

The fomod Documentation

fomod is game-agnostic format for mod installers, written in xml.

This documentation contains both the tutorial, for beginners,
with the most widely used options, and a collection of conventions
to make some specifics clearer for both fomod authors and installer
authors.

This documentation was written for the 5.x major releases.

Contents

	Tutorial

	Tips and Tricks

	Specification

A fomod Tutorial

At the end of each section there will be a link to an example
package where you can see all that was discussed so far.

Let’s jump right in - we have finished our mod and we need to provide
an installer.

A Simple Installer

We’ll start with a simple example, here’s how our package looks:

.
├── example.plugin
└── readme.txt

Don’t forget that the . (dot) simbolizes our current directory.

So we need to install our example.plugin to wherever plugins are
installed for this game. We don’t really care where exactly that is,
we’ll leave that to the actual installer to figure out.
From now on, let’s call this destination folder, dest.

We start by creating a folder named fomod and then creating two
files under it named info.xml and ModuleConfig.xml. Your
package should now look like:

.
├── fomod
│ ├── info.xml
│ └── ModuleConfig.xml
├── example.plugin
└── readme.txt

Start with info.xml. You could type this in and be done with it:

<fomod/>

... but that’s not really helpful, is it? The purpose of the info.xml
file is to provide extra metadata for your package, so other people and
apps understand what it is about. So let’s fill it in properly:

<fomod>
 <Name>Example Mod</Name>

 <Author>Example Author</Author>

 <Version MachineVersion="1.2.3">
 1.2.3
 </Version>

 <Description>
 This is an example mod.
 </Description>

 <Website>
 https://example.website.com/example-mod
 </Website>
</fomod>

See? It didn’t hurt and now everyone else knows a little more about our mod!
It should be pretty much self-explanatory but if you need a reminder on xml
feel free to pause here and look at W3Schools [http://www.w3schools.com/xml/].

Moving on! The ModuleConfig.xml is where the magic happens. Coincidentally,
it’s also the more complex and mind-numbing of the two. So we’ll start slow and
build our way through all the options. At least the more useful ones.

<config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://qconsulting.ca/fo3/ModConfig5.0.xsd">

 <moduleName>Example Mod</moduleName>

 <requiredInstallFiles>
 <file source="example.plugin"/>
 </requiredInstallFiles>

</config>

Ok, bit of a mouthful. The config tag has the url of the schema as an attribute
and it serves as the root of the entire tree. moduleName should be pretty much
self-explanatory, no?

Now, requiredInstallFiles. This tag serves as a root to any files and folders
that are ALWAYS installed with your mod. Simple enough. That’s all we want for now.
The file tag under it specifies what to install. The attribute source says where
the source file will be found. If you needed to install a folder, instead of listing
all files in that folder you could use the folder tag, it has exactly the same
attributes as file.

And that’s it. We’ve just made a tiny installer that will successfully install
example.plugin for our users.

Example 01 [https://github.com/GandaG/fomod-docs/tree/master/examples/01]

Dependencies Network

Right, our installer is a little too simple. Let’s say you added a few more
things to your plugin, that depended on another plugin. Why waste time reiventing
the wheel?

So now you need to make sure the other mod is installed before your own or it won’t
work. Let’s say our plugin depends on depend1.plugin:

<config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://qconsulting.ca/fo3/ModConfig5.0.xsd">

 <moduleName>Example Mod</moduleName>

 <moduleDependencies operator="And">
 <fileDependency file="depend1.plugin" state="Active"/>
 </moduleDependencies>

 <requiredInstallFiles>
 <file source="example.plugin"/>
 </requiredInstallFiles>

</config>

(Pay attention to the order of the tags! It’s important!)

moduleDependencies lists all the dependencies our mod needs fulfilled. It is
the first thing the actual installer will check, even before installing the files
in requiredInstallFiles. This dependency list is actually a shared format
(meaning other tags will follow the same rules, even if their tag is different),
so we’ll refer back here whenever another shows up.

The operator attribute shows how the dependencies will be resolved:

	“And”, every single dependency needs to be met

	“Or”, at least one dependency needs to be met

fileDependency, much like the file tag, specifies a file, which in this case
needs to exist in the dest folder. The file attribute is, unsurprisingly,
the file to depend on, and state is which state the file can be in (“Active”,
“Inactive” and “Missing”).

And that’s it, you now successfully depen... Awww shucks. You forgot another dependency!

You also depend on another mod, but here the author was a bit messy. He changed
the name of the installed file when he updated the version! You should never, ever,
do this, but not everyone is as amazing, beautiful and articulate as we are.

So now you depend on another two files, depend2v1.plugin and depend2v2.plugin.
But your mod works with both, so you don’t really care which the user has installed
and you can’t put both under the “And” operator since the user will only have one of them
installed. Now we enter the domain of nested dependencies:

<config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://qconsulting.ca/fo3/ModConfig5.0.xsd">

 <moduleName>Example Mod</moduleName>

 <moduleDependencies operator="And">
 <fileDependency file="depend1.plugin" state="Active"/>
 <dependencies operator="Or">
 <fileDependency file="depend2v1.plugin" state="Active"/>
 <fileDependency file="depend2v2.plugin" state="Active"/>
 </dependencies>
 </moduleDependencies>

 <requiredInstallFiles>
 <file source="example.plugin"/>
 </requiredInstallFiles>

</config>

The dependencies tag works exactly like moduleDependencies (remember what
I said before?). It has the same attribute (operator, and it works the same way),
the same possible children. You can even have another dependencies within it!

So how does it all resolve? Let’s start from the top:

	moduleDependencies‘s operator is “And” so we need to meet all dependencies;

	First, the dependency on depend1.plugin is always mandatory;

	Second, the nested dependencies has to be met too, so we go down:
	This operator is “Or” so at least on of these files has to exist;

	If either depend2v1.plugin or depend2v2.plugin exist, this is met.

	And we go back up and check if if they’re all met. If they are, installation moves on
and if not, installation stops here and the actual installer complains!

To finish off this section, there might be another useful tag to use with
moduleDependencies: gameDependency. It’s used like this:

<moduleDependencies>
 <gameDependency version="1.0"/>
</moduleDependencies>

It pretty much just specifies a minimum version of the game that the mod needs to be
able to run.

And finally, you now successfully depend on two other mods to install!

Example 02 [https://github.com/GandaG/fomod-docs/tree/master/examples/02]

A Step Forward

And we finally get to the most important part of the installer -
the installation steps.

You’ve worked a bit more on your mod and now you offer users a choice between
two features:

.
├── fomod
│ ├── info.xml
│ ├── ModuleConfig.xml
│ ├── option_a.png
│ └── option_b.png
├── example_a.plugin
├── example_b.plugin
└── readme.txt

So now let’s go step-by-step in understanding how to present this to the user:

<config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://qconsulting.ca/fo3/ModConfig5.0.xsd">

 <moduleName>Example Mod</moduleName>

 <moduleDependencies operator="And">
 <fileDependency file="depend1.plugin" state="Active"/>
 <dependencies operator="Or">
 <fileDependency file="depend2v1.plugin" state="Active"/>
 <fileDependency file="depend2v2.plugin" state="Active"/>
 </dependencies>
 </moduleDependencies>

 <installSteps order="Explicit">
 <installStep name="Choose Option">
 <optionalFileGroups order="Explicit">
 <group name="Select an option:" type="SelectExactlyOne">
 <plugins order="Explicit">

 <plugin name="Option A">
 <description>Select this to install Option A!</description>
 <image path="fomod/option_a.png"/>
 <files>
 <file source="example_a.plugin"/>
 </files>
 <typeDescriptor>
 <type name="Recommended"/>
 </typeDescriptor>
 </plugin>

 <plugin name="Option B">
 <description>Select this to install Option B!</description>
 <image path="fomod/option_b.png"/>
 <files>
 <file source="example_b.plugin"/>
 </files>
 <typeDescriptor>
 <type name="Optional"/>
 </typeDescriptor>
 </plugin>

 </plugins>
 </group>
 </optionalFileGroups>
 </installStep>
 </installSteps>

</config>

Don’t panic. First, requiredInstallFiles was removed since we no longer need
it.

installSteps is the root tag for this portion. All it does is contain the
individual steps and set the order they appear in via the order attribute.
Like with the optionalFileGroups and plugins tags, you’ll want to keep
this value to “Explicit”. For more info on this take a look at the
Tips and Tricks.

Next, installStep. The step itself and for now all it does is name the step
(name attribute) and hold the next tag.

optionalFileGroups, has the same order attribute as installSteps and
does nothing more than holding groups.

group is an interesting tag - all options, or plugins, below here will be
grouped and all groups in the same step will be visible at once. This allows
the user to make several choices in the same step and is incredibly useful
for you (less work) as long as these choices don’t require interaction between
them (which we’ll get to in the next section!).

So the group tag holds the plugins and you get to define the name of the
group (name attribute) and its type. I won’t waste time explaining them
since they’re so simple and self-explanatory: “SelectAny”, “SelectAll”,
“SelectExactlyOne”, “SelectAtMostOne” and “SelectAtLeastOne”.

Unlike the previous tag, plugins is boring. Same deal as optionalFileGroups
but with plugins.

plugin is where all the magic happens. This corresponds to an option the user
can take during installation. The name attribute is what the option will be
called and description the... description. While it is not required to set an
image for this option it is highly recommended.

In files you set the files you want to install if this option is selected,
exactly the same way as requiredInstallFiles. Lastly, typeDescriptor is a
bit complex but for what we want and need most of the time what you see in the
example is enough. In the name attribute in type you have a choice between:

	“Optional”, where the option is... optional. Yep.

	“Required”, where the user doesn’t really have a choice. Useful for including
small readmes during the installation and hoping the user reads them this way.

	“Recommended”, where the option is usually pre-selected. Be careful as
implementation of this varies.

There are actually two more possible but they’re useless.

To finish this section here’s a little piece of advice - try to keep your files
the same name regardless of version and user options. Other’s tools may be
depending on it and it’s considered general courtesy to do so. So our example’s
package and installSteps should look like this instead:

.
├── fomod
│ ├── info.xml
│ ├── ModuleConfig.xml
│ ├── option_a.png
│ └── option_b.png
├── option_a
│ └── example.plugin
├── option_b
│ └── example.plugin
└── readme.txt

<installSteps order="Explicit">
 <installStep name="Choose Option">
 <optionalFileGroups order="Explicit">
 <group name="Select an option:" type="SelectExactlyOne">
 <plugins order="Explicit">
 <plugin name="Option A">
 <description>Select this to install Option A!</description>
 <image path="fomod/option_a.png"/>
 <files>
 <folder source="option_a"/>
 </files>
 <typeDescriptor>
 <type name="Recommended"/>
 </typeDescriptor>
 </plugin>
 <plugin name="Option B">
 <description>Select this to install Option B!</description>
 <image path="fomod/option_b.png"/>
 <files>
 <folder source="option_b"/>
 </files>
 <typeDescriptor>
 <type name="Optional"/>
 </typeDescriptor>
 </plugin>
 </plugins>
 </group>
 </optionalFileGroups>
 </installStep>
</installSteps>

Example 03 [https://github.com/GandaG/fomod-docs/tree/master/examples/03]

Flags and You

Your mod’s new version now features a choice between textures: Blue or Red.
But you needed to make a version of each texture for each plugin version:

.
├── fomod
│ ├── info.xml
│ ├── ModuleConfig.xml
│ ├── option_a.png
│ ├── option_b.png
│ ├── texture_blue.png
│ └── texture_red.png
├── plugin_a
│ └── example.plugin
├── plugin_b
│ └── example.plugin
├── texture_blue_a
│ └── texture.tga
├── texture_blue_b
│ └── texture.tga
├── texture_red_a
│ └── texture.tga
└── texture_red_b
 └── texture.tga

Ugh, it’s getting complex. Let’s see what we can make of our steps:

<config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://qconsulting.ca/fo3/ModConfig5.0.xsd">

 <moduleName>Example Mod</moduleName>

 <moduleDependencies operator="And">
 <fileDependency file="depend1.plugin" state="Active"/>
 <dependencies operator="Or">
 <fileDependency file="depend2v1.plugin" state="Active"/>
 <fileDependency file="depend2v2.plugin" state="Active"/>
 </dependencies>
 </moduleDependencies>

 <installSteps order="Explicit">

 <installStep name="Choose Option">
 <optionalFileGroups order="Explicit">
 <group name="Select an option:" type="SelectExactlyOne">
 <plugins order="Explicit">

 <plugin name="Option A">
 <description>Select this to install Option A!</description>
 <image path="fomod/option_a.png"/>
 <files>
 <folder source="option_a"/>
 </files>
 <conditionFlags>
 <flag name="option_a">selected</flag>
 </conditionFlags>
 <typeDescriptor>
 <type name="Recommended"/>
 </typeDescriptor>
 </plugin>

 <plugin name="Option B">
 <description>Select this to install Option B!</description>
 <image path="fomod/option_b.png"/>
 <files>
 <folder source="option_b"/>
 </files>
 <conditionFlags>
 <flag name="option_b">selected</flag>
 </conditionFlags>
 <typeDescriptor>
 <type name="Optional"/>
 </typeDescriptor>
 </plugin>

 </plugins>
 </group>
 </optionalFileGroups>
 </installStep>

 <installStep name="Choose Texture">
 <visible>
 <flagDependency flag="option_a" value="selected"/>
 </visible>
 <optionalFileGroups order="Explicit">
 <group name="Select a texture:" type="SelectExactlyOne">
 <plugins order="Explicit">

 <plugin name="Texture Blue">
 <description>Select this to install Texture Blue!</description>
 <image path="fomod/texture_blue.png"/>
 <files>
 <folder source="texture_blue_a"/>
 </files>
 <typeDescriptor>
 <type name="Optional"/>
 </typeDescriptor>
 </plugin>

 <plugin name="Texture Red">
 <description>Select this to install Texture Red!</description>
 <image path="fomod/texture_red.png"/>
 <files>
 <folder source="texture_red_a"/>
 </files>
 <typeDescriptor>
 <type name="Optional"/>
 </typeDescriptor>
 </plugin>

 </plugins>
 </group>
 </optionalFileGroups>
 </installStep>

 <installStep name="Choose Texture">
 <visible>
 <flagDependency flag="option_b" value="selected"/>
 </visible>
 <optionalFileGroups order="Explicit">
 <group name="Select a texture:" type="SelectExactlyOne">
 <plugins order="Explicit">

 <plugin name="Texture Blue">
 <description>Select this to install Texture Blue!</description>
 <image path="fomod/texture_blue.png"/>
 <files>
 <folder source="texture_blue_b"/>
 </files>
 <typeDescriptor>
 <type name="Optional"/>
 </typeDescriptor>
 </plugin>

 <plugin name="Texture Red">
 <description>Select this to install Texture Red!</description>
 <image path="fomod/texture_red.png"/>
 <files>
 <folder source="texture_red_b"/>
 </files>
 <typeDescriptor>
 <type name="Optional"/>
 </typeDescriptor>
 </plugin>

 </plugins>
 </group>
 </optionalFileGroups>
 </installStep>

 </installSteps>

</config>

The most obvious change was the addition of two new steps, but we’ll get
there later.

First let’s talk about the existing step. A couple of new tags were added:
conditionFlags and flag. conditionFlags works much like files but for
flags - sets the flag to the value you want whenever the option is selected.

Within plugin at least one of either conditionFlags or plugin must exist
in any order.

A flag is like a marker with a name and a value that you control. It does
nothing by itself but is amazing at communicating things throughout the
installer - here we use it to tell the other two steps what was the option
the user chose. To resume, set the flag name with the name attribute and
its value with the element’s text.

And on to the two last steps. The new tag here is visible, which is a
dependency network. This tag manages whether the step
is visible or not - if its conditions are met then the step is shown to the
user, otherwise it’s skipped.

In the first of these two steps we’re installing the textures that correspond
with option A in the first step so we make sure to depend on the flag we set
on option A for visiblity. In the last one we do the opposite!

That’s it really, most of you can now go on making installers for your mods.
As you can see, fomod is actually pretty simple! And for the brave ones or
those who need a little more to spice up their installer I’ll be waiting for
you at the next section!

Example 04 [https://github.com/GandaG/fomod-docs/tree/master/examples/04]

The Installation Matrix

So you’ve finished reading the last section and maybe you thought -
“so if for each choice dependent on a previous one I have to make
a new install step, what if I had 10 choices for the user? 20?” -
and you thought very well. In truth, if you followed the previous
and you had the user make 10 dependent choices between two options
you’d need to make 1023 (\(a_n=-1+2^n \), where \(n \) is the number
of choices for the user to make) installation steps.

Instead, you could create an installation matrix:

<config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://qconsulting.ca/fo3/ModConfig5.0.xsd">

 <moduleName>Example Mod</moduleName>

 <moduleDependencies operator="And">
 <fileDependency file="depend1.plugin" state="Active"/>
 <dependencies operator="Or">
 <fileDependency file="depend2v1.plugin" state="Active"/>
 <fileDependency file="depend2v2.plugin" state="Active"/>
 </dependencies>
 </moduleDependencies>

 <installSteps order="Explicit">
 <installStep name="Choose Option">
 <optionalFileGroups order="Explicit">

 <group name="Select an option:" type="SelectExactlyOne">
 <plugins order="Explicit">

 <plugin name="Option A">
 <description>Select this to install Option A!</description>
 <image path="fomod/option_a.png"/>
 <conditionFlags>
 <flag name="option_a">selected</flag>
 </conditionFlags>
 <typeDescriptor>
 <type name="Recommended"/>
 </typeDescriptor>
 </plugin>

 <plugin name="Option B">
 <description>Select this to install Option B!</description>
 <image path="fomod/option_b.png"/>
 <conditionFlags>
 <flag name="option_b">selected</flag>
 </conditionFlags>
 <typeDescriptor>
 <type name="Optional"/>
 </typeDescriptor>
 </plugin>

 </plugins>
 </group>

 <group name="Select a texture:" type="SelectExactlyOne">
 <plugins order="Explicit">

 <plugin name="Texture Blue">
 <description>Select this to install Texture Blue!</description>
 <image path="fomod/texture_blue.png"/>
 <conditionFlags>
 <flag name="texture_blue">selected</flag>
 </conditionFlags>
 <typeDescriptor>
 <type name="Optional"/>
 </typeDescriptor>
 </plugin>

 <plugin name="Texture Red">
 <description>Select this to install Texture Red!</description>
 <image path="fomod/texture_red.png"/>
 <conditionFlags>
 <flag name="texture_red">selected</flag>
 </conditionFlags>
 <typeDescriptor>
 <type name="Optional"/>
 </typeDescriptor>
 </plugin>

 </plugins>
 </group>

 </optionalFileGroups>
 </installStep>
 </installSteps>

 <conditionalFileInstalls>
 <patterns>
 <pattern>
 <dependencies operator="And">
 <flagDependency flag="option_a" value="selected"/>
 <flagDependency flag="texture_blue" value="selected"/>
 </dependencies>
 <files>
 <folder source="option_a"/>
 <folder source="texture_blue_a"/>
 </files>
 </pattern>
 <pattern>
 <dependencies operator="And">
 <flagDependency flag="option_a" value="selected"/>
 <flagDependency flag="texture_red" value="selected"/>
 </dependencies>
 <files>
 <folder source="option_a"/>
 <folder source="texture_red_a"/>
 </files>
 </pattern>
 <pattern>
 <dependencies operator="And">
 <flagDependency flag="option_b" value="selected"/>
 <flagDependency flag="texture_blue" value="selected"/>
 </dependencies>
 <files>
 <folder source="option_b"/>
 <folder source="texture_blue_b"/>
 </files>
 </pattern>
 <pattern>
 <dependencies operator="And">
 <flagDependency flag="option_b" value="selected"/>
 <flagDependency flag="texture_red" value="selected"/>
 </dependencies>
 <files>
 <folder source="option_b"/>
 <folder source="texture_red_b"/>
 </files>
 </pattern>
 </patterns>
 </conditionalFileInstalls>

</config>

Granted, the number of matrix items (pattern tags) you’ll need to create in
this specific 2 options/choice example is always going to be higher (\(a_n=2^n \),
where \(n \) is the number of choices for the user to make) than the number of
installation steps needed for the same number of choices, BUT you can better
organize your steps into groups since they’re no longer dependent on each other
and this matrix is mostly copy-paste while replacing a few things, while the
steps need careful adjustements of the visible, files and conditionFlags tags.

It also looks much better this way.

As you may have understood by now, conditionalFileInstalls allows you to create
a matrix of pattern tags. The mod manager/installer will run through each of
these, check dependencies and if they match, install anything under files.
We’ve talked about these tags before, they work exactly the same way.

And that’s it really. All major sections were talked about and you’re ready to
tackle 99.9% of the fomod installers out there. There are a few minor things
that also exist but they’re so rarely needed that they can be safely ignored by
most people. To take a look at some of them continue on to Tips and Tricks
and if you need something else that isn’t even covered there head on over to
Specification for a complete and exhaustive look at the schema.

Hope you learned something and good luck!

Example 05 [https://github.com/GandaG/fomod-docs/tree/master/examples/05]

Tips and Tricks

AKA a F.A.Q. for which we couldn’t come up with questions

The Schema Location

Maybe you’ve noticed this appearing as the schema location in the
examples: http://qconsulting.ca/fo3/ModConfig5.0.xsd. It is not
an accident - some mod managers, and I won’t name names here, use
the link text (not the file the link points to, but the link itself)
to check which fomod version the installer is using.

Conclusion - you can’t change it unless you’re sure your users
will never use those mod managers. Hopefully they’ll drop that if
a new schema version is created.

The Explicit Order

As promised during the tutorial - the fabled order attribute.

This is actually pretty simple and, if I might say so, completely
ridiculous. Let me show you the options for this attribute:

	“Ascending” - the default

	“Descending”

	“Explicit”

The first two sort your stuff alphabetically with no regards to
how you sorted them out and since (the order attribute is
optional, meaning you can omit it) the default is “Ascending”
you’ll need to put order=”Explicit” everywhere in your installer.

No idea why it was decided to put “Ascending” as the default or
who even thought it would be a good idea to sort things
alphabetically here.

The Type Descriptor

Coming soon!

Specification

The fomod format initially arose from the need
to provide users with a simpler way of installing
mods without the need to download multiple files.

It was created and initially maintaned by a
currently unknown developer.

The fomod files (discussed below) can be thought
of as a blueprint for a mod manager or an independent
mod installer to create a GUI (graphical user interface)
to simplify user installation.

Structure

A fomod installers requires a specific package
structure. Assuming the current directory (.)
is the package:

.
├── example.plugin
└── readme.txt

A fomod folder is needed and within it two files
that are going to be described below: Info
and Config.

A final structure should resemble:

.
├── fomod
│ ├── info.xml
│ └── ModuleConfig.xml
├── example.plugin
└── readme.txt

Info File

There is no defined schema for this file but it
is required anyway. A proposed schema to fit the
majority of mod managers could be:

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" version="5.x">
 <xs:element name="fomod">
 <xs:annotation>
 <xs:documentation>
 The following tags are to be filled in according
 to their tags, shouldn't be hard to figure out.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name" type="xs:string" minOccurs="0"/>
 <xs:element name="Author" type="xs:string" minOccurs="0"/>
 <xs:element name="Version" minOccurs="0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="MachineVersion" type="xs:string"/>
 <xs:annotation>
 <xs:documentation>
 This attribute is used for providing a
 machine-readable version.
 Examples can be found here - https://en.wikipedia.org/wiki/Software_versioning

 Semantic versioning is recommended - https://semver.org/
 </xs:documentation>
 </xs:annotation>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="Description" type="xs:string" minOccurs="0"/>
 <xs:element name="Website" type="xs:string" minOccurs="0"/>
 <xs:element name="Id" type="xs:string" minOccurs="0"/>
 <xs:any processContents="skip" minOccurs="0" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>
 This element is used solely for allowing extensions
 since this is merely a proposed schema.
 </xs:documentation>
 </xs:annotation>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Config File

You can find a complete reference for this file here.
However, since it is generally easier to understand,
it is recommended that you look through the actual schema [https://github.com/GandaG/fomod-schema/blob/5.1/ModuleConfig.xsd].

Index

 nav.xhtml

 Table of Contents

 		The fomod Documentation

 		Tutorial

 		A Simple Installer

 		Dependencies Network

 		A Step Forward

 		Flags and You

 		The Installation Matrix

 		Tips and Tricks

 		The Schema Location

 		The Explicit Order

 		The Type Descriptor

 		Specification

 		Structure

 		Info File

 		Config File

_static/down.png

_static/up.png

_static/comment-close.png

_static/comment.png

_static/plus.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

