

S3FS

S3FS is a PyFilesystem interface [https://docs.pyfilesystem.org/en/latest/reference/base.html] to
Amazon S3 cloud storage.

As a PyFilesystem concrete class, S3FS allows you to work with S3 in the
same as any other supported filesystem.

Installing

S3FS may be installed from pip with the following command:

pip install fs-s3fs

This will install the most recent stable version.

Alternatively, if you want the cutting edge code, you can check out
the GitHub repos at https://github.com/pyfilesystem/s3fs

Opening an S3 Filesystem

There are two options for constructing a s3fs instance. The simplest way
is with an opener, which is a simple URL like syntax. Here is an example:

from fs import open_fs
s3fs = open_fs('s3://mybucket/')

For more granular control, you may import the S3FS class and construct
it explicitly:

from fs_s3fs import S3FS
s3fs = S3FS('mybucket')

S3FS Constructor

	
class fs_s3fs.S3FS(bucket_name, dir_path=u'/', aws_access_key_id=None, aws_secret_access_key=None, aws_session_token=None, endpoint_url=None, region=None, delimiter=u'/', strict=True, cache_control=None, acl=None, upload_args=None, download_args=None)

	Construct an Amazon S3 filesystem for
PyFilesystem [https://pyfilesystem.org]

	Parameters

	
	bucket_name (str) – The S3 bucket name.

	dir_path (str) – The root directory within the S3 Bucket.
Defaults to "/"

	aws_access_key_id (str) – The access key, or None to read
the key from standard configuration files.

	aws_secret_access_key (str) – The secret key, or None to
read the key from standard configuration files.

	endpoint_url (str) – Alternative endpoint url (None to use
default).

	aws_session_token (str) –

	region (str) – Optional S3 region.

	delimiter (str) – The delimiter to separate folders, defaults to
a forward slash.

	strict (bool) – When True (default) S3FS will follow the
PyFilesystem specification exactly. Set to False to disable
validation of destination paths which may speed up uploads /
downloads.

	cache_control (str) – Sets the ‘Cache-Control’ header for uploads.

	acl (str) – Sets the Access Control List header for uploads.

	upload_args (dict) – A dictionary for additional upload arguments.
See https://boto3.readthedocs.io/en/latest/reference/services/s3.html#S3.Object.put
for details.

	download_args (dict) – Dictionary of extra arguments passed to
the S3 client.

Limitations

Amazon S3 isn’t strictly speaking a filesystem, in that it contains
files, but doesn’t offer true directories. S3FS follows the convention
of simulating directories by creating an object that ends in a forward
slash. For instance, if you create a file called “foo/bar”, S3FS will
create an S3 object for the file called “foo/bar” and an
empty object called “foo/” which stores that fact that the “foo”
directory exists.

If you create all your files and directories with S3FS, then you can
forget about how things are stored under the hood. Everything will work
as you expect. You may run in to problems if your data has been
uploaded without the use of S3FS. For instance, if you create a
“foo/bar” object without a “foo/” object. If this occurs, then S3FS
may give errors about directories not existing, where you would expect
them to be. The solution is to create an empty object for all
directories and subdirectories. Fortunately most tools will do this for
you, and it is probably only required of you upload your files manually.

Authentication

If you don’t supply any credentials, then S3FS will use the access key
and secret key configured on your system. You may also specify when
creating the filesystem instance. Here’s how you would do that with an
opener:

s3fs = open_fs('s3://<access key>:<secret key>@mybucket')

Here’s how you specify credentials with the constructor:

s3fs = S3FS(
 'mybucket'
 aws_access_key_id=<access key>,
 aws_secret_access_key=<secret key>
)

Note

Amazon recommends against specifying credentials explicitly like
this in production.

S3 Info

You can retrieve S3 info via the s3 namespace. Here’s an example:

>>> info = s.getinfo('foo', namespaces=['s3'])
>>> info.raw['s3']
{'metadata': {}, 'delete_marker': None, 'version_id': None, 'parts_count': None, 'accept_ranges': 'bytes', 'last_modified': 1501935315, 'content_length': 3, 'content_encoding': None, 'request_charged': None, 'replication_status': None, 'server_side_encryption': None, 'expires': None, 'restore': None, 'content_type': 'binary/octet-stream', 'sse_customer_key_md5': None, 'content_disposition': None, 'storage_class': None, 'expiration': None, 'missing_meta': None, 'content_language': None, 'ssekms_key_id': None, 'sse_customer_algorithm': None, 'e_tag': '"37b51d194a7513e45b56f6524f2d51f2"', 'website_redirect_location': None, 'cache_control': None}

URLs

You can use the geturl method to generate an externally accessible
URL from an S3 object. Here’s an example:

>>> s3fs.geturl('foo')
'https://fsexample.s3.amazonaws.com//foo?AWSAccessKeyId=AKIAIEZZDQU72WQP3JUA&Expires=1501939084&Signature=4rfDuqVgmvILjtTeYOJvyIXRMvs%3D'

More Information

See the PyFilesystem Docs [https://docs.pyfilesystem.org] for documentation on the rest of the PyFilesystem interface.

Indices and tables

	Index

	Module Index

	Search Page

Index

 S

S

 	
 	S3FS (class in fs_s3fs)

 nav.xhtml

 Table of Contents

 		
 S3FS

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

