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CHAPTER

ONE

OVERVIEW

1.1 Abstract

Vast reinforcement learning (RL) research groups, such as DeepMind and OpenAI, have their internal (private) rein-
forcement learning codebases, which enable quick prototyping and comparing of ideas to many SOTA methods. We
argue the five fundamental properties of a sophisticated research codebase are; modularity, reproducibility, many RL
algorithms pre-implemented, speed and ease of running on different hardware/ integration with visualization packages.
Currently, there does not exist any RL codebase, to the author’s knowledge, which contains all the five properties, par-
ticularly with TensorBoard logging and abstracting away cloud hardware such as TPU’s from the user. The codebase
aims to help distil the best research practices into the community as well as ease the entry access and accelerate the
pace of the field.

1.2 Related Work

There are currently various implementations available for reinforcement learning codebase like OpenAI baselines
[DHK+17], Stable baselines [Hil19], Tensorforce [SKF17], Ray rllib [LLN+17], Intel Coach [CLN17], Keras-RL
[KR19], Dopamine baselines [CMG+18] and TF-Agents [GKR+]. Ray rllib [LLN+17] is amongst the strongest of
existing RL frameworks, supporting; distributed operations, TensorFlow [ABC+16], PyTorch [PGCC17] and multi-
agent reinforcement learning (MARL). Unlike Ray rllib, we choose to focus on Tensorflow support, allowing us to
integrate specific framework visualisation and experiment tracking into our codebase. On top of this, we are developing
a Kuberenetes script for MacOS and Linux users to connect to any cloud computing platform, such as Google TPU’s,
Amazon AWS etc. Most other frameworks are plagued with problems like usability issues (difficult to get started
and increment over), very little modularity in code (no/ little hierarchy and code reuse), no asynchronous training
support, weak support for TensorBoard logging and so on. All these problems are solved by our project, which is
a generic codebase built for reinforcement learning (RL) research in Tensorflow [SKF17], with favoured RL agents
pre-implemented as well as integration with OpenAI Gym [BCP+16] environment focusing on quick prototyping and
visualisation.

Deep Reinforcement Learning Reinforcement learning refers to a paradigm in artificial intelligence where an agent
performs a sequence of actions in an environment to maximise rewards [SB98]. It is in many ways more general and
challenging than supervised learning since it requires no labels to train on; instead, the agent interacts continuously
with the environment, gathering more and more data and guiding its learning process.

1.3 Introduction: for-ai/rl

Further to the core ideas mentioned in the beginning, a good research codebase should enable good development
practices such as continually checkpointing the model’s parameters as well as instantly restoring them to the latest
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checkpoint when available. Moreover, it should be composed of simple, interchangeable building blocks, making it
easy to understand and to prototype new research ideas.

We will first introduce the framework for this project, and then we will detail significant components. Lastly, we will
discuss how to get started with training an agent under this framework.

This codebase allows training RL agents by a training script as simple as the below for loop.

$ for epoch in range(epochs):
$ state = env.reset()

$ for step in range(max_episode_steps):
$ last_state = state
$ action = agent.act(state)
$ state, reward, done = env.step(action)
$ agent.observe(last_state, action, reward, state)
$ agent.update()

To accomplish this, we chose to modularise the codebase in the hierarchy shown below.

$ rl_codebase
$ |- train.py
$ |---> memory
$ | |- registry.py
$ |---> hparams
$ | |- registry.py
$ |---> envs
$ | |- registry.py
$ |---> models
$ | |- registry.py
$ |---> agents
$ | |- registry.py
$ | |---> algos
$ | | |- registry.py
$ | | |---> act_select
$ | | | |- registry.py
$ | | |---> grad_comp
$ | | | |- registry.py

Our modularisation enables simple and easy-to-read implementation of each component, such as the Agent, Algo and
Environment class, as shown below.

$ class Agent:
$ self.model: Model
$ self.algo: Algo

$ def observe(last_state, action, reward, new_state)
$ def act(state) -> action
$ def update()

$ class Algo(Agent):
$ def select_action(distribution) -> action
$ def compute_gradients(trajectory, parameters) -> gradients

$ class Environment:
$ def reset() -> state
$ def step(action) -> state, reward, done

The codebase includes agents like Deep Q Network [MKS+13], Noisy DQN [PHD+17], Vanilla Policy Gradient
[SMSM00], Deep Deterministic Policy Gradient [SLH+14] and Proximal Policy Optimization [SWD+17]. The project
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also includes simple random sampling and proportional prioritized experience replay approaches, support for Discrete
and Box environments, option to render environment replay and record the replay in a video. The project also gives
the possibility to conduct model-free asynchronous training, setting hyperparameters for your algorithm of choice,
modularized action and gradient update functions and option to show your training logs in a TensorBoard summary.

In order to run an experiment, run:

python train.py --sys ... --hparams ... --output_dir ....

Ideally, “train.py” should never need to be modified for any of the typical single agent environments. It covers the
logging of reward, checkpointing, loading, rendering environment/ dealing with crashes and saving the experiments
hyperparameters, which takes a significant workload off the average reinforcement learning researcher.

Below we summerize the key arguments

“--sys”(str) defines the system chosen to run experiment with; e.g. “local” for
→˓running on the local machine.
“--env”(str) specifies the environment.
“--hparam_override”(str) overrides hyperparameters.
“--train_steps”(int) sets training length.
“--test_episodes”(int) tests episodes.
“--eval_episodes”(int) sets Validation episodes.
“--training"(bool) freeze model weights is set to False.
“--copies”(int) set the number of times to perform multiple versions of training/
→˓testing.
“--render”(bool) turns rendering on/ off.
“--record_video”(bool) records the video with, which outputs a .mp4 of each recorded
→˓episode.
“--num_workers"(int) seamlessly brings our synchronous agent into an asynchronous
→˓agent.

1.4 Conclusion

We have outlined the benefits of using a highly modularised reinforcement learning codebase. The next stages of
development for the RL codebase are implementing more SOTA model-free RL techniques (GAE, Rainbow, SAC,
IMPALA), introducing model-based approaches, such as World Models [HS18], integrating into an open-sourced
experiment managing tool and expanding the codebases compatibility with a broader range of environments, such as
Habitat [SKM+19]. We would also like to see automatic hyperparameter optimization techniques to be integrated,
such as Bayesian Optimization method which was crucial to the success of some of DeepMinds most considerable
reinforcement learning feats [CHW+18].

1.5 Acknowledgements

We would like to thank all other members of For.ai, for useful discussions and feedback.

1.6 References
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CHAPTER

TWO

INSTALLATION

Install all dependencies by running:

$ ./setup.sh

This installation script currently supports Linux and macOS. For macOS users, this installation script supports both
Homebrew and Macports. In the event the script fails, we recommend installing all dependencies within a Conda
environment.
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CHAPTER

THREE

MODULES

This section covers the main components of the RL codebase.

3.1 Agents

All agents are encapsulated into a single class, Agent(). An agent object is instantiated with the following member
variables:

• TensorFlow session

• Hyperparameters

• Memory

• Action function

• Gradient function

3.2 Algos

This codebase currently supports the following RL algorithms: DDPG, DQN, PPO, and Vanilla Policy
Gradient.

3.3 Environments

The codebase has a single environment class, and two environment subclasses:

• class Environment

– class CoinRun(Environment) as described here

– class GymEnv(Environment) as descibed here

The Environment class, located at rl/rl/envs/env.py, acts as a template contains all the member variables
and functions of a standard RL environment. The specific member variables and functions are implemented within the
two subclasses.
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3.4 Hyperparameters

The class to represent hyperparameters, HParams, is located at rl/rl/hparams/utils.py. The default set of
hyperparameters located at rl/rl/hparams/default.py.

The list of hyperparameters is located at rl/rl/hparams, segmented into the different RL algorithms each set of
hyperparameters belongs to. Each RL algorithms calls the default set of hyperparameters, and depending on different
environments, modifies the default set.

For example, the function ddpg() returns a default set of HParams and adds a number of fields, while the func-
tion ddpg_cartpole() further modifies some of the hyperparameter fields to fit with the Cartpole-v1 Gym
environment

3.5 Memory

The base class for memory is located at rl/rl/memory/memory.py. This codebase currently supports three
memory types: simple experience reply, sum tree, and prioritized experience replay.

3.6 Models

The list of models can be found at rl/rl/models/models. All models are subclassed from Keras models. Each
model is instantiated with a network structure and a call() function to call the forward pass of the network. All
layers are taken from the TensorFlow Layers class.
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CHAPTER

FOUR

TUTORIAL

Before you run a full example, it would be to your benefit to install the following:

• Nvidia CUDA on machines with GPUs to enable faster training. Installation instructions here

• Tensorboard for training visualization. Install by running pip install tensorboard

This tuturial will make use of a Conda environment as the preferred package manager. Installation instructions can be
found here

After installing Conda, create and activate an environment, and install all dependencies within that environment:

$ conda create -n rl-codebase python=3.6
$ conda activate rl-codebase
$ pip install -r requirements.txt

To run locally, we will train DQN on the Carpole-v1 Gym environment:

$ # start training
$ python train.py --sys local --hparams dqn_cartpole --output_dir /tmp/rl-testing
$ # run tensorboard
$ tensorboard --logdir /tmp/rl-testing
$ # test agent
$ python train.py --sys local --hparams dqn_cartpole --output_dir /tmp/rl-testing --
→˓training False --render True
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CHAPTER

FIVE

USAGE

To start training:

$ python train.py --sys ... --hparams ... --output_dir ...

Run tensorboard to visualize training:

$ tensorboard --logdir ...

Test agent:

$ python train.py --sys ... --hparams ... --output_dir ... --training False --render
→˓True

The sys command can be one of two options: local or tpu for GCP enabled tpu training. A list of environments
and hyperparameters can be found under rl/rl/hparams. A full training and evaluation example can be found in
the tutorial section.

Below we summerize the key arguments

“--sys”(str) defines the system chosen to run experiment with; e.g. “local” for
→˓running on the local machine.
“--env”(str) specifies the environment.
“--hparam_override”(str) overrides hyperparameters.
“--train_steps”(int) sets training length.
“--test_episodes”(int) tests episodes.
“--eval_episodes”(int) sets Validation episodes.
“--training"(bool) freeze model weights is set to False.
“--copies”(int) set the number of times to perform multiple versions of training/
→˓testing.
“--render”(bool) turns rendering on/ off.
“--record_video”(bool) records the video with, which outputs a .mp4 of each recorded
→˓episode.
“--num_workers"(int) seamlessly brings our synchronous agent into an asynchronous
→˓agent.
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