

 Navigation

 	
 index

 	
 next |

 	formulation 2.0.11 documentation

Formulation

Putting form rendering in its place.

[image: https://travis-ci.org/funkybob/formulation.png]
 [https://secure.travis-ci.org/funkybob/formulation.png?branch=master][image: https://pypip.in/d/formulation/badge.png]
 [https://crate.io/packages/formulation][image: https://pypip.in/v/formulation/badge.png]
 [https://crate.io/packages/formulation]Contents:

	Template Tags
	The form tag

	The field tag

	The use tag

	Templates
	Examples

	Extras
	The flat_attrs filter

	The reuse tag

	Using use for macros

	Thanks

	Changelog
	v2.0.11

	v2.0.10

	v2.0.9

	v2.0.8

	v2.0.7.1

	v2.0.7

	v2.0.6

	v2.0.5

	v2.0.4

	v2.0.3

	v2.0.2

	v2.0.1

	v2.0.0

Overview

It’s fairly well accepted, now, that having the form rendering decisions in
your code is less than ideal.

However, most template-based solutions wind up being slow, because they rely
on many templates per form.

Formulation works by defining all the widgets for your form in a single “widget
template”, and loading it once for the form.

Installation

You can install formulation using:

$ pip install formulation

You will need to add ‘formulation’ to your settings.INSTALLED_APPS.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Curtis Maloney.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	formulation 2.0.11 documentation

Template Tags

Formulation works by providing a number of template tags.

The form tag

The form tag loads the template, and puts its blocks in a dict in the
context, called formulation. You typically won’t access this directly, as
it’s raw BlockNode instances.

{% form "widgets/bootstrap.form" %}
...
{% endform %}

You can optionally pass the form you will be using, also. This will allow the
field tag to reference fields by name, instead of instance.

Template inheritance

Widget templates are just normal templates, so {% extends %} still works as
expected. This lets you define a base, common form template, and localised
extensions where you need.

The field tag

Used to render a form field, optionally specifying the widget to use.

{% field formfield [widget name] [key=value...] %}

You can think of the field tag as being like {% include %} but for blocks.
However, it also adds many attributes from the form field into the context.

Values from BoundField

The following values are take from the BoundField:

	css_classes

	errors

	field

	form

	help_text

	html_name

	id_for_label

	label

	name

	value

Values from Field

And these from the Field itself:

	choices

	widget

	required

Any extra keyword arguments you pass to the field tag will overwrite values of the same name.

Auto-widget

If you omit the widget in the {% field %} tag, formulation will try to
auto-detect the block to use. It does so by looking for the first block to
match one of the following patterns:

	{field}_{widget}_{name}

	{field}_{name}

	{widget}_{name}

	{field}_{widget}

	{name}

	{widget}

	{field}

Where ‘field’ is the form field class (e.g. CharField, ChoiceField, etc),
‘widget’ is the widget class name (e.g. NumberInput, DateTimeInput, etc) and
‘name’ is the name of the field.

If no block is found, a TemplateSyntaxError is raised.

The use tag

You may have some chunks of templating that aren’t fields, but are useful
within the form. For these, write them as blocks in your xyz.form template,
then use the {% use %} to include them:

demo.html

{% form "demo.form" %}
...
{% use "actions" submit="Update" %}
{% endform %}

demo.form

{% block actions %}
<div class="actions">
 <input type="submit" value="{{ submit|default:"Save" }}">
 Cancel
</div>
{% endblock %}

It works just like include, but will use a block from the current widget
template.

 Copyright 2013, Curtis Maloney.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	formulation 2.0.11 documentation

Templates

Formulation ships with a sample template which tries to emulate the default
Django form rendering as closely as possible.

The base field (called “input”) looks like this:

{% block input %}
{% use "_label" %}
{% with field_type=field_type|default:"text" %}
<input type="{{ field_type }}"
 name="{{ html_name }}"
 id="{{ id }}"
 value="{{ value|default:"" }}"
 class="{{ css_classes }} {{ errors|yesno:"error," }}"
 {{ widget.attrs|flat_attrs }}
 {{ required|yesno:"required," }}
 {{ autofocus|yesno:"autofocus," }}
 {% if placeholder %}placeholder="{{ placeholder }}"{% endif %}
>
{% endwith %}
{% use "_help" %}
{% use "_errors" %}
{% endblock %}

There are 3 supplementary blocks it uses, making it easier for you to customise
rendering without having to rewrite the whole template.

{% block _label %}
{% if label %}<label id="{{ id_for_label }}" for="{{ id }}">{{ label }}</label>{% endif %}
{% endblock %}

{% block _help %}
{{ help_text }}
{% endblock %}

{% block _errors %}
{% if errors %}
<ul class="errorlist">
{% for error in errors %}
 <li class="error">{{ error }}
{% endfor %}

{% endif %}
{% endblock %}

Examples

It can be helpful to look at how some of the default widgets are implemented to
see how simple it can be.

{% block TextInput %}{% use "input" %}{% endblock %}

The basic TextInput uses the input widget without any alterations.

{% block EmailInput %}{% use "input" field_type="email" %}{% endblock %}

The EmailInput simply provides an override for field_type.

{% block PasswordInput %}{% use "input" field_type="password" value="" %}{% endblock %}

PasswordInput ensures the value is blanked out.

{% block DateInput %}{% use "input" field_type="date" value=value|date:'Y-m-d' %}{% endblock %}

DateInput, as well as DateTimeInput and TimeInput, use the date filter to
convert the value to a userful format.

 Copyright 2013, Curtis Maloney.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	formulation 2.0.11 documentation

Extras

The flat_attrs filter

This is simply a wrapper around django.forms.utils.flatatt()

It converts a dict of attributes into a string, in proper key=”value” syntax.
The values will be escaped, but keys will not.

The reuse tag

There is also the {% reuse %} template tag, which allows you to reuse any
template block within the current template [as opposed to the form widget
template] like a macro. Again, it follows the same syntax as the
{% include %} tag:

{% load reuse %}
{% reuse "otherblock" foo=1 %}

You can also pass a list of block names to search; first found will be used.

Note

reuse can only be used in templates which {% extend %} another
template.

Using use for macros

Formulation is not limited to forms and fields. There’s no reason you can’t
also use it to abstract commonly used fragments of template code.

{% form "widgets.form" %}

{% use "framed-box" title="Some box!" %}

...

{% endform %}

 Copyright 2013, Curtis Maloney.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	formulation 2.0.11 documentation

Thanks

	kezabelle for the name

	bradleyayers for ideas on supporting multiple fields. (now removed)

	SmileyChris for the idea to “explode” fields into the context

	jwa for major testing and bug hunting

	schinkel for packaging help

	mbrochh for inspiring the name lookup idea

	Sergei Maertens for helping fix the leaky render context

 Copyright 2013, Curtis Maloney.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	formulation 2.0.11 documentation

Changelog

v2.0.11

Bugs Fixed:

	Use the “new” method of request_context instead of deep copy. [Fixes #23]

	Refactor tests to make easier to run

v2.0.10

Bugs Fixed:

	One more change to BlockContext handling. [More thanks to Sergei Maertens]

v2.0.9

Bugs Fixed:

	Fix dirty BlockContext issue introduced in 2.0.8 [Thanks Sergei Maertens]

	Removed undocumented render_form

v2.0.8

Bugs Fixed:

	Ensure value is a comparable type in choices widgets

	Fixed default widget for select types to include display string

	Allow {{ block.super }} to work

v2.0.7.1

Bugs Fixed:

	Change list() to [] to not turn strings into lists

v2.0.7

Bugs Fixed:

	Fixed renamed variables in reuse tag

	Fixed testing current value in Select widget template

	Fixed value in Checkbox widget template

	force_text on choices values

Enhancements:

	Improved documentation

	Improved test coverage

Thanks to jwa

v2.0.6

Bugs Fixed:

	Removed duplicate EmailField block

Enhancements:

	Changed to using contextlib

	Allow a list of block names to be passed to {% reuse %}

	Added sphinx docs

	Added field lookup by name

v2.0.5

Bugs Fixed:

	Packaging fix

Enhancements:

	Improved docs

	Added {% render_form %} tag

v2.0.4

Bugs Fixed:

	Fixed date/time formatting in default template

v2.0.3

Bugs Fixed:

	Added tests (thanks jwa!)

	Fixed auto widget (thanks jwa!)

Enhancements:

	Improved templates (thanks jwa!)

	Began Py3 compatibility (thanks jwa!)

v2.0.2

Bugs Fixed:

	Fix importing of form.util(s) to make Django 1.5 compatible

v2.0.1

Bugs Fixed:

	Fixed context over-stacking (#5)

Enhancements:

	Added flat_attrs filter

	Changed default template to include templates for all stock Django widgets

v2.0.0

Enhancements:

	Changed to explode field and widget attributes into the context

 Copyright 2013, Curtis Maloney.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	formulation 2.0.11 documentation

Index

 Copyright 2013, Curtis Maloney.
 Created using Sphinx 1.2.2.

 _static/up-pressed.png

_static/comment.png

_static/file.png

_static/down-pressed.png

_static/minus.png

_static/up.png

_static/plus.png

_static/ajax-loader.gif

_static/down.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		formulation 2.0.11 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Curtis Maloney.
 Created using Sphinx 1.2.2.

_static/comment-bright.png

