
fmrbenchmark
Release 0.0.1

May 16, 2016

Contents

1 Introduction 3

2 Problem domain: Scaling chains of integrators 5

3 Problem domain: Traffic network of Dubins cars 9

4 Problem domain: Factory cart clearing 13

5 Contributing 15

6 Developer’s Guide 17

i

ii

fmrbenchmark, Release 0.0.1

This is the User’s Guide to the fmrbenchmark repository, which is part of a project to develop benchmark problems for
research in so-called “formal methods for robotics.” This effort is stimulated by competitions, and the main website
is http://fmrchallenge.org. The two other major forms of documentation are the API manual and the benchmark
specifications. Among the latter documents are competition rules. Besides these sources of documentation, there are
comments in the code as well as README and similar files throughout the repository.

For newcomers, a good place to begin is the Introduction.

Contents 1

https://github.com/fmrchallenge/fmrbenchmark
http://fmrchallenge.org
http://api.fmrchallenge.org
http://fmrchallenge.org/norm
http://fmrchallenge.org/norm

fmrbenchmark, Release 0.0.1

2 Contents

CHAPTER 1

Introduction

This page provides orientation and an overall introduction to the repository. It is a good place to begin before studying
a particular benchmark. There are two founding ambitions of the project: to develop benchmark problems for research
in so-called “formal methods for robotics,” and to create standard interfaces, formats, etc. for expressing problems and
using tools that implement methods described in the research literature. Our effort is analogous to that of SMT-LIB,
which is for research in satisfiability modulo theories.

There are four major kinds of entities in the repository:

1. benchmarks;

2. analysis tools for reviewing results from using benchmarks;

3. examples demonstrating components of benchmarks and solution controllers;

4. documentation.

Spanning all four of the above kinds is the supporting infrastructure. This refers to header files, message formats, etc.
that may be used by more than one benchmark and that may be of independent interest, besides benchmarking.

The repository as a whole has a single version number. Depending on the eventual pace of growth and styles of usage,
we may begin to version significant components separately. In any case, version numbers are of the form M.m.u, and
changes only to u are not expected to break any current usage.

Warning: The interfaces to command-line tools, the names of important ROS topics, and other user-level aspects
of the repository may change with little warning until version 0.1.0. Beginning at that time, care will be taken to
ensure backwards-compatibility and to have more gradual deprecation.

1.1 Formulation

A normative description of benchmarks as well as a development of notation and problem formulation is given in the
Challenge Document. Below is a summary.

Benchmarks are organized into problem domains (sometimes also called “problem settings”), which are defined in
terms of several parameters. A problem variant refines the domain by constraining possible values that may be as-
signed to a parameter, e.g., deciding that time can only be a multiple of a constant (the period). Finally, a problem
instance is defined as a particular selection of values consistent with a problem variant. The instance is the thing that
is actually to be solved. A special case of this taxonomy is a concrete benchmark from industry that is to be solved as
given, i.e., there is no need to provide more details like how time progresses or what the initial state can be. In such a
case, the problem domain, variant, and instance are all the same.

3

http://www.smt-lib.org
http://fmrchallenge.org/norm

fmrbenchmark, Release 0.0.1

1.2 Support for platforms and programming languanges

There are no generic installation instructions. Instead, instructions and requirements are described separately for each
benchmark. Though there are shared dependencies and some similar preparations, separately treating each facili-
tates users who are only interested in some parts of the repository. E.g., try the Problem domain: Scaling chains of
integrators.

While it may be possible to build the benchmarks and infrastructure on other platforms, the current target is Ubuntu
14.04 running Linux x86_64 and the following:

• ROS Indigo

• Gazebo as used with ROS

The benchmarks are primarily implemented in C++ and C. As of version 0.0.0, most of the examples and tools for
reviewing results are in C++ and Python.

4 Chapter 1. Introduction

http://www.ubuntu.com
http://wiki.ros.org/indigo/Installation/Ubuntu
http://gazebosim.org
http://wiki.ros.org/gazebo_ros_pkgs
https://www.python.org

CHAPTER 2

Problem domain: Scaling chains of integrators

Often referred to as “the first domain,” the basic problem is to find a controller for a given chain of integrators system
so that all trajectories repeatedly reach several regions while avoiding others.

2.1 Preparations

While below we include pointers to the main websites for dependencies, many are available via packages for your OS
and may already be installed, especially if you have ROS on Ubuntu 14.04. Supported platforms are described in the
Introduction.

2.1.1 Dependencies

• Eigen

• Boost, specifically Boost.Thread and bind.

On Ubuntu, Eigen can be obtained by installing the “libeigen3-dev” deb package
(https://packages.debian.org/jessie/libeigen3-dev).

2.1.2 Supplementary prerequisites

While not necessary to use the benchmark per se, supplemental objects including tools for visualizing and reviewing
results and example solutions are provided. These have additional dependencies besides those that are required for
the benchmark. In particular, plotp.py and tdstat.py provide a means to examine problem instances and
results of trials, as demonstrated in the tutorial below. Together with the fmrb Python package, which is under
tools/fmrb-pkg/ in the repository, the following additional dependencies are present:

• NumPy, which is part of the standard scientific Python stack

• Matplotlib, also part of the standard stack

• pycddlib, a Python wrapper for Komei Fukuda’s cddlib

• Python Control Systems Library

Once these are met, install fmrb from your copy of the repository, e.g.,

cd tools/fmrb-pkg
pip install -e .

or get it from PyPI,

5

http://eigen.tuxfamily.org
http://www.boost.org
http://www.boost.org/libs/thread/
http://www.boost.org/doc/libs/1_57_0/libs/bind/bind.html
https://packages.debian.org/jessie/libeigen3-dev
http://www.scipy.org/stackspec.html
https://pypi.python.org/pypi/pycddlib
http://www.inf.ethz.ch/personal/fukudak/cdd_home/index.html
https://github.com/python-control/python-control
https://pypi.python.org/pypi/fmrb

fmrbenchmark, Release 0.0.1

pip install fmrb

2.2 Tutorial

In the below code, $FMRBENCHMARK is the absolute path to a copy of the fmrbenchmark repository on your machine.

2.2.1 Demonstrations of components

To build the “standalone” (i.e., independent of ROS) examples demonstrating various parts of this benchmark, go to
the dynamaestro directory ($FMRBENCHMARK/domains/integrator_chains/dynamaestro) and then
follow the usual CMake build instructions. On Unix without an IDE, usually these are

mkdir build
cd build
cmake ..
make

One of the resulting programs is genproblem, the source of which is
$FMRBENCHMARK/domains/integrator_chains/dynamaestro/examples/standalone/genproblem.cpp.
The output is a problem instance in JSON. To visualize it, try

dynamaestro/build/genproblem | analysis/plotp.py -

from the directory $FMRBENCHMARK/domains/integrator_chains/.

2.2.2 Controller examples

Note that the example controller lqr.py requires the Python Control System Library (control) and a standard
scientific Python stack including NumPy. Obtaining these is described above in the Section Preparations.

Create a catkin workspace.

mkdir -p fmrb_demo/src
cd fmrb_demo/src
catkin_init_workspace

Create symbolic links to the ROS packages in the fmrbenchmark repository required for this example.

ln -s $FMRBENCHMARK/domains/integrator_chains/integrator_chains_msgs
ln -s $FMRBENCHMARK/domains/integrator_chains/dynamaestro
ln -s $FMRBENCHMARK/examples/sci_concrete_examples

Build and install it within the catkin workspace.

cd ..
catkin_make install

Because the installation is local to the catkin workspace, before beginning and whenever a new shell session is created,
you must first

source install/setup.zsh

where the source command assumes that you are using the Z shell; try setup.bash if you use Bash. To initiate
the performance of a collection of trials defined by the configuration file mc-small-out3-order3.json in the
ROS package sci_concrete_examples of example controllers,

6 Chapter 2. Problem domain: Scaling chains of integrators

http://www.cmake.org

fmrbenchmark, Release 0.0.1

python $FMRBENCHMARK/domains/integrator_chains/trial-runner.py -l -f mydata.json src/sci_concrete_examples/trialconf/mc-small-out3-order3.json

This will cause trial data to be saved to the file mydata.json in the local directory from where the above command
is executed. A description of options can be obtained from trial-runner.py -h.

In a separate terminal, run the example controller using:

roslaunch sci_concrete_examples lqr.launch

You can observe the sequence of states and control inputs using rostopic echo state and rostopic echo
input, respectively. At each time increment, the state labeling is published to the topic /dynamaestro/loutput
as an array of strings (labels) corresponding to the polytopes containing the output at that time.

Because we used the -l flag when invoking trial-runner.py above, two additional topics are available. The
labeling without repetition is published to “/logger/loutput_norep”, and several elements (up to 3) of the state vector
are published to “/logger/state_PointStamped” as a PointStamped message, which can be viewed in rviz.

Once all trials have completed, the trial data can be examined using tdstat.py. E.g., to get a summary about the
data for each trial,

$FMRBENCHMARK/domains/integrator_chains/analysis/tdstat.py -s mydata.json

To get the labeling of the trajectory for trial 0, modulo repetition,

$FMRBENCHMARK/domains/integrator_chains/analysis/tdstat.py -t 0 --wordmodrep mydata.json

To get a description of options, try tdstat.py -h.

2.2. Tutorial 7

http://wiki.ros.org/rviz

fmrbenchmark, Release 0.0.1

8 Chapter 2. Problem domain: Scaling chains of integrators

CHAPTER 3

Problem domain: Traffic network of Dubins cars

Often referred to as “the second domain,” the basic setting is navigation in a small network of roads with vehicles that
follow unicycle-like dynamics.

3.1 Preparations

While below we include pointers to the main websites for dependencies, many are available via packages for your OS
and may already be installed, especially if you have ROS on Ubuntu 14.04. Supported platforms are described in the
Introduction.

3.1.1 Basic

There are two major variants of this benchmark: one based in simulation and another on a physical testbed. We begin
with preparations appropriate for both.

• Eigen

On Ubuntu, Eigen can be obtained by installing the “libeigen3-dev” deb package
(https://packages.debian.org/jessie/libeigen3-dev).

Several ROS packages for the Kobuki by Yujin Robot are required.

• kobuki_node and dependencies.

• kobuki_description and dependencies.

Install fmrb from your copy of the repository, e.g.,

cd tools/fmrb-pkg
pip install -e .

or get it from PyPI,

pip install fmrb

3.1.2 Dependencies of the simulation variant

• Gazebo

• kobuki_gazebo_plugins

9

http://eigen.tuxfamily.org
https://packages.debian.org/jessie/libeigen3-dev
http://wiki.ros.org/kobuki_node
http://wiki.ros.org/kobuki_description
https://pypi.python.org/pypi/fmrb
http://gazebosim.org
http://wiki.ros.org/kobuki_gazebo_plugins

fmrbenchmark, Release 0.0.1

3.1.3 Dependencies of the physical variant

(forthcoming)

3.1.4 Supplementary prerequisites

As for the Problem domain: Scaling chains of integrators, there is code that is relevant but not required for this
benchmark.

3.2 Tutorials

In the below code, $FMRBENCHMARK is the absolute path to a copy of the fmrbenchmark repository on your machine.

3.2.1 Launching a problem instance of the simulation variant

Create a catkin workspace.

mkdir -p dubsim_workspace/src
cd dubsim_workspace/src
catkin_init_workspace

Create symbolic links to the ROS packages in the fmrbenchmark repository required for this example.

ln -s $FMRBENCHMARK/domains/dubins_traffic/dubins_traffic_msgs
ln -s $FMRBENCHMARK/domains/dubins_traffic/dubins_traffic_utils
ln -s $FMRBENCHMARK/domains/dubins_traffic/dub_sim
ln -s $FMRBENCHMARK/domains/dubins_traffic/e-agents/wander

Build and install it within the catkin workspace.

cd ..
catkin_make install

Because the installation is local to the catkin workspace, before beginning and whenever a new shell session is created,
you must first

source install/setup.zsh

where the source command assumes that you are using the Z shell; try setup.bash if you use Bash.

Finally, launch a small 4-grid road network with two adversarially controlled vehicles, also known as e-agents (where
‘‘e” abbreviates ‘‘environment’‘).

python $FMRBENCHMARK/domains/dubins_traffic/trial-runner.py -f mydata.json $(rospack find dubins_traffic_utils)/examples/trialsconf/mc-small-4grid-agents2.json

This will cause trial data to be saved to the file mydata.json in the local directory from where the above command
is executed.

The Gazebo server is launched without a GUI frontend, which is also known as running headless. A local viewer can
be launched using

gzclient

The vehicle to be controlled has the ROS namespace /ego. The e-agents have namespaces defined in the trials con-
figuration file. In the example mc-small-4grid-agents2.json used in this tutorial, these are /agent0 and /agent1.

10 Chapter 3. Problem domain: Traffic network of Dubins cars

fmrbenchmark, Release 0.0.1

In a separate terminal, run your controller. For example, assuming your controller is contained in the package
your_controller with launch file foo.launch, in a separate terminal, run

roslaunch your_controller foo.launch

3.2. Tutorials 11

fmrbenchmark, Release 0.0.1

12 Chapter 3. Problem domain: Traffic network of Dubins cars

CHAPTER 4

Problem domain: Factory cart clearing

(Not released yet.)

13

fmrbenchmark, Release 0.0.1

14 Chapter 4. Problem domain: Factory cart clearing

CHAPTER 5

Contributing

There are many ways to contribute. Major concerns to keep in mind:

• Participants should adhere to the Debian Code of Conduct. (Replace references to “Debian” with “fmrbench-
mark” and “fmrchallenge” as appropriate.)

• Our mailing list is fmrbenchmark-users@googlegroups.com. There is also a low-volume announcements
newsletter.

• You must hold the copyright or have explicit permission from the copyright holder for anything that you con-
tribute. Furthermore, to be included in this project, your contributed works must be under the standard “BSD
3-clause license” or a comparable open-source license (including public domain dedication). You can find a
copy at LICENSE in the root of the repository. A license is “comparable” if it is no more restrictive than the
Apache License, Version 2.0.

Please report potential bugs or request features using the issue tracker. Guidelines for participating in development are
given in Developer’s Guide.

5.1 Proposing benchmarks

Proposals about benchmark problems or supporting infrastructure are always welcome and need not have a demon-
strating implementation. Furthermore, in your proposal you can use an implementation that is not ready for immediate
inclusion in the repository, e.g., if it is created entirely in MATLAB. Such implementations are still useful because
they provide a reference about your original intent and can be a basis for porting, e.g., to C++ or Python. In most
cases, there are three parts involved in the inclusion of a benchmark:

1. a normative description about the problem and methods of evaluation in the Challenge Document;

2. introductory and tutorial treatment in the User’s Guide, and relevant additions to the API manual;

3. details and practical considerations for using it as part of a competition.

Please report potential bugs or request features using the issue tracker.

5.2 Working on physical variants of the problem domains

One of our ambitions is to create benchmarks that involve physical systems. In other words, we want to create
well-documented testbeds that facilitate repeatability of published experiments involving real robot hardware and are
challenging with respect to the state of the art.

There are a lot of incidental costs and resource requirements to develop physical benchmarks, such as raw materials,
lab space, etc. Usually these are provided by each lab group for their own internal purposes (often with little or no

15

https://www.debian.org/code_of_conduct
https://groups.google.com/forum/#!forum/fmrbenchmark-users
http://eepurl.com/bbxEcz
http://eepurl.com/bbxEcz
http://opensource.org/licenses/Apache-2.0
https://github.com/fmrchallenge/fmrbenchmark/issues
http://fmrchallenge.org/norm
http://docs.fmrchallenge.org
http://api.fmrchallenge.org
https://github.com/fmrchallenge/fmrbenchmark/issues

fmrbenchmark, Release 0.0.1

public disclosure of details). However, this project is a joint effort that is not under the purview of a single grant nor
institution. Thus an important manner of contribution is to realize physical variants of the benchmarks in your own
lab and then give feedback about missing details, subtle considerations, etc. Any of the venues listed above (at the
beginning of Contributing) can be used to provide comments. Also, the authors can be emailed directly.

5.3 Providing computing resources

Two important aspects of benchmarking are scale and comparability of performance results. Several of the domains are
designed to have problem instances that can be arbitrarily large, e.g., Problem domain: Scaling chains of integrators.
To support these ambitions, we accept donations of hardware as well as of remote access to computing resources, e.g.,
university-managed clusters or cloud computing services.

16 Chapter 5. Contributing

http://fmrchallenge.org/#contact

CHAPTER 6

Developer’s Guide

Consult Contributing, and join the mailing list fmrbenchmark-users@googlegroups.com.

Bugfixes and other corrections, implementations of new features, improvements to documentation, etc. should be
offered as pull requests. Patches can be submitted through other media if you prefer, but please try to make it easy to
use and understand your proposed changes.

The benchmarks are primarily implemented in C++ and C. Unless there are strong motivations to use a different
programming language, we prefer these for well-known reasons: they are fast, mature, standard, etc. Besides C and
C++, several core tools for analysis of results are in Python and rely on widely-used numerical and scientific Python
packages, among others. Observe that “tools for analysis” are not part of the benchmarks per se.

Examples can be expressed in any programming language or depend on any tool, including dependencies that have
restrictive licenses. However, as with everything else in the repository, the example itself must be under the standard
“BSD 3-clause license” or a comparable open-source license (including public domain dedication). If you are going
to contribute examples having dependencies that are not free as in freedom, please carefully document the special
requirements for running the example controller.

6.1 Style

Eventually we may create official style guidelines, but for now, please skim the source code to get an indication of the
preferred style.

6.2 Checklist for making releases

1. tag in repository, and sign it.

2. post fmrb Python package to PyPI.

3. post releases of documentation: User’s Guide, API manual, and the Challenge Document.

4. update website.

17

https://groups.google.com/forum/#!forum/fmrbenchmark-users
https://github.com/fmrchallenge/fmrbenchmark/pulls
https://www.python.org

	Introduction
	Problem domain: Scaling chains of integrators
	Problem domain: Traffic network of Dubins cars
	Problem domain: Factory cart clearing
	Contributing
	Developer's Guide

