
freshroastsr700 Documentation

Mark Spicer, Caleb Coffee

Sep 04, 2018

Contents

1 Contents 3
1.1 FreshroastSR700 Package . 3

1.1.1 freshroastsr700 module . 3
1.1.2 freshroastsr700.utils module . 6
1.1.3 freshroastsr700.pid module . 6
1.1.4 freshroastsr700.exceptions module . 7

1.2 FreshRoastSR700 Communication Protocol . 7
1.2.1 Packet fields . 8
1.2.2 Packet Sequences . 9

1.3 Contributing . 9
1.3.1 Setting up a development environment . 9
1.3.2 Running tests . 9

1.4 Release Notes . 10
1.4.1 Version 0.2.4 - Oct 2017 . 10
1.4.2 Version 0.2.3 - May 2017 . 10
1.4.3 Version 0.2.2 - May 2017 . 10
1.4.4 Version 0.2.1 - March 2017 . 10
1.4.5 Version 0.2.0 - March 2017 . 10
1.4.6 Version 0.1.1 - Dec 28 2017 . 10
1.4.7 Version 0.1.0 . 10
1.4.8 Version 0.0.6 . 10

2 Indices and tables 11

Python Module Index 13

i

ii

freshroastsr700 Documentation

A Python module to control a FreshRoastSR700 coffee roaster.

Contents 1

https://travis-ci.org/Roastero/freshroastsr700
https://coveralls.io/github/Roastero/freshroastsr700?branch=master
http://freshroastsr700.readthedocs.org/en/latest/?badge=latest

freshroastsr700 Documentation

2 Contents

CHAPTER 1

Contents

1.1 FreshroastSR700 Package

1.1.1 freshroastsr700 module

class freshroastsr700.freshroastsr700(update_data_func=None,
state_transition_func=None, thermostat=False,
kp=0.06, ki=0.0075, kd=0.01, heater_segments=8,
ext_sw_heater_drive=False)

Bases: object

A class to interface with a freshroastsr700 coffee roaster.

Args: update_data_func (func): A function to call when this object receives new data from the hardware.
Defaults to None.

state_transition_func (func): A function to call when time_remaining counts down to 0 and the device is
either in roasting or cooling state. Defaults to None.

thermostat (bool): thermostat mode. if set to True, turns on thermostat mode. In thermostat mode,
freshroastsr700 takes control of heat_setting and does software PID control to hit the demanded tar-
get_temp. Defaults to False.

ext_sw_heater_drive (bool): enable direct control over the internal heat_controller object. Defaults to
False. When set to True, the thermostat field is IGNORED, and assumed to be False. Direct control over
the software heater_level means that the freshroastsr700’s PID controller cannot control the heater. Since
thermostat and ext_sw_heater_drive cannot be allowed to both be True, this arg is given precedence over
the thermostat arg. Note that

(thermostat=False, ext_sw_heater_drive=False), (thermostat=True, ext_sw_heater_drive=False),
(thermostat=False, ext_sw_heater_drive=True),

are all acceptable arg combinations. Only the (thermostat=True, ext_sw_heater_drive=True),

cominbation is not allowed, and this software will set thermostat=False in that case.

3

freshroastsr700 Documentation

kp (float): Kp value to use for PID control. Defaults to 0.06.

ki (float): Ki value to use for PID control. Defaults to 0.0075.

kd (float): Kd value to use for PID control. Defaults to 0.01.

heater_segments (int): the pseudo-control range for the internal heat_controller object. Defaults to 8.

auto_connect()
Starts a thread that will automatically connect to the roaster when it is plugged in.

connect()
Attempt to connect to hardware immediately. Will not retry. Check freshroastsr700.connected or
freshroastsr700.connect_state to verify result. Raises:

freshroastsr700.exeptions.RoasterLookupError No hardware connected to the computer.

connect_state
A getter method for _connect_state. Indicates the current connection state this software is in for FreshRoast
SR700 hardware. Returns:

freshroastsr700.CS_NOT_CONNECTED the software is not currenting communicating with
hardware, neither was it instructed to do so. A previously failed connection attempt will also
result in this state.

freshroastsr700.CS_ATTEMPTING_CONNECT A call to auto_connect() or connect() was
made, and the software is currently attempting to connect to hardware.

freshroastsr700.CS_CONNECTED The hardware was found, and the software is communi-
cating with the hardware.

connected
A getter method for _connected. Indicates that the this software is currently communicating with
FreshRoast SR700 hardware.

cool()
Sets the current state of the roaster to cool. The roaster expects that cool will be run after roast, and will
not work as expected if ran before.

current_temp
Current temperature of the roast chamber as reported by hardware.

Returns: (int) current temperature, in degrees Fahrenheit

disconnect()
Stops the communication loop to the roaster. Note that this will not actually stop the roaster itself.

fan_speed
Get/Set fan speed. Can be 1 to 9 inclusive.

Args: Setter: fan_speed (int): fan speed

Returns: Getter: (int): fan speed

get_roaster_state()
Returns a string based upon the current state of the roaster. Will raise an exception if the state is unknown.

Returns: ‘idle’ if idle, ‘sleeping’ if sleeping, ‘cooling’ if cooling, ‘roasting’ if roasting, ‘connecting’ if in
hardware connection phase, ‘unknown’ otherwise

heat_setting
Get/Set heat setting, 0 to 3 inclusive. 0=off, 3=high. Do not set when running freshroastsr700 in thermostat
mode.

Args: Setter: heat_setting (int): heat setting

4 Chapter 1. Contents

freshroastsr700 Documentation

Returns: Getter: (int): heat setting

heater_level
A getter method for _heater_level. When thermostat=True, value is driven by built-in PID controller.
When ext_sw_heater_drive=True, value is driven by calls to heater_level(). Min will always be zero, max
will be heater_segments (optional instantiation parameter, defaults to 8).

idle()
Sets the current state of the roaster to idle.

roast()
Sets the current state of the roaster to roast and begins roasting.

set_state_transition_func(func)
THIS FUNCTION MUST BE CALLED BEFORE CALLING freshroastsr700.auto_connect().

Set, or re-set, the state transition function callback. The supplied function will be called from a separate
thread within freshroastsr700, triggered by a separate, internal child process. This function will fail if the
freshroastsr700 device is already connected to hardware, because by that time, the timer process and thread
have already been spawned.

Args: state_transition_func (func): the function to call for every state transition. A state transition occurs
whenever the freshroastsr700’s time_remaining value counts down to 0.

Returns: nothing

sleep()
Sets the current state of the roaster to sleep. Different than idle in that this will set double dashes on the
roaster display rather than digits.

state_transition_run(event_to_wait_on)
This is the thread that listens to an event from the timer process to execute the state_transition_func call-
back in the context of the main process.

target_temp
Get/Set the target temperature for this package’s built-in software PID controler. Only used when
freshroastsr700 is instantiated with thermostat=True.

Args: Setter: value (int): a target temperature in degF between 150 and 551.

Returns: Getter: (int) target temperature in degF between 150 and 551

terminate()
Stops the communication loop to the roaster and closes down all communication processes. Note that this
will not actually stop the roaster itself. You will need to instantiate a new freshroastsr700 object after
calling this function, in order to re-start communications with the hardware.

time_remaining
The amount of time, in seconds, remaining until a call to the state_transition_func is made. can be set to
an arbitrary value up to 600 seconds at any time. When a new value is set, freshroastsr700 will count down
from this new value down to 0.

time_remaining is decremented to 0 only when in a roasting or cooling state. In other states, the value is
not touched.

Args: Setter: time_remaining (int): tiem remaining in seconds

Returns: Getter: time_remaining(int): time remaining, in seconds

total_time
The total time this instance has been in roasting or cooling state sicne the latest roast began.

Returns: total_time (int): time, in seconds

1.1. FreshroastSR700 Package 5

freshroastsr700 Documentation

update_data_run(event_to_wait_on)
This is the thread that listens to an event from the comm process to execute the update_data_func callback
in the context of the main process.

class freshroastsr700.heat_controller(number_of_segments=8)
Bases: object

A class to do gross-level pulse modulation on a bang-bang interface.

Args: number_of_segments (int): the resolution of the heat_controller. Defaults to 8. for num-
ber_of_segments=N, creates a heat_controller that varies the heat between 0..N inclusive, in integer in-
crements, where 0 is no heat, and N is full heat. The bigger the number, the less often the heat value can
be changed, because this object is designed to be called at a regular time interval to output N binary values
before rolling over or picking up the latest commanded heat value.

about_to_rollover()
This method indicates that the next call to generate_bangbang_output is a wraparound read. Use this to
determine if it’s time to pick up the latest commanded heat_level value and run a PID controller iteration.

generate_bangbang_output()
Generates the latest on or off pulse in the string of on (True) or off (False) pulses according to the desired
heat_level setting. Successive calls to this function will return the next value in the on/off array series.
Call this at control loop rate to obtain the necessary on/off pulse train. This system will not work if the
caller expects to be able to specify a new heat_level at every control loop iteration. Only the value set at
every number_of_segments iterations will be picked up for output! Call about_to_rollover to determine if
it’s time to set a new heat_level, if a new level is desired.

heat_level
Set/Get the current desired output level. Must be between 0 and number_of_segments inclusive.

Args: Setter: value (int): heat_level value, between 0 and number_of_segments inclusive.

Returns: Getter (int): heat level

1.1.2 freshroastsr700.utils module

freshroastsr700.utils.find_device(vidpid)
Finds a connected device with the given VID:PID. Returns the serial port url.

freshroastsr700.utils.frange(start, stop, step, precision)
A generator that will generate a range of floats.

freshroastsr700.utils.seconds_to_float(time_in_seconds)
Converts seconds to float rounded to one digit. Will cap the float at 9.9 or 594 seconds.

1.1.3 freshroastsr700.pid module

class freshroastsr700.pid.PID(P, I, D, Derivator=0, Integrator=0, Output_max=8, Out-
put_min=0)

Bases: object

Discrete PID control.

getDerivator()

getError()

getIntegrator()

getPoint()

6 Chapter 1. Contents

freshroastsr700 Documentation

setDerivator(Derivator)

setIntegrator(Integrator)

setKd(D)

setKi(I)

setKp(P)

setPoint(targetTemp)
Initilize the setpoint of PID.

update(currentTemp, targetTemp)
Calculate PID output value for given reference input and feedback.

update_d(d)

update_i(i)

update_p(p)

1.1.4 freshroastsr700.exceptions module

exception freshroastsr700.exceptions.RoasterError
Bases: Exception

A base error for freshroastsr700 errors.

exception freshroastsr700.exceptions.RoasterLookupError
Bases: freshroastsr700.exceptions.RoasterError

Raised when a device is not able to be found from the connected devices.

exception freshroastsr700.exceptions.RoasterStateError
Bases: freshroastsr700.exceptions.RoasterError

Raised when the current state of the roaster is not a known roaster state.

exception freshroastsr700.exceptions.RoasterValueError
Bases: freshroastsr700.exceptions.RoasterError

Raised when a class variable assigned is out of the range of acceptable values.

1.2 FreshRoastSR700 Communication Protocol

All of the communication between the FreshRoastSR700 and the computer are happening over serial. The device
contains a USB to serial adapter that uses the CH341 chip set. With this, it creates a virtual serial port that the program
and roaster communicate over. Each of them send 14 byte packets back and forth between each other. Below is the
basic packet structure of the serial communications between the devices.

Header Tempera-
ture Unit

Flags Current
State

Fan
Speed

Time Re-
maining

Heat
Setting

Current Tem-
perature

Footer

2
bytes

2 bytes 1
byte

2 bytes 1 byte 1 byte 1 byte 2 bytes 2
bytes

An example packet would look like the following:

1.2. FreshRoastSR700 Communication Protocol 7

freshroastsr700 Documentation

Header Tempera-
ture Unit

Flags Current
State

Fan
Speed

Time Re-
maining

Heat
Setting

Current Tem-
perature

Footer

AA
AA

61 74 63 02 01 01 32 01 00 00 AA
FA

1.2.1 Packet fields

Header (2 bytes) - This field is 2 bytes and is almost always AA AA. When initializing communications with the
roaster, the computer sends AA 55.

Temperature Unit (2 bytes) - The next 2 bytes are used to set the unit (Celsius or Fahrenheit) of the temperature
being returned from the roaster. For Fahrenheit, this field should be 61 74.

Flags (1 byte) - This field of the packet is used to determine what type of packet is being sent or received.

63 - The packet was sent by the computer.

00 - The packet was sent by the roaster.

A0 - The current settings on the roaster that had been set manually.

AA - A beginning or middle line of a previously run recipe that had been saved to the roaster.

AF - Last line of a previously run recipe that had been saved to the roaster.

Current State (2 bytes) - This section controls the current state of the roaster. This field is responsible for making the
roaster start and stop.

02 01 - Idle (Shows current timer and fan speed values)

04 02 - Roasting

04 04 - Cooling

08 01 - Sleeping (Displays “-” in both fan speed and timer fields on the roaster)

Fan Speed (1 byte) - This field is the current fan speed in hex. Below is a list of valid values for this field.

01, 02, 03, 04, 05, 06, 07, 08, 09

Time Remaining (1 byte) - This field is the time remaining in hex. The time remaining is a decimal representation of
time as displayed on the roaster. For example, one minute and thirty seconds would appear as 1.5 on the roaster and
should be set as 0F in hex. Additionally, five minutes and fifty-four seconds would be represented as 5.9 on the roaster
and 3B in hex.

Heat Setting (1 byte) - This field is the heat setting for the roaster. This value will not cause the roaster to start
roasting. It only dictates what the roaster will do once it begins. Below is a list of valid values.

00 - No Heat (Cooling)

01 - Low Heat

02 - Medium Heat

03 - High Heat

Current Temperature (2 bytes) - This field is the current temperature as recorded by the roaster encoded in hex. When
the roaster does not read a temperature of 150°F or higher, it sends the following hex: FF 00. If the temperature is
higher than 150°F, the temperature is sent encoded in hex. For example, 352°F is 01 60.

Footer (2 bytes) - This field signifies the end of a packet and is always AA FA.

8 Chapter 1. Contents

freshroastsr700 Documentation

1.2.2 Packet Sequences

The FreshRoastSR700 has a distinct packet sequence that must be followed in order to communicate with the roaster.

To start off, every communication between the roaster and the computer is initiated by the computer. It is initiated
with a packet that looks like the packet below.

AA 55 61 74 63 00 00 00 00 00 00 00 AA FA

This packet is a blank packet with the header set to 55. This then signals the roaster to send back the last recipe that
had been loaded onto the roaster. Below is an example of the data that roaster would send back.

AA AA 61 74 A0 00 00 09 3B 02 00 00 AA FA – Manual setting currently on the roaster.

AA AA 61 74 AA 00 00 09 03 03 00 00 AA FA – First line of the recipe currently on the roaster.

AA AA 61 74 AA 00 00 09 01 02 00 00 AA FA – Second line of the recipe currently on the roaster.

AA AA 61 74 AF 00 00 09 1C 00 00 00 AA FA – Last line of the recipe currently on the roaster.

The roaster sends the above packets one right after another. It doesn’t wait for the computer to respond until after the
last line of sequence is sent. The last packet sent is denoted by AF in the flags field.

After this, the computer sends back the heat setting, fan speed, and time remaining it wants the roaster to be set to.
This is all sent in a single packet like the following.

AA AA 61 74 63 02 01 01 3B 01 00 00 AA FA – heat=low, fan speed=1, time=5.9 minutes

The roaster then sends back the current settings including the current temperature of the roaster if it’s 150°F or higher.
The response packet would look like the following.

AA AA 61 74 00 02 01 01 32 01 FF 00 AA FA

This continues indefinitely until the connection is closed. A packet should be sent from the computer every quarter of
a second, and no sooner. When the roaster should begin roasting, set the current state to roasting. The roaster cannot
go directly to cooling, and must be first set to roasting.

1.3 Contributing

1.3.1 Setting up a development environment

git clone git@github.com:Roastero/freshroastsr700.git
cd freshroastsr700
virtualenv venv -p python3
source venv/bin/activate
python setup.py develop

1.3.2 Running tests

This module uses tox to run tests and a code linter. Run the commands below in the base project directory to install
everything needed and run tests on the freshroastsr700 module.

pip install -r test-requirements.txt
tox

1.3. Contributing 9

freshroastsr700 Documentation

1.4 Release Notes

1.4.1 Version 0.2.4 - Oct 2017

Resolves feature request documented in issue #31 freshroastsr700 object can now be instantiated with manual control
of the software-based heater algorithm. Tested in Ubuntu 16.04.

1.4.2 Version 0.2.3 - May 2017

Resolves issues #22, 23, 24 and 25, and 29 (the latter introduced by 0.2.2). Added logic to handle hardware connects
and hardware disconnects properly in all supported OSes. Software now supports multiple connect()-disconnect()
cycles using the same freshroastsrs700 object instance. Tested in Windows 10 64-bit and Ubuntu 14.04.

1.4.3 Version 0.2.2 - May 2017

[Introduced issue #29. Inoperable in Windows environments - do not use.]

1.4.4 Version 0.2.1 - March 2017

Resolves issue #20 by managing hardware discovery logic in the comm process, eliminating the need for the thread
heretofore associated with auto_connect. Openroast 1.2 (currently in development) now operates properly in Windows
10 64-bit, with this fix.

1.4.5 Version 0.2.0 - March 2017

Completely rewritten PID control for tighter tracking against target temperature (when freshroastsr700 is instanti-
ated with thremostat=True). Callback functions for update_data_func and state_transition_func now called from a
thread belonging to the process that instantiated freshroastsr700. This was necessary for Openroast version 1.2 code
refactoring. Reduced processor load for PID control as part of code refactoring.

1.4.6 Version 0.1.1 - Dec 28 2017

Added support for python 2.7.

1.4.7 Version 0.1.0

(no notes)

1.4.8 Version 0.0.6

(no notes)

10 Chapter 1. Contents

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

11

freshroastsr700 Documentation

12 Chapter 2. Indices and tables

Python Module Index

f
freshroastsr700, 3
freshroastsr700.exceptions, 7
freshroastsr700.pid, 6
freshroastsr700.utils, 6

13

freshroastsr700 Documentation

14 Python Module Index

Index

A
about_to_rollover() (freshroastsr700.heat_controller

method), 6
auto_connect() (freshroastsr700.freshroastsr700 method),

4

C
connect() (freshroastsr700.freshroastsr700 method), 4
connect_state (freshroastsr700.freshroastsr700 attribute),

4
connected (freshroastsr700.freshroastsr700 attribute), 4
cool() (freshroastsr700.freshroastsr700 method), 4
current_temp (freshroastsr700.freshroastsr700 attribute),

4

D
disconnect() (freshroastsr700.freshroastsr700 method), 4

F
fan_speed (freshroastsr700.freshroastsr700 attribute), 4
find_device() (in module freshroastsr700.utils), 6
frange() (in module freshroastsr700.utils), 6
freshroastsr700 (class in freshroastsr700), 3
freshroastsr700 (module), 3
freshroastsr700.exceptions (module), 7
freshroastsr700.pid (module), 6
freshroastsr700.utils (module), 6

G
generate_bangbang_output()

(freshroastsr700.heat_controller method),
6

get_roaster_state() (freshroastsr700.freshroastsr700
method), 4

getDerivator() (freshroastsr700.pid.PID method), 6
getError() (freshroastsr700.pid.PID method), 6
getIntegrator() (freshroastsr700.pid.PID method), 6
getPoint() (freshroastsr700.pid.PID method), 6

H
heat_controller (class in freshroastsr700), 6
heat_level (freshroastsr700.heat_controller attribute), 6
heat_setting (freshroastsr700.freshroastsr700 attribute), 4
heater_level (freshroastsr700.freshroastsr700 attribute), 5

I
idle() (freshroastsr700.freshroastsr700 method), 5

P
PID (class in freshroastsr700.pid), 6

R
roast() (freshroastsr700.freshroastsr700 method), 5
RoasterError, 7
RoasterLookupError, 7
RoasterStateError, 7
RoasterValueError, 7

S
seconds_to_float() (in module freshroastsr700.utils), 6
set_state_transition_func()

(freshroastsr700.freshroastsr700 method),
5

setDerivator() (freshroastsr700.pid.PID method), 6
setIntegrator() (freshroastsr700.pid.PID method), 7
setKd() (freshroastsr700.pid.PID method), 7
setKi() (freshroastsr700.pid.PID method), 7
setKp() (freshroastsr700.pid.PID method), 7
setPoint() (freshroastsr700.pid.PID method), 7
sleep() (freshroastsr700.freshroastsr700 method), 5
state_transition_run() (freshroastsr700.freshroastsr700

method), 5

T
target_temp (freshroastsr700.freshroastsr700 attribute), 5
terminate() (freshroastsr700.freshroastsr700 method), 5
time_remaining (freshroastsr700.freshroastsr700 at-

tribute), 5

15

freshroastsr700 Documentation

total_time (freshroastsr700.freshroastsr700 attribute), 5

U
update() (freshroastsr700.pid.PID method), 7
update_d() (freshroastsr700.pid.PID method), 7
update_data_run() (freshroastsr700.freshroastsr700

method), 5
update_i() (freshroastsr700.pid.PID method), 7
update_p() (freshroastsr700.pid.PID method), 7

16 Index

	Contents
	FreshroastSR700 Package
	freshroastsr700 module
	freshroastsr700.utils module
	freshroastsr700.pid module
	freshroastsr700.exceptions module

	FreshRoastSR700 Communication Protocol
	Packet fields
	Packet Sequences

	Contributing
	Setting up a development environment
	Running tests

	Release Notes
	Version 0.2.4 - Oct 2017
	Version 0.2.3 - May 2017
	Version 0.2.2 - May 2017
	Version 0.2.1 - March 2017
	Version 0.2.0 - March 2017
	Version 0.1.1 - Dec 28 2017
	Version 0.1.0
	Version 0.0.6

	Indices and tables
	Python Module Index

