
gcsfs Documentation
Release 1.4.5

Othoz GmbH

Mar 25, 2021

Contents

1 Documentation 3

2 Installing 5

3 Examples 7

4 Development 9

5 Tests 11

6 Credits 13

7 Limitations 15

8 Reference 17
8.1 GCSFS . 17
8.2 GCSMap . 18

9 Powered By 19

Index 21

i

ii

gcsfs Documentation, Release 1.4.5

A Python filesystem abstraction of Google Cloud Storage (GCS) implemented as a PyFilesystem2 extension.

With GCSFS, you can interact with Google Cloud Storage as if it was a regular filesystem.

Apart from the nicer interface, this will highly decouple your code from the underlying storage mechanism: Exchang-
ing the storage backend with an in-memory filesystem for testing or any other filesystem like S3FS becomes as easy
as replacing gs://bucket_name with mem:// or s3://bucket_name.

For a full reference on all the PyFilesystem possibilities, take a look at the PyFilesystem Docs!

Contents 1

https://github.com/PyFilesystem/pyfilesystem2
https://pypi.org/project/fs-gcsfs/
https://pypi.org/project/fs-gcsfs/
https://travis-ci.org/Othoz/gcsfs
https://fs-gcsfs.readthedocs.io/en/latest/?badge=latest
https://cloud.google.com/storage/
https://pyfilesystem2.readthedocs.io/en/latest/reference/memoryfs.html
https://github.com/pyfilesystem/s3fs
https://pyfilesystem2.readthedocs.io/en/latest/index.html

gcsfs Documentation, Release 1.4.5

2 Contents

CHAPTER 1

Documentation

• GCSFS Documentation

• PyFilesystem Wiki

• PyFilesystem Reference

3

http://fs-gcsfs.readthedocs.io/en/latest/
https://www.pyfilesystem.org
https://docs.pyfilesystem.org/en/latest/reference/base.html

gcsfs Documentation, Release 1.4.5

4 Chapter 1. Documentation

CHAPTER 2

Installing

Install the latest GCSFS version by running:

$ pip install fs-gcsfs

Or in case you are using conda:

$ conda install -c conda-forge fs-gcsfs

5

gcsfs Documentation, Release 1.4.5

6 Chapter 2. Installing

CHAPTER 3

Examples

Instantiating a filesystem on Google Cloud Storage (for a full reference visit the Documentation):

from fs_gcsfs import GCSFS
gcsfs = GCSFS(bucket_name="mybucket")

Alternatively you can use a FS URL to open up a filesystem:

from fs import open_fs
gcsfs = open_fs("gs://mybucket/root_path?project=test&api_endpoint=http%3A//localhost
→˓%3A8888&strict=False")

Supported query parameters are:

• project (str): Google Cloud project to use

• api_endpoint (str): URL-encoded endpoint that will be passed to the GCS client’s client_options

• strict (“True” or “False”): Whether GCSFS will be opened in strict mode

You can use GCSFS like your local filesystem:

>>> from fs_gcsfs import GCSFS
>>> gcsfs = GCSFS(bucket_name="mybucket")
>>> gcsfs.tree()

foo
bar

file1.txt
file2.csv

baz
file3.txt

file4.json
>>> gcsfs.listdir("foo")
["bar", "baz"]
>>> gcsfs.isdir("foo/bar")
True

7

http://fs-gcsfs.readthedocs.io/en/latest/index.html#reference
https://pyfilesystem2.readthedocs.io/en/latest/openers.html
https://googleapis.dev/python/google-api-core/latest/client_options.html#google.api_core.client_options.ClientOptions

gcsfs Documentation, Release 1.4.5

Uploading a file is as easy as:

from fs_gcsfs import GCSFS
gcsfs = GCSFS(bucket_name="mybucket")
with open("local/path/image.jpg", "rb") as local_file:

with gcsfs.open("path/on/bucket/image.jpg", "wb") as gcs_file:
gcs_file.write(local_file.read())

You can even sync an entire bucket on your local filesystem by using PyFilesystem’s utility methods:

from fs_gcsfs import GCSFS
from fs.osfs import OSFS
from fs.copy import copy_fs

gcsfs = GCSFS(bucket_name="mybucket")
local_fs = OSFS("local/path")

copy_fs(gcsfs, local_fs)

For exploring all the possibilities of GCSFS and other filesystems implementing the PyFilesystem interface, we rec-
ommend visiting the official PyFilesystem Docs!

8 Chapter 3. Examples

https://pyfilesystem2.readthedocs.io/en/latest/index.html

CHAPTER 4

Development

To develop on this project make sure you have pipenv installed and run the following from the root directory of the
project:

$ pipenv install --dev --three

This will create a virtualenv with all packages and dev-packages installed.

9

https://pipenv.readthedocs.io/en/latest/

gcsfs Documentation, Release 1.4.5

10 Chapter 4. Development

CHAPTER 5

Tests

All CI tests run against an actual GCS bucket provided by Othoz.

In order to run the tests against your own bucket, make sure to set up a Service Account with all necessary permissions:

• storage.objects.get

• storage.objects.list

• storage.objects.create

• storage.objects.update

• storage.objects.delete

All five permissions listed above are e.g. included in the predefined Cloud Storage IAM Role roles/storage.
objectAdmin.

Expose your bucket name as an environment variable $TEST_BUCKET and run the tests via:

$ pipenv run pytest

Note that the tests mostly wait for I/O, therefore it makes sense to highly parallelize them with xdist, e.g. by running
the tests with:

$ pipenv run pytest -n 10

11

http://othoz.com/
https://cloud.google.com/iam/docs/service-accounts
https://cloud.google.com/storage/docs/access-control/iam-roles
https://github.com/pytest-dev/pytest-xdist

gcsfs Documentation, Release 1.4.5

12 Chapter 5. Tests

CHAPTER 6

Credits

Credits go to S3FS which was the main source of inspiration and shares a lot of code with GCSFS.

13

https://github.com/PyFilesystem/s3fs

gcsfs Documentation, Release 1.4.5

14 Chapter 6. Credits

CHAPTER 7

Limitations

A filesystem built on top of an object store like GCS suffers from the same limitations as the ones mentioned in S3FS.

GCS does not offer true directories which is why GCSFS (as well as S3FS) will simulate the existence of a directory
called foo by adding an empty blob called foo/. Any filesystem content that was not created via GCSFS will
lack these directory markers which may lead to wrong behaviour. For example gcsfs.isdir("bar") will return
False if the marker blob bar/ does not exist, even though there might exist a blob called bar/baz.txt.

To overcome this you can call the utility method fix_storage() on your GCSFS instance which will walk the
entire filesystem (i.e. the entire bucket or the “subdirectory” you specified via root_path) and add all missing
directory markers.

Warning: Listing and fixing large buckets may take some time!

15

https://fs-s3fs.readthedocs.io/en/latest/#limitations

gcsfs Documentation, Release 1.4.5

16 Chapter 7. Limitations

CHAPTER 8

Reference

For a full reference of all available methods of GCSFS visit the documentation of fs.base.FS!

8.1 GCSFS

class fs_gcsfs.GCSFS(bucket_name: str, root_path: str = None, create: bool = False, client:
google.cloud.storage.client.Client = None, retry: int = 5, strict: bool = True)

A Google Cloud Storage filesystem for PyFilesystem.

This implementation is based on S3FS.

Args: bucket_name: The GCS bucket name. root_path: The root directory within the GCS Bucket. cre-
ate: Whether to create root_path on initialization or not. If root_path does not yet exist and
create=False a CreateFailed

exception will be raised. To disable root_path validation entirely set strict=False.

client: A google.storage.Client exposing the google storage API. strict: When True (default)
GCSFS will follow the PyFilesystem specification exactly. Set to False to disable validation of destina-
tion paths

which may speed up some operations.

fix_storage()→ None
Utility function that walks the entire root_path and makes sure that all intermediate directories are correctly
marked with empty blobs.

As GCS is no real file system but only a key-value store, there is also no concept of folders. S3FS and
GCSFS overcome this limitation by adding empty files with the name “<path>/” every time a directory is
created, see https://fs-gcsfs.readthedocs.io/en/latest/#limitations.

17

https://pyfilesystem2.readthedocs.io/en/latest/reference/base.html
https://pyfilesystem.org
https://github.com/PyFilesystem/s3fs
https://fs-gcsfs.readthedocs.io/en/latest/#limitations

gcsfs Documentation, Release 1.4.5

8.2 GCSMap

GCSFS.get_mapper()→ fs_gcsfs._gcsfs.GCSMap
Returns a MutableMapping that represents the filesystem.

The keys of the mapping become files and the values (which must be bytes) the contents of those files. This is
particularly useful to be used with libraries such as xarray or zarr.

18 Chapter 8. Reference

http://xarray.pydata.org/
https://zarr.readthedocs.io/

CHAPTER 9

Powered By

This PyFilesystem extension was created by Othoz GmbH

19

http://othoz.com/

gcsfs Documentation, Release 1.4.5

20 Chapter 9. Powered By

Index

F
fix_storage() (fs_gcsfs.GCSFS method), 17

G
GCSFS (class in fs_gcsfs), 17
get_mapper() (fs_gcsfs.GCSFS method), 18

21

	Documentation
	Installing
	Examples
	Development
	Tests
	Credits
	Limitations
	Reference
	GCSFS
	GCSMap

	Powered By
	Index

