

Welcome to fmcw’s documentation!

/!DOCUMENTATION STILL UNDER CONSTRUCTION /!

This library provides high level access to the FMCW3 radar. It provides the necessary building blocks to automatically handle configuration of the FPGA, reception of the data and post-processing.
With reasonable settings, most users should even be able to be able to display a few plots in real time.

If you have any questions, feel free to join the fmcwworkspace slack.

Table Of Contents:

Contents:

	History of the project

	fmcw package
	fmcw.adc module

	fmcw.camera module

	fmcw.display module

	fmcw.ftdi module

	fmcw.preprocessing module

	fmcw.postprocessing module

Indices and tables

	Index

	Module Index

	Search Page

History of the project

The fmcw project started a few years ago as Henrik Forsten attempted to build a radar with readily accessible components. His blog is the best source of technical information on the hardware.

The fmcw package aims at generalizing the python code he open sourced on GitHub and provide the user with a lot more features. By lowering the threshold required to get into building a radar, the hope is to grow a community of passionate radar makers.

fmcw package

Here is the documentation of all the modules in the fmcw package.

fmcw.adc module

	
class fmcw.adc.ADF4158

	Bases: object

	
find_reg(reg)

	Finds register by name.

	Parameters

	reg –

	Returns

	

	
freq_to_regs(fstart, fpd_freq, bw, length, delay)

	Set up the ADC.

	Parameters

	
	fstart – Initial chirp frequency?

	fpd_freq –

	bw – [Hz] bandwidth

	length –

	delay – Delay to account for the start of the mixer.

	Returns

	

	
write_value(**kw)

	Write value to register, doesn’t update the device.

	Parameters

	kw –

	Returns

	

fmcw.camera module

	
class fmcw.camera.camera(flag_camera_ready, flag_reading_data, s)

	Bases: multiprocessing.context.Process

This class describes the object that will read the camera as a separate subprocess. The start/stop is regulated by an Event object.

	
run()

	Yes, importing all these modules from within a function is gettho, but I have not found a way around it yet.
import cv2 will start displaying the feed with Qt5 (my default), which then appears to be “taken” for all the
other plots being display. Therefore, the next backend is used for the other plots - TkAgg - and my package
was not written to support something else than TkAgg.

	Returns

	

fmcw.display module

	
fmcw.display.import_csv(path, timestamp, s)

	

	
fmcw.display.import_settings(path, timestamp)

	

	
fmcw.display.plot_angle(t, d, fxdb, angles_masked, clim, max_range, time_stamp, method='', show_plot=False)

	TO DO: ACTUALIZE THE ARGUMENTS WITH THE NEW METHOD
Plot the angular data for a bunch of sweeps.

	Parameters

	
	t –

	d –

	fxdb –

	angles_masked –

	clim –

	max_range –

	time_stamp –

	method –

	show_plot –

	Returns

	

	
fmcw.display.plot_if_spectrum(d, ch, sweep_number, w, fir_gain, adc_bits, time_stamp, show_plot=False)

	TO DO: NEEDS AN UPDATE TO REDUCE THE ARGUMENT COUNT VIA THE USE OF THE SETTINGS DICTIONARY
Plot the IF Fourier spectrum. Useful to see how much noise there is in the data and where.

	Parameters

	
	d – [m] distance bins TO DO: why is it here?

	ch – Dictionary containing the data

	sweep_number – sweep to plot

	w – Window to use when processing the data

	fir_gain – TO DO: will be superseeded by the settings dictionary

	adc_bits – TO DO: will be superseeded by the settings dictionary

	time_stamp – [bool] Save the data?

	show_plot – [bool] Show the plot?

	Returns

	

	
fmcw.display.plot_if_time_domain(fig_if, t, ch, sweep_number, s, ylim, time_stamp, show_plot=False)

	TO DO: ACTUALIZE THE ARGUMENTS WITH THE NEW METHOD
Plot the IF data for a bunch of sweeps.

	Parameters

	
	fig_if –

	t –

	ch –

	sweep_number –

	s –

	ylim –

	time_stamp –

	show_plot –

	Returns

	

	
fmcw.display.plot_range_time(t, im, s, time_stamp='')

	TO DO: ACTUALIZE THE ARGUMENTS WITH THE NEW METHOD
Range time plot of a bunch of sweeps.

	Parameters

	
	t –

	meshgrid_data –

	m –

	time_stamp –

	show_plot –

	Returns

	

fmcw.ftdi module

	
class fmcw.ftdi.FPGA(ADC, encoding='latin1')

	Bases: object

Creates the FTDI object that handles the communication with the FPGA.

	
clear_adc(oe1=False, oe2=False, shdn1=False, shdn2=False)

	Create a packet signaling the ADC pins to clear on the FPGA.

	Parameters

	
	oe1 – Clear Output Enable 1

	oe2 – Clear Output Enable 2

	shdn1 – Clear Shutdown 1

	shdn2 – Clear Shutdown 2

	Returns

	Packet to be encapsulated

	
clear_buffer()

	Clear some buffer.

	Returns

	Packet to be encapsulated

	
clear_gpio(led=False, pa_off=False, mix_enbl=False, adf_ce=False)

	Create a packet signaling the GPIO pins to clear on the FPGA.

	Parameters

	
	led – Clear the LED

	pa_off – Clear pa_off

	mix_enbl – Disable mixer

	adf_ce – Clear the adf_ce

	Returns

	Packet to be encapsulated

	
close()

	Close the FTDI object.

	Returns

	

	
send_packet(x, cmd)

	Add a header to a packet, encode it and write to FTDI.

	Parameters

	
	x – data

	cmd – type of packet

	Returns

	write to FTDI

	
set_adc(oe1=False, oe2=False, shdn1=False, shdn2=False)

	Create a packet signaling the ADC pins to set on the FPGA.

	Parameters

	
	oe1 – Set Output Enable 1

	oe2 – Set Output Enable 2

	shdn1 – Set Shutdown 1

	shdn2 – Set Shutdown 2

	Returns

	Packet to be encapsulated

	
set_channels(a=True, b=True)

	WARNING: ONLY 2 CHANNELS SUPPORTED
Set the channels to be activated (only two supported).

	Parameters

	
	a – State of channel a

	b – State of channel b

	Returns

	Packet to be encapsulated

	
set_downsampler(enable=True, quarter=False)

	WARNING: THE FPGA CODE REQUIRES IT TO BE ENABLED. TO DO: ALLOW THE USER TO DEACTIVATE IT
Set the downsampler.

	Parameters

	
	enable – Turn it on

	quarter – Divide the sampling rate by another factor of 2

	Returns

	Packet to be encapsulated

	
set_gpio(led=False, pa_off=False, mix_enbl=False, adf_ce=False)

	Create a packet signaling the GPIO pins to set on the FPGA.

	Parameters

	
	led – Set the LED

	pa_off – Set the pa_off

	mix_enbl – Enable the mixer

	adf_ce – Set the adf_ce

	Returns

	Packet to be encapsulated

	
set_sweep(fstart, bw, length, delay)

	Set sweep parameters.

	Parameters

	
	fstart – [Hz] Start frequency of the chirp

	bw – [Hz] Bandwidth to use

	length – [s] Duration of the sweep

	delay – [s] Delay between two sweeps

	Returns

	real delay between two sweeps (just informational)

	
write_decimate(decimate)

	Create a packet to configure the decimation factor at the FPGA level.

	Parameters

	decimate – Number of sweeps to skip. 0 means no sweeps are skipped.

	Returns

	Packet to be encapsulated

	
write_pa_off_timer(length)

	Convert the duration pa_off_timer to a number of ADC clock cycles.

	Parameters

	length – number of clock cycles that represent the pa_off_timer

	Returns

	Packet to be encapsulated

	
write_pll()

	Call for the configuration of all the registers.

	Returns

	void

	
write_pll_reg(n)

	Create a packet to configure a PLL register.

	Parameters

	n – Configuration parameter

	Returns

	Packet to be encapsulated

	
write_sweep_delay(length)

	Convert the duration between two sweeps (sweep delay) to a number of ADC clock cycles.

	Parameters

	length – number of clock cycles that represent the duration between two sweeps

	Returns

	Packet to be encapsulated

	
write_sweep_timer(length)

	Convert the duration of the sweep to a number of ADC clock cycles.

	Parameters

	length – number of clock cycles that represent the duration of a sweep

	Returns

	Packet to be encapsulated

	
class fmcw.ftdi.Writer(filename, queue, encoding='latin1', timeout=0.5)

	Bases: threading.Thread

DEPRECATED
Legacy Writer thread used to write to the binary log file.

	
run()

	Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method
invokes the callable object passed to the object’s constructor as the
target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

fmcw.preprocessing module

	
class fmcw.preprocessing.fpga_reader(flag_reading_data, connection, s)

	Bases: multiprocessing.context.Process

This class describes the object that will read the FPGA. By inheriting from Process, it can be launched as a
subprocess.

	
close()

	Close the Process object.

This method releases resources held by the Process object. It is
an error to call this method if the child process is still running.

	
run()

	Main routine polling the USB bus. It is not perfect, but >95% of the frames are valid with this configuration.

	Returns

	void

fmcw.postprocessing module

	
class fmcw.postprocessing.Writer(queue, s, encoding='latin1')

	Bases: threading.Thread

Writer object that writes data to file. Created as a separate thread fed from a queue, so it’s not blocking.
Nothing special about it. Comes in twpo flavors:
- Writer for binary files
- Writer for csv files

	
run()

	Process the data from the queue and write it to file.

	Returns

	void

	
class fmcw.postprocessing.angle_animation(tfd_angles, s, method='angle', blit=False)

	Bases: object

	
update_plot(fxdb, time_stamp)

	Dynamic refresh of the angular plot.
A lot of work has been put in reducing the time necessary to refresh a plot. There must be some possible
improvements, especially by messing with the backend directly.
TO DO: less data points could be plotted as an entire sweep is likely to contain more points than pixels.

	Parameters

	
	fxdb – Angular data to plot

	time_stamp – Timestamp for the current sweep

	Returns

	

	
class fmcw.postprocessing.angle_display(tfd_angles, s, data_accessible, new_sweep_angle, sweep_to_display, time_stamp)

	Bases: multiprocessing.context.Process

Sub-process to display the angular information coming from both receivers.

	
run()

	Angle sub-process loop.

	Returns

	

	
fmcw.postprocessing.butter_highpass(cutoff, fs, order=4)

	User friendly wrapper for a highpass scipy.signal.butter.

	Parameters

	
	cutoff – cutoff frequency

	fs – sampling frequency

	order – order of the Butterworth filter

	Returns

	scipy butter objects

	
fmcw.postprocessing.butter_highpass_filter(data, cutoff, fs, order=4)

	Filter data with a highpass scipy.signal.butter.

	Parameters

	
	data – Data to filter

	cutoff – Cutoff frequency

	fs – Sampling frequency

	order – Order of the Butterworth filter

	Returns

	Filtered data

	
fmcw.postprocessing.calculate_angle_plot(sweeps, s, tfd_angles)

	Perform the data processing to calculate the angular location of objects in a single sweep. The goal is to plot
that result afterward, not to process multiple sweeps.

	Parameters

	
	sweeps – Data from which the angle position will be calculated

	s – Settings dictionary

	tfd_angles – Tuple containing all the bins important for the plotting

	Returns

	fxdb

	
fmcw.postprocessing.calculate_if_data(sweeps, s)

	Convert the raw data to a differential voltage level. Note that the data is cast from int16 to float64.

	Parameters

	
	sweeps – Sweeps to consider

	s – Settings dictionary

	Returns

	Voltage is returned as a dict with each key being a channel.

	
fmcw.postprocessing.calculate_range_time(ch, s, single_sweep=-1)

	Take a single sweep and calculate the distances of all signals. All the channels are averaged in a single virtual
channel. While this is not super good practice, it is mostly okay given how far the objects are in comparison to the
distance between antennas.

	Parameters

	
	ch – dict containing the sweep data for each channel

	s – Settings dictionary

	single_sweep – Sweep to select in the dictionary in case there are actually multiple of them. To be removed.

	Returns

	im, nb_sweeps, max_range_index

	
fmcw.postprocessing.compare_ndarrays(a, b)

	Check if two arrays are equivalent or not with additional details
Helper function written to find quickly why two arrays are not equal element wise.

	Parameters

	
	a – Array 1

	b – Array 2

	Returns

	Void. An exception is raised if a difference between the two arrays have been found.

	
fmcw.postprocessing.create_bases(s)

	Create the x axis data for all sorts of plots. This will speed up the display of the plots by caching it and limiting the amount of data to be redrawn.

	Parameters

	s – Settings dictionary

	Returns

	time, frequency, distance, angle bins

	
fmcw.postprocessing.f_to_d(f, s)

	Converts frequency bins to distance bins based on ADC settings.

	Parameters

	
	f – Frequency bins

	s – Settings dictionary

	Returns

	Distance bins

	
fmcw.postprocessing.find_start(f, start, s)

	Find a valid start header in a binary file by looking for two valid headers separated by the proper length of data.
Given the simplicity of the system, it is not possible to guarantee that this data is “legit” as valid headers could
be coming from random data. However, it is very unlikely.

	Parameters

	
	f – File handle

	start – Start signal to look for

	s – Settings dictionary

	Returns

	The current file.seek() index at which the valid data starts and the corresponding frame number. It is coded on a single byte, so expect it to roll over after 255 is reached.

	
fmcw.postprocessing.find_start_batch(data, s, initial_index=0)

	Find the starting index of the first valid batch of sweep data and its corresponding header.
:param data: Batch of data coming from the FPGA via the USB port.

	Parameters

	
	s – Settings dictionary

	initial_index – 0 if reading a new batch, non zero if finding the next valid sweep within a batch

	Returns

	Starting index of a sweep data, header of that sweep

	
class fmcw.postprocessing.if_display(tfd_angles, s, data_accessible, new_sweep_if, sweep_to_display, time_stamp)

	Bases: multiprocessing.context.Process

Sub-process for displaying the IF (Intermediate Frequency) data. These raw values coming out of the ADC (after
FPGA filtering) are (almost) what make up the sweeps. There is a little bit of post-processing but not much.

	
run()

	IF process loop

	Returns

	

	
class fmcw.postprocessing.if_time_domain_animation(tfd_angles, s, grid=False, blit=False)

	Bases: object

	
update_plot(if_data, time_stamp)

	Dynamic refresh of the IF plot.
A lot of work has been put in reducing the time necessary to refresh a plot. There must be some possible
improvements, especially by messing with the backend directly.
TO DO: less data points could be plotted as an entire sweep is likely to contain more points than pixels
available to it on the screen.

	Parameters

	
	if_data – processed IF data from a sweep

	time_stamp – Timestamp for the current sweep

	Returns

	

	
fmcw.postprocessing.import_data(f, start, first_frame, s, samples, verbose=False)

	Import the data from a binary file. This was the source inspiration for process_batch, which is more up to date and
deal with real time data. As a result, this might not be fully up to date.

	Parameters

	
	f – File handle

	start – Start signal for the headers

	first_frame – Get the current frame number read from find_start

	s – Settings dictionary

	samples – Legacy argument, useless

	verbose – Print a lot more info

	Returns

	

	
fmcw.postprocessing.move_figure(f, number)

	Move a figure to position (x, y) of the screen determined by the figure “number”. Only 3 positions supported.
DO NOT REALY ON THIS FUNCTION. CANNOT BE GENERALIZED TO OTHER USE CASES THAN WHAT IT WAS DESIGNED FOR.
Basically, only used it with Qt5Agg. Did not try other backends and the code is not complete for it. They are slower
than Qt when I tried, so not relevant. All units are px.

	Parameters

	
	f – Figure handle

	number – Figure number. Only handles 3 different positions on screen, all 3 horizontal.

	Returns

	Void

	
fmcw.postprocessing.process_batch(rest, data, s, next_header, counter_decimation, sweep_count, verbose=False)

	Main function to process incoming batches of data from the FPGA. The goal is to find valid sweeps in the data. Main challenges are that the start of the data might come from the end of a previous sweep, there might be some dropped byte in some sweeps due to latency from the OS vs real time FPGA, and a last sweep that is incomplete and has to be merged with the next batch.

	Parameters

	
	rest – End of the previous batch that was not long enough to constitute a whole sweep.

	data – New batch of USB data from the FPGA

	s – Settings dictionary

	next_header – Expected header of the next sweep

	counter_decimation – Rolling counter, keeps track of software decimation across batches

	sweep_count – Global number of valid, post decimation sweeps that have been found

	verbose – A lot of extra info will be displayed

	Returns

	batch_ch, next_header, rest, sweep_count, counter_decimation

	
fmcw.postprocessing.r4_normalize(x, d, e=1.5)

	Not sure what this does. Used when processing the angle data.

	Parameters

	
	x –

	d –

	e –

	Returns

	

	
class fmcw.postprocessing.range_time_animation(s, max_range_index, blit=False)

	Bases: object

	
update_plot(im, time_stamp, sweeps_skipped)

	Dynamic refresh of the Range time plot
A lot of work has been put in reducing the time necessary to refresh a plot. There must be some possible
improvements, especially by messing with the backend directly.
TO DO: less data points could be plotted as an entire sweep is likely to contain more points than pixels
available to it on the screen.

	Parameters

	
	im – range time data

	time_stamp – Timestamp for the current sweep

	sweeps_skipped – Important here to duplicate the current sweep as many times as sweeps we skipped

	Returns

	

	
class fmcw.postprocessing.range_time_display(tfd_angles, s, data_accessible, new_sweep_range_time, sweep_to_display, time_stamp)

	Bases: multiprocessing.context.Process

	
run()

	Range time sub-process loop.

	Returns

	

	
fmcw.postprocessing.read_settings(f, encoding=None)

	Reads the first line of a file and evaluates it as python code. Used when reading the binary log as the first line contains the settings dictionary.

	Parameters

	
	f – File handle

	encoding –

	Returns

	Settings dictionary from string evaluated as python code

	
fmcw.postprocessing.subtract_background(channel_data, w, data)

	DEPRECATED?
Subtract the mean to a list of sweeps and multiply the result by the weights w. One thing to note, is that sweeps
full of zeros (coming from corrupted usb data) are left invariant.

	Parameters

	
	channel_data – dict of channels containing the sweep data as numpy arrays

	w – weights to apply to the array of sweeps

	data – Not sure

	Returns

	Updated channel_data

	
fmcw.postprocessing.subtract_clutter(channel_data, w, data, clutter_averaging=1)

	DEPRECATED?
Subtract to a sweep the average of the previous clutter_averaging sweeps. It’s some kind of moving average. The
goal is to perform motion detection a lot more easily.

	Parameters

	
	channel_data – dict of channels containing the sweep data as numpy arrays

	w – weights to apply to the array of sweeps

	data – Not sure

	clutter_averaging – Number of previous sweeps to average before subtracting them to the current one.

	Returns

	

	
fmcw.postprocessing.twos_comp(val, bits)

	Compute the 2’s complement of int value val.

	Parameters

	
	val – Bytes to complement

	bits –

	Returns

	2’s complement of int value val

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 fmcw	

 	
 	
 fmcw.adc	

 	
 	
 fmcw.camera	

 	
 	
 fmcw.display	

 	
 	
 fmcw.ftdi	

 	
 	
 fmcw.postprocessing	

 	
 	
 fmcw.preprocessing	

Index

 A
 | B
 | C
 | F
 | I
 | M
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	ADF4158 (class in fmcw.adc)

 	
 	angle_animation (class in fmcw.postprocessing)

 	angle_display (class in fmcw.postprocessing)

B

 	
 	butter_highpass() (in module fmcw.postprocessing)

 	
 	butter_highpass_filter() (in module fmcw.postprocessing)

C

 	
 	calculate_angle_plot() (in module fmcw.postprocessing)

 	calculate_if_data() (in module fmcw.postprocessing)

 	calculate_range_time() (in module fmcw.postprocessing)

 	camera (class in fmcw.camera)

 	clear_adc() (fmcw.ftdi.FPGA method)

 	
 	clear_buffer() (fmcw.ftdi.FPGA method)

 	clear_gpio() (fmcw.ftdi.FPGA method)

 	close() (fmcw.ftdi.FPGA method)

 	(fmcw.preprocessing.fpga_reader method)

 	compare_ndarrays() (in module fmcw.postprocessing)

 	create_bases() (in module fmcw.postprocessing)

F

 	
 	f_to_d() (in module fmcw.postprocessing)

 	find_reg() (fmcw.adc.ADF4158 method)

 	find_start() (in module fmcw.postprocessing)

 	find_start_batch() (in module fmcw.postprocessing)

 	fmcw.adc (module)

 	fmcw.camera (module)

 	
 	fmcw.display (module)

 	fmcw.ftdi (module)

 	fmcw.postprocessing (module)

 	fmcw.preprocessing (module)

 	FPGA (class in fmcw.ftdi)

 	fpga_reader (class in fmcw.preprocessing)

 	freq_to_regs() (fmcw.adc.ADF4158 method)

I

 	
 	if_display (class in fmcw.postprocessing)

 	if_time_domain_animation (class in fmcw.postprocessing)

 	
 	import_csv() (in module fmcw.display)

 	import_data() (in module fmcw.postprocessing)

 	import_settings() (in module fmcw.display)

M

 	
 	move_figure() (in module fmcw.postprocessing)

P

 	
 	plot_angle() (in module fmcw.display)

 	plot_if_spectrum() (in module fmcw.display)

 	
 	plot_if_time_domain() (in module fmcw.display)

 	plot_range_time() (in module fmcw.display)

 	process_batch() (in module fmcw.postprocessing)

R

 	
 	r4_normalize() (in module fmcw.postprocessing)

 	range_time_animation (class in fmcw.postprocessing)

 	range_time_display (class in fmcw.postprocessing)

 	read_settings() (in module fmcw.postprocessing)

 	run() (fmcw.camera.camera method)

 	(fmcw.ftdi.Writer method)

 	(fmcw.postprocessing.Writer method)

 	(fmcw.postprocessing.angle_display method)

 	(fmcw.postprocessing.if_display method)

 	(fmcw.postprocessing.range_time_display method)

 	(fmcw.preprocessing.fpga_reader method)

S

 	
 	send_packet() (fmcw.ftdi.FPGA method)

 	set_adc() (fmcw.ftdi.FPGA method)

 	set_channels() (fmcw.ftdi.FPGA method)

 	set_downsampler() (fmcw.ftdi.FPGA method)

 	
 	set_gpio() (fmcw.ftdi.FPGA method)

 	set_sweep() (fmcw.ftdi.FPGA method)

 	subtract_background() (in module fmcw.postprocessing)

 	subtract_clutter() (in module fmcw.postprocessing)

T

 	
 	twos_comp() (in module fmcw.postprocessing)

U

 	
 	update_plot() (fmcw.postprocessing.angle_animation method)

 	(fmcw.postprocessing.if_time_domain_animation method)

 	(fmcw.postprocessing.range_time_animation method)

W

 	
 	write_decimate() (fmcw.ftdi.FPGA method)

 	write_pa_off_timer() (fmcw.ftdi.FPGA method)

 	write_pll() (fmcw.ftdi.FPGA method)

 	write_pll_reg() (fmcw.ftdi.FPGA method)

 	
 	write_sweep_delay() (fmcw.ftdi.FPGA method)

 	write_sweep_timer() (fmcw.ftdi.FPGA method)

 	write_value() (fmcw.adc.ADF4158 method)

 	Writer (class in fmcw.ftdi)

 	(class in fmcw.postprocessing)

 nav.xhtml

 Table of Contents

 		
 Welcome to fmcw’s documentation!

 		
 History of the project

 		
 fmcw package

 		
 fmcw.adc module

 		
 fmcw.camera module

 		
 fmcw.display module

 		
 fmcw.ftdi module

 		
 fmcw.preprocessing module

 		
 fmcw.postprocessing module

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

