

FOSHttpCache

This is the documentation for the FOSHttpCache library [https://github.com/FriendsOfSymfony/FOSHttpCache].

This library integrates your PHP applications with HTTP caching proxies such as
Varnish, NGINX or the Symfony HttpCache class. Use this library to send
invalidation requests from your application to the caching proxy and to test
your caching and invalidation setup.

If you use the Symfony full stack framework, have a look at the FOSHttpCacheBundle [https://github.com/FriendsOfSymfony/FOSHttpCacheBundle].
The bundle provides the Invalidator as a service, support for the built-in cache
kernel of Symfony and a number of Symfony-specific features to help with caching and
caching proxies.

Contents:

	Getting started
	Installation

	Configuration

	Overview

	An Introduction to Cache Invalidation
	HTTP Caching Terminology

	What is Cache Invalidation?

	Invalidation Methods

	Caching Proxy Configuration
	Varnish Configuration

	NGINX Configuration

	Symfony HttpCache Configuration

	Caching Proxy Clients
	Setup

	Using the Clients

	Custom Guzzle Client

	The Cache Invalidator
	Setup

	Invalidating Paths and URLs

	Refreshing Paths and URLs

	Invalidating With a Regular Expression

	Flushing

	Error handling

	Extra Invalidation Handlers
	Tag Handler

	Cache on User Context
	Overview

	Proxy Client Configuration

	User Context Hash from Your Application

	The Original Request

	Alternative for Paywalls: Authorization Request

	Testing Your Application
	Setting Constants

	Overriding Getters

	Contributing
	Testing the Library

	Building the Documentation

Getting started

Installation

The FOSHttpCache library is available on Packagist [https://packagist.org/packages/friendsofsymfony/http-cache]. You can install it using
Composer [http://getcomposer.org]:

$ composer require friendsofsymfony/http-cache:~1.0

Note

This library follows Semantic Versioning [http://semver.org/]. Because constraint ~1.0
will only increment the minor and patch numbers, it will not introduce BC
breaks.

Configuration

There are three things you need to do to get started:

	configure your caching proxy

	set up a client for your caching proxy

	set up the cache invalidator

Overview

This library mainly consists of:

	low-level clients for communicating with caching proxies (Varnish and NGINX)

	a cache invalidator that acts as an abstraction layer for the caching proxy
clients

	test classes that you can use for integration testing your application
against a caching proxy.

Measures have been taken to minimize the performance impact of sending
invalidation requests:

	Requests are not sent immediately, but aggregated to be sent in parallel.

	You can determine when the requests should be sent. For optimal performance,
do so after the response has been sent to the client.

An Introduction to Cache Invalidation

This general introduction explains cache invalidation concepts. If you are
already familiar with cache invalidation, you may wish to skip this chapter.

HTTP Caching Terminology

	Client

	The client that requests web representations of the application data.
This client can be visitor of a website, or for instance a client that
fetches data from a REST API.

	Application

	Also backend application or origin server. The web application that
holds the data.

	Caching proxy

	Also reverse caching proxy [http://en.wikipedia.org/wiki/Reverse_proxy].
Examples: Varnish, NGINX.

	Time to live (TTL)

	Maximum lifetime of some content. Expressed in either an expiry date
for the content (the Expires: header) or its maximum age (the
max-age and s-maxage cache control directives).

	Invalidation

	Invalidating a piece of content means telling the caching proxy to no
longer serve that content to clients. The proxy can choose to either
discard the content immediately, or do so when it is next requested.
On that next request, the proxy will fetch a fresh copy from the
application.

What is Cache Invalidation?

There are only two hard things in Computer Science: cache invalidation and
naming things.

– Phil Karlton

The problem

HTTP caching is a great solution for improving the performance of your web
application. For lower load on the application and fastest response time, you
want to cache content for a long period. But at the same time, you want your
clients to see fresh content as soon as there is an update.

Instead of finding some compromise, you can have both with cache invalidation.
When application data changes, the application takes care of invalidating its
web representation as out-of-date. Although caching proxies may handle
invalidation differently, the effect is always the same: the next time a client
requests the data, he or she gets a new version instead of the outdated one.

Alternatives

There are three alternatives to cache invalidation.

	The first is to expire your cached content quickly by reducing its time to
live (TTL). However, short TTLs cause a higher load on the application
because content must be fetched from it more often. Moreover, reduced TTL
does not guarantee that clients will have fresh content, especially if the
content changes very rapidly as a result of client interactions with the
application.

	The second alternative is to validate the freshness of cached content at
every request. Again, this means more load on your application, even if you
return early (for instance by using HEAD requests).

	The last resort is to not cache volatile content at all. While this
guarantees the user always sees changes without delay, it obviously
increases your application load even more.

Cache invalidation gives you the best of both worlds: you can have very long
TTLs, so when content changes little, it can be served from the cache because
no requests to your application are required. At the same time, when data
does change, that change is reflected without delay in the web representations.

Disadvantages

Cache invalidation has two possible downsides:

	Invalidating cached web representations when their underlying data changes
can be very simple. For instance, invalidate /articles/123 when article 123
is updated. However, data usually is represented not in one but in multiple
representations. Article 123 could also be represented on the articles index
(/articles), the list of articles in the current year (/articles/current)
and in search results (/search?name=123). In this case, when article 123 is
changed, a lot more is involved in invalidating all of its representations.
In other words, invalidation adds a layer of complexity to your application.
This library tries to help reduce complexity, for instance by
tagging cached content. Additionally, if you use Symfony, we
recommend you use the FOSHttpCacheBundle [https://github.com/FriendsOfSymfony/FOSHttpCacheBundle].
which provides additional functionality to make invalidation easier.

	Invalidation is done through requests to your caching proxy. Sending these
requests could negatively influence performance, in particular if the client
has to wait for them. This library resolves this issue by optimizing the way
invalidation requests are sent.

Invalidation Methods

Cached content can be invalidated in three ways. Not all caching proxies support
all methods, please refer to proxy specific documentation for the details.

	Purge

	Purge removes content from the caching proxy immediately. The next time a
client requests the URL, data is fetched from the application, stored in
the caching proxy, and returned to the client.

A purge removes all variants of the cached content, as per the Vary
header.

	Refresh

	Fetch the requested page from the backend immediately, even if there would
normally be a cache hit. The content is not just deleted from the cache,
but is replaced with a new version fetched from the application.

As fetching is done with the parameters of the refresh request, other
variants of the same content will not be touched.

	Ban

	Unlike purge, ban does not remove the content from the cache
immediately. Instead, a reference to the content is added to a blacklist (or
ban list). Every client request is checked against this blacklist. If the
request happens to match blacklisted content, fresh content is fetched from the
application, stored in the caching proxy and returned to the client.

Bans cannot remove content from cache immediately because that would require
going through all cached content, which could take a long time and reduce
performance of the cache.

The ban solution may seem cumbersome, but offers more powerful cache
invalidation, such as selecting content to be banned by regular expressions.
This opens the way for powerful invalidation schemes, such as tagging cache
entries.

Caching Proxy Configuration

You need to configure the caching proxy of your choice. These guides help you
for the configuration for the features of this library. You will still need to
know about the other features of the caching proxy to get everything right.

	Varnish Configuration
	Basic Varnish Configuration

	Purge

	Refresh

	Ban

	Tagging

	User Context
	Cleaning the Cookie Header

	Debugging

	NGINX Configuration
	Purge

	Refresh

	Debugging

	Symfony HttpCache Configuration
	Extending the Correct HttpCache Class

	Purge

	Refresh

	User Context
	Cleaning the Cookie Header

Varnish Configuration

Below you will find detailed Varnish configuration recommendations for the
features provided by this library. The configuration is provided for Varnish 3
and 4.

Basic Varnish Configuration

To invalidate cached objects in Varnish, begin by adding an
ACL [https://www.varnish-cache.org/docs/3.0/tutorial/vcl.html#example-3-acls]
to your Varnish configuration. This ACL determines which IPs are allowed to
issue invalidation requests. Let’s call the ACL invalidators. The ACL below
will be used throughout the Varnish examples on this page.

/etc/varnish/your_varnish.vcl

acl invalidators {
 "localhost";
 # Add any other IP addresses that your application runs on and that you
 # want to allow invalidation requests from. For instance:
 # "192.168.1.0"/24;
}

Important

Make sure that all web servers running your application that may
trigger invalidation are whitelisted here. Otherwise, lost cache invalidation
requests will lead to lots of confusion.

Purge

To configure Varnish for handling PURGE requests [https://www.varnish-cache.org/docs/3.0/tutorial/purging.html]:

Purge removes a specific URL (including query strings) in all its variants (as specified by the Vary header).

	Varnish 4	1
2
3
4
5
6
7
8

	sub vcl_recv {
 if (req.method == "PURGE") {
 if (!client.ip ~ invalidators) {
 return (synth(405, "Not allowed"));
 }
 return (purge);
 }
}

	Varnish 3	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	sub vcl_recv {
 if (req.request == "PURGE") {
 if (!client.ip ~ invalidators) {
 error 405 "Not allowed";
 }
 return (lookup);
 }
}

sub vcl_hit {
 if (req.request == "PURGE") {
 purge;
 error 204 "Purged";
 }
}

The purge in vcl_miss is necessary to purge all variants in the cases where
you hit an object, but miss a particular variant.
sub vcl_miss {
 if (req.request == "PURGE") {
 purge;
 error 204 "Purged (Not in cache)";
 }
}

Refresh

If you want to invalidate cached objects by forcing a refresh [https://www.varnish-cache.org/trac/wiki/VCLExampleEnableForceRefresh]
add the following to your Varnish configuration:

Refresh invalidates a specific URL including the query string, but not its variants.

	1
2
3
4
5

	sub vcl_recv {
 if (req.http.Cache-Control ~ "no-cache" && client.ip ~ invalidators) {
 set req.hash_always_miss = true;
 }
}

Ban

To configure Varnish for handling BAN requests [https://www.varnish-software.com/static/book/Cache_invalidation.html#banning]:

	Varnish 4	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	sub vcl_recv {

 if (req.method == "BAN") {
 if (!client.ip ~ invalidators) {
 return (synth(405, "Not allowed"));
 }

 ban("obj.http.X-Host ~ " + req.http.X-Host
 + " && obj.http.X-Url ~ " + req.http.X-Url
 + " && obj.http.content-type ~ " + req.http.X-Content-Type
);

 return (synth(200, "Banned"));
 }
}

sub vcl_backend_response {

 # Set ban-lurker friendly custom headers
 set beresp.http.X-Url = bereq.url;
 set beresp.http.X-Host = bereq.http.host;
}

sub vcl_deliver {

 # Keep ban-lurker headers only if debugging is enabled
 if (!resp.http.X-Cache-Debug) {
 # Remove ban-lurker friendly custom headers when delivering to client
 unset resp.http.X-Url;
 unset resp.http.X-Host;
 unset resp.http.X-Cache-Tags;
 }
}

	Varnish 3	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	sub vcl_recv {

 if (req.request == "BAN") {
 if (!client.ip ~ invalidators) {
 error 405 "Not allowed.";
 }

 ban("obj.http.X-Host ~ " + req.http.X-Host
 + " && obj.http.X-Url ~ " + req.http.X-Url
 + " && obj.http.content-type ~ " + req.http.X-Content-Type
);

 error 200 "Banned";
 }
}

sub vcl_fetch {

 # Set ban-lurker friendly custom headers
 set beresp.http.X-Url = req.url;
 set beresp.http.X-Host = req.http.host;
}

sub vcl_deliver {

 # Keep ban-lurker headers only if debugging is enabled
 if (!resp.http.X-Cache-Debug) {
 # Remove ban-lurker friendly custom headers when delivering to client
 unset resp.http.X-Url;
 unset resp.http.X-Host;
 unset resp.http.X-Cache-Tags;
 }
}

Varnish contains a ban lurker [https://www.varnish-software.com/blog/ban-lurker] that crawls the content to eventually throw out banned data even when it’s not requested by any client.

Tagging

Add the following to your Varnish configuration to enable cache tagging.

Note

The custom X-Cache-Tags header should match the tagging header
configured in the cache invalidator.

	Varnish 4	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

	sub vcl_recv {

 if (req.method == "BAN") {
 if (!client.ip ~ invalidators) {
 return (synth(405, "Not allowed"));
 }

 if (req.http.X-Cache-Tags) {
 ban("obj.http.X-Host ~ " + req.http.X-Host
 + " && obj.http.X-Url ~ " + req.http.X-Url
 + " && obj.http.content-type ~ " + req.http.X-Content-Type
 + " && obj.http.X-Cache-Tags ~ " + req.http.X-Cache-Tags
);
 } else {
 ban("obj.http.X-Host ~ " + req.http.X-Host
 + " && obj.http.X-Url ~ " + req.http.X-Url
 + " && obj.http.content-type ~ " + req.http.X-Content-Type
);
 }

 return (synth(200, "Banned"));
 }
}

sub vcl_backend_response {

 # Set ban-lurker friendly custom headers
 set beresp.http.X-Url = bereq.url;
 set beresp.http.X-Host = bereq.http.host;
}

sub vcl_deliver {

 # Keep ban-lurker headers only if debugging is enabled
 if (!resp.http.X-Cache-Debug) {
 # Remove ban-lurker friendly custom headers when delivering to client
 unset resp.http.X-Url;
 unset resp.http.X-Host;
 unset resp.http.X-Cache-Tags;
 }
}

	Varnish 3	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

	sub vcl_recv {

 if (req.request == "BAN") {
 if (!client.ip ~ invalidators) {
 error 405 "Not allowed.";
 }

 if (req.http.X-Cache-Tags) {
 ban("obj.http.X-Host ~ " + req.http.X-Host
 + " && obj.http.X-Url ~ " + req.http.X-Url
 + " && obj.http.content-type ~ " + req.http.X-Content-Type
 + " && obj.http.X-Cache-Tags ~ " + req.http.X-Cache-Tags
);
 } else {
 ban("obj.http.X-Host ~ " + req.http.X-Host
 + " && obj.http.X-Url ~ " + req.http.X-Url
 + " && obj.http.content-type ~ " + req.http.X-Content-Type
);
 }

 error 200 "Banned";
 }
}

sub vcl_fetch {

 # Set ban-lurker friendly custom headers
 set beresp.http.X-Url = req.url;
 set beresp.http.X-Host = req.http.host;
}

sub vcl_deliver {

 # Keep ban-lurker headers only if debugging is enabled
 if (!resp.http.X-Cache-Debug) {
 # Remove ban-lurker friendly custom headers when delivering to client
 unset resp.http.X-Url;
 unset resp.http.X-Host;
 unset resp.http.X-Cache-Tags;
 }
}

User Context

To support user context hashing you need to add some logic
to the recv and the deliver methods:

	Varnish 4	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

	sub vcl_recv {

 # Prevent tampering attacks on the hash mechanism
 if (req.restarts == 0
 && (req.http.accept ~ "application/vnd.fos.user-context-hash"
 || req.http.X-User-Context-Hash
)
) {
 return (synth(400));
 }

 # Lookup the context hash if there are credentials on the request
 # Only do this for cacheable requests. Returning a hash lookup discards the request body.
 # https://www.varnish-cache.org/trac/ticket/652
 if (req.restarts == 0
 && (req.http.cookie || req.http.authorization)
 && (req.method == "GET" || req.method == "HEAD")
) {
 # Backup accept header, if set
 if (req.http.accept) {
 set req.http.X-Fos-Original-Accept = req.http.accept;
 }
 set req.http.accept = "application/vnd.fos.user-context-hash";

 # Backup original URL
 set req.http.X-Fos-Original-Url = req.url;
 set req.url = "/_fos_user_context_hash";

 # Force the lookup, the backend must tell not to cache or vary on all
 # headers that are used to build the hash.
 return (hash);
 }

 # Rebuild the original request which now has the hash.
 if (req.restarts > 0
 && req.http.accept == "application/vnd.fos.user-context-hash"
) {
 set req.url = req.http.X-Fos-Original-Url;
 unset req.http.X-Fos-Original-Url;
 if (req.http.X-Fos-Original-Accept) {
 set req.http.accept = req.http.X-Fos-Original-Accept;
 unset req.http.X-Fos-Original-Accept;
 } else {
 # If accept header was not set in original request, remove the header here.
 unset req.http.accept;
 }

 # Force the lookup, the backend must tell not to cache or vary on the
 # user hash to properly separate cached data.

 return (hash);
 }
}

sub vcl_backend_response {
 if (bereq.http.accept ~ "application/vnd.fos.user-context-hash"
 && beresp.status >= 500
) {
 return (abandon);
 }
}

sub vcl_deliver {
 # On receiving the hash response, copy the hash header to the original
 # request and restart.
 if (req.restarts == 0
 && resp.http.content-type ~ "application/vnd.fos.user-context-hash"
) {
 set req.http.X-User-Context-Hash = resp.http.X-User-Context-Hash;

 return (restart);
 }

 # If we get here, this is a real response that gets sent to the client.

 # Remove the vary on context user hash, this is nothing public. Keep all
 # other vary headers.
 set resp.http.Vary = regsub(resp.http.Vary, "(?i),? *X-User-Context-Hash *", "");
 set resp.http.Vary = regsub(resp.http.Vary, "^, *", "");
 if (resp.http.Vary == "") {
 unset resp.http.Vary;
 }

 # Sanity check to prevent ever exposing the hash to a client.
 unset resp.http.X-User-Context-Hash;
}

	Varnish 3	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

	sub vcl_recv {

 # Prevent tampering attacks on the hash mechanism
 if (req.restarts == 0
 && (req.http.accept ~ "application/vnd.fos.user-context-hash"
 || req.http.X-User-Context-Hash
)
) {
 error 400;
 }

 # Lookup the context hash if there are credentials on the request
 # Only do this for cacheable requests. Returning a hash lookup discards the request body.
 # https://www.varnish-cache.org/trac/ticket/652
 if (req.restarts == 0
 && (req.http.cookie || req.http.authorization)
 && (req.request == "GET" || req.request == "HEAD")
) {
 # Backup accept header, if set
 if (req.http.accept) {
 set req.http.X-Fos-Original-Accept = req.http.accept;
 }
 set req.http.accept = "application/vnd.fos.user-context-hash";

 # Backup original URL
 set req.http.X-Fos-Original-Url = req.url;
 set req.url = "/_fos_user_context_hash";

 # Force the lookup, the backend must tell not to cache or vary on all
 # headers that are used to build the hash.
 return (lookup);
 }

 # Rebuild the original request which now has the hash.
 if (req.restarts > 0
 && req.http.accept == "application/vnd.fos.user-context-hash"
) {
 set req.url = req.http.X-Fos-Original-Url;
 unset req.http.X-Fos-Original-Url;
 if (req.http.X-Fos-Original-Accept) {
 set req.http.accept = req.http.X-Fos-Original-Accept;
 unset req.http.X-Fos-Original-Accept;
 } else {
 # If accept header was not set in original request, remove the header here.
 unset req.http.accept;
 }

 # Force the lookup, the backend must tell not to cache or vary on the
 # user hash to properly separate cached data.

 return (lookup);
 }
}

sub vcl_fetch {
 if (req.restarts == 0
 && req.http.accept ~ "application/vnd.fos.user-context-hash"
 && beresp.status >= 500
) {
 error 503 "Hash error";
 }
}

sub vcl_deliver {
 # On receiving the hash response, copy the hash header to the original
 # request and restart.
 if (req.restarts == 0
 && resp.http.content-type ~ "application/vnd.fos.user-context-hash"
 && resp.status == 200
) {
 set req.http.X-User-Context-Hash = resp.http.X-User-Context-Hash;

 return (restart);
 }

 # If we get here, this is a real response that gets sent to the client.

 # Remove the vary on context user hash, this is nothing public. Keep all
 # other vary headers.
 set resp.http.Vary = regsub(resp.http.Vary, "(?i),? *X-User-Context-Hash *", "");
 set resp.http.Vary = regsub(resp.http.Vary, "^, *", "");
 if (resp.http.Vary == "") {
 remove resp.http.Vary;
 }

 # Sanity check to prevent ever exposing the hash to a client.
 remove resp.http.X-User-Context-Hash;
}

Caching User Specific Content

By default, Varnish does not check for cached data as soon as the request
has a Cookie or Authorization header, as per the builtin VCL [https://www.varnish-cache.org/trac/browser/bin/varnishd/builtin.vcl?rev=4.0]
(for Varnish 3, see default VCL [https://www.varnish-cache.org/trac/browser/bin/varnishd/default.vcl?rev=3.0]). For the user context, you make Varnish
cache even when there are credentials present.

You need to be very careful when doing this: Your application is
responsible for properly specifying what may or may not be shared. If a
content only depends on the hash, Vary on the header containing the
hash and set a Cache-Control header to make Varnish cache the request.
If the response is individual however, you need to Vary on the
Cookie and/or Authorization header and probably want to send a
header like Cache-Control: s-maxage=0 to prevent Varnish from caching.

Your backend application should respond to the application/vnd.fos.user-context-hash
request with a proper user hash.

Note

We do not use X-Original-Url here, as the header will be sent to the
backend and some applications look at this header, which would lead to
problems. For example, the Microsoft IIS rewriting module uses this header
and Symfony has to look into that header to support IIS.

Note

If you want the context hash to be cached, you need to always set the
req.url to the same URL, or Varnish will cache every hash lookup
separately.

However, if you have a paywall scenario, you need to
leave the original URL unchanged.

Cleaning the Cookie Header

In the examples above, an unaltered Cookie header is passed to the backend to
use for determining the user context hash. However, cookies as they are sent
by a browser are unreliable. For instance, when using Google Analytics, cookie
values are different for each request. Because of this, the hash request would
not be cached, but multiple hashes would be generated for one and the same user.

To make the hash request cacheable, you must extract a stable user session id.
You can do this as
explained in the Varnish documentation [https://www.varnish-cache.org/trac/wiki/VCLExampleRemovingSomeCookies#RemovingallBUTsomecookies]:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	sub vcl_recv {
 # ...

 set req.http.cookie = ";" + req.http.cookie;
 set req.http.cookie = regsuball(req.http.cookie, "; +", ";");
 set req.http.cookie = regsuball(req.http.cookie, ";(PHPSESSID)=", "; \1=");
 set req.http.cookie = regsuball(req.http.cookie, ";[^][^;]*", "");
 set req.http.cookie = regsuball(req.http.cookie, "^[;]+|[;]+$", "");

 # ...
}

Note

If your application’s user authentication is based on a cookie other than
PHPSESSID, change PHPSESSID to your cookie name.

Debugging

Configure your Varnish to set a custom header (X-Cache) that shows whether a
cache hit or miss occurred. This header will only be set if your application
sends an X-Cache-Debug header:

	Varnish 4	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	sub vcl_deliver {
 # Add extra headers if debugging is enabled
 # In Varnish 4 the obj.hits counter behaviour has changed, so we use a
 # different method: if X-Varnish contains only 1 id, we have a miss, if it
 # contains more (and therefore a space), we have a hit.
 if (resp.http.X-Cache-Debug) {
 if (resp.http.X-Varnish ~ " ") {
 set resp.http.X-Cache = "HIT";
 } else {
 set resp.http.X-Cache = "MISS";
 }
 }
}

	Varnish 3	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	sub vcl_deliver {
 # Add extra headers if debugging is enabled
 if (resp.http.X-Cache-Debug) {
 if (obj.hits > 0) {
 set resp.http.X-Cache = "HIT";
 } else {
 set resp.http.X-Cache = "MISS";
 }
 }
}

NGINX Configuration

Below you will find detailed NGINX configuration recommendations for the
features provided by this library. The examples are tested with NGINX version
1.4.6.

NGINX cache is a set of key/value pairs. The key is built with elements taken from the requests
(URI, cookies, http headers etc) as specified by proxy_cache_key directive.

When we interact with the cache to purge/refresh entries we must send to NGINX a request which has
the very same values, for the elements used for building the key, as the request that create the entry.
In this way NGINX can build the correct key and apply the required operation to the entry.

By default NGINX key is built with $scheme$proxy_host$request_uri. For a full list of the elements
you can use in the key see this page from the official documentation [http://nginx.org/en/docs/http/ngx_http_core_module.html#variables]

Purge

NGINX does not support purge functionality out of the box but you can easily add it with
ngx_cache_purge [https://github.com/FRiCKLE/ngx_cache_purge] module. You just need to compile
NGINX from sources adding ngx_cache_purge with –add-module

You can check the script install-nginx.sh [https://github.com/FriendsOfSymfony/FOSHttpCache/blob/master/tests/install-nginx.sh] to get an idea
about the steps you need to perform.

Then configure NGINX for purge requests:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

	worker_processes 4;

events {
 worker_connections 768;
}

http {

 log_format proxy_cache '$time_local '
 '"$upstream_cache_status | X-Refresh: $http_x_refresh" '
 '"$request" ($status) '
 '"$http_user_agent" ';

 error_log /tmp/fos_nginx_error.log debug;
 access_log /tmp/fos_nginx_access.log proxy_cache;

 proxy_cache_path /tmp/foshttpcache-nginx keys_zone=FOS_CACHE:10m;

 # Add an HTTP header with the cache status. Required for FOSHttpCache tests.
 add_header X-Cache $upstream_cache_status;

 server {

 listen 127.0.0.1:8088;

 server_name localhost
 127.0.0.1
 ;

 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 location / {
 proxy_cache FOS_CACHE;
 proxy_pass http://localhost:8080;
 proxy_set_header Host $host;
 proxy_cache_key uriis_args$args;
 proxy_cache_valid 200 302 301 404 1m;

 proxy_cache_purge PURGE from 127.0.0.1;

 # For refresh
 proxy_cache_bypass $http_x_refresh;
 }

 # This must be the same as the $purgeLocation supplied
 # in the Nginx class constructor
 location ~ /purge(/.*) {
 allow 127.0.0.1;
 deny all;
 proxy_cache_purge FOS_CACHE 1is_args$args;
 }
 }
}

Please refer to the ngx_cache_purge module documentation [https://github.com/FRiCKLE/ngx_cache_purge]
for more on configuring NGINX to support purge requests.

Refresh

If you want to invalidate cached objects by forcing a refresh
you have to use the built-in proxy_cache_bypass [http://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_cache_bypass]
directive. This directive defines conditions under which the response will not
be taken from a cache. This library uses a custom HTTP header named X-Refresh,
so add a line like the following to your config:

 proxy_cache_bypass $http_x_refresh;

Debugging

Configure your Nginx to set a custom header (X-Cache) that shows whether a
cache hit or miss occurred:

add_header X-Cache $upstream_cache_status;

Symfony HttpCache Configuration

The symfony/http-kernel component provides a reverse proxy implemented
completely in PHP, called HttpCache [http://symfony.com/doc/current/book/http_cache.html#symfony-reverse-proxy]. While it is certainly less efficient
than using Varnish or NGINX, it can still provide considerable performance
gains over an installation that is not cached at all. It can be useful for
running an application on shared hosting for instance.

You can use features of this library with the help of the
EventDispatchingHttpCache provided here. The basic concept is to use event
subscribers on the HttpCache class.

Warning

If you are using the full stack Symfony framework, have a look at the
HttpCache provided by the FOSHttpCacheBundle [https://github.com/FriendsOfSymfony/FOSHttpCacheBundle] instead.

Note

Symfony HttpCache does not currently provide support for banning.

Extending the Correct HttpCache Class

Instead of extending Symfony\Component\HttpKernel\HttpCache\HttpCache, your
AppCache should extend FOS\HttpCache\SymfonyCache\EventDispatchingHttpCache.

Tip

If your class already needs to extend a different class, simply copy the
event handling code from the EventDispatchingHttpCache into your
AppCache class and make it implement CacheInvalidationInterface.
The drawback is that you need to manually check whether you need to adjust
your AppCache each time you update the FOSHttpCache library.

Now that you have an event dispatching kernel, you can make it register the
subscribers you need. While you could do that from your bootstrap code, this is
not the recommended way. You would need to adjust every place you instantiate
the cache. Instead, overwrite the constructor of AppCache and register the
subscribers there. A simple cache will look like this:

use FOS\HttpCache\SymfonyCache\EventDispatchingHttpCache;
use FOS\HttpCache\SymfonyCache\UserContextSubscriber;

class AppCache extends EventDispatchingHttpCache
{
 /**
 * Overwrite constructor to register event subscribers for FOSHttpCache.
 */
 public function __construct(HttpKernelInterface $kernel, $cacheDir = null)
 {
 parent::__construct($kernel, $cacheDir);

 $this->addSubscriber(new UserContextSubscriber());
 $this->addSubscriber(new PurgeSubscriber());
 $this->addSubscriber(new RefreshSubscriber());
 }
}

Purge

To support cache purging, register the
PurgeSubscriber. If the default settings are right for you, you don’t
need to do anything more.

Purging is only allowed from the same machine by default. To purge data from
other hosts, provide the IPs of the machines allowed to purge, or provide a
RequestMatcher that checks for an Authorization header or similar. Only set
one of purge_client_ips or purge_client_matcher.

	purge_client_ips: String with IP or array of IPs that are allowed to
purge the cache.

default: 127.0.0.1

	purge_client_matcher: RequestMatcher that only matches requests that are
allowed to purge.

default: null

	purge_method: HTTP Method used with purge requests.

default: PURGE

Refresh

To support cache refresh, register the
RefreshSubscriber. You can pass the constructor an option to specify
what clients are allowed to refresh cache entries. Refreshing is only allowed
from the same machine by default. To refresh from other hosts, provide the
IPs of the machines allowed to refresh, or provide a RequestMatcher that
checks for an Authorization header or similar. Only set one of
refresh_client_ips or refresh_client_matcher.

The refresh subscriber needs to access the HttpCache::fetch method which
is protected on the base HttpCache class. The EventDispatchingHttpCache
exposes the method as public, but if you implement your own kernel, you need
to overwrite the method to make it public.

	refresh_client_ips: String with IP or array of IPs that are allowed to
refresh the cache.

default: 127.0.0.1

	refresh_client_matcher: RequestMatcher that only matches requests that are
allowed to refresh.

default: null

User Context

To support user context hashing you need to register the
UserContextSubscriber. The user context is then automatically recognized
based on session cookies or authorization headers. If the default settings are
right for you, you don’t need to do anything more. You can customize a number of
options through the constructor:

	anonymous_hash: Hash used for anonymous user. This is a performance
optimization to not do a backend request for users that are not logged in.

	user_hash_accept_header: Accept header value to be used to request the
user hash to the backend application. Must match the setup of the backend
application.

default: application/vnd.fos.user-context-hash

	user_hash_header: Name of the header the user context hash will be stored
into. Must match the setup for the Vary header in the backend application.

default: X-User-Context-Hash

	user_hash_uri: Target URI used in the request for user context hash
generation.

default: /_fos_user_context_hash

	user_hash_method: HTTP Method used with the hash lookup request for user
context hash generation.

default: GET

	user_identifier_headers: List of request headers that authenticate a non-anonymous request.

default: ['Authorization', 'HTTP_AUTHORIZATION', 'PHP_AUTH_USER']

	session_name_prefix: Prefix for session cookies. Must match your PHP session configuration.
If cookies are not relevant in your application, you can set this to false to ignore any
cookies. (Only set this to ``false`` if you do not use sessions at all.)

default: PHPSESSID

Warning

If you have a customized session name, it is very important that this
constant matches it.
Session IDs are indeed used as keys to cache the generated use context hash.

Wrong session name will lead to unexpected results such as having the same
user context hash for every users, or not having it cached at all, which
hurts performance.

Note

To use authorization headers for user context, you might have to add some server
configuration to make these headers available to PHP.

With Apache, you can do this for example in a .htaccess file:

RewriteEngine On
RewriteRule .* - [E=HTTP_AUTHORIZATION:%{HTTP:Authorization}]

Cleaning the Cookie Header

By default, the UserContextSubscriber only sets the session cookie (according to
the session_name_prefix option) in the requests to the backend. If you need
a different behavior, overwrite UserContextSubscriber::cleanupHashLookupRequest
with your own logic.

Caching Proxy Clients

This library ships with clients for the Varnish, NGINX and Symfony built-in caching proxies. You
can use the clients either wrapped by the cache invalidator
(recommended), or directly for low-level access to invalidation functionality.

Setup

Varnish Client

At minimum, supply an array containing IPs or hostnames of the Varnish servers
that you want to send invalidation requests to. Make sure to include the port
Varnish runs on if it is not port 80:

use FOS\HttpCache\ProxyClient\Varnish;

$servers = array('10.0.0.1', '10.0.0.2:6081'); // Port 80 assumed for 10.0.0.1
$varnish = new Varnish($servers);

This is sufficient for invalidating absolute URLs. If you also wish to
invalidate relative paths, supply the hostname (or base URL) where your website
is available as the second parameter:

$varnish = new Varnish($servers, 'my-cool-app.com');

Again, if you access your web application on a port other than 80, make sure to
include that port in the base URL:

$varnish = new Varnish($servers, 'my-cool-app.com:8080');

Note

To make invalidation work, you need to configure Varnish accordingly.

NGINX Client

At minimum, supply an array containing IPs or hostnames of the NGINX servers
that you want to send invalidation requests to. Make sure to include the port
NGINX runs on if it is not the default:

use FOS\HttpCache\ProxyClient\Nginx;

$servers = array('10.0.0.1', '10.0.0.2:8088'); // Port 80 assumed for 10.0.0.1
$nginx = new Nginx($servers);

This is sufficient for invalidating absolute URLs. If you also wish to
invalidate relative paths, supply the hostname (or base URL) where your website
is available as the second parameter:

$nginx = new Nginx($servers, 'my-cool-app.com');

If you have configured NGINX to support purge requests at a separate location,
supply that location to the class as the third parameter:

$nginx = new Nginx($servers, 'my-cool-app.com', '/purge');

Note

To use the client, you need to configure NGINX accordingly.

Symfony Client

At minimum, supply an array containing IPs or hostnames of your web servers
running Symfony. Provide the direct access to the web server without any other
proxies that might block invalidation requests. Make sure to include the port
the web server runs on if it is not the default:

use FOS\HttpCache\ProxyClient\Symfony;

$servers = array('10.0.0.1', '10.0.0.2:8088'); // Port 80 assumed for 10.0.0.1
$client = new Symfony($servers);

This is sufficient for invalidating absolute URLs. If you also wish to
invalidate relative paths, supply the hostname (or base URL) where your website
is available as the second parameter:

$client = new Symfony($servers, 'my-cool-app.com');

Note

To make invalidation work, you need to use the EventDispatchingHttpCache.

Using the Clients

Each client is an implementation of ProxyClientInterface [https://github.com/FriendsOfSymfony/FOSHttpCache/blob/master/src/ProxyClient/ProxyClientInterface.php].
All other interfaces, PurgeInterface, RefreshInterface and BanInterface
extend this ProxyClientInterface. So each client implements at least one of
the three invalidation methods depending on the
caching proxy’s abilities.

The ProxyClientInterface has one method: flush(). After collecting
invalidation requests, flush() needs to be called to actually send the
requests to the caching proxy. This is on purpose: this way, we can send
all requests together, reducing the performance impact of sending invalidation
requests.

Supported invalidation methods

	Client

	Purge

	Refresh

	Ban

	Varnish

	✓

	✓

	✓

	NGINX

	✓

	✓

	

	Symfony Cache

	✓

	✓

	

Purge

If the caching proxy understands purge requests,
its client should implement PurgeInterface. Use the purge($url) method to
purge one specific URL. The URL can be either an absolute URL or a relative
path:

$client
 ->purge('http://my-app.com/some/path')
 ->purge('/other/path')
 ->flush()
;

You can specify HTTP headers as the second argument to purge().
For instance:

$client
 ->purge('/some/path', array('X-Foo' => 'bar')
 ->flush()
;

Please note that purge will invalidate all variants, so you do not have to
send any headers that you vary on, such as Accept.

This allows you to pass headers that are different between purge requests.
If you want to add a header to all purge requests, such as Authorization,
use a custom Guzzle client instead.

Refresh

If the caching proxy understands refresh requests,
its client should implement RefreshInterface. Use refresh() to refresh
one specific URL. The URL can be either an absolute URL or a relative path:

$client
 ->refresh('http://my-app.com/some/path')
 ->refresh('other/path')
 ->flush()
;

You can specify HTTP headers as the second argument to refresh(). For
instance, to only refresh the JSON representation of an URL:

$client
 ->refresh('/some/path', array('Accept' => 'application/json')
 ->flush()
;

Ban

If the caching proxy understands ban requests,
its client should implement BanInterface.

You can invalidate all URLs matching a regular expression by using the
banPath($path, $contentType, $hosts) method. It accepts a regular expression
for the path to invalidate and an optional content type regular expression and
list of application hostnames.

For instance, to ban all .png files on all application hosts:

$client->banPath('.*png$');

To ban all HTML URLs that begin with /articles/:

$client->banPath('/articles/.*', 'text/html');

By default, URLs will be banned on all application hosts. You can limit this by
specifying a host header:

$client->banPath('*.png$', null, '^www.example.com$');

If you want to go beyond banning combinations of path, content type and hostname,
use the ban(array $headers) method. This method allows you to specify any
combination of headers that should be banned. For instance, when using the
Varnish client:

use FOS\HttpCache\ProxyClient\Varnish;

$varnish->ban(array(
 Varnish::HTTP_HEADER_URL => '.*\.png$',
 Varnish::HTTP_HEADER_HOST => '.*example\.com',
 Varnish::HTTP_HEADER_CACHE => 'my-tag',
));

Make sure to add any headers that you want to ban on to your
proxy configuration.

Custom Guzzle Client

By default, the proxy clients instantiate a Guzzle client [http://guzzle3.readthedocs.org/] to communicate
with the caching proxy. If you need to customize the requests, for example to
send a basic authentication header, you can inject a custom Guzzle client:

use FOS\HttpCache\ProxyClient\Varnish;
use Guzzle\Http\Client;

$client = new Client();
$client->setDefaultOption('auth', array('username', 'password', 'Digest'));

$servers = array('10.0.0.1');
$varnish = new Varnish($servers, '/baseUrl', $client);

The Symfony client accepts a guzzle client as the 3rd parameter as well, NGINX
accepts it as 4th parameter.

The Cache Invalidator

Use the cache invalidator to invalidate or refresh paths, URLs and headers.
It is the invalidator that you will probably use most when interacting with
the library.

Setup

Create the cache invalidator by passing a proxy client as
adapter [http://en.wikipedia.org/wiki/Adapter_pattern]:

use FOS\HttpCache\CacheInvalidator;
use FOS\HttpCache\ProxyClient;

$client = new ProxyClient\Varnish(...);
// or
$client = new ProxyClient\Nginx(...);
// or
$client = new ProxyClient\Symfony(...);

$cacheInvalidator = new CacheInvalidator($client);

Note

See proxy client setup for more on constructing a client.

Invalidating Paths and URLs

Note

Make sure to configure your proxy for purging
first.

Invalidate a path:

$cacheInvalidator->invalidatePath('/users')
 ->flush()
;

See below for the flush() method.

Invalidate a URL:

$cacheInvalidator->invalidatePath('http://www.example.com/users')->flush();

Invalidate a URL with added header(s):

$cacheInvalidator->invalidatePath(
 'http://www.example.com/users',
 array('Cookie' => 'foo=bar; fizz=bang')
)->flush();

This allows you to pass headers that are different between purge requests.
If you want to add a header to all purge requests, such as Authorization,
use a custom Guzzle client instead.

Refreshing Paths and URLs

Note

Make sure to configure your proxy for refreshing
first.

$cacheInvalidator->refreshPath('/users')->flush();

Refresh a URL:

$cacheInvalidator->refreshPath('http://www.example.com/users')->flush();

Refresh a URL with added header(s):

$cacheInvalidator->refreshPath(
 'http://www.example.com/users',
 array('Cookie' => 'foo=bar; fizz=bang')
)->flush();

This allows you to pass headers that are different between purge requests.
If you want to add a header to all purge requests, such as Authorization,
use a custom Guzzle client instead.

Invalidating With a Regular Expression

Note

Make sure to configure your proxy for banning
first.

URL, Content Type and Hostname

You can invalidate all URLs matching a regular expression by using the
invalidateRegex method. You can further limit the cache entries to invalidate
with a regular expression for the content type and/or the application hostname.

For instance, to invalidate all .css files for all hostnames handled by this
caching proxy:

$cacheInvalidator->invalidateRegex('.*css$')->flush();

To invalidate all .png files on host example.com:

$cacheInvalidator
 ->invalidateRegex('.*', 'image/png', array('example.com'))
 ->flush()
;

Any Header

You can also invalidate the cache based on any headers.

Note

If you use non-default headers, make sure to configure your proxy
to have them taken into account.

Cache client implementations should fill up the headers to at least have the
default headers always present to simplify the cache configuration rules.

To invalidate on a custom header X-My-Header, you would do:

$cacheInvalidator->invalidate(array('X-My-Header' => 'my-value'))->flush();

Flushing

The CacheInvalidator internally queues the invalidation requests and only sends
them out to your HTTP proxy when you call flush():

$cacheInvalidator
 ->invalidateRoute(...)
 ->invalidatePath(...)
 ->flush()
;

Try delaying flush until after the response has been sent to the client’s
browser. This keeps the performance impact of sending invalidation requests to
a minimum.

When using the FOSHttpCacheBundle [https://github.com/FriendsOfSymfony/FOSHttpCacheBundle], you don’t have to call flush(), as the
bundle flushes the invalidator for you after the response has been sent.

As flush() empties the invalidation queue, you can safely call the method
multiple times.

Error handling

If an error occurs during flush(), the method throws an
ExceptionCollection [https://github.com/FriendsOfSymfony/FOSHttpCache/blob/master/src/Exception/ExceptionCollection.php]
that contains an exception for each failed request to the caching proxy.

These exception are of two types:

	\FOS\HttpCache\ProxyUnreachableException when the client cannot connect to
the caching proxy

	\FOS\HttpCache\ProxyResponseException when the caching proxy returns an
error response, such as 403 Forbidden.

So, to catch exceptions:

use FOS\HttpCache\Exception\ExceptionCollection;

$cacheInvalidator
 ->invalidatePath('/users');

try {
 $cacheInvalidator->flush();
} catch (ExceptionCollection $exceptions) {
 // The first exception that occurred
 var_dump($exceptions->getFirst());

 // Iterate over the exception collection
 foreach ($exceptions as $exception) {
 var_dump($exception);
 }
}

Logging errors

You can log any exceptions in the following way. First construct a logger that
implements \Psr\Log\LoggerInterface. For instance, when using Monolog [https://github.com/Seldaek/monolog]:

use Monolog\Logger;

$monolog = new Logger(...);
$monolog->pushHandler(...);

Then add the logger as a subscriber to the cache invalidator:

use FOS\HttpCache\EventListener\LogSubscriber;

$subscriber = new LogSubscriber($monolog);
$cacheInvalidator->getEventDispatcher()->addSubscriber($subscriber);

Now, if you flush the invalidator, errors will be logged:

use FOS\HttpCache\Exception\ExceptionCollection;

$cacheInvalidator->invalidatePath(...)
 ->invalidatePath(...);

try {
 $cacheInvalidator->flush();
} catch (ExceptionCollection $exceptions) {
 // At least one failed request, check your logs!
}

Extra Invalidation Handlers

This library provides decorators that build on top of the CacheInvalidator
to simplify common operations.

Tag Handler

New in version 1.3: The tag handler was added in FOSHttpCache 1.3. If you are using an older
version of the library and can not update, you need to use
CacheInvalidator::invalidateTags.

The tag handler helps you to mark responses with tags that you can later use to
invalidate all cache entries with that tag. Tag invalidation works only with a
CacheInvalidator that supports CacheInvalidator::INVALIDATE.

Setup

Note

Make sure to configure your proxy for tagging first.

The tag handler is a decorator around the CacheInvalidator. After
creating the invalidator with a proxy client
that implements the BanInterface, instantiate the TagHandler:

use FOS\HttpCache\Handler\TagHandler;

// $cacheInvalidator already created as instance of FOS\HttpCache\CacheInvalidator
$tagHandler = new TagHandler($cacheInvalidator);

Usage

With tags you can group related representations so it becomes easier to
invalidate them. You will have to make sure your web application adds the
correct tags on all responses. You can add tags to the handler using:

$tagHandler->addTags(array('tag-two', 'group-a'));

Before any content is sent out, you need to send the tag header [http://php.net/header]:

header(sprintf('%s: %s',
 $tagHandler->getTagsHeaderName(),
 $tagHandler->getTagsHeaderValue()
));

Tip

If you are using Symfony with the FOSHttpCacheBundle [https://github.com/FriendsOfSymfony/FOSHttpCacheBundle], the tag header is
set automatically. You also have additional methods of defining tags [http://foshttpcachebundle.readthedocs.org/en/latest/features/tagging.html] with
annotations and on URL patterns.

Assume you sent four responses:

	Response:

	X-Cache-Tags header:

	/one

	tag-one

	/two

	tag-two, group-a

	/three

	tag-three, group-a

	/four

	tag-four, group-b

You can now invalidate some URLs using tags:

$tagHandler->invalidateTags(array('group-a', 'tag-four'))->flush();

This will ban all requests having either the tag group-a /or/ tag-four.
In the above example, this will invalidate /two, /three and /four.
Only /one will stay in the cache.

Custom Tags Header

Tagging uses a custom HTTP header to identify tags. You can change the default
header X-Cache-Tags in the constructor:

use FOS\HttpCache\Handler\TagHandler;

// $cacheInvalidator already created as instance of FOS\HttpCache\CacheInvalidator
$tagHandler = new TagHandler($cacheInvalidator, 'My-Cache-Header');

Make sure to reflect this change in your
caching proxy configuration.

Cache on User Context

Some applications differentiate the content between types of users. For
instance, on one and the same URL a guest sees a ‘Log in’ message; an editor
sees an ‘Edit’ button and the administrator a link to the admin backend.

The FOSHttpCache library includes a solution to cache responses per user
context (whether the user is authenticated, groups the user is in, or other
information), rather than individually.

If every user has their own hash, you probably don’t want to cache at all. Or
if you found out its worth it, vary on the credentials and don’t use the
context hash mechanism.

Caution

Whenever you share caches, make sure to not output any individual content
like the user name. If you have individual parts of a page, you can load
those parts over AJAX requests or look into ESI [http://en.wikipedia.org/wiki/Edge_Side_Includes]. Both approaches integrate
with the concepts presented in this chapter.

Overview

Caching on user context works as follows:

	A client requests /foo.php (the original request).

	The caching proxy receives the request. It sends a request
(the hash request) with a special accept header
(application/vnd.fos.user-context-hash) to a specific URL,
e.g., /_fos_user_context_hash.

	The application receives the hash request. The application knows the
client’s user context (roles, permissions, etc.) and generates a hash based
on that information. The application then returns a response containing that
hash in a custom header (X-User-Context-Hash) and with Content-Type
application/vnd.fos.user-context-hash.

	The caching proxy receives the hash response, copies the hash header to the
client’s original request for /foo.php and restarts that request.

	If the response to this request should differ per user context, the
application specifies so by setting a Vary: X-User-Context-Hash header.
The appropriate user role dependent representation of /foo.php will
then be returned to the client.

Proxy Client Configuration

Currently, user context caching is only supported by Varnish and by the Symfony
HttpCache. See the Varnish Configuration or
Symfony HttpCache Configuration.

User Context Hash from Your Application

It is your application’s responsibility to determine the hash for a user. Only
your application can know what is relevant for the hash. You can use the path
or the accept header to detect that a hash was requested.

Warning

Treat the hash lookup path like the login path so that anonymous users also
can get a hash. That means that your cache can access the hash lookup even
with no user provided credential and that the hash lookup never redirects
to a login page.

Calculating the User Context Hash

The user context hash calculation (step 3 above) is managed by the HashGenerator.
Because the calculation itself will be different per application, you need to
implement at least one ContextProvider and register that with the HashGenerator:

use FOS\HttpCache\UserContext\HashGenerator;

$hashGenerator = new HashGenerator(array(
 new IsAuthenticatedProvider(),
 new RoleProvider(),
));

Once all providers are registered, call generateHash() to get the hash for
the current user context.

Context Providers

Each provider is passed the UserContext [https://github.com/FriendsOfSymfony/FOSHttpCache/blob/master/src/UserContext/UserContext.php]
and updates that with parameters which influence the varied response.

A provider that looks at whether the user is authenticated could look like this:

use FOS\HttpCache\UserContext\ContextProviderInterface;
use FOS\HttpCache\UserContext\UserContext;

class IsAuthenticatedProvider implements ContextProviderInterface
{
 protected $userService;

 public function __construct(YourUserService $userService)
 {
 $this->userService = $userService;
 }

 public function updateUserContext(UserContext $userContext)
 {
 $userContext->addParameter('authenticated', $this->userService->isAuthenticated());
 }
}

Returning the User Context Hash

It is up to you to return the user context hash in response to the hash request
(/_fos_user_context_hash in step 3 above):

// <web-root>/_fos_user_context_hash/index.php

$hash = $hashGenerator->generateHash();

if ('application/vnd.fos.user-context-hash' == strtolower($_SERVER['HTTP_ACCEPT'])) {
 header(sprintf('X-User-Context-Hash: %s', $hash));
 header('Content-Type: application/vnd.fos.user-context-hash');
 exit;
}

// 406 Not acceptable in case of an incorrect accept header
header('HTTP/1.1 406');

If you use Symfony, the FOSHttpCacheBundle [https://github.com/FriendsOfSymfony/FOSHttpCacheBundle] will set the correct response
headers for you.

Caching the Hash Response

To optimize user context hashing performance, you should cache the hash
response. By varying on the Cookie and Authorization header, the
application will return the correct hash for each user. This way, subsequent
hash requests (step 3 above) will be served from cache instead of requiring a
roundtrip to the application.

// The application listens for hash request (by checking the accept header)
// and creates an X-User-Context-Hash based on parameters in the request.
// In this case it's based on Cookie.
if ('application/vnd.fos.user-context-hash' == strtolower($_SERVER['HTTP_ACCEPT'])) {
 header(sprintf('X-User-Context-Hash: %s', $_COOKIE[0]));
 header('Content-Type: application/vnd.fos.user-context-hash');
 header('Cache-Control: max-age=3600');
 header('Vary: cookie, authorization');

 exit;
}

Here we say that the hash is valid for one hour. Keep in mind, however, that
you need to invalidate the hash response when the parameters that determine
the context change for a user, for instance, when the user logs in or out, or
is granted extra permissions by an administrator.

Note

If you base the user hash on the Cookie header, you should
clean up that header to make the hash request
properly cacheable.

The Original Request

After following the steps above, the following code renders a homepage
differently depending on whether the user is logged in or not, using the
credentials of the particular user:

// /index.php file
header('Cache-Control: max-age=3600');
header('Vary: X-User-Context-Hash');

$authenticationService = new AuthenticationService();

if ($authenticationService->isAuthenticated()) {
 echo "You are authenticated";
} else {
 echo "You are anonymous";
}

Alternative for Paywalls: Authorization Request

If you can’t efficiently determine a general user hash for the whole
application (e.g. you have a paywall [http://en.wikipedia.org/wiki/Paywall] where individual users are limited to
individual content), you can follow a slightly different approach:

	Instead of doing a hash lookup request to a specific authentication URL, you
keep the request URL unchanged, but send a HEAD request with a specific
Accept header.

	In your application, you intercept such requests after the access decision
has taken place but before expensive operations like loading the actual data
have taken place and return early with a 200 or 403 status.

	If the status was 200, you restart the request in Varnish, and cache the
response even though a Cookie or Authorization header is present, so
that further requests on the same URL by other authorized users can be
served from cache. On status 403 you return an error page or redirect to the
URL where the content can be bought.

Testing Your Application

This chapter describes how to test your application against your reverse proxy.

The FOSHttpCache library provides base test case classes to help you write
functional tests. This is helpful to test the way your application sets caching
headers and invalidates cached content.

By having your test classes extend one of the test case classes, you get:

	independent tests: all previously cached content is removed in the tests
setUp method. The way this is done depends on which reverse proxy you use;

	an instance of this library’s client that is configured to talk to your
reverse proxy server. See reverse proxy specific sections for details;

	convenience methods for executing HTTP requests to your application:
$this->getHttpClient() and $this->getResponse();

	custom assertions assertHit and assertMiss for validating a cache
hit/miss.

The recommended way to configure the test case is by setting constants
in your phpunit.xml. Alternatively, you can override the getter methods.

You will need to run a web server to provide the PHP application you want to
test. The test cases only handle running the caching proxy. With PHP 5.4 or
newer, the easiest is to use the PHP built in web server. See the
WebServerListener class in tests/Functional and how it is registered in
phpunit.xml.dist.

Setting Constants

Compare this library’s configuration to see how the constants are set:

<?xml version="1.0" encoding="UTF-8"?>
<phpunit ...>
 <const name="NGINX_FILE" value="./tests/Functional/Fixtures/nginx/fos.conf" />
 <const name="WEB_SERVER_HOSTNAME" value="localhost" />
 <const name="WEB_SERVER_PORT" value="8080" />
 <const name="WEB_SERVER_DOCROOT" value="./tests/Functional/Fixtures/web" />
 </php>
</phpunit>

Overriding Getters

You can override getters in your test class in the following way:

use FOS\HttpCache\Test\VarnishTestCase;

class YourFunctionalTest extends VarnishTestCase
{
 protected function getVarnishPort()
 {
 return 8000;
 }
}

VarnishTestCase

Configuration

By default, the VarnishTestCase starts and stops a Varnish server for you.
Make sure symfony/process is available in your project:

$ composer require symfony/process

Then set your Varnish configuration (VCL) file. All available configuration
parameters are shown below.

	Constant

	Getter

	Default

	Description

	VARNISH_FILE

	getConfigFile()

	
	your Varnish configuration (VCL) file

	VARNISH_BINARY

	getBinary()

	varnishd

	your Varnish binary

	VARNISH_PORT

	getCachingProxyPort()

	6181

	port Varnish listens on

	VARNISH_MGMT_PORT

	getVarnishMgmtPort()

	6182

	Varnish management port

	VARNISH_CACHE_DIR

	getCacheDir()

	sys_get_temp_dir() + /foshttpcache-varnish

	directory to use for cache

	VARNISH_VERSION

	getVarnishVersion()

	3

	installed varnish application version

	WEB_SERVER_HOSTNAME

	getHostName()

	
	hostname your application can be reached at

Enable Assertions

For the assertHit and assertMiss assertions to work, you need to add a
custom X-Cache header to responses served
by your Varnish.

NginxTestCase

Configuration

By default, the NginxTestCase starts and stops the NGINX server for you and
deletes all cached contents. Make sure symfony/process is available in your
project:

$ composer require symfony/process

You have to set your NGINX configuration file. All available configuration
parameters are shown below.

	Constant

	Getter

	Default

	Description

	NGINX_FILE

	getConfigFile()

	
	your NGINX configuration file

	NGINX_BINARY

	getBinary()

	nginx

	your NGINX binary

	NGINX_PORT

	getCachingProxyPort()

	8088

	port NGINX listens on

	NGINX_CACHE_PATH

	getCacheDir()

	sys_get_temp_dir() + /foshttpcache-nginx

	directory to use for cache
Must match proxy_cache_path directive in
your configuration file.

	WEB_SERVER_HOSTNAME

	getHostName()

	
	hostname your application can be reached at

Enable Assertions

For the assertHit and assertMiss assertions to work, you need to add a
custom X-Cache header to responses served
by your Nginx.

SymfonyTestCase

This test case helps to test invalidation requests with a symfony application
running the Symfony HttpCache and invalidating its cache folder to get reliable
tests.

The SymfonyTestCase does automatically start a web server. It is assumed
that the web server you run for the application has the HttpCache integrated.

Configuration

	Constant

	Getter

	Default

	Description

	WEB_SERVER_HOSTNAME

	getHostName()

	
	hostname your application can be reached at

	WEB_SERVER_PORT

	getConfigFile()

	
	The port on which the web server runs

	SYMFONY_CACHE_DIR

	getCacheDir()

	sys_get_temp_dir() + /foshttpcache-nginx

	directory to use for cache
Must match the configuration of your
HttpCache and must be writable by the user
running PHPUnit.

Enable Assertions

For the assertHit and assertMiss assertions to work, you need to add debug
information in your AppCache. Create the cache kernel with the option
'debug' => true and add the following to your AppCache:

public function handle(Request $request, $type = HttpKernelInterface::MASTER_REQUEST, $catch = true)
{
 $response = parent::handle($request, $type, $catch);

 if ($response->headers->has('X-Symfony-Cache')) {
 if (false !== strpos($response->headers->get('X-Symfony-Cache'), 'miss')) {
 $state = 'MISS';
 } elseif (false !== strpos($response->headers->get('X-Symfony-Cache'), 'fresh')) {
 $state = 'HIT';
 } else {
 $state = 'UNDETERMINED';
 }
 $response->headers->set('X-Cache', $state);
 }

 return $response;
}

The UNDETERMINED state should never happen. If it does, it means that your
HttpCache is not correctly set into debug mode.

Usage

This example shows how you can test whether the caching headers your
application sets influence Varnish as you expect them to:

use FOS\HttpCache\Test\VarnishTestCase;

class YourFunctionalTest extends VarnishTestCase
{
 public function testCachingHeaders()
 {
 // Varnish is restarted, so you don’t have to worry about previously
 // cached content. Before continuing, the VarnishTestCase waits for
 // Varnish to become available.

 // Retrieve an URL from your application
 $response = $this->getResponse('/your/resource');

 // Assert the response was a cache miss (came from the backend
 // application)
 $this->assertMiss($response);

 // Assume the URL /your/resource sets caching headers. If we retrieve
 // it again, we should have a cache hit (response delivered by Varnish):
 $response = $this->getResponse('/your/resource');
 $this->assertHit($response);
 }
}

This example shows how you can test whether your application purges content
correctly:

public function testCachePurge()
{
 // Again, Varnish is restarted, so your test is independent from
 // other tests

 $url = '/blog/articles/1';

 // First request must be a cache miss
 $this->assertMiss($this->getResponse($url));

 // Next requests must be a hit
 $this->assertHit($this->getResponse($url));

 // Purge
 $this->varnish->purge('/blog/articles/1');

 // First request after must again be a miss
 $this->assertMiss($this->getResponse($url));
}

Tests for Nginx look the same but extend the NginxTestCase.
For more ideas, see this library’s functional tests in the
tests/Functional/ [https://github.com/FriendsOfSymfony/FOSHttpCache/blob/master/tests/Functional/] directory.

Contributing

We are happy for contributions. Before you invest a lot of time however, best
open an issue on GitHub [https://github.com/FriendsOfSymfony/FOSHttpCache] to discuss your idea. Then we can coordinate efforts
if somebody is already working on the same thing.

Testing the Library

This chapter describes how to run the tests that are included with this library.

First clone the repository, install the vendors, then run the tests:

$ git clone https://github.com/FriendsOfSymfony/FOSHttpCache.git
$ cd FOSHttpCache
$ composer install --dev
$ phpunit

Unit Tests

To run the unit tests separately:

$ phpunit tests/Unit

Functional Tests

The library also includes functional tests against a Varnish and NGINX instance.
The functional test suite by default uses PHP’s built-in web server. If you have
PHP 5.4 or newer, simply run with the default configuration.

If you want to run the tests on PHP 5.3, you need to configure a web server
listening on localhost:8080 that points to the folder
tests/Functional/Fixtures/web.

If you want to run the tests on HHVM [http://www.hhvm.com/], you need to configure a web server and
start a HHVM FastCGI server [https://github.com/facebook/hhvm/wiki/fastcgi].

To run the functional tests:

$ phpunit tests/Functional

Tests are organized in groups: one for each reverse proxy supported. At the moment
groups are: varnish and nginx.

To run only the varnish functional tests:

$ phpunit --group=varnish

For more information about testing, see Testing Your Application.

Building the Documentation

First install Sphinx [http://sphinx-doc.org/latest/install.html] and install enchant [http://www.abisource.com/projects/enchant/] (e.g. sudo apt-get install enchant),
then download the requirements:

$ pip install -r doc/requirements.txt

To build the docs:

$ cd doc
$ make html
$ make spelling

Index

 A
 | B
 | C
 | I
 | P
 | R
 | T

A

 	
 	Application

B

 	
 	Ban

C

 	
 	Caching proxy

 	
 	Client

I

 	
 	Invalidation

P

 	
 	Purge

R

 	
 	Refresh

T

 	
 	Time to live (TTL)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 FOSHttpCache

 		
 Getting started

 		
 Installation

 		
 Configuration

 		
 Overview

 		
 An Introduction to Cache Invalidation

 		
 HTTP Caching Terminology

 		
 What is Cache Invalidation?

 		
 The problem

 		
 Alternatives

 		
 Disadvantages

 		
 Invalidation Methods

 		
 Caching Proxy Configuration

 		
 Varnish Configuration

 		
 Basic Varnish Configuration

 		
 Purge

 		
 Refresh

 		
 Ban

 		
 Tagging

 		
 User Context

 		
 Debugging

 		
 NGINX Configuration

 		
 Purge

 		
 Refresh

 		
 Debugging

 		
 Symfony HttpCache Configuration

 		
 Extending the Correct HttpCache Class

 		
 Purge

 		
 Refresh

 		
 User Context

 		
 Caching Proxy Clients

 		
 Setup

 		
 Varnish Client

 		
 NGINX Client

 		
 Symfony Client

 		
 Using the Clients

 		
 Supported invalidation methods

 		
 Purge

 		
 Refresh

 		
 Ban

 		
 Custom Guzzle Client

 		
 The Cache Invalidator

 		
 Setup

 		
 Invalidating Paths and URLs

 		
 Refreshing Paths and URLs

 		
 Invalidating With a Regular Expression

 		
 URL, Content Type and Hostname

 		
 Any Header

 		
 Flushing

 		
 Error handling

 		
 Logging errors

 		
 Extra Invalidation Handlers

 		
 Tag Handler

 		
 Setup

 		
 Usage

 		
 Custom Tags Header

 		
 Cache on User Context

 		
 Overview

 		
 Proxy Client Configuration

 		
 User Context Hash from Your Application

 		
 Calculating the User Context Hash

 		
 Context Providers

 		
 Returning the User Context Hash

 		
 Caching the Hash Response

 		
 The Original Request

 		
 Alternative for Paywalls: Authorization Request

 		
 Testing Your Application

 		
 Setting Constants

 		
 Overriding Getters

 		
 VarnishTestCase

 		
 NginxTestCase

 		
 SymfonyTestCase

 		
 Usage

 		
 Contributing

 		
 Testing the Library

 		
 Unit Tests

 		
 Functional Tests

 		
 Building the Documentation

_static/minus.png

_static/file.png

_static/up-pressed.png

_static/plus.png

_static/up.png

