
Friendly 101 Documentation
Release 0.1

Friendly Django

July 22, 2015





Contents

1 Prerequisites 3

2 Compatibility 5

3 Contents 7
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Text editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Command line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Command line tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Bash profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Homebrew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.7 pip & virtualenv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.8 Django . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

i



ii



Friendly 101 Documentation, Release 0.1

Friendly 101 is a tutorial and hands-on workshop by the Friendly Django Meetup group. It acts as an introduction to
the Django web framework for beginners.

This documentation is saved in a GitHub repository. If you see any errors in this text, please file an issue. The project
that results from this tutorial is included in the repository and currently deployed to Heroku.

• https://github.com/friendlydjango/friendly-101

• https://friendly-101.readthedocs.org/

• https://friendly-101.herokuapp.com/

Contents 1

https://friendlydjango.org/
https://www.djangoproject.com/
https://github.com/friendlydjango/friendly-101
https://github.com/friendlydjango/friendly-101/issues
https://friendly-101.herokuapp.com/
https://github.com/friendlydjango/friendly-101
https://friendly-101.readthedocs.org/
https://friendly-101.herokuapp.com/


Friendly 101 Documentation, Release 0.1

2 Contents



CHAPTER 1

Prerequisites

• A Mac

• OS X 10.9 Mavericks or greater

3

https://www.apple.com/support/osx/mavericks/


Friendly 101 Documentation, Release 0.1

4 Chapter 1. Prerequisites



CHAPTER 2

Compatibility

The guide is written for the following versions of software:

• Python 2.7.9

• SQLite 3.8.7.4

• Django 1.7

5

https://www.python.org/downloads/release/python-279/
http://www.sqlite.org/download.html
https://docs.djangoproject.com/en/1.7/releases/1.7/


Friendly 101 Documentation, Release 0.1

6 Chapter 2. Compatibility



CHAPTER 3

Contents

3.1 Introduction

If you like photos on Instagram, you’re using Django.

If you pin ideas on Pinterest, you’re using Django.

If you read National Geographic, you’re using Django.

With Django, we can read the news, write comments, listen to music, download web browsers, laugh at satire, buy
swag, play guitar, talk to our neighbors, park the car, follow hipsters, learn about the universe and a whole lot more.

Django has allowed for the creation of fun, interesting, and useful websites and web applications since its developers
released it 10 years ago. So, what is it?

3.1.1 What is Django?

According to its website:

Django is a high-level Python Web framework that encourages rapid development and clean, pragmatic
design.

At its core, Django is a framework, which is a collection of best practices, conventions, shortcuts, and helpers for
creating websites faster and of higher quality. Frameworks strike a middle ground between content management
systems, which although convenient can make fundamental assumptions about the structure of your data, and going
alone with custom code that is (hopefully) well suited but time consuming to create.

Django was created by Adrian Holovaty and Simon Willison while working at the online division of the Lawrence
Journal-World newspaper in Lawrence, Kansas, between 2003 and 2005. After becoming frustrated by developing
their websites in the PHP programming language, Holovaty and Willison decided instead to use the Python program-
ming language, eventually creating a resuable, generic framework in the face of the stringent deadlines of a newsroom,
earning it the tagline “the web framework for perfectionists with deadlines.”

In 2005, Django was released as open-source software and quickly gained popularity. DjangoCon, the first Django
conference, was in 2008, and today the Django Software Foundation oversees all development effort and promotion
of the framework.

Django adpots an MVC software pattern, which means it separates the data layer from the logic layer from the pre-
sentation layer. One of Django’s ambitious principles is “batteries included,” which means that all of its separate parts
work together without relying on external software dependencies other than Python itself.

There’s a lot more in Django’s FAQ and in the design philosophies. Other great historical references are Holovaty’s
Snakes and Rubies presentation, and Willison’s Django history answer on Quora.

7

http://instagram.com/
https://www.pinterest.com/
http://www.nationalgeographic.com/
http://www.theguardian.co.uk/
https://disqus.com/
http://www.rdio.com/
https://www.mozilla.org/en-US/
http://www.theonion.com/
https://www.threadless.com/
https://www.threadless.com/
https://www.soundslice.com/
http://www.everyblock.com/
http://spothero.com/
http://pitchfork.com/
http://www.nasa.gov/
https://djangobirthday.com/
https://www.djangoproject.com/
https://en.wikipedia.org/wiki/Web_application_framework
https://docs.djangoproject.com/en/dev/internals/team/
http://www.holovaty.com/
http://blog.simonwillison.net/
http://www2.ljworld.com/
http://www2.ljworld.com/
https://en.wikipedia.org/wiki/Lawrence,_Kansas
http://php.net/
https://www.python.org/
https://github.com/django/django/commit/07ffc7d605cc96557db28a9e35da69bc0719611b
https://www.djangocon.us/
https://www.youtube.com/playlist?list=PLD415FAF806EC47A1
https://www.djangoproject.com/foundation/
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://docs.python.org/2/tutorial/stdlib.html#batteries-included
https://docs.djangoproject.com/en/dev/faq/general/
https://docs.djangoproject.com/en/dev/misc/design-philosophies/
https://www.youtube.com/watch?v=f3Y-QoEkPtw
http://www.quora.com/What-is-the-history-of-the-Django-web-framework


Friendly 101 Documentation, Release 0.1

3.1.2 Who are you again?

Hello, my name is Rich Cornish. I first used Django in the fall of 2006 and quicky fell in love working with it. I then
worked as an interaction designer at the same online division at the Lawrence Journal-World from 2007 to 2009.

Today I work as a user experience designer and feel privileged that I can share the lessons I learned about web devel-
opment from the outside perspective of a designer. I graduated from the University of Illinois at Urbana-Champaign
with a master of science degree in journalism.

3.1.3 What is Friendly 101?

This mission of Friendly 101 is to be a guide for absolute beginners wanting to learn Django. Other text have similar
missions for other technologies, but this text is different because I endeavor to meet the following standards:

• Easy to read and understand

All text and graphics are written and presented in a way that is neither too technical nor too childish. The material
assumes some use of a Mac computer, but nothing more is required. Organization, grammar, consistency, and
style are critical.

• Review related technologies

Too many instructional texts silo themselves, burdening the reader to figure out the technology landscape. There
is great value in understanding what’s required, what’s optional, what’s related, and what are the alternatives.

• Link honorably

While reviewing related technologies is useful, the text is not an all-encompassing guide to all of them. After an
overview and explanation of basic concepts, hyperlinks should be used often to point the reader to a trustworthy
source to learn more.

It is my belief that people learn best when they create interesting, useful things as “quick wins,” and can then “work
backward” to progressively learn more about how Python works in and outside the context of Django. When people
feel more comfortable in Django, there are plenty of other resources, frameworks, and libraries for people to continue
their journey.

3.2 Text editor

The first step in a web developer’s journey is to use a good text editor.

3.2.1 What is a text editor?

A text editor is an application that allows you to write code, which is simply text without formatting options like bold
or alignment. Microsoft Word and TextEdit are word processors, which are similar to text editors, but often come with
features that make them inappropriate for writing code.

Like all good things in life, people have a wide range of opinions on which text editor is “the best.” And like all
good things, finding “the best” text editor isn’t important—what’s important is finding the best text editor for you, dear
beginner.

8 Chapter 3. Contents

http://illinois.edu/
http://catalog.illinois.edu/graduate/graduate-majors/journalism/
http://learnpythonthehardway.org/book/
http://flask.pocoo.org/
https://pypi.python.org/pypi
https://en.wikipedia.org/wiki/Microsoft_Word
https://en.wikipedia.org/wiki/TextEdit


Friendly 101 Documentation, Release 0.1

3.2.2 Sublime Text is your new friend

As a beginning developer, you should use a text editor that is fairly easy to understand and use, is in active develop-
ment, offers add-ons when you become advanced, and hopefully doesn’t cost much. For those reasons, I recommend
Sublime Text.

Sublime Text is a popular, open-source text editor that beginners and professionals alike use. Hundreds of add-on
packages, themes, and tutorials exist for it. It’s also free with minimal intrusion. Download Sublime Text from its
website by clicking on the “Download for OS X” button.

3.2.3 Installing Sublime Text

Find the DMG you downloaded, which is probably in your “Downloads” folder and was called “Sublime Text
2.0.2.dmg” at the time of this writing.

“DMG” stands for Disk Image, and is the file format for OS X applications. Open the DMG by double clicking on
it. The DMG will mount the Finder and a new window will appear. Drag the icon labeled “Sublime Text 2” into the
shortcut folder labeled “Applications.”

3.2. Text editor 9

http://www.sublimetext.com/
https://packagecontrol.io/
https://packagecontrol.io/
https://packagecontrol.io/browse/labels/theme
http://code.tutsplus.com/categories/sublime-text
http://www.sublimetext.com/
https://en.wikipedia.org/wiki/Apple_Disk_Image


Friendly 101 Documentation, Release 0.1

10 Chapter 3. Contents



Friendly 101 Documentation, Release 0.1

You can now close the windows, eject the mount by dragging it from the Desktop to the Trash, and trash the DMG.

Open a new Finder window and navigate to the “Applications” folder. Find the “Sublime Text 2” application icon and
open it by double clicking on it.

Congratulations! You are now using a world-class text editor.

Sublime Text is free to use, but it pops up an occasional window reminding you to purchase it. You can click Cancel
or press Esc when it appears, but feel free to eventually support the developers who work hard to make software free
to use.

I recommend preserving the presence of the Sublime Text 2 icon in the Dock for easy access in the future. CONTROL-
click on the Sublime Text 2 icon in your dock, click “Options,” and then “Keep in Dock.” You can also preserve the
presence of Sublime Text 2 by simply dragging the icon into another place on the Dock.

It’s always good to remember that what’s fashionable today might not be fashionable tomorrow. A few years ago,
TextMate was the text editor of choice until it languished in development. Coda has a small but dedicated audience.
Veterans use Vim and Emacs, and newcomers include Brackets and Atom. You might even get a sheepish confession
from someone using nano.

Developers like to brag about their text editor of choice, but always remember: What you write in your editor is far
more important than your editor of choice.

3.3 Command line

After a good text editor, the next tool a developer needs to understand is the command-line interface.

3.3.1 You won’t break your computer

A command-line interface is a program that allows developers to interact with a computer by running commands
that are typed. The functionality shared by a command-line interface and the more familiar graphical user interface,

3.3. Command line 11

http://support.apple.com/kb/PH18815
http://macromates.com/
https://panic.com/coda/
https://en.wikipedia.org/wiki/Vim_(text_editor)
https://en.wikipedia.org/wiki/Emacs
http://brackets.io/
https://atom.io/
https://en.wikipedia.org/wiki/GNU_nano
https://en.wikipedia.org/wiki/Command-line_interface


Friendly 101 Documentation, Release 0.1

12 Chapter 3. Contents



Friendly 101 Documentation, Release 0.1

known in Apple’s OS X as the Finder, are similar in many ways and identical in others.

Beginner developers often have a fear of the command line, thinking they will “break their computer” if they even
open the application. Others think it’s an old, archaic tool that can’t possibly be useful to write modern software. Both
ideas can be right and they can be wrong. As you’ll discover, command-line interfaces are merely ways of interacting
with computers just as graphical user interfaces do. Understanding the strengths and weaknesses of one’s tools is one
of the hallmarks of a good developer.

You won’t break your computer anymore than you would clicking around with a mouse.

3.3.2 You can be bashful now

The command-line interface we’ll work with is Bash. Bash is a shell, which is a category of programs that load
command-line interfaces, much like Chrome is a web browser. The shell’s name comes from its function as a “wrap-
per” around the kernel, the core program that communicates with the hardware. Bash is the most popular shell today
and the default shell inside the Terminal application on OS X. It’s worthy to note that shells other than Bash can be
loaded inside of Terminal–a feat that web browsers don’t and will likely never do.

Open a Finder window, navigate to the “Applications” folder, then the “Utilities” folder, and open the “Terminal”
application. It might look something like this, which shows a whole lot of white.

The first line tells me when I last started a Bash session (Last login: Mon Feb 5 09:58:08) and on which
Teletypes (ttys000), although today the equivalent is simply a tab in Terminal, much like a tab in a web browser.
The second line tells me the name of my computer on the network (Rich), my current directory (~, which is my home
directory), the name of my user account (rich), and the symbol indicating a prompt for user input ($).

Feel free to trick it out in the preferences. I like to make mine look like The Matrix.

I also recommend preserving the presence of the Terminal icon in the Dock for easy access in the future.

3.3.3 Common Bash commands

I provide all commands you should run when you need them, but it helps to remember the ones most commonly used.

3.3. Command line 13

https://en.wikipedia.org/wiki/OS_X
https://en.wikipedia.org/wiki/Finder_(software)
http://www.gnu.org/software/bash/manual/bashref.html#What-is-Bash_003f
http://www.google.com/chrome/
https://en.wikipedia.org/wiki/Bash_(Unix_shell)
http://superuser.com/questions/61727/why-is-bash-everywhere-in-most-if-not-all-linux-distributions
https://en.wikipedia.org/wiki/Terminal_(OS_X)
https://en.wikipedia.org/wiki/Teleprinter
http://www.imdb.com/title/tt0133093/
http://support.apple.com/kb/PH18815


Friendly 101 Documentation, Release 0.1

14 Chapter 3. Contents



Friendly 101 Documentation, Release 0.1

Each command below is preceded by a comment, which is a line beginning with a hash (#) and explains the sur-
rounding code. Note that the prompt, represented by the dollar sign ($), is meant only to tell you that the following
characters composed a Bash command and is not meant to be literally included as part of the command. The inclusion
of the $ indicating a Bash command is a common convention in the developer community.

Commands for directory changes (<directory> represents the name of a directory):

# Display (or print) the path of the current (or working) directory
$ pwd

# List the contents of a directory
$ ls <directory>

# Change the current directory
$ cd <directory>

# Make a directory
$ mkdir <directory>

# Open a directory in Finder
$ open <directory>

# Create an empty file or, if it exists, update last edit to now
$ touch <file>

Symbols for directory traversal:

# The parent directory
../

# The parent's parent directory
../../

# The root directory
/

# The current directory
.

These commands and others can be combined in interesting ways that would be difficult to replicate in a graphical
user interface.

# List the items in the parent directory
$ ls ../

# Change to the parent's parent directory
$ cd ../../

# Make a directory in the root directory
$ mkdir /<directory>

# Open the current directory in Finder
$ open .

Note: You can type the first few letters of a file or directory and then press tab to cycle through or autocomplete
possible items in the current directory.

Additional commands include:

3.3. Command line 15



Friendly 101 Documentation, Release 0.1

# Move or rename
$ mv <directory or file> <destination>

# Copy
$ cp <directory or file> <destination>

# Delete (remove) a file (or directory with -r flag)
$ rm <file>

# Closes the Bash session
$ exit

If you feel like you need additional guidance, The Command Line Crash Course by Zed Shaw is excellent, and SS64
lists all Bash commands.

3.3.4 But who are any of us, really?

Let’s run our first command. Copy and paste the following and press return. Take care not to copy the $ and
adjacent space.

$ whoami

You should’ve gotten a response with the name of your user account.

$ whoami
Rich

Note: After entering your first command, you can hit the up arrow ↑ or down arrow ↓ key to cycle through previous
commands.

3.3.5 Terminal, meet Sublime

Let’s run a powerful command, a helpful trick that will connect Terminal to Sublime Text 2. Note that you might need
to enter your OS X password, and again take care not to copy and paste the $ and adjacent space.

$ sudo ln -s "/Applications/Sublime Text 2.app/Contents/SharedSupport/bin/subl" /usr/local/bin/subl

This command and this command alone will run as a superuser (“superuser do” or sudo) and create a link (ln) that
is (symbolic). A symbolic link is the equivalent of an alias or shortcut in the Finder. From now on, when we type
subl and the name of a directory or file in Terminal, that same directory or file will pop up in Sublime Text 2, ready
for us to edit!

Just like text editors, people have varying opinions on shells. Bash is the most popular, but some developers claim Z
shell can be more productive. Terminal comes with OS X, but some swear by iTerm2. Get comfortable with what’s
most accessible and when you feel confident, explore what else is out there.

3.4 Command line tools

Now that you’re a little familiar with the command-line interface, we’re going to install some additional tools to
compile any software we might need.

16 Chapter 3. Contents

http://cli.learncodethehardway.org/book/
http://ss64.com/bash/
https://en.wikipedia.org/wiki/Symbolic_link
http://www.zsh.org/
http://www.zsh.org/
http://iterm2.com/


Friendly 101 Documentation, Release 0.1

3.4.1 What is compiling?

If you’ve downloaded software before, you’re probably familiar with the song and dance by now.

1. Go to the website

2. Find the download link

3. Click the download link

4. Find the DMG

5. Open it

6. Open the mount

7. Copy the application into the Applications folder

8. Close the window

9. Find the application

10. Open the application

11. Unmount the DMG

12. Trash the DMG.

Whew.

The DMG you downloaded is known as a binary, which was compiled from source code that other developers wrote,
likely from many files into a single neat, tidy file ready for hungry downloaders. Not all software is compiled–
especially development software that you might need–and because of that, I recommend learning the basics of compil-
ing your own software. Fortunately, the ability to compile your own software has come a long way and is a lot easier
than it used to be.

3.4.2 Installing the tools

Compiling on OS X requires the GNU Compiler Collection, or GCC, and is included in the Command Line Tools
software by Apple. You can download Command Line Tools from the Apple Developer website, but it is often more
convenient to simply download and install it from the command line.

Open Terminal, copy and paste the following, and press return. Review the Command line lesson if necessary.

$ xcode-select --install

A Finder window should pop up. Click “Install” and agree to the license agreement of Command Line Tools. Once
installed, confirm the installation of Command Line Tools:

$ xcode-select --print-path
/Library/Developer/CommandLineTools

If instead your path looked more like /Applications/Xcode.app/Contents/Developer, then you previ-
ously installed Xcode. Keep reading to understand what you need to do.

And now confirm GCC was installed along with Command Line Tools:

$ gcc --version
Configured with: --prefix=/Library/Developer/CommandLineTools/usr --with-gxx-include-dir=/usr/include/c++/4.2.1
Apple LLVM version 6.0 (clang-600.0.54) (based on LLVM 3.5svn)
Target: x86_64-apple-darwin14.0.0
Thread model: posix

3.4. Command line tools 17

https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://developer.apple.com/downloads/


Friendly 101 Documentation, Release 0.1

3.4.3 Do I need Xcode?

Previously Apple bundled Command Line Tools with Xcode, a full suite of software development tools for developing
native applications on OS X and iOS. The bundling forced developers to download the entire suite, which was about
2.5 GB in size.

Since the OS X release of Mavericks, developers can download Command Line Tools separately, which means devel-
opers do not need Xcode. However, if you downloaded Xcode before, then you will need to update Xcode either in the
App Store application or with Software Update.

If you verified the installation of Command Line Tools with Xcode installed, you will instead receive confirmation
that Xcode was installed, which is perfectly fine.

$ xcode-select --print-path
/Applications/Xcode.app/Contents/Developer

$ gcc --version
Configured with: --prefix=/Applications/Xcode.app/Contents/Developer/usr --with-gxx-include-dir=/usr/include/c++/4.2.1
Apple LLVM version 6.0 (clang-600.0.54) (based on LLVM 3.5svn)
Target: x86_64-apple-darwin14.0.0
Thread model: posix

3.5 Bash profile

You’ve probably noticed that when you turn on your computer that some applications start up with it. Some of them
are required by the operating system and some you might have installed yourself. Some can make your computer’s
fan sound like an airplane taking off.

You can see some of these in the “Login Items” tab of the “Users & Groups” section of your System Preferences.

Other applications have their own login items, which run only when that specific application is opened. We’re going
to use Bash’s login items feature to make web development easier.

3.5.1 Why do I need a Bash profile?

The Bash profile is a file on your computer that Bash runs every time a new Bash session is created. This is useful
because we need to run certain code every time before starting to work.

OS X doesn’t include a Bash profile by default, but if you already have one, it lives in your home directory with
the name .bash_profile. And if you did have one, you probably never saw it because its name starts with a
period. The Finder hides folders and files starting with a period to protect casual users from harming the operating
system—but because you’re a developer now, we’re going to create a Bash profile!

3.5.2 Creating your Bash profile

Open Terminal, copy and paste the following command, and press return.

$ subl ~/.bash_profile

If you received an error, review Terminal, meet Sublime of the Command line lesson.

The tilda (~) tells Bash to start traversing the file system from your home directory. In my personal case, an equiv-
alent command would have been subl /Users/Rich/.bash_profile, which means ~ is the equivalent of
/Users/Rich. Using ~ is a shortcut that makes it generic and usable for everybody to understand and use.

18 Chapter 3. Contents

https://developer.apple.com/xcode/
http://unix.stackexchange.com/questions/34196/why-was-chosen-to-represent-the-home-directory


Friendly 101 Documentation, Release 0.1

3.5. Bash profile 19



Friendly 101 Documentation, Release 0.1

Your Bash profile will pop up in a Sublime Text window.

3.5.3 Understanding your PATH

The first edit to your Bash profile is to correct your PATH. PATH is an environment variable, which simply means
that it represents some small bit of data while you use Terminal. Specifically, PATH contains a list of file system paths
where the operating system can find programs to run.

When a developer runs a program in Bash, the operating system will sequentially look for the program in each of
the paths that PATH contains, starting with the first path listed. If the operating system can’t find the program in the
first path, it looks for the same program in the second path, and so on, until either eventually finding and running the
program or returning an error if the program couldn’t be found.

PATH contains paths that are delimited by a colon (:). Therefore, the value of PATH might look something like:

/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin

You can see that /usr/local/bin is the first path, and /usr/bin is the second path. /usr/local/bin is
where all programs local to your use of the operating system are located. Storing programs for your personal use in
/usr/local/bin is a best practice and highly encouraged. Therefore, the PATH above is correct.

Likewise, storing programs in /usr/bin allows programs to be globally accessible by other users. Storing programs
globally can sometimes be desirable, but in general it’s discouraged and likely to cause confusion.

3.5.4 Correcting your PATH

In versions of OS X prior to Yosemite, Apple mistakenly switched the order of the paths, placing /usr/bin ahead
of /usr/local/bin, causing much disruption and angst. Apple has since corrected the issue, but it’s still worth
changing because doing so won’t harm the computer and will prevent problems from occuring again.

Copy and paste the following into your Bash profile.

# Paths
export PATH=/usr/local/bin:$PATH

The first line is a comment, which begins with a hash (#) and explains surrounding code. The right portion of the
second line begins /usr/local/bin, which is the path we want to prioritize, followed by :, which joins paths, and
finally $PATH, which evaluates the value of the existing PATH. By appending $PATH we can overwrite the original
PATH without destroying its value, making everything nice and tidy!

Next we assign the value /usr/local/bin:$PATH to PATH and export it at the same time. Exporting PATH
ensures that the variable is loaded into memory and accessible.

Note: The difference between $PATH and PATH is subtle but worth pointing out. When you assign a value to a
variable, then the variable should be called without $. If you want to evaluate the variable to get its value for use in
Bash, prepend $ to the variable name.

Save and close the file.

3.5.5 Sourcing your Bash profile

We edited our Bash profile, but it is critical to remember the code in Bash profile runs only when a new Bash session is
created, which is called sourcing. Therefore, our changes will take effect when you quit Terminal and open it again to
make sure that PATH is in fact exported. When Terminal is open again, you can check the value of PATH by running
the echo command:

20 Chapter 3. Contents

https://en.wikipedia.org/wiki/PATH_%28variable%29


Friendly 101 Documentation, Release 0.1

3.5. Bash profile 21



Friendly 101 Documentation, Release 0.1

$ echo $PATH

The output might look like one of the two:

/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin

/usr/local/bin:/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin

Again ensure that /usr/local/bin is listed prior to /usr/bin.

Note: Although Terminal allows a Bash profile to be sourced on command without restarting (source
~/.bash_profile) the method can be unreliable.

PATH is just one evironment variable we changed in our Bash profile. There are a lot more, like USER for the current
user (you!) and HOME for the path to the home directory of the current user. We will edit our Bash profile a few more
times to run other important code in the future.

3.6 Homebrew

Several years ago, compiling one’s software was a messy and complicated process. Some tried to create solutions, but
it was said that the process was enough to drive one to drink until Homebrew had arrived.

3.6.1 What’s Hombrew?

Compiling software involves several implied steps, much like downloading and installing a binary: Download the
source code, often a ZIP file of some kind, unzip the file, compile the source code, move the binaries to correct
locations, arrange the symbolic links, delete the downloaded file, perform any other cleanup or special tasks, determine
any dependencies, and do the whole process over again if dependencies do exist. Don’t forget about updating and
uninstalling.

Homebrew handles all of these tasks as “the missing package manager for OS X” and “installs the stuff you need
that Apple didn’t.” A package manager is a program that automates the installation and maintenance of software
libraries, which are self-contained bundles of code. Packages contain not only source code, but also the license,
README, and other release notes. Homebrew manages thousands of packages, each of which has a unique set of
installation instructions called “formula.”

Homebrew installs all software to the /usr/local/Cellar directory and creates symbolic links in
/usr/local/bin and /usr/local/lib that point back to your “Cellar.” It’s a very clean way to manage
packages and automates an existing best practice. And because we edited the PATH environment variable in Under-
standing your PATH to prioritize /usr/local/bin, all of the software Homebrew installs will take precedence.
Perfect!

Homebrew is written in Ruby, but it can be used to compile almost any other software, including Python. In doing so,
Homebrew depends on the pre-installed version of Ruby that came with OS X.

Warning: Homebrew is a package manager for larger “general purpose” packages, such as Python, SQLite,
MySQL, PostgreSQL, or Git. Do not install packages whose languages have package managers of their own. For
example, packages written in Python be installed not with Homebrew but with pip, a package manager for Python,
and will be explained later.

22 Chapter 3. Contents

http://hivelogic.com/articles/installing-ruby-on-rails-on-tiger
https://www.macports.org/
http://www.finkproject.org/
https://news.ycombinator.com/item?id=1189274
https://en.wikipedia.org/wiki/Zip_(file_format)
http://brew.sh/
https://en.wikipedia.org/wiki/README
https://github.com/Homebrew/homebrew/tree/master/Library/Formula
http://hivelogic.com/articles/using_usr_local/


Friendly 101 Documentation, Release 0.1

3.6.2 Let’s start brewing

As a precaution, set the ownership of the /usr/local directory to yourself. Correct ownership ensures Homebrew
will be able to install packages on your behalf without errors. You should already have ownership, but sometimes an
erroneous permission can slip through.

$ sudo chown -R `whoami` /usr/local

Please note that the grave accent or “backtick” (‘), are not single quotation marks. Backticks are to the left of
the number 1 key on many keyboards. You could also use the environment variable $USER (assuming it wasn’t
overwritten) or type in your username manually, but backticks are the easiest and least error prone method.

Now install Homebrew.

$ ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

You should run brew doctor and any other on-screen instructions to make sure Homebrew is up to date and error
free.

$ brew doctor

3.6.3 Installing Python

Django is written in the Python programming language, and as such requires Python to run. OS X comes with a
pre-installed version of Python. Let’s find out where that installation currently lives and which version it is.

$ which python
/usr/bin/python
$ python --version
Python 2.7.5

This version of Python is the globally accessible version and likely a little bit old by now. To remedy these issues, let’s
use Homebrew to install a newer version of Python.

$ brew install python

The success message should look something like:

python: stable 2.7.9 (bottled), HEAD
https://www.python.org
/usr/local/Cellar/python/2.7.9 (4855 files, 79M) *
Poured from bottle

From: https://github.com/Homebrew/homebrew/blob/master/Library/Formula/python.rb
==> Dependencies
Build: pkg-config
Required: openssl
Recommended: readline , sqlite , gdbm
==> Options
--quicktest
Run `make quicktest` after the build (for devs; may fail)

--universal
Build a universal binary

--with-brewed-tk
Use Homebrew's Tk (has optional Cocoa and threads support)

--with-poll
Enable select.poll, which is not fully implemented on OS X (http://bugs.python.org/issue5154)

--without-gdbm
Build without gdbm support

3.6. Homebrew 23

https://en.wikipedia.org/wiki/Grave_accent
https://www.python.org/
https://docs.djangoproject.com/en/1.7/intro/install/#install-python


Friendly 101 Documentation, Release 0.1

--without-readline
Build without readline support

--without-sqlite
Build without sqlite support

--HEAD
Install HEAD version

==> Caveats
Setuptools and Pip have been installed. To update them

pip install --upgrade setuptools
pip install --upgrade pip

You can install Python packages with
pip install <package>

They will install into the site-package directory
/usr/local/lib/python2.7/site-packages

See: https://github.com/Homebrew/homebrew/blob/master/share/doc/homebrew/Homebrew-and-Python.md

.app bundles were installed.
Run `brew linkapps python` to symlink these to /Applications.

You don’t need to run brew linkapps python in the success message.

Let’s find out where our new installation of Python lives and what version it is.

$ which python
/usr/local/bin/python
$ python --version
Python 2.7.9

Excellent! Because we set precedence in our Bash profile to look for programs in /usr/local/bin, and because
Homebrew creates symbolic links to that location by default, we get our Homebrew installation whenever we reference
Python from now on.

Note: Homebrew prevents multiple versions of Python to be installed at the same time. pyenv is a program that man-
ages different versions of Python, much like the popular rbenv and RVM managers for Ruby. But because Homebrew
installs Python 2.7.x by default, and because Python 3 is installed with the unique brew install python3, I
don’t recommend needing to install pyenv.

Note: Python 3 is the next major version of the Python programming language. It is a backward-incompatible
upgrade; however migration guides for Python and Django exist. Updating code to Python 3 compatibility is a good
idea in the long run, but Python 2 is excepted to be supported until 2020 at the time of this writing.

3.6.4 Installing SQLite

Django also requires a SQL database. SQL, which stands for Structured Query Language, is a category of program-
ming languages that interact with relational databases.

SQLite is a good candidate for beginning developers and development on your computer because it’s easier to use than
its more complex but robust peers, like PostgreSQL and MySQL. By default, Django expects SQLite because it helps
start development quickly. Install SQLite with Hombrew.

$ brew install sqlite

The success message should look something like:

24 Chapter 3. Contents

https://github.com/yyuu/pyenv
http://rbenv.org/
https://rvm.io/
https://docs.python.org/3/howto/pyporting.html
https://docs.djangoproject.com/en/1.7/topics/python3/
https://www.python.org/dev/peps/pep-0373/
https://docs.djangoproject.com/en/1.7/intro/install/#set-up-a-database
https://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/Relational_database
http://www.sqlite.org/
http://www.postgresql.org/
http://www.mysql.com/


Friendly 101 Documentation, Release 0.1

sqlite: stable 3.8.7.4 (bottled)
http://sqlite.org/

This formula is keg-only.
Mac OS X already provides this software and installing another version in
parallel can cause all kinds of trouble.

OS X provides an older sqlite3.

/usr/local/Cellar/sqlite/3.8.7.4 (9 files, 2.1M)
Poured from bottle

From: https://github.com/Homebrew/homebrew/blob/master/Library/Formula/sqlite.rb
==> Dependencies
Recommended: readline
Optional: icu4c
==> Options
--universal
Build a universal binary

--with-docs
Install HTML documentation

--with-fts
Enable the FTS module

--with-functions
Enable more math and string functions for SQL queries

--with-icu4c
Enable the ICU module

--without-readline
Build without readline support

--without-rtree
Disable the R*Tree index module

Warning: Do not use SQLite in a production environment. SQLite supports a low number of concurrent database
connections, which makes it a good candidate for development on your personal computer, but is not recommended
for use on the web.

3.6.5 Troubleshooting Homebrew

Homebrew has a troubleshooting checklist, but in general the following commands are the most helpful in keeping
your brews up to date and trouble free.

# Search to see if a package is available
$ brew search <package>

# Display information about an installed package
$ brew info <package>

# Install a new package
$ brew install <package>

# Update installed packages
$ brew update

# Update to new major versions of installed packages
$ brew upgrade (<package>)

# Remove the old (existing but unused) versions of packages

3.6. Homebrew 25

https://github.com/Homebrew/homebrew/blob/master/share/doc/homebrew/Troubleshooting.md


Friendly 101 Documentation, Release 0.1

$ brew cleanup (<package>)

# Delete stray symbolic links
$ brew prune

# Check all packages for installation integrity
$ brew doctor

It’s possible to avoid installing Homebrew packages by visiting the respective websites of Python, SQLite, and others,
and installing each DMG (or worse, compiling manually), but I highly recommend Homebrew for its convenience and
ease of use.

3.7 pip & virtualenv

If you were reading carefully in Installing Python in the Homebrew lesson, you might have noticed the following lines
in the success message.

Setuptools and Pip have been installed. To update them
pip install --upgrade setuptools
pip install --upgrade pip

You can install Python packages with
pip install <package>

They will install into the site-package directory
/usr/local/lib/python2.7/site-packages

See: https://github.com/Homebrew/homebrew/blob/master/share/doc/homebrew/Homebrew-and-Python.md

pip is the community-favored package manager for Python software, and is the successor to Easy Install, which
suffered from several issues. Homebrew installs pip automatically for you. Sweet!

It might seem strange to use a package manager to have downloaded, well, another package manager, but each tool has
specific capabilities that take advantage of the language’s unique strengths. To make one all-encompassing package
manager for all platforms and all languages would be unwieldly at best. Think of it like using one web browser to
download another preferred web browser.

3.7.1 pip installs...what?

pip is a recursive acronym for “pip installs packages” and is, in and of itself, a Python package. If Homebrew didn’t
install pip automatically, we would have installed pip with Easy Install. Some common commands you’ll run with pip:

# Search to see if a package is available
$ pip search <package>

# Display information about an installed package
$ pip show <package>

# Install a new package
$ pip install <package>

# Update an existing package
$ pip install <package> --update

# Install all packages from a requirements file

26 Chapter 3. Contents

https://www.python.org/
http://www.sqlite.org/
http://www.ianbicking.org/blog/2008/12/a-few-corrections-to-on-packaging.html
https://pythonhosted.org/setuptools/easy_install.html
http://www.b-list.org/weblog/2008/dec/14/packaging/
https://github.com/Homebrew/homebrew/blob/master/share/doc/homebrew/Homebrew-and-Python.md
https://pip.pypa.io/
https://en.wikipedia.org/wiki/Recursive_acronym


Friendly 101 Documentation, Release 0.1

$ pip install -r requirements.txt

# Export a list of all currently installed packages to a requirements file
$ pip freeze > requirements.txt

# List all installed packages
$ pip list

# Uninstall a package
$ pip uninstall <package>

pip downloads Django and other Python software packages from the Python Package Index, or PyPi (pronounced like
“pie pie”), which is generally recognized by the community as the canonical source of Python software.

3.7.2 We are VR

If you installed packages solely with pip, pip would install them to
/usr/local/lib/python2.7/site-packages, which is “local” to your computer use but does not
separate packages from the possibly several Django (or in general Pythonic) projects you could write. The result
is an inability to cleanly share your code with others because your project’s package dependencies are not cleanly
separated. To solve this problem, the author of pip also created virtualenv.

virtualenv is a Python package that creates isolated development environments, preventing packages from colliding
and conflicting with one another.

Some developers don’t use it, but I also recommend virtualenvwrapper, which is a collection of additional helpers that
makes working with virtualenv easier. It’s another layer of abstraction, but I think the returns come back fairly quickly.
virtualenv and virtualenvwrapper can be installed with pip in just one command.

$ pip install virtualenv virtualenvwrapper

pip installs virtualenv and virtualenvwrapper to /usr/local/lib/python2.7/site-packages. virtualen-
vwrapper requires additional settings in your Bash profile to ensure that it is available on the command line. Open
your Bash profile.

$ subl ~/.bash_profile

Copy and paste the following lines, probably right after your PATH settings. Remember to restart Terminal.

# virtualenvwrapper
export WORKON_HOME=$HOME/.virtualenvs
source /usr/local/bin/virtualenvwrapper.sh

The first line appends the hidden directory .virtualenvs to the path of the home directory $HOME, assigns it to
the variable WORKON_HOME, and finally exports it. .virtualenvs is the name of the hidden directory in your OS
X home folder where all of our virtual environments will be stored. workon will usually be the command to start
working on a project.

It might make your head spin to think that a package’s only job is to isolate other packages, but it’s not very compli-
cated. You should use pip to install virtualenv and virtualenvwrapper globally and only virtualenv and virtualenvwrap-
per globally. All other packages should be installed with pip but inside a virtual environment.

3.7.3 Making an environment

Let’s make a new virtual environment.

3.7. pip & virtualenv 27

https://pypi.python.org/pypi
http://virtualenv.readthedocs.org/
http://virtualenvwrapper.readthedocs.org/
http://virtualenvwrapper.readthedocs.org/en/latest/install.html?highlight=workon_home#shell-startup-file


Friendly 101 Documentation, Release 0.1

$ mkvirtualenv hello
New python executable in hello/bin/python2.7
Also creating executable in hello/bin/python
Installing setuptools, pip...done.
(hello)$

The name of my virtual environment was the ever-so creative hello. You can see that I en-
tered my environment because (hello) prepends the $ Bash prompt. Now whenever I in-
stall a package, it installs to the site packages directory of my virtual environment, which is
/Users/Rich/.virtualenvs/hello/lib/python2.7/site-packages. Had I installed a
package without being inside of my virtual environment, the package would have installed globally to
/usr/local/lib/python2.7/site-packages.

It is worth noting that virtualenvwrapper automatically puts you inside a virtual environment whenever creating a new
one. You won’t totally understand these virtualenvwrapper commands now, but they’re worth pointing out because
we’ll use some of them in the future (<env> or hello standing for the name of an environment).

# List all virtual environments
$ lsvirtualenv

# Make and enter a virtual environment
$ mkvirtualenv <env>

# Enter a virtual environment
$ workon <env>

# Change to a virtual environment's directory
# This would change you to ~/.virtualenvs/hello/
(hello)$ cdvirtualenv

# Change to a virtual environment's site packages directory
# This would change you to ~/.virtualenvs/hello/lib/python2.7/site-packages/
(hello)$ cdsitepackages

# Set a project directory
(hello)$ setvirtualenvproject <virtualenv directory> <project directory>

# Change to the project directory
(hello)$ cdproject

# Add a directory to the virtual environment's Python path
# Edits ~/.virtualenvs/hello/lib/python2.7/site-packages/_virtualenv_path_extensions.pth
(hello)$ add2virtualenv <directory>

# Exit a virtual environment
(hello)$ deactivate

# Remove a virtual environment
$ rmvirtualenv <env>

There is a lot more in virtualenvwrapper’s command reference, but you can see that the naming conventions are similar
to Common Bash commands. For example, while your virtual environment is active, you can change into the virtual
environment directory by running cdvirtualenv, which, if you squint, kind of looks like the change directory
command cd. You could have just as easily run cd ~/.virtualenvs/hello/ but the shortcut cdvirtualenv
can be easier to remember. Beginners are often confused by the phrase “cd into your virtual environment.” Someone
is telling you to run cdvirtualenv—and not cd virtualenv, which wouldn’t make sense!

Note: Virtual machine software like VirtualBox and Vagrant can be used with pip and virtualenv to further minimize

28 Chapter 3. Contents

http://virtualenvwrapper.readthedocs.org/en/latest/command_ref.html
https://www.virtualbox.org/
https://www.vagrantup.com/


Friendly 101 Documentation, Release 0.1

differences between development and production environments. Their use is often how development is done at larger
organizations. Getting Started with Django by Kenneth Love has a great tutorial about using virtual machines with
Django.

3.8 Django

You have your text editor, compiler, Bash profile, package manager, programming language, and database. Whew!
Depending on your computer’s prior setup, you might have been able to skip to this step, but we’re being thorough to
lay the foundation for success. It’s time to install Django!

Let’s find a suitable place for your Django project code. I prefer to save my websites to the Sites folder. The Sites
folder used to be in your OS X home folder, but Apple removed it several versions ago. Let’s put it back and change
into it now. If it already exists, this command won’t overwrite it.

$ mkdir -p ~/Sites/ && cd ~/Sites/

If you haven’t already made and entered your virtual environment, do so now.

$ mkvirtualenv hello
New python executable in hello/bin/python2.7
Also creating executable in hello/bin/python
Installing setuptools, pip...done.
(hello)$

If you have an existing environment and exited it, enter it with workon hello.

3.8.1 Installing Django

We’re all ready to go! Let’s install Django with pip!

(hello)$ pip install django
Downloading/unpacking django

Downloading Django-1.7.4-py2.py3-none-any.whl (7.4MB): 7.4MB downloaded
Installing collected packages: django
Successfully installed django
Cleaning up...

Without specifying a version of Django, that is pip install django==1.7.4, the latest version was installed,
at the time of this writing 1.7.4. You can read about Django 1.7.4 on PyPi’s package page.

If you’re interested in the nitty gritty: pip installed the file Django-1.7.4-py2.py3-none-any.whl, which
indicates Django version 1.7.4 was installed (Django-1.7.4) and that it’s compatible with Python versions 2
(py2) and 3 (py3). The .whl file extension indicates that the file is in the wheel format, which is a ZIP-format
archive for Python packages and improvement over Python’s previous egg format, which were similar ZIP-format
archives created with setuptools and often used with Easy Install. none indicates purposeful omission of a hash
string used in security to verify the package’s validity. Django instead uses its own MD5 hash string in the names
of its files, which pip installs from a simplified version of PyPi’s download page. If you scan diligently, you can see
Django-1.7.4-py2.py3-none-any.whl in the list!

Now that Django is installed, we use the django-admin utility to start a new project.

(hello)$ django-admin startproject hello

But wait—how can Bash know where django-admin is and how to run this command?

3.8. Django 29

http://gettingstartedwithdjango.com/en/lessons/introduction-and-launch/
https://pypi.python.org/pypi/Django/1.7.4
http://wheel.readthedocs.org/en/latest/index.html
http://wheel.readthedocs.org/en/latest/index.html#why-not-egg
http://peak.telecommunity.com/DevCenter/PythonEggs
http://pythonhosted.org/setuptools/
https://en.wikipedia.org/wiki/MD5
https://pypi.python.org/simple/django/


Friendly 101 Documentation, Release 0.1

30 Chapter 3. Contents



Friendly 101 Documentation, Release 0.1

When you activated your virtual environment, the file ~/.virtualenvs/hello/bin/activate was automat-
ically run, which in turn ran the commands PATH="$VIRTUAL_ENV/__BIN_NAME__:$PATH" and export
PATH. virtualenv was smart enough to prepend the bin directory of the virtual environment ($VIRTUAL_ENV/bin)
to the PATH environment variable ($PATH). While your virtual environment is active, the new PATH might look more
like:

$ echo $PATH
/Users/Rich/.virtualenvs/hello/bin:/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin

What about django-admin? When you ran pip install django, pip was smart enough during installation
to recognize Django’s own django-admin script file as an executable file by virtue of its placement in Django’s
setup.py, and then to copy it to your virtual environment’s binary directory, ~/.virtualenvs/hello/bin. In
other words, there were a lot of smart, hard-working developers to make sure everything lines up into one neat, little
command!

Note: For the sake of simplicity, I recommend creating one Django project for every one virtual environment, and
that you use the same name for your Django project as your virtual environment.

After running django-admin startproject hello, Django created a hello directory that looks like the
tree structure below.

hello
-- manage.py
-- hello

-- __init__.py
-- settings.py
-- urls.py
-- wsgi.py

You can see that within hello a manage.py file was created alongside another hello directory. Within the second
hello directory, other files like __init__.py and settings.py exist.

Every Django project comes with a manage.py file, which is the utility you will use to run commands. You could
continue to use django-admin, but it’s a global utility that could be run against several Django projects within a
single virtual environment, and would need further configuration to run commands specific to our single project. For
that reason, I recommend using manage.py from now on. Thanks, django-admin. It has been real.

Note: Beginners are often confused by the way in which Django project code interacts with the activated virtual envi-
ronment. Your Django project code, represented by ~/Sites/hello/, does not go into the directory of your virtual
environment, ~/.virtualenvs/hello/. Your virtual environment merely isolates software packages you install,
like Django, from other packages in their respective virtual environments. Your project directory contains code that
hooks into Django, which pip installed to ~/.virtualenvs/hello/lib/python2.7/site-packages/.

To get all those awesome “batteries included” that come with Django, you have to create the database tables for them.
Change into your project directory and run the migrate command.

(hello)$ cd ~/Sites/hello/
(hello)$ python manage.py migrate
Operations to perform:

Apply all migrations: admin, contenttypes, auth, sessions
Running migrations:

Applying contenttypes.0001_initial... OK
Applying auth.0001_initial... OK
Applying admin.0001_initial... OK
Applying sessions.0001_initial... OK

Django provides several of its own Django-specific Python packages—known as “Django apps”—for use right out

3.8. Django 31

https://github.com/pypa/virtualenv/blob/develop/virtualenv_embedded/activate.sh#L46
https://github.com/django/django/blob/master/django/bin/django-admin.py
https://docs.python.org/2/distutils/setupscript.html#installing-scripts
https://github.com/django/django/blob/master/setup.py#L46
https://github.com/django/django/blob/master/setup.py#L46
https://docs.djangoproject.com/en/1.7/ref/django-admin/
https://docs.djangoproject.com/en/1.7/ref/contrib/
https://docs.djangoproject.com/en/1.7/topics/migrations/
https://docs.djangoproject.com/en/1.7/ref/django-admin/#django-admin-migrate


Friendly 101 Documentation, Release 0.1

of the box. These apps include the content types app, the authentication and authorization app, the admin app, and
the sessions app. Django’s own apps are decoupled from the framework, which means they can be removed, but it’s
a good idea to leave them installed because various third-party apps can depend on them. Django’s default apps use
the publicly documented methods by which all apps are loaded, which means that the framework “eats its own dog
food“—a very good sign when software uses itself!

After migrating, run the local web server that comes with Django with runserver. The local web server simulates
a production web server, which makes it great for clicking around on your simulated website without deploying it live
to the web.

(hello)$ python manage.py runserver
Performing system checks...

System check identified no issues (0 silenced).
February 09, 2015 - 21:50:56
Django version 1.7.4, using settings 'hello.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Warning: The runserver command is meant only for testing your website on your personal computer. It is not
suitable for production use. From Django’s documentation: “We’re in the business of making Web frameworks,
not Web servers, so improving this server to be able to handle a production environment is outside the scope of
Django.”

3.8.2 The moment of truth

Time for the moment of truth! Open a web browser and visit http://127.0.0.1:8000. At long last you should see the “It
worked!” page. Great job! Feel free to celebrate in the way befitting to you: back pats, high fives, fist bumps, etc.

You can go back to Terminal and quit the local server by pressing CONTROL-C. You can exit your virtual environment.

^C(hello)$ deactivate

3.8.3 Clean in house

I recommed setting a default project directory for your virtual environment. The default project directory is the
directory you automatically change to when you start working on your project, and affords you to not think about
which directories to traverse to start working.

You can set your project directory with virtualenvwrapper’s setvirtualenvproject command.

$ setvirtualenvproject $WORKON_HOME/hello ~/Sites/hello
Setting project for hello to /Users/rich/Sites/hello

To start working on your project again, just run the virtualenvwrapper workon command. Run the Bash pwd com-
mand to show that you are in fact in the project directory.

$ workon hello
(hello)$ pwd
/Users/rich/Sites/hello

Additionally you can use the cdproject command to snap back to your project directory if you ever move away
from it.

Now that your project is set up, you can deactivate your virtual environment.

32 Chapter 3. Contents

https://docs.djangoproject.com/en/1.7/ref/contrib/contenttypes/
https://docs.djangoproject.com/en/1.7/topics/auth/
https://docs.djangoproject.com/en/1.7/ref/contrib/admin/
https://docs.djangoproject.com/en/1.7/topics/http/sessions/
https://docs.djangoproject.com/en/1.7/intro/reusable-apps/
https://en.wikipedia.org/wiki/Eating_your_own_dog_food
https://en.wikipedia.org/wiki/Eating_your_own_dog_food
https://docs.djangoproject.com/en/1.7/ref/django-admin/#django-admin-runserver
https://docs.djangoproject.com/en/1.7/ref/django-admin/#runserver-port-or-address-port
http://127.0.0.1:8000


Friendly 101 Documentation, Release 0.1

3.8. Django 33



Friendly 101 Documentation, Release 0.1

(hello)$ deactivate

Exit your Bash session cleanly.

$ exit
logout

[Process completed]

Note: If for whatever reason you’d like to remove your virtual environment and your Django project:

$ rmvirtualenv hello
$ rm -rf ~/Sites/hello/

Congratulations on your first steps to becoming a Django web developer!

Please visit FriendlyDjango.org for more tutorials, including Friendly Photos, which is the next step in how to create
a Django web application!

34 Chapter 3. Contents

https://friendlydjango.org/
https://friendly-photos.readthedocs.org/en/latest/

	Prerequisites
	Compatibility
	Contents
	Introduction
	Text editor
	Command line
	Command line tools
	Bash profile
	Homebrew
	pip & virtualenv
	Django


