAT | os.O_RDWR)
>>> os.write(fd, "Hello World\n")
12
>>> os.close(fd)
>>> os.listdir(root)
['foobar.txt']
>>> fs.unlinkat(dirfd, 'foobar.txt')
>>> os.close(dirfd)
>>> os.listdir(root)
[]

This example shows how to create a subdirectory, write a file into that and
then rename the directory, all using the low-level APIs.

>>> import tempfile, os
>>> from fsnix import fs
>>> root = tempfile.mkdtemp()
>>> dirfd = os.open(root, os.O_RDONLY)
>>> fs.mkdirat(dirfd, 'ham')
>>> dirfd2 = fs.openat(dirfd, 'ham', os.O_RDONLY)
>>> os.close(fs.openat(dirfd2, "foobar.txt", os.O_CREAT | os.O_RDWR))
>>> os.close(dirfd2)
>>> fs.renameat(dirfd, 'ham', dirfd, 'bacon')
>>> os.close(dirfd)
>>> os.listdir(os.path.join(root, 'bacon'))
['foobar.txt']

The util module aims at providing a higher level interface to make some
common actions simpler. This example tries to wipe out any empty directories
in the example directory.

>>> import tempfile, os, errno
>>> from fsnix import fs
>>> from fsnix import util
>>> root = tempfile.mkdtemp()
>>> for i in range(0, 19):
... if i & 1:
... open(os.path.join(root, str(i)), 'w').close()
... else:
... os.mkdir(os.path.join(root, str(i)))
>>> open(os.path.join(root, '0', 'foo'), 'w').close()
>>> with util.opendir(root) as dh:
... for name in dh.listdir():
... try:
... fs.unlinkat(dh.fileno(), name, fs.AT_REMOVEDIR)
... except OSError, e:
... if e.errno != errno.ENOTDIR and e.errno != errno.ENOTEMPTY:
... raise
>>> sorted(os.listdir(root), key=int)
['0', '1', '3', '5', '7', '9', '11', '13', '15', '17']

Compatibility

The API for the POSIX.1-2008 *at functions mimic those found in
the C library. For the 3.3 release the developers of the Python
Standard Library combined these functions with the existing
versions in the os module. However, the underlying functionality
is provided by the same APIs that fslib exposes directly.
(I have considered adding another module that would provide a similar
API to that of the Python Standard Library but have not done the work yet.
The fslib module will always continue to expose the lower level API directly.)

The listdir-like functions should behave similarly to os.listdir when
not passed any flags. The extended listdir calls are designed only to
vary where appropriate.

I am currently testing against Linux and FreeBSD. Specifically,
Fedora 14 and up and FreeBSD 9.0. If you think the module should work
on your platform and it does not, please report a bug. Please be aware
that I do not have access to proprietary/esoteric platforms. This module
will not work on Windows systems.

Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 fsnix	

 	
 	
 fsnix.fslib	
 System level (C-library) API wrappers

 	
 	
 fsnix.util	
 Higher Level API using fslib calls

Index

 A
 | C
 | D
 | F
 | H
 | L
 | M
 | N
 | O
 | R
 | S
 | U
 | W

A

 	
 	AT_EACCESS (in module fsnix.fslib)

 	AT_FDCWD (in module fsnix.fslib)

 	
 	AT_REMOVEDIR (in module fsnix.fslib)

 	AT_SYMLINK_NOFOLLOW (in module fsnix.fslib)

C

 	
 	close() (fsnix.util.directory method)

 	
 	closed (fsnix.util.directory attribute)

 	closingfd() (in module fsnix.util)

D

 	
 	directory (class in fsnix.util)

 	DT_BLK (in module fsnix.fslib)

 	DT_CHR (in module fsnix.fslib)

 	DT_DIR (in module fsnix.fslib)

 	
 	DT_FIFO (in module fsnix.fslib)

 	DT_LNK (in module fsnix.fslib)

 	DT_REG (in module fsnix.fslib)

 	DT_SOCK (in module fsnix.fslib)

 	DT_UNKNOWN (in module fsnix.fslib)

F

 	
 	faccessat() (in module fsnix.fslib)

 	fchmodat() (in module fsnix.fslib)

 	fchownat() (in module fsnix.fslib)

 	fditerdir() (in module fsnix.fslib)

 	fdlistdir() (in module fsnix.fslib)

 	fdopendir() (in module fsnix.util)

 	
 	fileno() (fsnix.util.directory method)

 	FSLIB_INCL_DTYPE (in module fsnix.fslib)

 	fsnix.fslib (module)

 	fsnix.util (module)

 	fstatat() (in module fsnix.fslib)

 	futimesat() (in module fsnix.fslib)

H

 	
 	HAVE_FUTIMESAT (in module fsnix.fslib)

 	
 	HAVE_UTIMENSAT (in module fsnix.fslib)

L

 	
 	linkat() (in module fsnix.fslib)

 	
 	listdir() (fsnix.util.directory method)

 	(in module fsnix.fslib)

M

 	
 	mkdirat() (in module fsnix.fslib)

 	
 	mkfifoat() (in module fsnix.fslib)

 	mknodat() (in module fsnix.fslib)

N

 	
 	name (fsnix.util.directory attribute)

O

 	
 	O_CLOEXEC (in module fsnix.fslib)

 	openat() (in module fsnix.fslib)

 	
 	opendir() (in module fsnix.util)

 	opendirat() (in module fsnix.util)

R

 	
 	readlinkat() (in module fsnix.fslib)

 	
 	removeall() (in module fsnix.util)

 	renameat() (in module fsnix.fslib)

S

 	
 	setfdcloexec() (in module fsnix.util)

 	
 	symlinkat() (in module fsnix.fslib)

U

 	
 	unlinkat() (in module fsnix.fslib)

 	
 	utimensat() (in module fsnix.fslib)

W

 	
 	walk() (in module fsnix.util)

fsnix.fslib - Low Level Wrappers

This module exposes the lowest level functions and system calls.
It it written in C and requires CPython 2.x compatible API to
compile. If something here is under-documented you should be able
to refer to the manpages on your system for details. Like the os
module error codes are raised as exceptions with errno’s assigned.

Anywhere we can mimic the spirit of os we do, while at the
same time trying to minimize deviations from the low level C-API.

Module API

	
fsnix.fslib.faccessat(dirfd, pathname, mode)

	Return a boolean indicating that the current process has access
to pathname relative to dirfd.
Behaves in a manner similar to os.access().

If pathname is relative then the file is created relative to
the directory referred to by the directory file descriptor dirfd.

Note

Currently, there is no mechanism to get the errno.

Warning

Using this function can lead to time-of-check
to time-of-use errors [https://en.wikipedia.org/wiki/Time_of_check_to_time_of_use].

	
fsnix.fslib.fchmodat(dirfd, pathname, mode[, flags])

	Change the mode of the file given by dirfd and pathname
to the numeric mode.
Behaves in a manner similar to os.fchmod().

If pathname is relative then the file is modified relative to
the directory referred to by the directory file descriptor dirfd.
Specifying the AT_SYMLINK_NOFOLLOW flag will cause the function
to operate on symlinks rather than the file it points to.

	
fsnix.fslib.fchownat(dirfd, pathname, uid, gid[, flags])

	Change the user and group ownership of a file, like os.chown().
The uid and gid parameters must be integers.

If pathname is relative then the file is modified relative to
the directory referred to by the directory file descriptor dirfd.
Specifying the AT_SYMLINK_NOFOLLOW flag will cause the function
to operate on symlinks rather than the file it points to.

	
fsnix.fslib.fditerdir(dirfd[, flags])

	Return an iterator that yields the names of the entries in the
open directory located by dirfd.

See the documentation of listdir() for details on the
flags argument.

Note

While iterating the process will use an extra file
descriptor, because the file descriptor provided is
duplicated automatically.

	
fsnix.fslib.fdlistdir(dirfd[, flags])

	Return a list of the names of the entries in the directory
located by dirfd.

See the documentation of listdir() for details on the
flags argument.

Note

While the function is executing the process will use an extra file
descriptor, because the file descriptor provided is
duplicated automatically.

	
fsnix.fslib.fstatat(dirfd, pathname[, flags])

	Return a stat structure for the file system entry indicated
by dirfd and pathname.
Behaves in a manner similar to os.stat().

If pathname is relative then the file is accessed relative to
the directory referred to by the directory file descriptor dirfd.
Specifying the AT_SYMLINK_NOFOLLOW flag will cause the function
to operate on symlinks rather than the file it points to.

	
fsnix.fslib.futimesat(dirfd, pathname, (atime, mtime)

	Set the access and modified times on a file.
Behaves in a manner similar to os.utime().

The time tuple may be given as a single None value to set both
atime and mtime to the current time. Otherwise, atime and mtime
must both be either an integer, a float, or a two-tuple containing
the time value in seconds followed by a value in microseconds.

If pathname is relative then the file is modified relative to
the directory referred to by the directory file descriptor dirfd.

	
fsnix.fslib.linkat(oldfd, oldpath, newfd, newpath)

	Create a hard link from the “old location” to the “new location”.
Behaves in a manner similar to os.link().

If either oldpath or newpath is relative then the file being linked
is relative the directory referred to by the the directory file
descriptor preceding it.

	
fsnix.fslib.listdir(path[, flags])

	Return a list of the names of the entries in the directory
given by path.
Behaves in a manner similar to os.listdir() if no flags
are specified.

Passing the flag FSLIB_INCL_DTYPE will return a list
of tuples of the type (name, d_type) where d_type is an integer
corresponding to the entries file system type, or zero if no
type was fetched. See the d_type constants list for what
values may appear here.

Note

Not all file systems support d_type,
so any code written to check the d_type should fall back to
stat calls if the d_type is unknown.

	
fsnix.fslib.mkdirat(dirfd, pathname[, mode=0777])

	Create a new directory.
Behaves in a manner similar to os.mkdir().

If pathname is relative then the directory will be created relative to
the directory referred to by the directory file descriptor dirfd.

	
fsnix.fslib.mkfifoat(dirfd, pathname[, mode=0666])

	Create a FIFO (named pipe).
Behaves in a manner similar to os.mkfifo().

If pathname is relative then the file will be created relative to
the directory referred to by the directory file descriptor dirfd.

	
fsnix.fslib.mknodat(dirfd, pathname[, mode=0600][, device=0])

	Create a file system node.
Behaves in a manner similar to os.mknod().

If pathname is relative then the file will be created relative to
the directory referred to by the directory file descriptor dirfd.

	
fsnix.fslib.openat(dirfd, pathname[, flags][, mode=0600])

	Opens a file returning a file descriptor (integer).
Behaves in a manner similar to os.open().
Flags accepts the same flags as os.open() including
any of the additional O_* flags exposed by this module.

If pathname is relative then the file will be opened relative to
the directory referred to by the directory file descriptor dirfd.

	
fsnix.fslib.readlinkat(dirfd, pathname)

	Return the path that a symbolic link points to.
Behaves in a manner similar to os.readlink().

If pathname is relative then the link is read relative to
the directory referred to by the directory file descriptor dirfd.

	
fsnix.fslib.renameat(oldfd, oldpath, newfd, newpath)

	Rename a file from the “old location” to the “new location”.
Behaves in a manner similar to os.rename().

If either oldpath or newpath is relative then the file being renamed
is relative the directory referred to by the the directory file
descriptor preceding it.

	
fsnix.fslib.symlinkat(source, dirfd, pathname)

	Create a symbolic link pointing to the path indicated by source.
Behaves in a manner similar to os.symlink().

If pathname is relative then the file is removed relative to
the directory referred to by the directory file descriptor dirfd.

	
fsnix.fslib.unlinkat(dirfd, pathname[, flags])

	Unlinks/removes a file in the file system. Behaves in a manner
similar to os.unlink().

If pathname is relative then the file is removed relative to
the directory referred to by the directory file descriptor dirfd.
Specifying the AT_REMOVEDIR flag will cause the function
to remove directories instead of files, similar to os.rmdir().

	
fsnix.fslib.utimensat(dirfd, pathname, (atime, mtime))

	Set the access and modified times on a file with nanosecond
precision. Behaves in a manner similar to os.utime().

The time tuple may be given as a single None value to set both
atime and mtime to the current time. Otherwise, atime and mtime
must both be either an integer, a float, or a two-tuple containing
the time value in seconds followed by a value in nanoseconds.

If pathname is relative then the file is modified relative to
the directory referred to by the directory file descriptor dirfd.

Constants

	
fsnix.fslib.HAVE_FUTIMESAT

	
fsnix.fslib.HAVE_UTIMENSAT

	Boolean values that will be set to true if the underlying library
call is present on this system.

	
fsnix.fslib.AT_FDCWD

	This value can be specified as the dirfd (directory file descriptor)
argument. When this is done the pathname is interpreted as
relative to the current working directory of the process, making the
calls behave similarly to the calls minus the *at suffix.

	
fsnix.fslib.AT_EACCESS

	Flag used to indicate that access checks should be done
using the effective user and group IDs. May be ORed with other flags.

	
fsnix.fslib.AT_SYMLINK_NOFOLLOW

	Flag used to indicate that the call must not follow symlinks.
May be ORed with other flags.

	
fsnix.fslib.AT_REMOVEDIR

	Flag used to indicate that the call will remove directories
instead of file objects. May be ORed with other flags.

	
fsnix.fslib.O_CLOEXEC

	Flag that can be passed to open calls like O_TRUNC or
O_RDONLY. It will cause the file descriptor to be closed
automatically if the process exec’s.
This call is only available on some platforms.

	
fsnix.fslib.DT_UNKNOWN

	
fsnix.fslib.DT_BLK

	
fsnix.fslib.DT_CHR

	
fsnix.fslib.DT_DIR

	
fsnix.fslib.DT_FIFO

	
fsnix.fslib.DT_LNK

	
fsnix.fslib.DT_REG

	
fsnix.fslib.DT_SOCK

	These values correspond to a file system object type, except for
DT_UNKNOWN which indicates that the type could not be determined.
File systems that do not support d_type will always return DT_UNKNOWN
(equivalent to zero).

The remaining values are for block devices, character devices,
directories, fifo (named pipe) files, symbolic links,
regular files, and socket files respectively.

	
fsnix.fslib.FSLIB_INCL_DTYPE

	This flag customizes the output of directory listing functions
like listdir() and fdlistdir() so that the results
include d_type values.

fsnix.util - Higher Level Tools

Module API

	
fsnix.util.setfdcloexec(fd)

	Set the file descriptor to be automatically closed if
the process exec’s. Returns fd.
This is a convenience function wrapping fcntl module calls.

	
fsnix.util.closingfd(fd)

	Context manager that automatically calls os.close() on the
fd. Behaves in a similar manner to contextlib.closing(),
but for file descriptors instead of file objects.

	
fsnix.util.removeall(dirfd, path, errback=None, _fs=None)

	Recursively delete a file or directory tree indicated by
path (relative to directory file descriptor dirfd).
Similar in intent to shutil.rmtree() but is more
robust in the face of symlink attack.

If errback is specified it must be a callable that accepts
the arguments (error, path). Error will be the exception
encountered and path is the object being deleted.
The _fs argument allows the user to pass in a custom “fslib”
module if needed.

	
fsnix.util.opendir(path)

	Return a directory object corresponding to the specified
path.

	
fsnix.util.fdopendir(dirfd)

	Return a directory object corresponding to already
opened directory file descriptor dirfd.

	
fsnix.util.opendirat(dirfd, path, _fs=None)

	Return a directory object corresponding to the specified
directory file descriptor dirfd and path.

The _fs argument allows the user to pass in a custom “fslib”
module if needed.

	
fsnix.util.walk(top, topdown=True, onerror=None, followlinks=False, _fs=None)

	An alternate implementation of os.walk() which demonstrates
the use of some of the lower level fslib functions.

Note

followlinks is not supported by this function.

Directory Objects

You should not try to instantiate a directory object directly. Instead,
use opendir(), opendirat(), or fdopendir().

	
class fsnix.util.directory

	Directory objects are intended to mimic the API of Python file objects
to a limited degree. They are context managers and support the fileno
method to get the file descriptor value. Instead of supporting IO
methods some simple directory listing wrappers are supported.

	
name

	The path name of the directory, or None if not available.

	
closed

	A boolean indicating that the directory has been closed.

	
fileno()

	Return the value of the open file descriptor for this directory.
If you get confused and want to make sure you are using a
directory object dirno is available as an alias to fileno.

	
close()

	Closes the directory.

	
listdir(_fs=None)

	Return a list of entries in the open directory.
Specify _fs if you need to use an alternate fslib module.

 nav.xhtml

 Table of Contents

 		fsnix: file system API for Python 2.x

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

