

 Navigation

 	
 index

 	
 next |

 	FlyVR 0.9 documentation

 [image: FlyVR]
 [http://flyvr.org/assets/FlyVR-airplane-640.png]
FlyVR - virtual reality engine

FlyVR is a virtual reality engine built on ROS [http://ros.org] and
OpenSceneGraph [http://www.openscenegraph.org]. It manages
multi-computer realtime tracking and display with the goal of being
useful for scientific studies of vision.

FlyVR pipeline overview

[image: pipeline]

	Installation and Getting Started
	Installation

	Getting Started

	Using the joystick for input
	Using a web browser instead of a physical joystick

	Using a physical joystick

Contents

	FlyVR - virtual reality engine
	FlyVR pipeline overview
	Theory of operation

	flyvr nodes
	display_server - the FlyVR display server

	viewport_definer.py - FlyVR viewport definer

	Glossary

Theory of operation

A moving observer has a pose within a global coordinate frame. Objects
within the global frame may also move or be updated (e.g. a moving
grating). Six camera views with a fixed relationship to the observer
are used to build a cube map, showing the scene surrounding the
observer without regard to the projection surface.

This cube map is then projected onto a 3D shape model of the display
surface. From there, this image is warped to the physical display
output.

flyvr nodes

display_server - the FlyVR display server

The FlyVR display server node runs locally on the computer(s) connected
to the physical display. During a typical experiment, it will be
running an experiment plugin. Each experiment plugin updates the
graphics engine on the basis of the fly’s current position. Given the
scenegraph and the calibrated screen layout, the node will compute the
images shown on the projectors.

viewport_definer.py - FlyVR viewport definer

Runs a GUI program that allows the user to interactively define the
viewports for all connected projectors.

Glossary

Display Coordinates - the native pixel indices on a physical
display. These are 2D.

World Coordinates - the 3D coordinates in lab space of physical
(or simulated) points. (May also be represented as a 4D homogeneous
vector [http://en.wikipedia.org/wiki/Homogeneous_coordinates]
x,y,z,w with nonzero w.)

Physical Display - a physical device capable of emitting a large,
rectangluar block of pixels. It has display coordinates - the 2D
locations of each pixel. (A physical display does not have world
coordinates used for the VR mathematics. On the other hand, A virtual
display does have world coordinates.)

Virtual Display - a model of a physical display which relates
world coordinates to display coordinates. The model consists of a
linear pinhole projection model, a non-linear warping model for lens
distortions, viewport used to clip valid display coordinates, 3D
display surface shape in world coordinates, and luminance
masking/blending. Note that a physical display can have multiple
virtual displays, for example, if a projector shines onto mirrors that
effectively create multiple projections.

Viewport - vertices of polygon defining projection region in
display coordinates (x0,y0,x1,y1,...). It is used to limit the region
of the physical display used to illuminate a surface. (The FlyVR
Viewport corresponds to a 2D polygon onto which the image of the
projection screen is shown.)

Display Surface - a physical, 2D manifold in 3D space which is
illuminated by a physical display (either by projection or direct
illumination like an LCD screen).

 Copyright 2012-2014, FlyVR authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FlyVR 0.9 documentation

Installation and Getting Started

FlyVR is developed and tested on Ubuntu 12.04 on the amd64 architecture using NVIDIA graphics.

Installation

As the root user, in the bash command-line in Ubuntu 12.04, run
this script. (Also, you can download
the latest version of this script from here [https://raw.github.com/strawlab/flyvr/master/docs/install-flyvr.sh].)
From the command line, this should work:

curl -sL https://raw.github.com/strawlab/flyvr/master/docs/install-flyvr.sh | sudo bash

Getting Started

Testing the basic installation

Once FlyVR is installed, you should be able to run a quick demo by typing:

setup ROS environment variables
source /opt/ros/ros-flyvr.hydro/setup.bash

launch the demo
roslaunch flyvr demo_display_server.launch

If that opens a graphics window showing a 3D scene, FlyVR is installed and running properly.

Configuring a new display

The most important part of FlyVR is the Display Server. This is the program that draws on a single
display. If you need multiple physical displays, you will run multiple display servers. (A single display
server can drive multiple virtual displays, as explained in the glossary.) We need to tell the Display
Server about your display.

FlyVR uses ROS [http://ros.org] to handle configuration. To bootstrap a new system, begin by
copying a default configuration file into a new location:

roscd flyvr/config
cp rosparamconfig.yaml my_display.yaml

Edit this new my_display.yaml to reflect your display. Much of this YAML [http://en.wikipedia.org/wiki/YAML]
file should be self-explanatory. On initial setup, the most critical information is the contents of the
display: key are the X windows parameters displayNum and screenNum and the window geometry parameters
x, y, width, height, and windowDecoration. FlyVR does not switch your graphics mode, so set
these values such that the display server will completely utilize your display.

You can test your new configuration by creating a new ROS launch file which will load these parameters.

roscd flyvr/launch
cp demo_display_server.launch my_test.launch

Edit this new my_test.launch file and change the name of the configuration .yaml file to refer to the file you
created above. Now, run this new launch file:

roslaunch flyvr my_test.launch

The displayed window should now have the properties you specified in my_display.yaml.

Running the pinhole calibration wizard

(To be continued...)

 Copyright 2012-2014, FlyVR authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	FlyVR 0.9 documentation

Using the joystick for input

Several FlyVR programs use a joystick for input (e.g. joypose,
joystick_cursor, spacenav_pose, pinhole_wizard.py). Specifically,
they listen to the ROS /joy topic. To ensure that your joystick is running,
you can do this from the command line:

rostopic echo /joy

Using a web browser instead of a physical joystick

If you don’t have a real joystick, you can run an emulated one:

rosrun browser_joystick web_control.py

This starts a webserver running on the local machine and prints the
URL. Open this URL with a modern browser and the webserver should now
emit messages on the ROS /joy topic.

Note: this requres the installation of python-tornado (> 2.4.x) and
python-sockjs-tornado packages.

Using a physical joystick

If your joystick is device /dev/input/js0, use ROS to emit
/joy messages like this:

rosrun joy joy_node /dev/input/js0

Using a PS3 joystick

A PS3 joystick can be run like a physical joystick, but there are a
couple of tricks to get it connected. The ROS ps3joy package
facilitates this. The required steps are:

For initial setup, perform bluetooth pairing with the joystick (Use
the sixpair program.)

Then, for daily use, run the bluetooth listener which write the output
into the linux device system. Run python ps3joy.py.

 Copyright 2012-2014, FlyVR authors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	FlyVR 0.9 documentation

Index

 Copyright 2012-2014, FlyVR authors.
 Created using Sphinx 1.3.5.

 _static/comment-close.png

_static/up.png

_images/picop-camcal-points.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/file.png

_static/plus.png

gotchas.html

 Navigation

 		
 index

 		FlyVR 0.9 documentation »

Gotchas

Image sizes that are not a power of 2 (e.g. 1024x512) can result in funny edge artifacts when OpenSceneGraph resizes and resamples them.

 © Copyright 2012-2014, FlyVR authors.
 Created using Sphinx 1.3.5.

old-index.html

 Navigation

 		
 index

 		FlyVR 0.9 documentation »

Welcome to FlyVR’s documentation!

Contents:

		Defining viewports for virtual displays

		Manual display calibration
		Finding the intrinsic parameters

		Finding the extrinsic parameters

		Finding the extrinsic parameters

		Mapping display pixels to geometry coordinates

		Gotchas

Indices and tables

		Index

		Search Page

 © Copyright 2012-2014, FlyVR authors.
 Created using Sphinx 1.3.5.

_images/architecture.png
FlyVR display_server architecture overview

+ arbitrary scene rendered with OpenSceneGraph * six camera views of virtual world. « created by projecting cubemap onto f”"‘"’" Y ‘:" “‘Z “l ‘:' "‘ geor ""‘
{e.9. skybox and foreground objects above) « from viewpoint of observer in fab frame- 3D model of display surface in lab texture coordinates to display pixels.
+ drawn via user-created plugin frame * physically displayed
doined o) ” 4 4 ~
' i 3
0 <o .I
—-—
50 locuonl absane T — LOT o e oot o ety it Seminane g cabrsn

- texure coordinas i arbiary system
« meesured during autc-calbration

_static/comment-bright.png

manual-display-calibration.html

 Navigation

 		
 index

 		FlyVR 0.9 documentation »

Manual display calibration

The simplest way to calibrate a display is a manual procedure. This
procedure assumes that your projector is well fit by a pinhole camera
model.

As a summary, several steps are performed:

		If you are using virtual displays, define your viewports.

1. The intrinsic parameters (focal length, etc) are calculated. For
projectors, this is done by finding the pixel coordinates that
illuminate each corner of a checkerboard for several poses of the
checkerboard. The checkerboard has a predetermined size and the
calibration routine (based on ROS and OpenCV) solves to find the
intrinsic parameters most consistent with these recorded locations.

2. Once the intrinsic parameters are known, the pose of the display
is found. (This is also called finding the extrinsic parameters.)

3. Finally, a mapping from projector pixels to geometry texture
coordinates is performed.

Finding the intrinsic parameters

Collect the data

You need to collect the pixel coordinates of each checkerboard corner
for several poses of a checkerboard.

rosrun joy joy_node [/dev/input/jsN]
rosrun flyvr display_server
rosrun flyvr joystick_cursor

This will print a bunch coordinates each time you click the
mouse. Save the coordinates from left-to-right, top-to-bottom order
(in the checkerboard space), and don’t miss any. All should be in view
of the projector, but it’s good to get points near the edge.

Here’s an example of data from several such checkerboards, plotted
with the example program in flyvr/homelab/picop-corners.py.

[image: _images/picop-camcal-points.png]

Run the calibration

The example program in flyvr/homelab/picop-corners.py run’s
OpenCV’s calibration routine (by way of ROS’s camera_calibration
package). It emits the calibration in a file called
display-intrinsic-cal-picop.bag, which is a valid ROS Bag file
containing a topic /picop/camera_info of message type
sensor_msgs/CameraInfo with the intrinsic calibration
parameters. You can view it with:

rostopic echo -b display-intrinsic-cal-picop.bag -a

Important note for displaying through mirrors: If your (virtual)
display is illuminated through a mirror, make sure that the name of
your display has “mirror” in it. If you are using the
flyvr/homelab/picop-corners.py example program, this will
ensure that saved intrinsic calibration flips the X coordinate.

Finding the extrinsic parameters

Now that you have the intrinsic parameters of the display, it’s time
to find the extrinsic parameters. Here the concept is to manually
align a projected image of some geometry to overlap as perfectly as
possible with some real geometry.

We need to play our intrinsic calibration to the display program, so
do this in one terminal window:

rosbag play display-intrinsic-cal-picop.bag -l

Now, in other window, launch the program that projects the geometry
model.:

for the (entire) physical display
rosrun flyvr caldc4_manual_camera_calibration --image /tmp/display_server.json --geometry ../homelab/geom.json --camera picop

for a virtual display
rosrun flyvr caldc4_manual_camera_calibration --image /tmp/display_server.json --geometry ../homelab/geom.json --camera picop/vdisp

If you’re not getting good alignment, make sure your geometry model is
accurate that that the geometry projection program has loaded the
intrinsic parameters.

Once you have obtained a good alignment, save the results.:

for the (entire) physical display
CAMERA=picop rosrun flyvr record_camcal.sh

for a virtual display
rosbag record /picop/vdisp/camera_info /picop/vdisp/tf -l1 -O picop-vdisp-camcal

This save a file called picop-camcal.bag which contains both the
intrinsic and extrinsic parameters. The extrinsic parameters are in
the topic /picop/tf with message type geometry_msgs/Transform.

Finding the extrinsic parameters

hack.py emits intrinsic and extrinsic bag

Mapping display pixels to geometry coordinates

Now we have all the data we need. Create the texture coordinates:

rosrun flyvr caldc6_create_display2tcs.py geom.json picop-camcal.bag

This will emit the file display2tcs-picop-tcs-lowres.png as well as a similarly named .exr.
You can verify the results by viewing the file. Quit
caldc4_manual_camera_calibration if it still running and launch the display server.:

rosrun flyvr display_server

Now, show our new image.:

rosrun flyvr show_image.py display2tcs-picop-tcs-lowres.png

Or, you can view the .exr image using the exrdisplay utility:

exrdisplay sample_data/p2g.exr

 © Copyright 2012-2014, FlyVR authors.
 Created using Sphinx 1.3.5.

_static/comment.png

define-viewports-on-virtual-displays.html

 Navigation

 		
 index

 		FlyVR 0.9 documentation »

Defining viewports for virtual displays

Run the viewport_definer.py command. For example, on display
server ds and viewport center, do the following.

rosrun flyvr viewport_definer.py --display-server /ds --viewport center

This will set the ROS parameters in the roscore server with the values
you set with the GUI. To save these parameters to a file ds.yaml.

rosparam dump ds.yaml /ds

 © Copyright 2012-2014, FlyVR authors.
 Created using Sphinx 1.3.5.

_static/down.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		FlyVR 0.9 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012-2014, FlyVR authors.
 Created using Sphinx 1.3.5.

