
FlowCal Documentation
Release 1.3.0

S. Castillo-Hair, J. Sexton, B. Landry, E. Olson, J. Tabor

Jan 25, 2021

Contents

1 Cite FlowCal 3

2 Table of Contents 5
2.1 Getting Started . 5
2.2 Fundamentals . 8
2.3 FlowCal’s Excel UI . 14
2.4 FlowCal’s Python API Tutorial . 25
2.5 FlowCal (Python API) Reference . 54
2.6 Contribute . 99

Bibliography 101

Python Module Index 103

Index 105

i

ii

FlowCal Documentation, Release 1.3.0

FlowCal is a library for reading, analyzing, and calibrating flow cytometry data in Python. It features:

• Extraction of Flow Cytometry Standard (FCS) files into numpy array-like structures

• Traditional and non-standard gating, including automatic density-based two-dimensional gating.

• Transformation functions that allow conversion of data from raw FCS channel numbers to arbitrary fluorescence
units (a.u.).

• Plotting, including generation of histograms, density plots and scatter plots.

Most importantly, FlowCal automatically processes calibration beads data in order to convert fluorescence to cal-
ibrated units, Molecules of Equivalent Fluorophore (MEF). The most important advantages of using MEF are 1)
fluorescence can be reported independently of acquisition settings, and 2) variation in data due to instrument shift is
eliminated.

Finally, FlowCal includes a user-fiendly Excel User Interface to perform all of these operations automatically, with-
out the need to write any code.

Contents 1

FlowCal Documentation, Release 1.3.0

2 Contents

CHAPTER 1

Cite FlowCal

If you use FlowCal in your research, we would appreciate citations to the following article:

Castillo-Hair S.M., Sexton J.T., et al. FlowCal: A User-Friendly, Open Source Software Tool for Au-
tomatically Converting Flow Cytometry Data from Arbitrary to Calibrated Units.. ACS Synth. Biol.
2016.

3

http://pubs.acs.org/doi/abs/10.1021/acssynbio.5b00284
http://pubs.acs.org/doi/abs/10.1021/acssynbio.5b00284

FlowCal Documentation, Release 1.3.0

4 Chapter 1. Cite FlowCal

CHAPTER 2

Table of Contents

2.1 Getting Started

FlowCal requires the Python programming language. We recommend most Windows and macOS users to install
FlowCal with Anaconda, a Python distribution that already includes many necessary Python packages. macOS already
includes its own version of Python, but it does not include some Python tools that FlowCal requires. Therefore,
Anaconda is recommended.

Users who have an existing python installation and are comfortable with command-line interfaces can install FlowCal
in their existing environment.

2.1.1 Installing FlowCal with Anaconda

To install Anaconda and FlowCal, do the following:

1. Navigate to this page and scroll down to the “Anaconda Installers” section. Click on the “Graphical Installer”
link below the name of your operating system (Windows, MacOS, or Linux). This will download the installer.

Note: Windows: If your computer is a 32-bit PC, click on the message “32-Bit Graphical Installer” instead of the
“Download” button. If you don’t know whether yours is a 32 or 64-bit computer but you have purchased it in the last
five years, it is probably a 64-bit computer and you can ignore this message.

Note: Python 2.7 is also supported. However, we recommend downloading the Python 3.8 version of Anaconda.

2. Double click the installer (.exe in Windows, .pkg in OS X) and follow the instructions on screen.

Note: Windows: During installation, on the “Advanced Installation Options” screen, make sure to check both “Add
Anaconda to my PATH environment variable” and “Register Anaconda as my default Python”. Recent versions of

5

https://www.anaconda.com/products/individual

FlowCal Documentation, Release 1.3.0

Anaconda suggest to keep the first option unchecked. However, this option is necessary for the installation script on
step 4 to work.

3. Download FlowCal from here. A file called FlowCal-master.zip will be downloaded. Unzip this file.

4. Inside the unzipped folder, double click on Install FlowCal (Windows).bat or Install
FlowCal (macOS) if you are using Windows or OS X, respectively. This will open a terminal window
and install FlowCal. The installation procedure may take a few minutes. When installation is finished, the ter-
minal will show the message “Press Enter to finish. . . ”. If the installation was successful, your terminal should
look like the figure below. Press Enter to close the terminal window.

Note: Windows: If the following message appears after double clicking Install FlowCal (Windows): “Win-
dows protected your PC – Windows SmartScreen prevented an unrecognized app from starting. . . ”, click on the “More
info” link under the text, and then click on the “Run anyway” button. This will remove the security restriction from
the program and allow it to run properly.

Note: Mac OS X: If the following error message appears after double clicking Install FlowCal (macOS):
“’Install FlowCal (macOS)’ can’t be opened because it is from an unidentified developer.”, navigate to System Pref-
erences -> Security and Privacy -> General, and click the “Open Anyways” button adjacent to the message stating
“’Install FlowCal (macOS)’ was blocked from opening because it is not from an identified developer”. This will
remove the security restriction from the program and allow it to run properly.

To see FlowCal in action, head to the Excel UI section. The FlowCal zip file includes an examples folder with
files that you can use while following the instructions.

2.1.2 Installing FlowCal in an Existing Python Evironment

Python (2.7, 3.6, 3.7, or 3.8) is required, along with pip and setuptools. The easiest way is to install FlowCal
is to use pip:

pip install FlowCal

This should take care of all the requirements automatically. Linux and macOS users may need to request administrative
permissions by preceding this command with sudo.

6 Chapter 2. Table of Contents

https://github.com/taborlab/FlowCal/archive/master.zip

FlowCal Documentation, Release 1.3.0

Alternatively, download FlowCal from here. Next, make sure that the following Python packages are present:

• packaging (>=16.8)

• six (>=1.10.0)

• numpy (>=1.9.0)

• scipy (>=0.19.0)

• matplotlib (>=2.0.0)

• scikit-image (>=0.10.0)

• scikit-learn (>=0.16.0)

• pandas (>=0.23.0)

• xlrd (>=0.9.2,<2.0.0)

• openpyxl (>=2.2.0)

If you have pip, a requirements.txt file is provided, such that the required packages can be installed by running:

pip install -r requirements.txt

To install FlowCal, run the following in FlowCal’s root directory:

python setup.py install

Again, some users may need to precede the previous commands with sudo.

Note: Ubuntu/Linux Mint: FlowCal might need more recent versions of some python packages than the ones
provided via apt. To upgrade these, some non-python packages need to be installed in your system. On freshly
installed systems, the following packages may need to be manually installed:

• gcc

• g++

• gfortran

• libblas-dev

• liblapack-dev

• libfreetype6-dev

• python-dev

• python-tk

• python-pip

All of these can be installed using:

sudo apt install <package-name>

Next, pip should be upgraded by using:

sudo pip install --upgrade pip

After this, you may install FlowCal by following the steps above.

2.1. Getting Started 7

https://github.com/taborlab/FlowCal/archive/master.zip

FlowCal Documentation, Release 1.3.0

2.2 Fundamentals

Here we explain the fundamentals of two of the main features of FlowCal: conversion of fluorescence to calibrated
units, and automatic gating of flow cytometry data based on density.

2.2.1 Calibration

Introduction to Calibration and MEF

Fluorescence data obtained via flow cytometry is frequently reported in arbitrary units (a.u.), which have the following
issues:

1. Fluorescence values in a.u depend on the instrument used.

2. Even when using the same instrument, fluorescence values in a.u. depend on the acquisition settings used.

3. Even when these two are kept constant, fluorescence values in a.u. can change in time due to instrument drift.

Because of this, the only meaningful results based on flow cytometry that are frequently presented are ratios of mea-
sured reporter in two different conditions (i.e. fold-change). However, absolute levels of reporter cannot be quantita-
tively compared across laboratories, or between different different biological systems that require different acquisition
settings, and not even between different samples of the same system taken by the same person across large periods of
time.

To compensate for some of these effects, manufacturers provide calibration particles. These are a mixture of 4-8
subpopulations of microbeads, each one containing different amounts of a certain fluorophore. The fluorescence of
each subpopulation is specified by the manufacturer in Molecules of Equivalent Fluorophore (MEF), the number
of fluorophores in solution that result in the same fluorescence as one microbead. Calibration particles can then be
measured in every experiment to obtain the fluorescence of each subpopulation in a.u. Using these fluorescence values
and the MEF values provided by the manufacturer, one can construct a standard curve that maps fluorescence from
a.u. to MEF. This standard curve can then be used to convert the fluorescence of cell samples to MEF.

Expressing fluorescence of cellular samples in MEF automatically eliminates issues 2 and 3. Issue 1 is also eliminated
if the calibration beads’ fluorophore is the same as the one used in cellular samples. If not, instrument-dependence
can still be eliminated by performing a one-time calibration using a common cellular sample. At the very least,
transforming to MEF makes cellular samples inside a laboratory comparable.

The Process of MEF Calibration

We will now give a short description of the process that FlowCal uses to calibrate fluorescence data to MEF, and
show some of the plots produced in the process. A discussion on the exact figures generated by the Excel UI and
how to use these to debug common problems can be found here. A more technical discussion of the MEF calibration
procedure from the perspective of FlowCal.mef.get_transform_fxn(), the function that does most of the
calibration work, can be found here.

To perform MEF calibration, the following steps are typically followed:

1. Measurement of Calibration Beads

Calibration beads must be measured in every experiment, using the same acquisition settings as when measuring cell
samples. The figure below shows typical flow cytometry data from calibration beads.

8 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

The top subfigure shows data from the forward/side scatter channels, whereas the bottom one shows one of the fluo-
rescence channels. Note how several populations with different fluorescence values are evident in the bottom plot.

2. Elimination of Bead Aggregates and Other Debris

Notice, in the figure above, that two different populations are present in the forward/side scatter plot. The faint
population on the right/upper portion of the plot corresponds to bead aggregates. These are obviously undesired, as
we are only interested in single bead fluorescence. This sort of situation is normally dealt with by “gating”, which
involves manually drawing a region of interest and retaining the events that fall inside. FlowCal performs density
gating, an automated procedure to eliminate aggregates and other events that are clearly different from the main
population of interest. The figure below shows a black contour surrounding the region identified by density gating
in the forward/side scatter plot, showing that density gating can distinguish single beads from aggregates. Notice
also how small peaks in the fluorescence plot disappear after density-gating, which is consistent with the eliminated
population being composed of agglomerations of multiple beads.

2.2. Fundamentals 9

FlowCal Documentation, Release 1.3.0

3. Identification of Bead Subpopulations

In order to calculate the average fluorescence of each subpopulation, the individual events corresponding to each must
first be identified. The figure below shows one of the plots produced by FlowCal after an automated clustering
algorithm has properly identified each subpopulation. Note how this can be achieved using information from several
fluorescence channels at the same time.

10 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

Next, the average fluorescence of each subpopulation is calculated. Some subpopulations, however, can have fluores-
cence values that are outside the limit of detection of the instrument, and therefore their events will show saturated
fluorescence values. These subpopulations should not be considered further in the analysis. FlowCal discards these
automatically.

The figure below shows the individual subpopulations with a vertical line representing their median fluorescence. In
addition, subpopulations that were automatically discarded are shown colored in gray.

2.2. Fundamentals 11

FlowCal Documentation, Release 1.3.0

4. Calculation of a Standard Curve

Having the fluorescence of the individual populations, as measured by the flow cytometer, and the MEF values pro-
vided by the manufacturer, a standard curve can be calculated to transform fluorescence of any event to MEF. The
figure below shows an example of such a standard curve. FlowCal uses the concept of a “bead fluorescence model”,
which is directly fitted to bead data but not immediately applicable to cells. However, some small mathematical
manipulations turn this bead fluorescence model into a standard curve that is readily applicable to cells.

5. Conversion of Cell Fluorescence to MEF

Finally, the fluorescence of any cell sample can be turned into MEF by using the standard curve obtained above.

2.2.2 Density Gating

Description

Density gating looks at two channels of flow cytometry data, and discards events that are clearly different from the
main population in the sample. Density gating is applied mostly to the forward/side scatter channels in FlowCal.
When doing this, single microbeads or cells can be separated from aggregates and non-bead or non-biological debris,
even when these events are a substantial fraction of the total count.

In the figure below, a sample was acquired with an intentionally low side-scatter threshold to allow a significant number
of events corresponding to non-biological debris. Density gating was then applied to retain 50% of the events in the
densest region. Because cells have a more uniform size than the observed debris, density gating retains mostly cells,
which is reflected in the fact that FL1 fluorescence is bimodal before gating, but not after.

12 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

Note: The sample shown above was intentionally acquired with a low threshold value in SSC to show the capabilities
of density gating. Normally, a lot of the debris can be eliminated by simply selecting a higher SSC threshold. However,
density gating is still an excellent method to clean the data and eliminate all the debris that a simple threshold cannot
filter. In our experience, this can still be a significant fraction of the total event count, especially if the cell culture has
low density.

Algorithm

Density gating is implemented in the function FlowCal.gate.density2d(). In short, this function:

1. Determines the number of events to keep, based on the user specified gating fraction and the total number of
events of the input sample.

2. Divides the 2D channel space into a rectangular grid, and counts the number of events falling within each

2.2. Fundamentals 13

FlowCal Documentation, Release 1.3.0

bin of the grid. The number of counts per bin across all bins comprises a 2D histogram, which is a coarse
approximation of the underlying probability density function.

3. Smoothes the histogram generated in Step 2 by applying a Gaussian Blur. Theoretically, the proper amount
of smoothing results in a better estimate of the probability density function. Practically, smoothing eliminates
isolated bins with high counts, most likely corresponding to noise, and smoothes the contour of the gated region.

4. Selects the bins with the greatest number of events in the smoothed histogram, starting with the highest and
proceeding downward until the desired number of events to keep, calculated in step 1, is achieved.

5. Returns the gated event list.

2.3 FlowCal’s Excel UI

FlowCal’s Excel UI allows for easy processing of flow cytometry data from a set of FCS files without having
to write any code. The user simply writes an Excel file listing the samples to be analyzed, along with some options.
FlowCal then processes those samples and produces plots and statistics, which can then be used in subsequent analyses.
Calibration beads data can be included to report results in calibrated MEF units.

2.3.1 How to use FlowCal’s Excel UI

To use the FlowCal’s Excel UI, follow these steps:

1. Make and save an Excel file indicating the FCS files to process. Click here for information on how to make a
properly formatted input Excel file.

2. Launch FlowCal’s Excel UI by double clicking on Run FlowCal (Windows).bat or Run FlowCal
(macOS).

3. A window will appear requesting an input Excel file. Locate the Excel file made in step 1 and click on “Open”.

4. FlowCal will start processing the indicated calibration beads and cell samples. A terminal window will appear
indicating the progress of the analysis.

5. When the analysis finishes, the message “Press Enter to finish. . . ” will appear. Press Enter and close the terminal
window. A set of plots and an Excel file with statistics will appear in the same directory in which the input Excel
file was located.

2.3.2 Format of the Input Excel File

FlowCal’s Excel interface requires a properly formatted Excel file that depicts the samples to be analyzed and the
data processing parameters. The Excel input file must have at least three sheets, named Instruments, Beads, and
Samples. Other sheets may be present, but FlowCal will ignore them.

Warning: Sheet and column names are case-sensitive.

An example of a properly formatted Excel input file is provided in the examples folder of FlowCal. The following
sections describe the format of the input Excel file, while using the example file as a guide.

14 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

Instruments sheet

This sheet must be filled with basic information about the flow cytometer used to acquire the samples. Each row
represents an instrument. Typically, the user would only need to specify one instrument. However, FlowCal allows
the simultaneous processing of samples taken with different instruments. The figure below shows an example of an
Instruments sheet.

For each row, the following columns must be filled.

1. ID (column A in the figure above) used to reference the instrument from the other sheets. Each row must have
a unique ID.

2. Forward Scatter Channel (C) and Side Scatter Channel (D): the names of these channels exactly as they
appear in the acquisition software.

3. Fluorescence channels (E): The names of the relevant fluorescence channels as a comma-separated list, exactly
as they appear in the acquisition software.

4. Time Channel (F): The name of the channel registering the time of each event. The FCS standard dictates that
this should be called “Time”, but some non-standard files may use a different name. This can be found in the
acquisition software.

Additional columns, like Description (B in the figure above), can be added in any place for the user’s records, and
will be copied unmodified to the output Excel file by FlowCal.

Beads sheet

This sheet contains details about calibration microbeads and how to process them. Each row represents a different
sample of beads. The figure below shows an example of an Beads sheet.

2.3. FlowCal’s Excel UI 15

FlowCal Documentation, Release 1.3.0

For each row, the following columns must be filled:

1. ID (column A in the figure above): used to reference the beads sample from the Samples sheet, and to name the
figures produced by FlowCal. Each row must have a unique ID.

2. Instrument ID (B): The ID of the instrument used to take the sample.

3. File Path (C): the name of the corresponding FCS file.

4. <Channel name> MEF Values (E): MEF values provided by the manufacturer, for each channel in which a
standard curve must be calculated. If MEF values are provided for a channel, the corresponding instrument
should include this channel name in the Fluorescence Channels field. More <Channel name> MEF Values
columns can be added if needed, or removed if not used.

5. Gate Fraction (F): a gate fraction parameter used for density gating.

6. Clustering Channels (G): the fluorescence channels used for clustering, as a comma separated list.

Additional columns, like Beads Lot (column D), can be added in any place for the user’s records, and will be copied
unmodified to the output Excel file by FlowCal.

Samples sheet

In this sheet, the user specifies cell samples and tells FlowCal how to process them. Each row contains the infor-
mation used in the analysis of one FCS file. One file can be analyzed several times with different options (e.g. gating
fractions or fluorescence units) by adding more rows that reference the same file. The figure below shows an example
of a Samples sheet.

16 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

For each row, the following columns must be filled:

1. ID (column A in the figure above): used to reference the sample while generating figures, and in the output
Excel file. Each row must have a unique ID.

2. Instrument ID (B): The ID of the instrument used to take the sample.

3. Beads ID (C): The ID of the beads sample that will be used to perform the MEF transformation. Can be left
blank if MEF units are not desired.

4. File Path (D): the name of the corresponding FCS file.

5. <Channel name> Units (E): The units in which to report statistics and make plots, for each fluorescence
channel. If left blank, no statistics or plots will be made for that channel. More of these columns can be added
or removed if necessary. If this field is specified for a channel, the corresponding instrument should include this
channel in its Fluorescence Channels field. The available options are:

a. Channel: Raw “Channel Number” units, exactly as they are stored in the FCS file.

b. RFI or a.u.: Relative Fluorescence Intensity units, also known as Arbitrary Units.

c. MEF: MEF units.

6. Gate Fraction (F): Fraction of samples to keep when performing density gating.

Additional columns, such as Strain, Plasmid, and DAPG (uM) (columns G, H, and I), can be added in any place for
the user’s records, and will be copied unmodified to the output Excel file by FlowCal.

Warning: If MEF units are requested for a fluorescence channel of a sample, an FCS file with calibration beads
data should be specified in the Beads ID column. Both beads and samples should have been acquired at the same
settings for the specified fluorescence channel, otherwise FlowCal will throw an error.

2.3.3 Analysis Performed by the Excel UI

The analysis that FlowCal’s Excel UI performs is divided roughly in two phases: processing of calibration beads and
processing of samples. We will now describe the steps involved in each.

2.3. FlowCal’s Excel UI 17

FlowCal Documentation, Release 1.3.0

Processing of Calibration Beads

The following steps are performed for each calibration beads sample specified in the Beads sheet of the input Excel
file:

1. Density gating is applied in the forward/side scatter channels. This is an automated procedure that eliminates
microbead aggregates and debris.

2. The individual microbead subpopulations are identified using automated clustering.

3. For each subpopulation, the median fluorescence is calculated.

4. Microbead subpopulations are discarded if they are found to be close to the saturation limits of the detector.
Only populations that are not saturating are retained.

5. Using the fluorescence values of the retained populations in channel units and the corresponding MEF values
provided by the user, a standard curve is generated. This standard curve is used to transform cell fluorescence
from raw units to MEF.

Plots are generated for each one of these steps, and some intermediate results are saved to the output Excel file.

For an introductory discussion of flow cytometry calibration, go to the fundamentals of calibration section.

Processing of Cell Samples

The following steps are performed for each cell sample specified in the Samples sheet of the input Excel file:

1. Density gating is applied in the forward/side scatter channels.

2. Fluorescence data for each specified fluorescence channel is transformed to the units specified in the Units
column of the input Excel file.

3. Statistics of the specified fluorescence channels are calculated, including mean, standard deviation, and others.
A histogram of each fluorescence channel is also generated.

Statistics and histograms are saved to the output Excel file.

2.3.4 Outputs of the Excel UI

During processing of the calibration beads and cell samples, FlowCal creates two folders with images and an output
Excel file in the same location as the input Excel file. Here we describe these. In what follows, <ID> refers to the
value specified in the ID column of the input Excel file.

Plots

1. The folder plot_beads contains plots of the individual steps of processing of the calibration particle samples:

a. density_hist_<ID>.png: A forward/side scatter 2D density diagram of the calibration
particle sample, and a histogram for each relevant fluorescence channel.

18 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

b. clustering_<ID>.png: A plot of the sub-populations identified during the clustering step,
where the different sub-populations are shown in different colors. Depending on the number of

2.3. FlowCal’s Excel UI 19

FlowCal Documentation, Release 1.3.0

channels used for clustering, this plot is a histogram (when using only one channel), a 2D scatter
plot (when using two channels), or a 3D scatter plot with three 2D projections (when using three
channels or more).

Note: It is normally easy to distinguish the different bead populations in this plot, and the different
colors should correspond to this expectation. If the populations have been identified incorrectly,
changing the number of channels used for clustering or the density gate fraction can improve the
results. These two parameters can be changed in the Beads sheet of the input Excel file.

c. populations_<channel>_<ID>.png: A histogram showing the identified microbead
sub-populations in different colors, for each fluorescence channel in which a MEF standard
curve is to be calculated. In addition, a vertical line is shown representing the median of each
population, which is later used to calculate the standard curve. Sub-populations that were not
used to generate the standard curve are shown in gray.

20 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

Note: All populations should be unimodal. Bimodal populations indicate incorrect clustering. This
can be fixed by changing the number of channels used for clustering or the density gate fraction in
the Beads sheet of the input Excel file.

d. std_crv_<channel>_<ID>.png: A plot of the fitted standard curve, for each channel in
which MEF values were specified.

Note: All the blue dots should line almost perfectly on the green line, otherwise the estimation of
the standard curve might not be good. If this is not the case, you should make sure that clustering
is being performed correctly by looking at the previous plots. If one dot differs significantly from
the curve despite perfect clustering, you might want to manually remove it. This can be done by

2.3. FlowCal’s Excel UI 21

FlowCal Documentation, Release 1.3.0

replacing its MEF value with the word “None” in the Beads sheet of the input Excel file.

2. The folder plot_samples contains plots of the experimental cell samples. Each experimental sample of
name “ID” as specified in the Excel input sheet results in a file named <ID>.png. This image contains a
forward/side scatter 2D density diagram with the gated region indicated, and a histogram for each user-specified
fluorescence channel.

Output Excel File

The file <Name of the input Excel file>_output.xlsx contains calculated statistics for beads and
samples. To produce this file, FlowCal copies the Instruments, Beads, and Samples sheets from the input Ex-
cel file, unmodified, to the output file, and adds columns to the Beads and Samples sheet with statistics.

In both sheets, the number of events after gating and the acquisition time are reported for each sample. In addition, a
column named Analysis Notes indicates the user about any errors that occurred during processing.

22 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

Statistics per beads file, per fluorescence channel include: the channel gain, the amplifier type, the equation of the
beads fluorescence model used, and the values of the fitted parameters.

Statistics per cell sample, per fluorescence channel include: channel gain, mean, geometric mean, median, mode,
arithmetic and geometric standard deviation, arithmetic and geometric coefficient of variation (CV), interquartile range
(IQR), and robust coefficient of variation (RCV). Note that if an error has been found, the Analysis Notes field will
be populated, and statistics and plots will not be reported.

In addition, a Histograms tab is generated, with bin/counts pairs for each sample and relevant fluorescence channel in
the specified units.

2.3. FlowCal’s Excel UI 23

FlowCal Documentation, Release 1.3.0

One last tab named About Analysis is added with information about the corresponding input Excel file, the date and
time of the run, and the FlowCal version used.

2.3.5 Command Line Interface (Advanced)

The Excel UI can be run from a command line interpreter with one of the following equivalent statements:

flowcal [-h] [-i [INPUTPATH]] [-o [OUTPUTPATH]] [-v] [-p] [-H]
python -m FlowCal.excel_ui [-h] [-i [INPUTPATH]] [-o [OUTPUTPATH]] [-v] [-p] [-H]

Where the flags are:

-h, --help show this help message and exit
-i [INPUTPATH], --inputpath [INPUTPATH]

input Excel file name. If not specified, show open
file window

-o [OUTPUTPATH], --outputpath [OUTPUTPATH]
output Excel file name. If not specified, use
[INPUTPATH]_output

(continues on next page)

24 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

(continued from previous page)

-v, --verbose print information about individual processing steps
-p, --plot generate and save density plots/histograms of beads

and samples
-H, --histogram-sheet

generate sheet in output Excel file specifying
histogram bins

Running FlowCal’s Excel UI without any flags will show the open file dialog to select an input Excel file. Once a
file is selected, FlowCal will generate an output Excel file. In contrast to using Run FlowCal (macOS) or Run
FlowCal (Windows).bat, the statement above with no flags will not display any messages during processing or
generate any plots. To display messages and generate plots, use:

flowcal -v -p

Run FlowCal (macOS) and Run FlowCal (Windows).bat use, in fact, the following equivalent state-
ment:

python -m FlowCal.excel_ui -v -p

Note: In macOS, a critical error may appear when trying to run the Excel UI from the command line. The error
message is quite long, but one of the last lines reads similarly to this:

libc++abi.dylib: terminating with uncaught exception of type NSException

This is due to the macosx matplotlib backend conflicting with the TkInter library used to show the open file
window. To solve this, you need to change matplotlib’s backend to TkAgg. A few ways to do so can be found here.

We recommend changing the matplotlib’s backend temporarily by setting the MPLBACKEND environment variable. If
you follow this method, you should run the following before calling FlowCal:

export MPLBACKEND="TkAgg"

This is actually the solution implemented in Run FlowCal (macOS).

Using the command line arguments, one can create a batch script to process several Excel files at once, each pointing
to a different set of FCS files. Such script would have the form:

flowcal -i input_excel_file_1.xlsx -o output_excel_file_1.xlsx
flowcal -i input_excel_file_2.xlsx -o output_excel_file_2.xlsx
flowcal -i input_excel_file_3.xlsx -o output_excel_file_3.xlsx
...

2.4 FlowCal’s Python API Tutorial

FlowCal is, at its core, a Python library that a programmer can use to analyze flow cytometry data in a more flex-
ible way than with the Excel UI. This section gives an overview of the abilities of FlowCal from a programmer’s
perspective. The tutorials below are listed below in order of increasing complexity. We recommend the reader to go
through them in order.

Note: The FlowCal Python API tutorial assumes that the reader is familiar with Python, numpy and matplotlib.
It also assumes that the reader has Python 3.8 installed, as well as FlowCal and all its dependencies. For more

2.4. FlowCal’s Python API Tutorial 25

http://matplotlib.org/faq/usage_faq.html#what-is-a-backend

FlowCal Documentation, Release 1.3.0

information on installation, refer to the Getting started section.

2.4.1 Reading Flow Cytometry Data

This tutorial focuses on how to open FCS files and manipulate the data therein using FlowCal.

To start, navigate to the examples directory included with FlowCal, and open a python session therein. Then,
import FlowCal as with any other python module.

>>> import FlowCal

FCS files are standard files in which flow cytometry data is stored. Normally, one FCS file corresponds to one sample.

The object FlowCal.io.FCSData allows a user to open an FCS file. The following instruction opens the file
sample006.fcs from the FCFiles folder, loads the information into an FCSData object, and assigns it to a
variable s.

>>> s = FlowCal.io.FCSData('FCFiles/sample006.fcs')

An FCSData object is a 2D numpy array with a few additional features. The first dimension indexes the event
number, and the second dimension indexes the flow cytometry channel (or “parameter”, as called by the FCS standard).
We can see the number of events and channels using the standard numpy’s shape property:

>>> print(s.shape)
(32224, 8)

As with any numpy array, we can slice an FCSData object. For example, let’s obtain the first 100 events.

>>> s_sub = s[:100]
>>> print(s_sub.shape)
(100, 8)

Note that the product of slicing an FCSData object is also an FCSData object. We can also get all the events in a subset
of channels by slicing in the second dimension.

>>> s_sub_ch = s[:, [3, 4, 5]]
>>> print(s_sub_ch.shape)
(32224, 3)

However, it is not immediately obvious what channels we are getting. Fortunately, the FCSData object contains some
additional information about the acquisition settings. In particular, we can check the name of the channels with the
channels property.

>>> print(s.channels)
('TIME', 'FSC', 'SSC', 'FL1', 'FL2', 'FL3', 'FSCW', 'FSCA')
>>> print(s_sub_ch.channels)
('FL1', 'FL2', 'FL3')

It turns out that s_sub_ch contains the fluorescence channels FL1, FL2, and FL3.

One of the most practical features of an FCSData object is the ability to slice channels using their name. For example,
if we want the fluorescence channels we can use the following.

>>> s_sub_ch_2 = s[:, ['FL1', 'FL2', 'FL3']]
>>> print(s_sub_ch_2.channels)
('FL1', 'FL2', 'FL3')

26 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

This is completely equivalent to indexing with integers.

>>> import numpy as np
>>> np.all(s_sub_ch == s_sub_ch_2)
True

FCSData contains more acquisition information, such as the acquisition time, amplifier type, and the detector voltage
of each channel. For more information, consult the documentation of FlowCal.io.FCSData.

2.4.2 Transforming Flow Cytometry Data

This tutorial focuses on how to perform basic transformations to flow cytometry data using FlowCal, particularly by
using the module FlowCal.transform

To start, navigate to the examples directory included with FlowCal, and open a python session therein. Then,
import FlowCal as with any other python module.

>>> import FlowCal

Transforming to Arbitrary Fluorescence Units (a.u.)

Start by loading file sample006.fcs into an FCSData object called s.

>>> s = FlowCal.io.FCSData('FCFiles/sample006.fcs')

Let’s now visualize the contents of the FL1 channel. We will explore FlowCal’s plotting functions in the plotting
tutorial, but for now let’s just use matplotlib’s hist function.

>>> import matplotlib.pyplot as plt
>>> plt.hist(s[:, 'FL1'], bins=100)
>>> plt.show()

2.4. FlowCal’s Python API Tutorial 27

FlowCal Documentation, Release 1.3.0

Note that the range of the x axis is from 0 to around 800. However, our acquisition software showed fluorescence
values from 1 to 10000. Where does the difference come from? An FCS file normally stores raw numbers as they are
are reported by the instrument sensors. These are referred to as “channel numbers”. The FCS file also contains enough
information to transform these numbers back to proper fluorescence units, called Relative Fluorescence Intensities
(RFI), or more commonly, arbitrary fluorescence units (a.u.). Depending on the instrument used, this conversion
sometimes involves a simple scaling factor, but other times requires a non-straigthforward exponential transformation.
The latter is our case.

Fortunately, FlowCal includes FlowCal.transform.to_rfi(), a function that reads all the necessary
paremeters from the FCS file and figures out how to convert data back to a.u.

>>> s_transformed = FlowCal.transform.to_rfi(s, channels='FL1')

s_transformed now contains the same data as s, except that the FL1 channel has been transformed to a.u. Let’s
now look at the transformed data.

>>> import numpy as np
>>> bins = np.logspace(0, 4, 100)
>>> plt.hist(s_transformed[:, 'FL1'], bins=bins)
>>> plt.xscale('log')
>>> plt.show()

28 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

We will explore a more convenient way to plot transformed data in the plotting tutorial.

FlowCal.transform.to_rfi() can transform several channels at the same time. In fact, all channels will be
transformed if no channel is specified.

>>> s_transformed = FlowCal.transform.to_rfi(s)

We will use this throughout the whole tutorial right after loading an FCSData object.

Transforming to Molecules of Equivalent Fluorophore (MEF)

FlowCal includes the ability to transform flow cytometry data to Molecules of Equivalent Fluorophore (MEF), a unit
independent of the acquisition settings. However, doing so is slightly more complex. We will see how to do this in the
MEF tutorial.

2.4.3 Plotting Flow Cytometry Data

This tutorial focuses on how to plot flow cytometry data using FlowCal, particularly by using the module FlowCal.
plot

To start, navigate to the examples directory included with FlowCal, and open a python session therein. Then,
import FlowCal as with any other python module.

2.4. FlowCal’s Python API Tutorial 29

FlowCal Documentation, Release 1.3.0

>>> import FlowCal

Also, import numpy and pyplot from matplotlib

>>> import numpy as np
>>> import matplotlib.pyplot as plt

Histograms

Let’s load the data from file sample006.fcs into an FCSData object called s, and tranform all channels to
arbitrary units.

>>> s = FlowCal.io.FCSData('FCFiles/sample006.fcs')
>>> s = FlowCal.transform.to_rfi(s)

One is often interested in the fluorescence distribution across a population of cells. This is represented in a histogram.
Since FCSData is a numpy array, one could use the standard hist function included in matplotlib. Alternatively,
FlowCal includes its own histogram function specifically tailored to work with FCSData objects. For example, one
can plot the contents of the FL1 channel with a single call to FlowCal.plot.hist1d().

>>> FlowCal.plot.hist1d(s, channel='FL1')
>>> plt.show()

FlowCal.plot.hist1d() behaves mostly like a regular matplotlib plotting function: it will plot in the current

30 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

figure and axis. The axes labels are populated by default, but one can still use plt.xlabel and plt.ylabel to
change them.

By default, FlowCal.plot.hist1d() uses something called logicle scaling for the x axis. This scaling allows
visualization of high fluorescence values with logarithmic spacing, and low fluorescence values with a more linear
spacing. In some modern flow cytometers, negative events may be present, and logicle scaling allows visualization of
those as well. This can be changed to a more conventional linear or logarithmic scale by using the xscale argument.
In addition, FlowCal.plot.hist1d() uses 256 uniformly spaced bins by default. We can override the default
bins using the bins argument. Let’s try using 1024 logarithmically-spaced bins.

>>> FlowCal.plot.hist1d(s, channel='FL1', xscale='log', bins=1024)
>>> plt.show()

Finally, FlowCal.plot.hist1d() can plot several FCSData objects at the same time. Let’s now load 3 FCSData
objects, transform all channels to a.u., and plot the FL1 channel of all three with transparency.

>>> filenames = ['FCFiles/sample{:03d}.fcs'.format(i + 9) for i in range(3)]
>>> d = [FlowCal.io.FCSData(filename) for filename in filenames]
>>> d = [FlowCal.transform.to_rfi(di) for di in d]
>>> FlowCal.plot.hist1d(d, channel='FL1', alpha=0.7, bins=128)
>>> plt.legend(filenames, loc='upper left')
>>> plt.show()

2.4. FlowCal’s Python API Tutorial 31

FlowCal Documentation, Release 1.3.0

Density Plots

It is also common to look at the forward scatter and side scatter values in a 2D histogram, scatter plot, or density
diagram. From those, the user can extract size and shape information that would allow him to differentiate between
cells and debris. FlowCal includes the function FlowCal.plot.density2d() for this purpose.

Let’s look at the FSC and SSC channels in our sample s.

>>> FlowCal.plot.density2d(s, channels=['FSC', 'SSC'])
>>> plt.show()

32 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

The color indicates the number of events in the region, with red indicating a bigger number than yellow and blue, in
that order, by default. Similarly to FlowCal.plot.hist1d(), FlowCal.plot.density2d() uses logicle
scaling by default. In addition, FlowCal.plot.density2d() applies, by default, gaussian smoothing to the
density plot.

FlowCal.plot.density2d() includes two visualization modes: mesh (seen above), and scatter. The last
one is good for distinguishing regions with few events.

>>> FlowCal.plot.density2d(s, channels=['FSC', 'SSC'], mode='scatter')
>>> plt.show()

2.4. FlowCal’s Python API Tutorial 33

FlowCal Documentation, Release 1.3.0

The last plot shows three distinct populations. The large one in the middle corresponds to cells, whereas the ones at
the left and below correspond to non-biological debris. We will see how to “gate”, or select only one population, in
the gating tutorial.

Combined Histogram and Density Plots

FlowCal also includes “complex plot” functions, which produce their own figure and a set of axes, and use simple
matplotlib or FlowCal plotting functions to populate them.

In particular, FlowCal.plot.density_and_hist() uses FlowCal.plot.hist1d() and FlowCal.
plot.density2d() to produce a combined density plot/histogram that allow the user to quickly see information
about one sample. For example, let’s plot the FSC and SSC channels in a density plot, and the FL1 channel in a
histogram. In the following, density_params and hist_params are dictionaries that are directly passed to
FlowCal.plot.hist1d() and FlowCal.plot.density2d() as keyword arguments.

>>> FlowCal.plot.density_and_hist(s,
... density_channels=['FSC', 'SSC'],
... density_params={'mode':'scatter'},
... hist_channels=['FL1'])
>>> plt.tight_layout()
>>> plt.show()

34 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

FlowCal.plot.density_and_hist() can also plot data before and after applying gates. We will see this in
the gating tutorial.

Violin Plots

Histograms, as shown above, can be used to plot and compare data from multiple samples. However, they can easily
get too crowded. A more compact way is to use a violin plot, wherein vertical, normalized, symmetrical histograms
(“violins”) are shown centered on corresponding x-axis values. We can do this with the FlowCal.plot.violin()
function.

>>> filenames = ['FCFiles/sample{:03d}.fcs'.format(i+6) for i in range(10)]
>>> d = [FlowCal.io.FCSData(filename) for filename in filenames]
>>> d = [FlowCal.transform.to_rfi(di) for di in d]
>>> dapg = np.array([0, 2.33, 4.36, 8.16, 15.3, 28.6, 53.5, 100, 187, 350])
>>> FlowCal.plot.violin(data=d, channel='FL1', positions=dapg, xlabel='DAPG (uM)',
→˓xscale='log', ylim=(1e0,2e3))

(continues on next page)

2.4. FlowCal’s Python API Tutorial 35

FlowCal Documentation, Release 1.3.0

(continued from previous page)

>>> plt.show()

Note that the x axis has been plotted on a logarithmic scale using the xscale argument. Because data at position x=0
is specified, FlowCal.plot.violin() places it separately on the left side of the plot. In contrast, the y-axis is
plotted on a logicle scale by default. However, it can be switched to log or linear using the argument yscale.
Horizontal violin plots can also be generated by setting the vert argument to False. For more options, consult the
function documentation.

“Dose response” or “transfer” functions are common in biology. These sometimes include minimum (negative)
and maximum (positive) controls, and are often approximated by mathematical models. The FlowCal.plot.
violin_dose_response() function can be used to plot a full dose response dataset, including min data, max
data, and a mathematical model. Min and max data are illustrated to the left of the plot, and the mathematical model
is correctly illustrated even when a position=0 violin is illustrated separately when xscale is log.

>>> # Function specifying mathematical model
>>> def dapg_sensor_model(dapg_concentration):
>>> mn = 20
>>> mx = 250.
>>> K = 20.

(continues on next page)

36 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

(continued from previous page)

>>> n = 3.57
>>> if dapg_concentration <= 0:
>>> return mn
>>> else:
>>> return mn + ((mx-mn)/(1+((K/dapg_concentration)**n)))
>>>
>>> # Plot
>>> FlowCal.plot.violin_dose_response(
>>> data=d,
>>> channel='FL1',
>>> positions=dapg,
>>> min_data=d[0],
>>> max_data=d[-1],
>>> model_fxn=dapg_sensor_model,
>>> xscale='log',
>>> yscale='log',
>>> ylim=(1e0,2e3),
>>> draw_model_kwargs={'color':'gray',
>>> 'linewidth':3,
>>> 'zorder':-1,
>>> 'solid_capstyle':'butt'})
>>> plt.xlabel('DAPG Concentration (μM)')
>>> plt.ylabel('FL1 Fluorescence (a.u.)')
>>> plt.show()

2.4. FlowCal’s Python API Tutorial 37

FlowCal Documentation, Release 1.3.0

Other Plotting Functions

These are not the only functions in FlowCal.plot. For more information, consult the API reference.

2.4.4 Gating Flow Cytometry Data

This tutorial focuses on how to gate flow cytometry data using FlowCal, particularly by using the module FlowCal.
gate. Gating is the process of retaining events that satisfy some criteria, and discarding the ones that do not.

To start, navigate to the examples directory included with FlowCal, and open a python session therein. Then,
import FlowCal as with any other python module.

>>> import FlowCal

Also, import numpy and pyplot from matplotlib

>>> import numpy as np
>>> import matplotlib.pyplot as plt

38 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

Removing Saturated Events

We’ll start by loading the data from file sample006.fcs into an FCSData object called s. Then, transform all
channels into a.u.

>>> s = FlowCal.io.FCSData('FCFiles/sample006.fcs')
>>> s = FlowCal.transform.to_rfi(s)

In the plotting tutorial we looked at a density plot of the forward scatter/side scatter (FSC/SSC) channels and identified
several clusters of particles (events). This density plot is repeated below for convenience.

From these subpopulations, the faint elongated one in the low-middle portion corresponds to non-cellular debris, and
the large one in the middle corresponds to cells. One additional elongated subpopulation on the left corresponds to
saturated events, with the lowest possible forward scatter value: 1 a.u..

Some flow cytometers will capture events outside of their range and assign them either the lowest or highest possible
values of a channel, depending on which side of the range they fall on. We call these events “saturated”. Including
them in the analysis results, most of the time, in distorted distribution shapes and incorrect statistics. Therefore, it
is generally advised to remove saturated events. To do so, FlowCal incorporates the function FlowCal.gate.
high_low(). This function retains all the events in the specified channels between two specified values: a high and
a low threshold. If these values are not specified, however, the function uses the saturating values.

>>> s_g1 = FlowCal.gate.high_low(s, channels=['FSC', 'SSC'])
>>> FlowCal.plot.density2d(s_g1,
... channels=['FSC', 'SSC'],

(continues on next page)

2.4. FlowCal’s Python API Tutorial 39

FlowCal Documentation, Release 1.3.0

(continued from previous page)

... mode='scatter')
>>> plt.show()

We successfully removed the events on the left. We can go one step further and use FlowCal.gate.high_low()
again to remove some of the events below the main event cluster, which as we said before corresponds to debris.

>>> s_g2 = FlowCal.gate.high_low(s_g1, channels='SSC', low=280)
>>> FlowCal.plot.density2d(s_g2,
... channels=['FSC', 'SSC'],
... mode='scatter')
>>> plt.show()

40 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

This approach, however, requires one to estimate a low threshold value for every sample manually. In addition, we
usually want events in the densest forward scatter/side scatter region, which requires a more complex shape than a pair
of thresholds. We will now explore better ways to achieve this.

Ellipse Gate

FlowCal includes an ellipse-shaped gate, in which events are retained if they fall inside an ellipse with a specified
center and dimensions. Let’s try to obtain the densest region of the cell cluster.

>>> s_g3 = FlowCal.gate.ellipse(s_g1,
... channels=['FSC', 'SSC'],
... log=True,
... center=(2.3, 2.78),
... a=0.3,
... b=0.2,
... theta=30/180.*np.pi)
>>> FlowCal.plot.density2d(s_g3,
... channels=['FSC', 'SSC'],
... mode='scatter')
>>> plt.show()

2.4. FlowCal’s Python API Tutorial 41

FlowCal Documentation, Release 1.3.0

As shown above, the remaining events reside only inside an ellipse-shaped region. Note that we used the argument
log, which indicates that the gated region should look like an ellipse in a logarithmic plot. This also requires that the
center and the major and minor axes (a and b) be specified in log space.

The disadvantage of this gate is that several parameters need to be specified, which make the resulting gate arbitrary.
In addition, it is questionable whether we’re actually capturing the densest part of the distribution. Using the mean
or median as centers results in similar issues because the original cell distribution is not symmetrical. The next gate
solves these issues.

Density Gate

FlowCal.gate.density2d() automatically identifies the region with the highest density of events in a two-
dimensional diagram, and calculates how big it should be to capture a certain percentage of the total event count. One
advantage is that the number of user-defined parameters is reduced to one. Let’s now try to separate cells from debris
using this method.

>>> s_g4 = FlowCal.gate.density2d(s_g1,
... channels=['FSC', 'SSC'],
... gate_fraction=0.75)
>>> FlowCal.plot.density2d(s_g4,
... channels=['FSC', 'SSC'],
... mode='scatter')
>>> plt.show()

42 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

We can see that FlowCal.gate.density2d() automatically identified the region that contains cells, and defined
a shape that more closely resembles what the ungated density map looks like. The parameter gating_fraction
allows the user to control the fraction of events to retain, and it is the only parameter that the user is required to specify.

For more details on how FlowCal.gate.density2d() works, consult the section on fundamentals of density
gating.

Plotting 2D Gates

Finally, we will see a better way to visualize the result of applying a 2D gate. First, we will use density gating again,
but this time we will do it a little differently.

>>> density_gate_output = FlowCal.gate.density2d(s_g1,
... channels=['FSC', 'SSC'],
... gate_fraction=0.75,
... full_output=True)
>>> s_g5 = density_gate_output.gated_data
>>> m_g5 = density_gate_output.mask
>>> contour = density_gate_output.contour

The extra argument, full_output, is available in every function in FlowCal.gate. It instructs a gating function
to return additional output arguments with information about the gating process. The second output argument is always
a mask (extracted here from the Density2dGateOutput namedtuple using its field name), which is a boolean
array that indicates which events from the original FCSData object are being retained by the gate. Two-dimensional

2.4. FlowCal’s Python API Tutorial 43

FlowCal Documentation, Release 1.3.0

gating functions have a third output argument: a contour surrounding the gated region, which we will now use for
plotting.

The function FlowCal.plot.density_and_hist() was introduced in the plotting tutorial to produce plots of
a single FCSData object. But it can also be used to plot the result of a gating step, showing the data before and after
gating, and the gating contour. Let’s use this ability to show the result of the density gating process.

>>> FlowCal.plot.density_and_hist(s_g1,
... gated_data=s_g5,
... gate_contour=contour,
... density_channels=['FSC', 'SSC'],
... density_params={'mode':'scatter'},
... hist_channels=['FL1'])
>>> plt.tight_layout()
>>> plt.show()

We can now observe the gating contour right on top of the ungated data, and see which events were kept and which
ones were left out. In addition, we can visualize how gating affected the other channels.

44 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

2.4.5 Calibrating Flow Cytometry Data to MEF

This tutorial focuses on how to transform flow cytometry data to Molecules of Equivalent Fluorophore (MEF) using
FlowCal, particularly by using the module FlowCal.mef. For more information on MEF calibration, see the
section on fundamentals of calibration.

To start, navigate to the examples directory included with FlowCal, and open a python session therein. Then,
import FlowCal as with any other python module.

>>> import FlowCal

Also, import numpy and pyplot from matplotlib

>>> import numpy as np
>>> import matplotlib.pyplot as plt

Working with Calibration Beads

As mentioned in the fundamentals section, conversion to MEF requires measuring calibration beads. sample001.
fcs in the FCFiles folder contains beads data. Let’s examine it.

>>> b = FlowCal.io.FCSData('FCFiles/sample001.fcs')
>>> b = FlowCal.transform.to_rfi(b)
>>> density_gate_output = FlowCal.gate.density2d(b,
... channels=['FSC', 'SSC'],
... gate_fraction=0.3,
... full_output=True)
>>> b_g = density_gate_output.gated_data
>>> c = density_gate_output.contour
>>> FlowCal.plot.density_and_hist(b,
... gated_data=b_g,
... gate_contour=c,
... density_channels=['FSC', 'SSC'],
... density_params={'mode':'scatter',
... 'xlim': [1e2, 1e3],
... 'ylim': [1e2, 1e3],
... 'sigma': 5.},
... hist_channels=['FL1'])
>>> plt.tight_layout()
>>> plt.show()

2.4. FlowCal’s Python API Tutorial 45

FlowCal Documentation, Release 1.3.0

The FSC/SSC density plot shows two groups of events: the dense group in the middle corresponds to single beads,
whereas the fainter cluster on the upper right corresponds to bead agglomerations. Only single beads should be used, so
FlowCal.gate.density2d() is used here to identify single beads automatically. Looking at the FL1 histogram,
we can clearly distinguish 8 subpopulations with different fluorescence levels. Note that the group with the highest
fluorescence seems to be close to saturation.

MEF Transformation in FlowCal

We saw in the transformation tutorial that a transformation function is needed to convert flow cytometry data from
raw sensor numbers, as stored in FCS files, to fluorescence values in a.u. Similarly, FlowCal uses transformation
functions to convert these to MEF. However, these functions have to be generated during analysis using a calibration
bead sample. Once a function is generated, though, it can be used to convert many cell samples to MEF, provided that
beads and samples have been acquired using the same settings.

Generating a transformation function from calibration beads data is a complicated process, therefore FlowCal
has an entire module dedicated to it: FlowCal.mef. The main function in this module, FlowCal.mef.

46 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

get_transform_fxn(), requires at least the following information: calibration beads data, the names of the
channels for which a MEF transformation function should be generated, and manufacturer-provided MEF values of
each subpopulation for each channel. Let’s now use FlowCal.mef.get_transform_fxn() to obtain a trans-
formation function.

>>> # Obtain transformation function
>>> # The following MEFL values were provided by the beads' manufacturer
>>> mefl_values = np.array([0, 792, 2079, 6588, 16471, 47497, 137049, 271647])
>>> to_mef = FlowCal.mef.get_transform_fxn(b_g,
... mef_values=mefl_values,
... mef_channels='FL1',
... plot=True)
>>> plt.show()

The argument plot instructs FlowCal.mef.get_transform_fxn() to generate and save plots showing the
individual steps of bead data analysis. We will look at these plots and how to interpret them in the next section. We
recommend to always generate these plots to confirm that the standard curve was generated properly.

Let’s now use to_mef to transform fluroescence data to MEF.

>>> # Load sample
>>> s = FlowCal.io.FCSData('FCFiles/sample006.fcs')
>>>
>>> # Transform all channels to a.u., and then FL1 to MEF.
>>> s = FlowCal.transform.to_rfi(s)
>>> s = to_mef(s, channels='FL1')
>>>
>>> # Gate
>>> s_g = FlowCal.gate.high_low(s, channels=['FSC', 'SSC'])
>>> s_g = FlowCal.gate.density2d(s_g,
... channels=['FSC', 'SSC'],
... gate_fraction=0.5)
>>>
>>> # Plot histogram of transformed channel
>>> FlowCal.plot.hist1d(s_g, channel='FL1')
>>> plt.show()

2.4. FlowCal’s Python API Tutorial 47

FlowCal Documentation, Release 1.3.0

s_g now contains FL1 fluorescence values in MEF units. Note that the values in the x axis of the histogram do not
match the ones showed before in channel (raw) units or a.u.. This is always true in general, because fluorescence is
now expressed in different units.

Generation of a MEF Transformation Function

We will now give a short description of the process that FlowCal.mef.get_transform_fxn() uses to gen-
erate a transformation function from beads data. We will also examine the plots produced by FlowCal.mef.
get_transform_fxn() and discuss how these plots can reveal problems with the analysis. In the following,
<beads_filename> refers to the file name of the FSC cotaining beads data, which was provided to FlowCal.
mef.get_transform_fxn(). This discussion is parallel to the one in the fundamentals of calibration document,
but at a higher technical level.

Generating a MEF transformation function involves four steps:

1. Identification of Bead Subpopulations

FlowCal uses a clustering algorithm to automatically identify the different subpopulations of beads. The algorithm
will try to find as many populations as values are provided in mef_values.

A plot with a default filename of clustering_<beads_filename>.png is generated by FlowCal.mef.
get_transform_fxn() after the completion of this step. This plot is a histogram or scatter plot in which different
subpopulations are shown in a different colors. Such plot is shown below, for sample001.fcs.

48 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

It is always visually clear which events correspond to which groups, and the different colors should correspond to this
expectation. If they don’t, sometimes it helps to use a different set of fluorescence channels for clustering (see below),
or to use a different gating fraction in the previous density gating step.

The default clustering algorithm is Gaussian Mixture Models, implemented in FlowCal.mef.
clustering_gmm(). However, a function implementing another clustering algorithm can be provided to
FlowCal.mef.get_transform_fxn() through the argument clustering_fxn. In addition, the ar-
gument clustering_channels specifies which channels to use for clustering. This can be different than
mef_channels, the channels for which to generate a standard curve. A plot resulting from clustering with two
fluroescence channels is shown below.

2.4. FlowCal’s Python API Tutorial 49

FlowCal Documentation, Release 1.3.0

2. Calculation of Population Statistics

For each channel in mef_channels, a representative fluorescence value in a.u. is calculated for each subpopulation.
By default, the median of each population is used, but this can be customized using the statistic_fxn parameter.

3. Population Selection

For each channel in mef_channels, subpopulations close to saturation are discarded.

A plot with a default filename of populations_<channel>_<beads_filename>.png is generated by
FlowCal.mef.get_transform_fxn() for each channel in mef_channels after the completion of this step.
This plot is a histogram showing each population, as identified in step one, with vertical lines showing their represen-
tative statistic as calculated from step 2, and with the discarded populations colored in grey. Such plot is shown below,
for sample001.fcs and channel FL1.

50 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

By default, populations whose mean is closer than a few standard deviations from one of the edge values are discarded.
This is encoded in the function FlowCal.mef.selection_std(). A different method can be used by providing
a different function to FlowCal.mef.get_transform_fxn() through the argument selection_fxn. This
argument can even be None, in which case no populations are discarded. Finally, one can manually discard a popula-
tion by using None as its MEF fluorescence value in mef_values. Discarding populations specified in this way is
performed in addition to selection_fxn.

4. Standard Curve Calculation

A bead fluorescence model is fitted to the fluorescence values of each subpopulation in a.u., as calculated in step 2,
and in MEF units, as provided in mef_values. A standard curve can then be calculated from the bead fluorescence
model.

A plot with a default filename of std_crv_<channel>_<beads_filename>.png is generated by FlowCal.
mef.get_transform_fxn() for each channel in mef_channels after the completion of this step. This plot
shows the fluorescence values of each population in a.u. and MEF, the fitted bead fluorescence model, and the resulting
standard curve. Such plot is shown below, for sample001.fcs and channel FL1.

2.4. FlowCal’s Python API Tutorial 51

FlowCal Documentation, Release 1.3.0

It is worth noting that the bead fluorescence model and the standard curve are different, in that bead fluo-
rescence is also affected by bead autofluorescence, its fluorescence when no fluorophore is present. To ob-
tain the standard curve, autofluorescence is eliminated from the model. Such a model is fitted in FlowCal.
mef.fit_beads_autofluorescence(), but a different model can be provided to FlowCal.mef.
get_transform_fxn() using the argument fitting_fxn.

After these steps, a transformation function is generated using the standard curve, and returned.

FlowCal.mef.get_transform_fxn() has more customization options. For more information, consult the
reference.

2.4.6 Processing FCS Files with the Excel UI

This tutorial focuses on how to obtain processed flow cytometry data from FlowCal’s Excel UI into python. This
document assumes that the reader is familiar with FlowCal’s Excel UI. For more information, please refer to the
Excel UI documentation.

To start, navigate to the examples directory included with FlowCal, and open a python session therein. Then,
import FlowCal as with any other python module.

>>> import FlowCal

Introduction

FlowCal is a very flexible package that allows the user to perform different gating and transformation operations on
flow cytometry data. As we saw in the MEF tutorial, the process of transformation to MEF units also allows for a lot
of customization. However, for most experiments the user might simply want to follow a procedure similar to this:

1. Open calibration beads files

52 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

2. Perform density gating in forward/side scatter to eliminate bead aggregates

3. Obtain standard curves for each fluorescence channel of interest

4. Open cell sample files

5. Perform density gating in forward/side scatter to eliminate aggregates and non-cellular debris.

6. Transform the fluorescence of cell samples to MEF using the standard curves obtained in step 3.

After this, what follows is highly dependent on the type of experiment. Some might be interested, for example, in the
geometric mean fluorescence and standard deviation of cell samples as a function of some inducer. For these cases,
the Excel UI allows to easily specify a set of FCS files that will be processed as described above, and generate a set of
statistics for each fluorescence channel of interest. This is performed through a convenient input Excel file, which can
also document other information about the experiment, such as inducer level of each sample.

However, some applications demand more complicated downstream processing, such as n-dimensional fluorescence
analysis, which will inevitably require programming. In these cases, one can still use FlowCal’s Excel UI to process
files as above, and return transformed and gated FCSData objects for each specified FCS file to python, along with
extra information contained in the input Excel file. This workflow combines the convenience of maintaining exper-
imental information in an Excel file, the consistency of a standard FCS file processing pipeline, and the power of
performing numerical analysis in python. We will now describe how to do this.

Processing Samples with the Excel UI

For this tutorial, we will analyze all the data in the examples/FCFiles folder using the input Excel file,
examples/experiment.xlsx. This is the same file described in the Excel UI documentation.

First, load the necessary tables from this file.

>>> input_file = 'experiment.xlsx'
>>> instruments_table = FlowCal.excel_ui.read_table(input_file,
... sheetname='Instruments',
... index_col='ID')
>>> beads_table = FlowCal.excel_ui.read_table(input_file,
... sheetname='Beads',
... index_col='ID')
>>> samples_table = FlowCal.excel_ui.read_table(input_file,
... sheetname='Samples',
... index_col='ID')

FlowCal.excel_ui.read_table() returns the contents of a sheet from an Excel file as a pandas
DataFrame. The file name is specified as the first argument, and the index_col argument specified which column
to use as the DataFrame’s index. For more information about DataFrames, consult pandas’ documentation.

From there, one can obtain the file name and analysis options of each beads file, and call all the necessary FlowCal
functions to perform density gating and standard curve calculation. Or one could let the Excel UI do all that with the
following instruction:

>>> beads_samples, mef_transform_fxns = FlowCal.excel_ui.process_beads_table(
... beads_table,
... instruments_table,
... verbose=True,
... plot=True)

FlowCal.excel_ui.process_beads_table uses the instruments table and the beads table to automatically
open, density-gate, and transform the specified beads files, and generate MEF transformation functions as indicated
by the Excel input file. The flags verbose and plot instruct the function to generate messages for each file

2.4. FlowCal’s Python API Tutorial 53

http://pandas.pydata.org/pandas-docs/stable/dsintro.html

FlowCal Documentation, Release 1.3.0

being processed, and plots for each step of standard curve calculation, similar to what we saw in the MEF tuto-
rial. The output arguments are beads_samples, a dictionary of transformed and gated FCSData objects, and
mef_transform_fxns, a dictionary of MEF transformation functions, each indexed by the ID of the beads files.

In a similar way, FlowCal’s Excel UI can automatically density-gate and transform cell samples using a single
instruction:

>>> samples = FlowCal.excel_ui.process_samples_table(
... samples_table,
... instruments_table,
... mef_transform_fxns=mef_transform_fxns,
... verbose=True,
... plot=True)

FlowCal.excel_ui.process_samples_table uses the instruments and samples tables to open, density-
gate, and transform cell samples as specified, and return the processed data as a dictionary of FCSData
objects. If the input Excel file specifies that some samples should be transformed to MEF, FlowCal.
excel_ui.process_samples_table also requires a dictionary with the respective MEF transformation
functions (mef_transform_fxns), which was provided in the previous step by FlowCal.excel_ui.
process_beads_table.

This is all the code required to obtain a set of processed cell samples. From here, one can perform any desired
analysis on samples. Note that samples_table contains any other information in the input Excel file not directly
used by FlowCal, such as inducer concentration, incubation time, etc. This can be used to build an induction curve,
fluorescence vs. final optical density (OD), etc.

2.5 FlowCal (Python API) Reference

2.5.1 FlowCal.excel_ui module

FlowCal’s Microsoft Excel User Interface.

This module contains functions to read, gate, and transform data from a set of FCS files, as specified by an input
Microsoft Excel file. This file should contain the following tables:

• Instruments: Describes the instruments used to acquire the samples listed in the other tables. Each instrument
is specified by a row containing at least the following fields:

– ID: Short string identifying the instrument. Will be referenced by samples in the other tables.

– Forward Scatter Channel: Name of the forward scatter channel, as specified by the $PnN keyword in
the associated FCS files.

– Side Scatter Channel: Name of the side scatter channel, as specified by the $PnN keyword in the associ-
ated FCS files.

– Fluorescence Channels: Name of the fluorescence channels in a comma-separated list, as specified by the
$PnN keyword in the associated FCS files.

– Time Channel: Name of the time channel, as specified by the $PnN keyword in the associated FCS files.

• Beads: Describes the calibration beads samples that will be used to calibrate cell samples in the Samples table.
The following information should be available for each beads sample:

– ID: Short string identifying the beads sample. Will be referenced by cell samples in the Samples table.

– Instrument ID: ID of the instrument used to acquire the sample. Must match one of the rows in the
Instruments table.

54 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

– File Path: Path of the FCS file containing the sample’s data.

– <Fluorescence Channel Name> MEF Values: The fluorescence in MEF of each bead subpopulation, as
given by the manufacturer, as a comma-separated list of numbers. Any element of this list can be replaced
with the word None, in which case the corresponding subpopulation will not be used when fitting the
beads fluorescence model. Note that the number of elements in this list (including the elements equal to
None) are the number of subpopulations that FlowCal will try to find.

– Gate fraction: The fraction of events to keep from the sample after density-gating in the forward/side
scatter channels.

– Clustering Channels: The fluorescence channels used to identify the different bead subpopulations.

• Samples: Describes the biological samples to be processed. The following information should be available for
each sample:

– ID: Short string identifying the sample. Will be used as part of the plot’s filenames and in the Histograms
table in the output Excel file.

– Instrument ID: ID of the instrument used to acquire the sample. Must match one of the rows in the
Instruments table.

– Beads ID: ID of the beads sample used to convert data to calibrated MEF.

– File Path: Path of the FCS file containing the sample’s data.

– <Fluorescence Channel Name> Units: Units to which the event list in the specified fluorescence channel
should be converted, and all the subsequent plots and statistics should be reported. Should be one of
the following: “Channel” (raw units), “a.u.” or “RFI” (arbitrary units) or “MEF” (calibrated Molecules of
Equivalent Fluorophore). If “MEF” is specified, the Beads ID should be populated, and should correspond
to a beads sample with the MEF Values specified for the same channel.

– Gate fraction: The fraction of events to keep from the sample after density-gating in the forward/side
scatter channels.

Any columns other than the ones specified above can be present, but will be ignored by FlowCal.

exception FlowCal.excel_ui.ExcelUIException
Bases: Exception

FlowCal Excel UI Error.

FlowCal.excel_ui.add_beads_stats(beads_table, beads_samples, mef_outputs=None)
Add stats fields to beads table.

The following information is added to each row:

• Notes (warnings, errors) resulting from the analysis

• Number of Events

• Acquisition Time (s)

The following information is added for each row, for each channel in which MEF values have been specified:

• Detector voltage (gain)

• Amplification type

• Bead model fitted parameters

Parameters

beads_table [DataFrame] Table specifying bead samples to analyze. For more information
about the fields required in this table, please consult the module’s documentation.

2.5. FlowCal (Python API) Reference 55

FlowCal Documentation, Release 1.3.0

beads_samples [dict or OrderedDict] FCSData objects from which to calculate statistics.
beads_samples[id] should correspond to beads_table.loc[id,:].

mef_outputs [dict or OrderedDict, optional] Intermediate results from the generation of
the MEF transformation functions, as given by mef.get_transform_fxn(). This
is used to populate the fields <channel> Beads Model, <channel> Beads
Params. Names, and <channel> Beads Params. Values. If specified,
mef_outputs[id] should correspond to beads_table.loc[id,:].

FlowCal.excel_ui.add_samples_stats(samples_table, samples)
Add stats fields to samples table.

The following information is added to each row:

• Notes (warnings, errors) resulting from the analysis

• Number of Events

• Acquisition Time (s)

The following information is added for each row, for each channel in which fluorescence units have been speci-
fied:

• Detector voltage (gain)

• Amplification type

• Mean

• Geometric Mean

• Median

• Mode

• Standard Deviation

• Coefficient of Variation (CV)

• Geometric Standard Deviation

• Geometric Coefficient of Variation

• Inter-Quartile Range

• Robust Coefficient of Variation (RCV)

Parameters

samples_table [DataFrame] Table specifying samples to analyze. For more information about
the fields required in this table, please consult the module’s documentation.

samples [dict or OrderedDict] FCSData objects from which to calculate statistics.
samples[id] should correspond to samples_table.loc[id,:].

Notes

Geometric statistics (geometric mean, standard deviation, and geometric coefficient of variation) are defined
only for positive data. If there are negative events in any relevant channel of any member of samples, geometric
statistics will only be calculated on the positive events, and a warning message will be written to the “Analysis
Notes” field.

FlowCal.excel_ui.generate_about_table(extra_info={})
Make a table with information about FlowCal and the current analysis.

56 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

Parameters

extra_info [dict, optional] Additional keyword:value pairs to include in the table.

Returns

about_table [DataFrame] Table with information about FlowCal and the current analysis, as
keyword:value pairs. The following keywords are included: FlowCal version, and date and
time of analysis. Keywords and values from extra_info are also included.

FlowCal.excel_ui.generate_histograms_table(samples_table, samples, max_bins=1024)
Generate a table of histograms as a DataFrame.

Parameters

samples_table [DataFrame] Table specifying samples to analyze. For more information about
the fields required in this table, please consult the module’s documentation.

samples [dict or OrderedDict] FCSData objects from which to calculate statistics.
samples[id] should correspond to samples_table.loc[id,:].

max_bins [int, optional] Maximum number of bins to use.

Returns

hist_table [DataFrame] A multi-indexed DataFrame. Rows contain the histogram bins and
counts for every sample and channel specified in samples_table. hist_table is indexed by the
sample’s ID, the channel name, and whether the row corresponds to bins or counts.

FlowCal.excel_ui.process_beads_table(beads_table, instruments_table, base_dir=’.’,
verbose=False, plot=False, plot_dir=None,
full_output=False, get_transform_fxn_kwargs={})

Process calibration bead samples, as specified by an input table.

This function processes the entries in beads_table. For each row, the function does the following:

• Load the FCS file specified in the field “File Path”.

• Transform the forward scatter/side scatter and fluorescence channels to RFI

• Remove the 250 first and 100 last events.

• Remove saturated events in the forward scatter and side scatter channels.

• Apply density gating on the forward scatter/side scatter channels.

• Generate a standard curve transformation function, for each fluorescence channel in which the associated
MEF values are specified.

• Generate forward/side scatter density plots and fluorescence histograms, and plots of the clustering and
fitting steps of standard curve generation, if plot = True.

Names of forward/side scatter and fluorescence channels are taken from instruments_table.

Parameters

beads_table [DataFrame] Table specifying beads samples to be processed. For more informa-
tion about the fields required in this table, please consult the module’s documentation.

instruments_table [DataFrame] Table specifying instruments. For more information about the
fields required in this table, please consult the module’s documentation.

base_dir [str, optional] Directory from where all the other paths are specified.

verbose [bool, optional] Whether to print information messages during the execution of this
function.

2.5. FlowCal (Python API) Reference 57

FlowCal Documentation, Release 1.3.0

plot [bool, optional] Whether to generate and save density/histogram plots of each sample, and
each beads sample.

plot_dir [str, optional] Directory relative to base_dir into which plots are saved. If plot is
False, this parameter is ignored. If plot==True and plot_dir is None, plot without
saving.

full_output [bool, optional] Flag indicating whether to include an additional output, containing
intermediate results from the generation of the MEF transformation functions.

get_transform_fxn_kwargs [dict, optional] Additional parameters passed directly to internal
mef.get_transform_fxn() function call.

Returns

beads_samples [OrderedDict] Processed, gated, and transformed samples, indexed by
beads_table.index.

mef_transform_fxns [OrderedDict] MEF transformation functions, indexed by
beads_table.index.

mef_outputs [OrderedDict, only if full_output==True] Intermediate results from the
generation of the MEF transformation functions. For every entry in beads_table,
FlowCal.mef.get_transform_fxn() is called on the corresponding processed
and gated beads sample with full_output=True, and the full output (a MEFOutput
namedtuple) is added to mef_outputs. mef_outputs is indexed by beads_table.
index. Refer to the documentation for FlowCal.mef.get_transform_fxn() for
more information.

FlowCal.excel_ui.process_samples_table(samples_table, instruments_table,
mef_transform_fxns=None, beads_table=None,
base_dir=’.’, verbose=False, plot=False,
plot_dir=None)

Process flow cytometry samples, as specified by an input table.

The function processes each entry in samples_table, and does the following:

• Load the FCS file specified in the field “File Path”.

• Transform the forward scatter/side scatter to RFI.

• Transform the fluorescence channels to the units specified in the column “<Channel name> Units”.

• Remove the 250 first and 100 last events.

• Remove saturated events in the forward scatter and side scatter channels.

• Apply density gating on the forward scatter/side scatter channels.

• Plot combined forward/side scatter density plots and fluorescence historgrams, if plot = True.

Names of forward/side scatter and fluorescence channels are taken from instruments_table.

Parameters

samples_table [DataFrame] Table specifying samples to be processed. For more information
about the fields required in this table, please consult the module’s documentation.

instruments_table [DataFrame] Table specifying instruments. For more information about the
fields required in this table, please consult the module’s documentation.

mef_transform_fxns [dict or OrderedDict, optional] Dictionary containing MEF transforma-
tion functions. If any entry in samples_table requires transformation to MEF, a key: value
pair must exist in mef_transform_fxns, with the key being equal to the contents of field
“Beads ID”.

58 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

beads_table [DataFrame, optional] Table specifying beads samples used to generate
mef_transform_fxns. This is used to check if a beads sample was taken at the same ac-
quisition settings as a sample to be transformed to MEF. For any beads sample and chan-
nel for which a MEF transformation function has been generated, the following fields
should be populated: <channel> Amp. Type and <channel> Detector Volt.
If beads_table is not specified, no checking will be performed.

base_dir [str, optional] Directory from where all the other paths are specified.

verbose [bool, optional] Whether to print information messages during the execution of this
function.

plot [bool, optional] Whether to generate and save density/histogram plots of each sample, and
each beads sample.

plot_dir [str, optional] Directory relative to base_dir into which plots are saved. If plot is
False, this parameter is ignored. If plot==True and plot_dir is None, plot without
saving.

Returns

samples [OrderedDict] Processed, gated, and transformed samples, indexed by
samples_table.index.

FlowCal.excel_ui.read_table(filename, sheetname, index_col=None, engine=None)
Return the contents of an Excel table as a pandas DataFrame.

Parameters

filename [str] Name of the Excel file to read.

sheetname [str or int] Name or index of the sheet inside the Excel file to read.

index_col [str, optional] Column name or index to be used as row labels of the DataFrame. If
None, default index will be used.

engine [str, optional] Engine used by pd.read_excel() to read Excel file. If None, try ‘openpyxl’
then ‘xlrd’.

Returns

table [DataFrame] A DataFrame containing the data in the specified Excel table. If index_col
is not None, rows in which their index_col field is empty will not be present in table.

Raises

ValueError If index_col is specified and two rows contain the same index_col field.

FlowCal.excel_ui.run(input_path=None, output_path=None, verbose=True, plot=True,
hist_sheet=False)

Run the MS Excel User Interface.

This function performs the following:

1. If input_path is not specified, show a dialog to choose an input Excel file.

2. Extract data from the Instruments, Beads, and Samples tables.

3. Process all the bead samples specified in the Beads table.

4. Generate statistics for each bead sample.

5. Process all the cell samples in the Samples table.

6. Generate statistics for each sample.

7. If requested, generate a histogram table for each fluorescent channel specified for each sample.

2.5. FlowCal (Python API) Reference 59

FlowCal Documentation, Release 1.3.0

8. Generate a table with run time, date, FlowCal version, among others.

9. Save statistics and (if requested) histograms in an output Excel file.

Parameters

input_path [str] Path to the Excel file to use as input. If None, show a dialog to select an input
file.

output_path [str] Path to which to save the output Excel file. If None, use “<in-
put_path>_output”.

verbose [bool, optional] Whether to print information messages during the execution of this
function.

plot [bool, optional] Whether to generate and save density/histogram plots of each sample, and
each beads sample.

hist_sheet [bool, optional] Whether to generate a sheet in the output Excel file specifying his-
togram bin information.

FlowCal.excel_ui.run_command_line(args=None)
Entry point for the FlowCal and flowcal console scripts.

Parameters

args: list of strings, optional Command line arguments. If None or not specified, get argu-
ments from sys.argv.

See also:

FlowCal.excel_ui.run

References

http://amir.rachum.com/blog/2017/07/28/python-entry-points/

FlowCal.excel_ui.show_open_file_dialog(filetypes)
Show an open file dialog and return the path of the file selected.

Parameters

filetypes [list of tuples] Types of file to show on the dialog. Each tuple on the list must have
two elements associated with a filetype: the first element is a description, and the second is
the associated extension.

Returns

filename [str] The path of the filename selected, or an empty string if no file was chosen.

FlowCal.excel_ui.write_workbook(filename, table_list, column_width=None)
Write an Excel workbook from a list of tables.

Parameters

filename [str] Name of the Excel file to write.

table_list [list of (str, DataFrame) tuples] Tables to be saved as individual sheets in the
Excel table. Each tuple contains two values: the name of the sheet to be saved as a string,
and the contents of the table as a DataFrame.

60 Chapter 2. Table of Contents

http://amir.rachum.com/blog/2017/07/28/python-entry-points/

FlowCal Documentation, Release 1.3.0

column_width: int or float, optional The column width to use when saving the spreadsheet.
If None, calculate width automatically from the maximum number of characters in each
column.

2.5.2 FlowCal.gate module

Functions for gating flow cytometry data.

All gate functions are of the following form:

gated_data = gate(data, channels, *args, **kwargs)

(gated_data, mask, contour, ...) = gate(data, channels, *args,

**kwargs, full_output=True)

where data is a NxD FCSData object or numpy array describing N cytometry events with D channels, channels
specifies the channels in which to perform gating, and args and kwargs are gate-specific parameters. gated_data is the
gated result, as an FCSData object or numpy array, mask is a bool array specifying the gate mask, and contour is an
optional list of 2D numpy arrays containing the x-y coordinates of the contour surrounding the gated region, which
can be used when plotting a 2D density diagram or scatter plot.

class FlowCal.gate.Density2dGateOutput(gated_data, mask, contour, bin_edges, bin_mask)
Bases: tuple

Attributes

bin_edges Alias for field number 3

bin_mask Alias for field number 4

contour Alias for field number 2

gated_data Alias for field number 0

mask Alias for field number 1

Methods

count(value, /) Return number of occurrences of value.
index(value[, start, stop]) Return first index of value.

bin_edges
Alias for field number 3

bin_mask
Alias for field number 4

contour
Alias for field number 2

gated_data
Alias for field number 0

mask
Alias for field number 1

class FlowCal.gate.EllipseGateOutput(gated_data, mask, contour)
Bases: tuple

2.5. FlowCal (Python API) Reference 61

FlowCal Documentation, Release 1.3.0

Attributes

contour Alias for field number 2

gated_data Alias for field number 0

mask Alias for field number 1

Methods

count(value, /) Return number of occurrences of value.
index(value[, start, stop]) Return first index of value.

contour
Alias for field number 2

gated_data
Alias for field number 0

mask
Alias for field number 1

class FlowCal.gate.HighLowGateOutput(gated_data, mask)
Bases: tuple

Attributes

gated_data Alias for field number 0

mask Alias for field number 1

Methods

count(value, /) Return number of occurrences of value.
index(value[, start, stop]) Return first index of value.

gated_data
Alias for field number 0

mask
Alias for field number 1

class FlowCal.gate.StartEndGateOutput(gated_data, mask)
Bases: tuple

Attributes

gated_data Alias for field number 0

mask Alias for field number 1

Methods

count(value, /) Return number of occurrences of value.
index(value[, start, stop]) Return first index of value.

62 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

gated_data
Alias for field number 0

mask
Alias for field number 1

FlowCal.gate.density2d(data, channels=[0, 1], bins=1024, gate_fraction=0.65, xscale=’logicle’,
yscale=’logicle’, sigma=10.0, bin_mask=None, full_output=False)

Gate that preserves events in the region with highest density.

Gate out all events in data but those near regions of highest density for the two specified channels.

Parameters

data [FCSData or numpy array] NxD flow cytometry data where N is the number of events and
D is the number of parameters (aka channels).

channels [list of int, list of str, optional] Two channels on which to perform gating.

bins [int or array_like or [int, int] or [array, array], optional] Bins used for gating:

• If None, use data.hist_bins to obtain bin edges for both axes. None is not allowed
if data.hist_bins is not available.

• If int, bins specifies the number of bins to use for both axes. If data.hist_bins
exists, it will be used to generate a number bins of bins.

• If array_like, bins directly specifies the bin edges to use for both axes.

• If [int, int], each element of bins specifies the number of bins for each axis. If data.
hist_bins exists, use it to generate bins[0] and bins[1] bin edges, respectively.

• If [array, array], each element of bins directly specifies the bin edges to use for each axis.

• Any combination of the above, such as [int, array], [None, int], or [array, int]. In this case,
None indicates to generate bin edges using data.hist_bins as above, int indicates
the number of bins to generate, and an array directly indicates the bin edges. Note that
None is not allowed if data.hist_bins does not exist.

gate_fraction [float, optional] Fraction of events to retain after gating. Should be between 0
and 1, inclusive.

xscale [str, optional] Scale of the bins generated for the x axis, either linear, log, or
logicle. xscale is ignored in bins is an array or a list of arrays.

yscale [str, optional] Scale of the bins generated for the y axis, either linear, log, or
logicle. yscale is ignored in bins is an array or a list of arrays.

sigma [scalar or sequence of scalars, optional] Standard deviation for Gaussian kernel used by
scipy.ndimage.filters.gaussian_filter to smooth 2D histogram into a density.

bin_mask [2D numpy array of bool, optional] A 2D mask array that selects the 2D histogram
bins permitted by the gate. Corresponding bin edges should be specified via bins. If
bin_mask is specified, gate_fraction and sigma are ignored.

full_output [bool, optional] Flag specifying to return additional outputs. If true, the outputs are
given as a namedtuple.

Returns

gated_data [FCSData or numpy array] Gated flow cytometry data of the same format as data.

mask [numpy array of bool, only if full_output==True] Boolean gate mask used to gate
data such that gated_data = data[mask].

2.5. FlowCal (Python API) Reference 63

FlowCal Documentation, Release 1.3.0

contour [list of 2D numpy arrays, only if full_output==True] List of 2D numpy array(s)
of x-y coordinates tracing out the edge of the gated region. If bin_mask is specified, contour
is None.

bin_edges [2-tuple of numpy arrays, only if full_output==True] X-axis
and y-axis bin edges used by the np.histogram2d() command that bins events
(bin_edges=(x_edges,y_edges)).

bin_mask [2D numpy array of bool, only if full_output==True] A 2D mask array that
selects the 2D histogram bins permitted by the gate.

Raises

ValueError If more or less than 2 channels are specified.

ValueError If data has less than 2 dimensions or less than 2 events.

Exception If an unrecognized matplotlib Path code is encountered when attempting to generate
contours.

Notes

The algorithm for gating based on density works as follows:

1) Calculate 2D histogram of data in the specified channels.

2) Map each event from data to its histogram bin (implicitly gating out any events which exist outside speci-
fied bins).

3) Use gate_fraction to determine number of events to retain (rounded up). Only events which are not im-
plicitly gated out are considered.

4) Smooth 2D histogram using a 2D Gaussian filter.

5) Normalize smoothed histogram to obtain valid probability mass function (PMF).

6) Sort bins by probability.

7) Accumulate events (starting with events belonging to bin with highest probability (“densest”) and pro-
ceeding to events belonging to bins with lowest probability) until at least the desired number of events
is achieved. While the algorithm attempts to get as close to gate_fraction fraction of events as possible,
more events may be retained based on how many events fall into each histogram bin (since entire bins are
retained at a time, not individual events).

FlowCal.gate.ellipse(data, channels, center, a, b, theta=0, log=False, full_output=False)
Gate that preserves events inside an ellipse-shaped region.

Events are kept if they satisfy the following relationship:

(x/a)**2 + (y/b)**2 <= 1

where x and y are the coordinates of the event list, after substracting center and rotating by -theta. This is
mathematically equivalent to maintaining the events inside an ellipse with major axis a, minor axis b, center at
center, and tilted by theta.

Parameters

data [FCSData or numpy array] NxD flow cytometry data where N is the number of events and
D is the number of parameters (aka channels).

channels [list of int, list of str] Two channels on which to perform gating.

center, a, b, theta (optional) [float] Ellipse parameters. a is the major axis, b is the minor axis.

64 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

log [bool, optional] Flag specifying that log10 transformation should be applied to data before
gating.

full_output [bool, optional] Flag specifying to return additional outputs. If true, the outputs are
given as a namedtuple.

Returns

gated_data [FCSData or numpy array] Gated flow cytometry data of the same format as data.

mask [numpy array of bool, only if full_output==True] Boolean gate mask used to gate
data such that gated_data = data[mask].

contour [list of 2D numpy arrays, only if full_output==True] List of 2D numpy array(s)
of x-y coordinates tracing out the edge of the gated region.

Raises

ValueError If more or less than 2 channels are specified.

FlowCal.gate.high_low(data, channels=None, high=None, low=None, full_output=False)
Gate out high and low values across all specified channels.

Gate out events in data with values in the specified channels which are larger than or equal to high or less than
or equal to low.

Parameters

data [FCSData or numpy array] NxD flow cytometry data where N is the number of events and
D is the number of parameters (aka channels).

channels [int, str, list of int, list of str, optional] Channels on which to perform gating. If None,
use all channels.

high, low [int, float, optional] High and low threshold values. If None, high and low will be
taken from data.range if available, otherwise np.inf and -np.inf will be used.

full_output [bool, optional] Flag specifying to return additional outputs. If true, the outputs are
given as a namedtuple.

Returns

gated_data [FCSData or numpy array] Gated flow cytometry data of the same format as data.

mask [numpy array of bool, only if full_output==True] Boolean gate mask used to gate
data such that gated_data = data[mask].

FlowCal.gate.start_end(data, num_start=250, num_end=100, full_output=False)
Gate out first and last events.

Parameters

data [FCSData or numpy array] NxD flow cytometry data where N is the number of events and
D is the number of parameters (aka channels).

num_start, num_end [int, optional] Number of events to gate out from beginning and end of
data. Ignored if less than 0.

full_output [bool, optional] Flag specifying to return additional outputs. If true, the outputs are
given as a namedtuple.

Returns

gated_data [FCSData or numpy array] Gated flow cytometry data of the same format as data.

2.5. FlowCal (Python API) Reference 65

FlowCal Documentation, Release 1.3.0

mask [numpy array of bool, only if full_output==True] Boolean gate mask used to gate
data such that gated_data = data[mask].

Raises

ValueError If the number of events to discard is greater than the total number of events in data.

2.5.3 FlowCal.io module

Classes and utiliy functions for reading FCS files.

class FlowCal.io.FCSData
Bases: numpy.ndarray

Object containing events data from a flow cytometry sample.

An FCSData object is an NxD numpy array representing N cytometry events with D dimensions (channels)
extracted from the DATA segment of an FCS file. Indexing along the second axis can be performed by channel
name, which allows to easily select data from one or several channels. Otherwise, an FCSData object can be
treated as a numpy array for most purposes.

Information regarding the acquisition date, time, and information about the detector and the amplifiers are parsed
from the TEXT segment of the FCS file and exposed as attributes. The TEXT and ANALYSIS segments are
also exposed as attributes.

Parameters

infile [str or file-like] Reference to the associated FCS file.

Notes

FCSData uses FCSFile to parse an FCS file. All restrictions on the FCS file format and the Exceptions spcecified
for FCSFile also apply to FCSData.

Parsing of some non-standard files is supported [4].

References

[1], [2], [3], [4]

Examples

Load an FCS file into an FCSData object

>>> import FlowCal
>>> d = FlowCal.io.FCSData('test/Data001.fcs')

Check channel names

>>> print d.channels
('FSC-H', 'SSC-H', 'FL1-H', 'FL2-H', 'FL3-H', 'Time')

Check the size of FCSData

>>> print d.shape
(20949, 6)

66 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

Get the first 100 events

>>> d_sub = d[:100]
>>> print d_sub.shape
(100, 6)

Retain only fluorescence channels

>>> d_fl = d[:, ['FL1-H', 'FL2-H', 'FL3-H']]
>>> d_fl.channels
('FL1-H', 'FL2-H', 'FL3-H')

Channel slicing can also be done with integer indices

>>> d_fl_2 = d[:, [2, 3, 4]]
>>> print d_fl_2.channels
('FL1-H', 'FL2-H', 'FL3-H')
>>> import numpy as np
>>> np.all(d_fl == d_fl_2)
True

Attributes

infile [str or file-like] Reference to the associated FCS file.

text [dict] Dictionary of key-value entries from the TEXT segment.

analysis [dict] Dictionary of key-value entries from the ANALYSIS segment.

data_type [str] Type of data in the FCS file’s DATA segment.

time_step [float] Time step of the time channel.

acquisition_start_time [time or datetime] Acquisition start time, as a python time or
datetime object.

acquisition_end_time [time or datetime] Acquisition end time, as a python time or date-
time object.

acquisition_time [float] Acquisition time, in seconds.

channels [tuple] The name of the channels contained in FCSData.

Methods

amplification_type([channels]) Get the amplification type used for the specified
channel(s).

detector_voltage([channels]) Get the detector voltage used for the specified chan-
nel(s).

amplifier_gain([channels]) Get the amplifier gain used for the specified chan-
nel(s).

channel_labels([channels]) Get the label of the specified channel(s).
range([channels]) Get the range of the specified channel(s).
resolution([channels]) Get the resolution of the specified channel(s).
hist_bins([channels, nbins, scale]) Get histogram bin edges for the specified channel(s).

2.5. FlowCal (Python API) Reference 67

FlowCal Documentation, Release 1.3.0

acquisition_end_time
Acquisition end time, as a python time or datetime object.

acquisition_end_time is taken from the $ETIM keyword parameter in the TEXT segment of the FCS file.
If date information is also found, acquisition_end_time is a datetime object with the acquisition date. If
not, acquisition_end_time is a datetime.time object. If no end time is found in the FCS file, return None.

acquisition_start_time
Acquisition start time, as a python time or datetime object.

acquisition_start_time is taken from the $BTIM keyword parameter in the TEXT segment of the FCS file.
If date information is also found, acquisition_start_time is a datetime object with the acquisition date. If
not, acquisition_start_time is a datetime.time object. If no start time is found in the FCS file, return None.

acquisition_time
Acquisition time, in seconds.

The acquisition time is calculated using the ‘time’ channel by default (channel name is case independent).
If the ‘time’ channel is not available, the acquisition_start_time and acquisition_end_time, extracted from
the $BTIM and $ETIM keyword parameters will be used. If these are not found, None will be returned.

amplification_type(channels=None)
Get the amplification type used for the specified channel(s).

Each channel uses one of two amplification types: linear or logarithmic. This function returns, for each
channel, a tuple of two numbers, in which the first number indicates the number of decades covered by the
logarithmic amplifier, and the second indicates the linear value corresponding to the channel value zero. If
the first value is zero, the amplifier used is linear

The amplification type for channel “n” is extracted from the required $PnE parameter.

Parameters

channels [int, str, list of int, list of str] Channel(s) for which to get the amplification type. If
None, return a list with the amplification type of all channels, in the order of FCSData.
channels.

amplifier_gain(channels=None)
Get the amplifier gain used for the specified channel(s).

The amplifier gain for channel “n” is extracted from the $PnG parameter, if available.

Parameters

channels [int, str, list of int, list of str] Channel(s) for which to get the amplifier gain. If
None, return a list with the amplifier gain of all channels, in the order of FCSData.
channels.

analysis
Dictionary of key-value entries from the ANALYSIS segment.

channel_labels(channels=None)
Get the label of the specified channel(s).

The label for channel “n” is extracted from the $PnS parameter, if available.

Parameters

channels [int, str, list of int, list of str] Channel(s) for which to get the label. If None, return
a list with the label of all channels, in the order of FCSData.channels.

channels
The name of the channels contained in FCSData.

68 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

data_type
Type of data in the FCS file’s DATA segment.

data_type is ‘I’ if the data type is integer, ‘F’ for floating point, and ‘D’ for double.

detector_voltage(channels=None)
Get the detector voltage used for the specified channel(s).

The detector voltage for channel “n” is extracted from the $PnV parameter, if available.

Parameters

channels [int, str, list of int, list of str] Channel(s) for which to get the detector voltage. If
None, return a list with the detector voltage of all channels, in the order of FCSData.
channels.

hist_bins(channels=None, nbins=None, scale=’logicle’, **kwargs)
Get histogram bin edges for the specified channel(s).

These cover the range specified in FCSData.range(channels) with a number of bins nbins, with
linear, logarithmic, or logicle spacing.

Parameters

channels [int, str, list of int, list of str] Channel(s) for which to generate histogram bins. If
None, return a list with bins for all channels, in the order of FCSData.channels.

nbins [int or list of ints, optional] The number of bins to calculate. If channels specifies
a list of channels, nbins should be a list of integers. If nbins is None, use FCSData.
resolution(channel).

scale [str, optional] Scale in which to generate bins. Can be either linear, log, or
logicle.

kwargs [optional] Keyword arguments specific to the selected bin scaling. Linear and loga-
rithmic scaling do not use additional arguments. For logicle scaling, the following param-
eters can be provided:

T [float, optional] Maximum range of data. If not provided, use range[1].

M [float, optional] (Asymptotic) number of decades in scaled units. If not provided, cal-
culate from the following:

max(4.5, 4.5 / np.log10(262144) * np.log10(T))

W [float, optional] Width of linear range in scaled units. If not provided, calculate using
the following relationship:

W = (M - log10(T / abs(r))) / 2

Where r is the minimum negative event. If no negative events are present, W is set to
zero.

Notes

If range[0] is equal or less than zero and scale is log, the lower limit of the range is replaced with one.

Logicle scaling uses the LogicleTransform class in the plot module.

2.5. FlowCal (Python API) Reference 69

FlowCal Documentation, Release 1.3.0

References

Method Avoids Deceptive Effects of Logarithmic Scaling for Low Signals and Compensated Data,” Cy-
tometry Part A 69A:541-551, 2006, PMID 16604519.

[1]

infile
Reference to the associated FCS file.

range(channels=None)
Get the range of the specified channel(s).

The range is a two-element list specifying the smallest and largest values that an event in a channel should
have. Note that with floating point data, some events could have values outside the range in either direction
due to instrument compensation.

The range should be transformed along with the data when passed through a transformation function.

The range of channel “n” is extracted from the $PnR parameter as [0, $PnR - 1].

Parameters

channels [int, str, list of int, list of str] Channel(s) for which to get the range. If None, return
a list with the range of all channels, in the order of FCSData.channels.

resolution(channels=None)
Get the resolution of the specified channel(s).

The resolution specifies the number of different values that the events can take. The resolution is directly
obtained from the $PnR parameter.

Parameters

channels [int, str, list of int, list of str] Channel(s) for which to get the resolution. If None,
return a list with the resolution of all channels, in the order of FCSData.channels.

text
Dictionary of key-value entries from the TEXT segment.

text includes items from the TEXT segment and optional supplemental TEXT segment.

time_step
Time step of the time channel.

The time step is such that self[:,'Time']*time_step is in seconds. If no time step was found in
the FCS file, time_step is None.

class FlowCal.io.FCSFile(infile)
Bases: object

Class representing an FCS flow cytometry data file.

This class parses a binary FCS file and exposes a read-only view of the HEADER, TEXT, DATA, and ANALY-
SIS segments via Python-friendly data structures.

Parameters

infile [str or file-like] Reference to the associated FCS file.

Raises

NotImplementedError If $MODE is not ‘L’.

NotImplementedError If $DATATYPE is not ‘I’, ‘F’, or ‘D’.

70 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

NotImplementedError If $DATATYPE is ‘I’ but data is not byte aligned.

NotImplementedError If $BYTEORD is not big endian (‘4,3,2,1’ or ‘2,1’) or little endian
(‘1,2,3,4’, ‘1,2’).

ValueError If primary TEXT segment does not start with delimiter.

ValueError If TEXT-like segment has odd number of total extracted keys and values (indicating
an unpaired key or value).

ValueError If calculated DATA segment size (as determined from the number of events, the
number of parameters, and the number of bytes per data point) does not match size specified
in HEADER segment offsets.

Warning If more than one data set is detected in the same file.

Warning If the ANALYSIS segment was not successfully parsed.

Notes

The Flow Cytometry Standard (FCS) describes the de facto standard file format used by flow cytometry acqui-
sition and analysis software to record flow cytometry data to and load flow cytometry data from a file. The
standard dictates that each file must have the following segments: HEADER, TEXT, and DATA. The HEADER
segment contains version information and byte offset values of other segments, the TEXT segment contains
delimited key-value pairs containing acquisition information, and the DATA segment contains the recorded flow
cytometry data. The file may optionally have an ANALYSIS segment (structurally identicaly to the TEXT seg-
ment), a supplemental TEXT segment (according to more recent versions of the standard), and user-defined
OTHER segments.

This class supports a subset of the FCS3.1 standard which should be backwards compatible with FCS3.0 and
FCS2.0. The FCS file must be of the following form:

• $MODE = ‘L’ (list mode; histogram mode is not supported).

• $DATATYPE = ‘I’ (unsigned binary integers), ‘F’ (single precision floating point), or ‘D’ (double precision
floating point). ‘A’ (ASCII) is not supported.

• If $DATATYPE = ‘I’, $PnB % 8 = 0 (byte aligned) for all parameters (aka channels).

• $BYTEORD = ‘4,3,2,1’ (big endian) or ‘1,2,3,4’ (little endian).

• One data set per file.

For more information on the TEXT segment keywords (e.g. $MODE, $DATATYPE, etc.), see [1], [2], and [3].

References

[1], [2], [3]

Attributes

infile [str or file-like] Reference to the associated FCS file.

header [namedtuple] namedtuple containing version information and byte offset

text [dict] Dictionary of key-value entries from TEXT segment and optional supplemental
TEXT segment.

data [numpy array] Unwriteable NxD numpy array describing N cytometry events observing
D data dimensions.

analysis [dict] Dictionary of key-value entries from ANALYSIS segment.

2.5. FlowCal (Python API) Reference 71

FlowCal Documentation, Release 1.3.0

analysis
Dictionary of key-value entries from ANALYSIS segment.

data
Unwriteable NxD numpy array describing N cytometry events observing D data dimensions.

header
namedtuple containing version information and byte offset values of other FCS segments in the follow-
ing order:

• version : str

• text_begin : int

• text_end : int

• data_begin : int

• data_end : int

• analysis_begin : int

• analysis_end : int

infile
Reference to the associated FCS file.

text
Dictionary of key-value entries from TEXT segment and optional supplemental TEXT segment.

FlowCal.io.read_fcs_data_segment(buf, begin, end, datatype, num_events, param_bit_widths,
big_endian, param_ranges=None)

Read DATA segment of FCS file.

Parameters

buf [file-like object] Buffer containing data to interpret as DATA segment.

begin [int] Offset (in bytes) to first byte of DATA segment in buf.

end [int] Offset (in bytes) to last byte of DATA segment in buf.

datatype [{‘I’, ‘F’, ‘D’, ‘A’}] String specifying FCS file datatype (see $DATATYPE keyword
from FCS standards). Supported datatypes include ‘I’ (unsigned binary integer), ‘F’ (single
precision floating point), and ‘D’ (double precision floating point). ‘A’ (ASCII) is recog-
nized but not supported.

num_events [int] Total number of events (see $TOT keyword from FCS standards).

param_bit_widths [array-like] Array specifying parameter (aka channel) bit width for each pa-
rameter (see $PnB keywords from FCS standards). The length of param_bit_widths should
match the $PAR keyword value from the FCS standards (which indicates the total number
of parameters). If datatype is ‘I’, data must be byte aligned (i.e. all parameter bit widths
should be divisible by 8), and data are upcast to the nearest uint8, uint16, uint32, or uint64
data type. Bit widths larger than 64 bits are not supported.

big_endian [bool] Endianness of computer used to acquire data (see $BYTEORD keyword
from FCS standards). True implies big endian; False implies little endian.

param_ranges [array-like, optional] Array specifying parameter (aka channel) range for each
parameter (see $PnR keywords from FCS standards). Used to ensure erroneous values are
not read from DATA segment by applying a bit mask to remove unused bits. The length
of param_ranges should match the $PAR keyword value from the FCS standards (which
indicates the total number of parameters). If None, no masking is performed.

72 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

Returns

data [numpy array] NxD numpy array describing N cytometry events observing D data dimen-
sions.

Raises

ValueError If lengths of param_bit_widths and param_ranges don’t match.

ValueError If calculated DATA segment size (as determined from the number of events, the
number of parameters, and the number of bytes per data point) does not match size specified
by begin and end.

ValueError If param_bit_widths doesn’t agree with datatype for single precision or double
precision floating point (i.e. they should all be 32 or 64, respectively).

ValueError If datatype is unrecognized.

NotImplementedError If datatype is ‘A’.

NotImplementedError If datatype is ‘I’ but data is not byte aligned.

References

[1], [2], [3]

FlowCal.io.read_fcs_header_segment(buf, begin=0)
Read HEADER segment of FCS file.

Parameters

buf [file-like object] Buffer containing data to interpret as HEADER segment.

begin [int] Offset (in bytes) to first byte of HEADER segment in buf.

Returns

header [namedtuple] Version information and byte offset values of other FCS segments (see
FCS standards for more information) in the following order:

• version : str

• text_begin : int

• text_end : int

• data_begin : int

• data_end : int

• analysis_begin : int

• analysis_end : int

Notes

Blank ANALYSIS segment offsets are converted to zeros.

OTHER segment offsets are ignored (see [1], [2], and [3]).

2.5. FlowCal (Python API) Reference 73

FlowCal Documentation, Release 1.3.0

References

[1], [2], [3]

FlowCal.io.read_fcs_text_segment(buf, begin, end, delim=None, supplemental=False)
Read TEXT segment of FCS file.

Parameters

buf [file-like object] Buffer containing data to interpret as TEXT segment.

begin [int] Offset (in bytes) to first byte of TEXT segment in buf.

end [int] Offset (in bytes) to last byte of TEXT segment in buf.

delim [str, optional] 1-byte delimiter character which delimits key-value entries of TEXT seg-
ment. If None and supplemental==False, will extract delimiter as first byte of TEXT
segment.

supplemental [bool, optional] Flag specifying that segment is a supplemental TEXT segment
(see FCS3.0 and FCS3.1), in which case a delimiter (delim) must be specified.

Returns

text [dict] Dictionary of key-value entries extracted from TEXT segment.

delim [str or None] String containing delimiter or None if TEXT segment is empty.

Raises

ValueError If supplemental TEXT segment (supplemental==True) but delim is not
specified.

ValueError If primary TEXT segment (supplemental==False) does not start with de-
limiter.

ValueError If first keyword starts with delimiter (e.g. a primary TEXT segment with the fol-
lowing contents: ///k1/v1/k2/v2/).

ValueError If odd number of keys + values detected (indicating an unpaired key or value).

ValueError If TEXT segment is ill-formed (unable to be parsed according to the FCS stan-
dards).

Notes

ANALYSIS segments and supplemental TEXT segments are parsed the same way, so this function can also be
used to parse ANALYSIS segments.

This function does not automatically parse and accumulate additional TEXT-like segments (e.g. supplemental
TEXT segments or ANALYSIS segments) referenced in the originally specified TEXT segment.

References

[1], [2], [3]

2.5.4 FlowCal.mef module

Functions for transforming flow cytometer data to MEF units.

74 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

FlowCal.mef.clustering_gmm(data, n_clusters, tol=1e-07, min_covar=None, scale=’logicle’)
Find clusters in an array using a Gaussian Mixture Model.

Before clustering, data can be automatically rescaled as specified by the scale argument.

Parameters

data [FCSData or array_like] Data to cluster.

n_clusters [int] Number of clusters to find.

tol [float, optional] Tolerance for convergence. Directly passed to either GaussianMixture
or GMM, depending on scikit-learn’s version.

min_covar [float, optional] The minimum trace that the initial covariance matrix will have. If
scikit-learn’s version is older than 0.18, min_covar is also passed directly to GMM.

scale [str, optional] Rescaling applied to data before performing clustering. Can be either
linear (no rescaling), log, or logicle.

Returns

labels [array] Nx1 array with labels for each element in data, assigning data[i] to cluster
labels[i].

Notes

A Gaussian Mixture Model finds clusters by fitting a linear combination of n_clusters Gaussian probability
density functions (pdf) to data using Expectation Maximization (EM).

This method can be fairly sensitive to the initial parameter choice. To generate a reasonable set of initial
conditions, clustering_gmm first divides all points in data into n_clusters groups of the same size based on their
Euclidean distance to the minimum value. Then, for each group, the 50% samples farther away from the mean
are discarded. The mean and covariance are calculated from the remaining samples of each group, and used as
initial conditions for the GMM EM algorithm.

clustering_gmm internally uses a GaussianMixture object from the scikit-learn library (GMM if
scikit-learn’s version is lower than 0.18), with full covariance matrices for each cluster. For more in-
formation, consult scikit-learn’s documentation.

FlowCal.mef.fit_beads_autofluorescence(fl_rfi, fl_mef)
Fit a standard curve using a beads model with autofluorescence.

Parameters

fl_rfi [array] Fluorescence values of bead populations in units of Relative Fluorescence Intensity
(RFI).

fl_mef [array] Fluorescence values of bead populations in MEF units.

Returns

std_crv [function] Standard curve that transforms fluorescence values from RFI to MEF units.
This function has the signature y = std_crv(x), where x is some fluorescence value in
RFI and y is the same fluorescence expressed in MEF units.

beads_model [function] Fluorescence model of calibration beads. This function has the signa-
ture y = beads_model(x), where x is the fluorescence of some bead population in RFI
units and y is the same fluorescence expressed in MEF units, without autofluorescence.

beads_params [array] Fitted parameters of the bead fluorescence model: [m, b,
fl_mef_auto].

2.5. FlowCal (Python API) Reference 75

FlowCal Documentation, Release 1.3.0

beads_model_str [str] String representation of the beads model used.

beads_params_names [list of str] Names of the parameters in a list, in the same order as they
are given in beads_params.

Notes

The following model is used to describe bead fluorescence:

m*log(fl_rfi[i]) + b = log(fl_mef_auto + fl_mef[i])

where fl_rfi[i] is the fluorescence of bead subpopulation i in RFI units and fl_mef[i] is the cor-
responding fluorescence in MEF units. The model includes 3 parameters: m (slope), b (intercept), and
fl_mef_auto (bead autofluorescence). The last term is constrained to be greater or equal to zero.

The bead fluorescence model is fit in log space using nonlinear least squares regression. In our experience,
fitting in log space weights the residuals more evenly, whereas fitting in linear space vastly overvalues the
brighter beads.

A standard curve is constructed by solving for fl_mef. As cell samples may not have the same autofluores-
cence as beads, the bead autofluorescence term (fl_mef_auto) is omitted from the standard curve; the user
is expected to use an appropriate white cell sample to account for cellular autofluorescence if necessary. The
returned standard curve mapping fluorescence in RFI units to MEF units is thus of the following form:

fl_mef = exp(m*log(fl_rfi) + b)

This is equivalent to:

fl_mef = exp(b) * (fl_rfi**m)

This works for positive fl_rfi values, but it is undefined for fl_rfi < 0 and non-integer m (general case).

To extend this standard curve to negative values of fl_rfi, we define s(fl_rfi) to be equal to the stan-
dard curve above when fl_rfi >= 0. Next, we require this function to be odd, that is, s(fl_rfi) = -
s(-fl_rfi). This extends the domain to negative fl_rfi values and results in s(fl_rfi) < 0 for any
negative fl_rfi. Finally, we make fl_mef = s(fl_rfi) our new standard curve. In this way,:

s(fl_rfi) = exp(b) * (fl_rfi **m), fl_rfi >= 0
- exp(b) * ((-fl_rfi)**m), fl_rfi < 0

This satisfies the definition of an odd function. In addition, s(0) = 0, and s(fl_rfi) converges to zero
when fl_rfi -> 0 from both sides. Therefore, the function is continuous at fl_rfi = 0. The definition
of s(fl_rfi) can be expressed more conveniently as:

s(fl_rfi) = sign(fl_rfi) * exp(b) * (abs(fl_rfi)**m)

This is the equation implemented.

FlowCal.mef.get_transform_fxn(data_beads, mef_values, mef_channels, clustering_fxn=<function
clustering_gmm>, clustering_params={}, cluster-
ing_channels=None, statistic_fxn=<function median>,
statistic_params={}, selection_fxn=<function selec-
tion_std>, selection_params={}, fitting_fxn=<function
fit_beads_autofluorescence>, fitting_params={}, ver-
bose=False, plot=False, plot_dir=None, plot_filename=None,
full_output=False)

Get a transformation function to convert flow cytometry data to MEF.

76 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

Parameters

data_beads [FCSData object] Flow cytometry data describing calibration beads.

mef_values [sequence of sequences] Known MEF values for the calibration bead subpopula-
tions, for each channel specified in mef_channels. The innermost sequences must have the
same length (the same number of bead subpopulations must exist for each channel). Values
of np.nan or None specify that a subpopulation should be omitted from the fitting procedure.

mef_channels [int, or str, or list of int, or list of str] Channels for which to generate transfor-
mation functions.

verbose [bool, optional] Flag specifying whether to print information about step completion
and warnings.

plot [bool, optional] Flag specifying whether to produce diagnostic plots.

plot_dir [str, optional] Directory where to save diagnostics plots. Ignored if plot is False. If
plot==True and plot_dir is None, plot without saving.

plot_filename [str, optional] Name to use for plot files. If None, use str(data_beads).

full_output [bool, optional] Flag specifying whether to include intermediate results in the out-
put. If full_output is True, the function returns a MEFOutput namedtuple with fields as
described below. If full_output is False, the function only returns the calculated transforma-
tion function.

Returns

transform_fxn [function] Transformation function to convert flow cytometry data from RFI
units to MEF. This function has the following signature:

data_mef = transform_fxn(data_rfi, channels)

mef_channels [int, or str, or list, only if full_output==True] Channels on which the
transformation function has been generated. Directly copied from the mef_channels ar-
gument.

clustering [dict, only if full_output==True] Results of the clustering step. The structure
of this dictionary is:

clustering = {"labels": np.array}

A description of each "key": value is given below.

“labels” [array] Array of length N, where N is the number of events in data_beads. This
array contains labels indicating which subpopulation each event has been assigned to by
the clustering algorithm. Labels range from 0 to M - 1, where M is the number of MEF
values specified, and therefore the number of subpopulations identified by the clustering
algorithm.

statistic [dict, only if full_output==True] Results of the calculation of bead subpopula-
tions’ fluorescence. The structure of this dictionary is:

statistic = {"values": [np.array, ...]}

A description of each "key": value is given below.

“values” [list of arrays] Each array contains the representative fluorescence values of all
subpopulations, for a specific fluorescence channel from mef_channels. Therefore, each
array has a length equal to the number of subpopulations, and the outer list has as many
arrays as the number of channels in mef_channels.

2.5. FlowCal (Python API) Reference 77

FlowCal Documentation, Release 1.3.0

selection [dict, only if full_output==True] Results of the subpopulation selection step.
The structure of this dictionary is:

selection = {"rfi": [np.array, ...],
"mef": [np.array, ...]}

A description of each "key": value is given below.

“rfi” [list of arrays] Each array contains the fluorescence values of each selected subpop-
ulation in RFI units, for a specific fluorescence channel from mef_channels. The outer
list has as many arrays as the number of channels in mef_channels. Because the selection
step may discard subpopulations, each array has a length less than or equal to the total
number of subpopulations. Furthermore, different arrays in this list may not have the
same length. However, the length of each array is consistent with the corresponding array
in selection["mef"] (see below).

“mef” [list of arrays] Each array contains the fluorescence values of each selected subpop-
ulation in MEF units, for a specific fluorescence channel from mef_channels. The outer
list has as many arrays as the number of channels in mef_channels. Because the selection
step may discard subpopulations, each array has a length less than or equal to the total
number of subpopulations. Furthermore, different arrays in this list may not have the
same length. However, the length of each array is consistent with the corresponding array
in selection["rfi"] (see above).

fitting [dict, only if full_output==True] Results of the model fitting step. The structure
of this dictionary is:

selection = {"std_crv": [func, ...],
"beads_model": [func, ...],
"beads_params": [np.array, ...],
"beads_model_str": [str, ...],
"beads_params_names": [[], ...]}

A description of each "key": value is given below.

“std_crv” [list of functions] Functions encoding the fitted standard curves, for each channel
in mef_channels. Each element of this list is the std_crv output of the fitting function
(see required signature of the fitting_fxn optional parameter), after applying it to
the MEF and RFI fluorescence values of a specific channel from mef_channels .

“beads_model” [list of functions] Functions encoding the fluorescence model of the
calibration beads, for each channel in mef_channels. Each element of this list
is the beads_model output of the fitting function (see required signature of the
fitting_fxn optional parameter), after applying it to the MEF and RFI fluorescence
values of a specific channel from mef_channels .

“beads_params” [list of arrays] Fitted parameter values of the bead fluorescence model,
for each channel in mef_chanels. Each element of this list is the beads_params output
of the fitting function (see required signature of the fitting_fxn optional parame-
ter), after applying it to the MEF and RFI fluorescence values of a specific channel from
mef_channels.

“beads_model_str” [list of str] String representation of the bead models used, for each
channel in mef_channels. Each element of this list is the beads_model_str output
of the fitting function (see required signature of the fitting_fxn optional parame-
ter), after applying it to the MEF and RFI fluorescence values of a specific channel from
mef_channels .

78 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

“beads_params_names” [list of list] Names of the parameters given in beads_params, for
each channel in mef_channels. Each element of this list is the beads_params_names
output of the fitting function (see required signature of the fitting_fxn optional pa-
rameter), after applying it to the MEF and RFI fluorescence values of a specific channel
from mef_channels .

Other Parameters

clustering_fxn [function, optional] Function used for clustering, or identification of subpopu-
lations. Must have the following signature:

labels = clustering_fxn(data, n_clusters, **clustering_params)

where data is a NxD FCSData object or numpy array, n_clusters is the expected number of
bead subpopulations, and labels is a 1D numpy array of length N, assigning each event in
data to one subpopulation.

clustering_params [dict, optional] Additional keyword parameters to pass to clustering_fxn.

clustering_channels [list, optional] Channels used for clustering. If not specified, use
mef_channels. If more than three channels are specified and plot is True, only a 3D scatter
plot will be produced using the first three channels.

statistic_fxn [function, optional] Function used to calculate the representative fluorescence of
each subpopulation. Must have the following signature:

s = statistic_fxn(data, **statistic_params)

where data is a 1D FCSData object or numpy array, and s is a float. Statistical functions
from numpy, scipy, or FlowCal.stats are valid options.

statistic_params [dict, optional] Additional keyword parameters to pass to statistic_fxn.

selection_fxn [function, optional] Function to use for bead population selection. Must have the
following signature:

selected_mask = selection_fxn(data_list, **selection_params)

where data_list is a list of FCSData objects, each one containing the events of one pop-
ulation, and selected_mask is a boolean array indicating whether the population has been
selected (True) or discarded (False). If None, don’t use a population selection procedure.

selection_params [dict, optional] Additional keyword parameters to pass to selection_fxn.

fitting_fxn [function, optional] Function used to fit the beads fluorescence model and obtain a
standard curve. Must have the following signature:

std_crv, beads_model, beads_params, \
beads_model_str, beads_params_names = fitting_fxn(

fl_rfi, fl_mef, **fitting_params)

where std_crv is a function implementing the standard curve, beads_model is a function
implementing the beads fluorescence model, beads_params is an array containing the fitted
parameters of the beads model, beads_model_str is a string representation of the beads
model used, beads_params_names is a list with the parameter names in the same order as
they are given in beads_params, and fl_rfi and fl_mef are the fluorescence values of the
beads in RFI units and MEF units, respectively. Note that the standard curve and the fitted
beads model are not necessarily the same.

fitting_params [dict, optional] Additional keyword parameters to pass to fitting_fxn.

2.5. FlowCal (Python API) Reference 79

FlowCal Documentation, Release 1.3.0

Notes

The steps involved in generating the MEF transformation function are:

1. The individual subpopulations of beads are first identified using a clustering method of choice. Clustering
is performed in all specified channels simultaneously.

2. The fluorescence of each subpopulation is calculated, for each channel in mef_channels.

3. Some subpopulations are then discarded if they are close to either the minimum or the maximum channel
range limits. In addition, if the MEF value of some subpopulation is unknown (represented as a np.nan
in mef_values), the whole subpopulation is also discarded.

4. The measured fluorescence of each subpopulation is compared with the known MEF values in mef_values,
and a standard curve function is generated using the appropriate MEF model.

At the end, a transformation function is generated using the calculated standard curves, mef_channels, and
FlowCal.transform.to_mef().

Note that applying the resulting transformation function to other flow cytometry samples only yields correct
results if they have been taken at the same settings as the calibration beads, for all channels in mef_channels.

Examples

Here is a simple application of this function:

>>> transform_fxn = FlowCal.mef.get_transform_fxn(
... beads_data,
... mef_channels=['FL1', 'FL3'],
... mef_values=[np.array([0, 646, 1704, 4827,
... 15991, 47609, 135896, 273006],
... np.array([0, 1614, 4035, 12025,
... 31896, 95682, 353225, 1077421]],
...)
>>> sample_mef = transform_fxn(data=sample_rfi,
... channels=['FL1', 'FL3'])

Here, we first generate transform_fxn from flow cytometry data contained in FCSData object
beads_data, for channels FL1 and FL3, using provided MEF values for each one of these channels. In
the next line, we use the resulting transformation function to transform cell sample data in RFI to MEF.

More data about intermediate steps can be obtained with the option full_output=True:

>>> get_transform_output = FlowCal.mef.get_transform_fxn(
... beads_data,
... mef_channels=['FL1', 'FL3'],
... mef_values=[np.array([0, 646, 1704, 4827,
... 15991, 47609, 135896, 273006],
... np.array([0, 1614, 4035, 12025,
... 31896, 95682, 353225, 1077421]],
... full_output=True)

In this case, the output get_transform_output will be a MEFOutput namedtuple similar to the fol-
lowing:

FlowCal.mef.MEFOutput(
transform_fxn=<functools.partial object>,
mef_channels=['FL1', 'FL3'],

(continues on next page)

80 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

(continued from previous page)

clustering={
'labels' : [7, 2, 2, ... 4, 3, 5]

},
statistic={

'values' : [np.array([101, 150, 231, 433,
1241, 3106, 7774, 9306]),

np.array([3, 30, 71, 204,
704, 2054, 6732, 9912])]

},
selection={

'rfi' : [np.array([101, 150, 231, 433,
1241, 3106, 7774]),

np.array([30, 71, 204, 704,
2054, 6732])]

'mef' : [np.array([0, 646, 1704, 4827,
15991, 47609, 135896]),

np.array([1614, 4035, 12025, 31896,
95682, 353225])]

},
fitting={

'std_crv' : [<function <lambda>>,
<function <lambda>>]

'beads_model' : [<function <lambda>>,
<function <lambda>>]

'beads_params' : [np.array([1.09e0, 2.02e0, 1.15e3]),
np.array([9.66e-1, 4.17e0, 6.63e1])]

'beads_model_str' : ['m*log(fl_rfi) + b = log(fl_mef_auto + fl_mef)',
'm*log(fl_rfi) + b = log(fl_mef_auto + fl_mef)']

'beads_params_names' : [['m', 'b', 'fl_mef_auto],
['m', 'b', 'fl_mef_auto]]

},
)

FlowCal.mef.plot_standard_curve(fl_rfi, fl_mef, beads_model, std_crv, xscale=’linear’,
yscale=’linear’, xlim=None, ylim=(1.0, 100000000.0))

Plot a standard curve with fluorescence of calibration beads.

Parameters

fl_rfi [array_like] Fluorescence of the calibration beads’ subpopulations, in RFI units.

fl_mef [array_like] Fluorescence of the calibration beads’ subpopulations, in MEF units.

beads_model [function] Fluorescence model of the calibration beads.

std_crv [function] The standard curve, mapping relative fluorescence (RFI) units to MEF units.

Other Parameters

xscale [str, optional] Scale of the x axis, either linear or log.

yscale [str, optional] Scale of the y axis, either linear or log.

xlim [tuple, optional] Limits for the x axis.

ylim [tuple, optional] Limits for the y axis.

FlowCal.mef.selection_std(populations, low=None, high=None, n_std_low=2.5, n_std_high=2.5,
scale=’logicle’)

Select populations if most of their elements are between two values.

2.5. FlowCal (Python API) Reference 81

FlowCal Documentation, Release 1.3.0

This function selects populations from populations if their means are more than n_std_low standard deviations
greater than low and n_std_high standard deviations lower than high.

Optionally, all elements in populations can be rescaled as specified by the scale argument before calculating
means and standard deviations.

Parameters

populations [list of 1D arrays or 1-channel FCSData objects] Populations to select or discard.

low, high [int or float] Low and high thresholds. Required if the elements in populations are
numpy arrays. If not specified, and the elements in populations are FCSData objects, use
1.5% and 98.5% of the range in populations[0].range.

n_std_low, n_std_high [float, optional] Number of standard deviations from low and high, re-
spectively, that a population’s mean has to be closer than to be discarded.

scale [str, optional] Rescaling applied to populations before calculating means and standard
deviations. Can be either linear (no rescaling), log, or logicle.

Returns

selected_mask [boolean array] Flags indicating whether a population has been selected.

2.5.5 FlowCal.plot module

Functions for visualizing flow cytometry data.

Functions in this module are divided in two categories:

• Simple Plot Functions, with a signature similar to the following:

plot_fxn(data_list, channels, parameters, savefig)

where data_list is a NxD FCSData object or numpy array, or a list of such, channels specifies the channel or
channels to use for the plot, parameters are function-specific parameters, and savefig indicates whether to save
the figure to an image file. Note that hist1d, violin, and violin_dose_response use channel instead of channels,
since they use a single channel, and density2d only accepts one FCSData object or numpy array as its first
argument.

Simple Plot Functions do not create a new figure or axis, so they can be called directly to plot in a previously
created axis if desired. If savefig is not specified, the plot is maintained in the current axis when the function
returns. This allows for further modifications to the axis by direct calls to, for example, plt.xlabel, plt.
title, etc. However, if savefig is specified, the figure is closed after being saved. In this case, the function
may include keyword parameters xlabel, ylabel, xlim, ylim, title, and others related to legend or color, which
allow the user to modify the axis prior to saving.

The following functions in this module are Simple Plot Functions:

– hist1d

– violin

– violin_dose_response

– density2d

– scatter2d

– scatter3d

82 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

• Complex Plot Functions, which create a figure with several axes, and use one or more Simple Plot functions to
populate the axes. They always include a savefig argument, which indicates whether to save the figure to a file.
If savefig is not specified, the plot is maintained in the newly created figure when the function returns. However,
if savefig is specified, the figure is closed after being saved.

The following functions in this module are Complex Plot Functions:

– density_and_hist

– scatter3d_and_projections

FlowCal.plot.density2d(data, channels=[0, 1], bins=1024, mode=’mesh’, normed=False,
smooth=True, sigma=10.0, colorbar=False, xscale=’logicle’,
yscale=’logicle’, xlabel=None, ylabel=None, xlim=None, ylim=None,
title=None, savefig=None, **kwargs)

Plot a 2D density plot from two channels of a flow cytometry data set.

density2d has two plotting modes which are selected using the mode argument. With mode=='mesh', this
function plots the data as a true 2D histogram, in which a plane is divided into bins and the color of each bin
is directly related to the number of elements therein. With mode=='scatter', this function also calculates
a 2D histogram, but it plots a 2D scatter plot in which each dot corresponds to a bin, colored according to the
number elements therein. The most important difference is that the scatter mode does not color regions
corresponding to empty bins. This allows for easy identification of regions with low number of events. For both
modes, the calculated histogram can be smoothed using a Gaussian kernel by specifying smooth=True. The
width of the kernel is, in this case, given by sigma.

Parameters

data [FCSData or numpy array] Flow cytometry data to plot.

channels [list of int, list of str, optional] Two channels to use for the plot.

bins [int or array_like or [int, int] or [array, array], optional] Bins used for plotting:

• If None, use data.hist_bins to obtain bin edges for both axes. None is not allowed
if data.hist_bins is not available.

• If int, bins specifies the number of bins to use for both axes. If data.hist_bins
exists, it will be used to generate a number bins of bins.

• If array_like, bins directly specifies the bin edges to use for both axes.

• If [int, int], each element of bins specifies the number of bins for each axis. If data.
hist_bins exists, use it to generate bins[0] and bins[1] bin edges, respectively.

• If [array, array], each element of bins directly specifies the bin edges to use for each axis.

• Any combination of the above, such as [int, array], [None, int], or [array, int]. In this case,
None indicates to generate bin edges using data.hist_bins as above, int indicates
the number of bins to generate, and an array directly indicates the bin edges. Note that
None is not allowed if data.hist_bins does not exist.

mode [{‘mesh’, ‘scatter’}, str, optional] Plotting mode. ‘mesh’ produces a 2D-histogram
whereas ‘scatter’ produces a scatterplot colored by histogram bin value.

normed [bool, optional] Flag indicating whether to plot a normed histogram (probability mass
function instead of a counts-based histogram).

smooth [bool, optional] Flag indicating whether to apply Gaussian smoothing to the histogram.

colorbar [bool, optional] Flag indicating whether to add a colorbar to the plot.

savefig [str, optional] The name of the file to save the figure to. If None, do not save.

Other Parameters

2.5. FlowCal (Python API) Reference 83

FlowCal Documentation, Release 1.3.0

sigma [float, optional] The sigma parameter for the Gaussian kernel to use when smoothing.

xscale [str, optional] Scale of the x axis, either linear, log, or logicle.

yscale [str, optional] Scale of the y axis, either linear, log, or logicle

xlabel [str, optional] Label to use on the x axis. If None, attempts to extract channel name from
data.

ylabel [str, optional] Label to use on the y axis. If None, attempts to extract channel name from
data.

xlim [tuple, optional] Limits for the x axis. If not specified and bins exists, use the lowest and
highest values of bins.

ylim [tuple, optional] Limits for the y axis. If not specified and bins exists, use the lowest and
highest values of bins.

title [str, optional] Plot title.

kwargs [dict, optional] Additional parameters passed directly to the underlying matplotlib func-
tions: plt.scatter if mode==scatter, and plt.pcolormesh if mode==mesh.

FlowCal.plot.density_and_hist(data, gated_data=None, gate_contour=None, den-
sity_channels=None, density_params={}, hist_channels=None,
hist_params={}, figsize=None, savefig=None)

Make a combined density/histogram plot of a FCSData object.

This function calls hist1d and density2d to plot a density diagram and a number of histograms in different
subplots of the same plot using one single function call. Setting density_channels to None will not produce
a density diagram, and setting hist_channels to None will not produce any histograms. Setting both to None
will raise an error. Additional parameters can be provided to density2d and hist1d by using density_params and
hist_params.

If gated_data is provided, this function will plot the histograms corresponding to gated_data on top of data’s
histograms, with some transparency on data. In addition, a legend will be added with the labels ‘Ungated’ and
‘Gated’. If gate_contour is provided and it contains a valid list of 2D curves, these will be plotted on top of the
density plot.

Parameters

data [FCSData object] Flow cytometry data object to plot.

gated_data [FCSData object, optional] Flow cytometry data object. If gated_data is speci-
fied, the histograms of data are plotted with an alpha value of 0.5, and the histograms of
gated_data are plotted on top of those with an alpha value of 1.0.

gate_contour [list, optional] List of Nx2 curves, representing a gate contour to be plotted in the
density diagram.

density_channels [list] Two channels to use for the density plot. If density_channels is None,
do not plot a density plot.

density_params [dict, optional] Parameters to pass to density2d.

hist_channels [list] Channels to use for each histogram. If hist_channels is None, do not plot
histograms.

hist_params [list, optional] List of dictionaries with the parameters to pass to each call of
hist1d.

savefig [str, optional] The name of the file to save the figure to. If None, do not save.

Other Parameters

84 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

figsize [tuple, optional] Figure size. If None, calculate a default based on the number of sub-
plots.

Raises

ValueError If both density_channels and hist_channels are None.

FlowCal.plot.hist1d(data_list, channel=0, xscale=’logicle’, bins=256, histtype=’stepfilled’,
normed_area=False, normed_height=False, xlabel=None, ylabel=None,
xlim=None, ylim=None, title=None, legend=False, legend_loc=’best’,
legend_fontsize=’medium’, legend_labels=None, facecolor=None, edge-
color=None, savefig=None, **kwargs)

Plot one 1D histogram from one or more flow cytometry data sets.

Parameters

data_list [FCSData or numpy array or list of FCSData or numpy array] Flow cytometry data to
plot.

channel [int or str, optional] Channel from where to take the events to plot. If ndim == 1,
channel is ignored. String channel specifications are only supported for data types which
support string-based indexing (e.g. FCSData).

xscale [str, optional] Scale of the x axis, either linear, log, or logicle.

bins [int or array_like, optional] If bins is an integer, it specifies the number of bins to use. If
bins is an array, it specifies the bin edges to use. If bins is None or an integer, hist1d will
attempt to use data.hist_bins to generate the bins automatically.

histtype [{‘bar’, ‘barstacked’, ‘step’, ‘stepfilled’}, str, optional] Histogram type. Directly
passed to plt.hist.

normed_area [bool, optional] Flag indicating whether to normalize the histogram such that the
area under the curve is equal to one. The resulting plot is equivalent to a probability density
function.

normed_height [bool, optional] Flag indicating whether to normalize the histogram such that
the sum of all bins’ heights is equal to one. The resulting plot is equivalent to a probability
mass function. normed_height is ignored if normed_area is True.

savefig [str, optional] The name of the file to save the figure to. If None, do not save.

Other Parameters

xlabel [str, optional] Label to use on the x axis. If None, attempts to extract channel name from
last data object.

ylabel [str, optional] Label to use on the y axis. If None and normed_area==True, use
‘Probability’. If None, normed_area==False, and normed_height==True,
use ‘Counts (normalized)’. If None, normed_area==False, and
normed_height==False, use ‘Counts’.

xlim [tuple, optional] Limits for the x axis. If not specified and bins exists, use the lowest and
highest values of bins.

ylim [tuple, optional] Limits for the y axis.

title [str, optional] Plot title.

legend [bool, optional] Flag specifying whether to include a legend. If legend is True, the
legend labels will be taken from legend_labels if present, else they will be taken from
str(data_list[i]).

legend_loc [str, optional] Location of the legend.

2.5. FlowCal (Python API) Reference 85

FlowCal Documentation, Release 1.3.0

legend_fontsize [int or str, optional] Font size for the legend.

legend_labels [list, optional] Labels to use for the legend.

facecolor [matplotlib color or list of matplotlib colors, optional] The histogram’s facecolor. It
can be a list with the same length as data_list. If edgecolor and facecolor are not specified,
and histtype == 'stepfilled', the facecolor will be taken from the module-level
variable cmap_default.

edgecolor [matplotlib color or list of matplotlib colors, optional] The histogram’s edgecolor. It
can be a list with the same length as data_list. If edgecolor and facecolor are not specified,
and histtype == 'step', the edgecolor will be taken from the module-level variable
cmap_default.

kwargs [dict, optional] Additional parameters passed directly to matploblib’s hist.

Notes

hist1d calls matplotlib’s hist function for each object in data_list. hist_type, the type of histogram to draw, is
directly passed to plt.hist. Additional keyword arguments provided to hist1d are passed directly to plt.
hist.

If normed_area is set to True, hist1d calls plt.hist with density (or normed, if matplotlib’s version is
older than 2.2.0) set to True. There is a bug in matplotlib 2.1.0 that produces an incorrect plot in these conditions.
We do not recommend using matplotlib 2.1.0 if normed_area is expected to be used.

FlowCal.plot.scatter2d(data_list, channels=[0, 1], xscale=’logicle’, yscale=’logicle’, xlabel=None,
ylabel=None, xlim=None, ylim=None, title=None, color=None, save-
fig=None, **kwargs)

Plot 2D scatter plot from one or more FCSData objects or numpy arrays.

Parameters

data_list [array or FCSData or list of array or list of FCSData] Flow cytometry data to plot.

channels [list of int, list of str] Two channels to use for the plot.

savefig [str, optional] The name of the file to save the figure to. If None, do not save.

Other Parameters

xscale [str, optional] Scale of the x axis, either linear, log, or logicle.

yscale [str, optional] Scale of the y axis, either linear, log, or logicle.

xlabel [str, optional] Label to use on the x axis. If None, attempts to extract channel name from
last data object.

ylabel [str, optional] Label to use on the y axis. If None, attempts to extract channel name from
last data object.

xlim [tuple, optional] Limits for the x axis. If None, attempts to extract limits from the range of
the last data object.

ylim [tuple, optional] Limits for the y axis. If None, attempts to extract limits from the range of
the last data object.

title [str, optional] Plot title.

color [matplotlib color or list of matplotlib colors, optional] Color for the scatter plot. It can be
a list with the same length as data_list. If color is not specified, elements from data_list are
plotted with colors taken from the module-level variable cmap_default.

86 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

kwargs [dict, optional] Additional parameters passed directly to matploblib’s scatter.

Notes

scatter2d calls matplotlib’s scatter function for each object in data_list. Additional keyword arguments
provided to scatter2d are passed directly to plt.scatter.

FlowCal.plot.scatter3d(data_list, channels=[0, 1, 2], xscale=’logicle’, yscale=’logicle’, zs-
cale=’logicle’, xlabel=None, ylabel=None, zlabel=None, xlim=None,
ylim=None, zlim=None, title=None, color=None, savefig=None, **kwargs)

Plot 3D scatter plot from one or more FCSData objects or numpy arrays.

Parameters

data_list [array or FCSData or list of array or list of FCSData] Flow cytometry data to plot.

channels [list of int, list of str] Three channels to use for the plot.

savefig [str, optional] The name of the file to save the figure to. If None, do not save.

Other Parameters

xscale [str, optional] Scale of the x axis, either linear, log, or logicle.

yscale [str, optional] Scale of the y axis, either linear, log, or logicle.

zscale [str, optional] Scale of the z axis, either linear, log, or logicle.

xlabel [str, optional] Label to use on the x axis. If None, attempts to extract channel name from
last data object.

ylabel [str, optional] Label to use on the y axis. If None, attempts to extract channel name from
last data object.

zlabel [str, optional] Label to use on the z axis. If None, attempts to extract channel name from
last data object.

xlim [tuple, optional] Limits for the x axis. If None, attempts to extract limits from the range of
the last data object.

ylim [tuple, optional] Limits for the y axis. If None, attempts to extract limits from the range of
the last data object.

zlim [tuple, optional] Limits for the z axis. If None, attempts to extract limits from the range of
the last data object.

title [str, optional] Plot title.

color [matplotlib color or list of matplotlib colors, optional] Color for the scatter plot. It can be
a list with the same length as data_list. If color is not specified, elements from data_list are
plotted with colors taken from the module-level variable cmap_default.

kwargs [dict, optional] Additional parameters passed directly to matploblib’s scatter.

Notes

scatter3d uses matplotlib’s scatter with a 3D projection. Additional keyword arguments provided to scat-
ter3d are passed directly to scatter.

2.5. FlowCal (Python API) Reference 87

FlowCal Documentation, Release 1.3.0

FlowCal.plot.scatter3d_and_projections(data_list, channels=[0, 1, 2], xscale=’logicle’,
yscale=’logicle’, zscale=’logicle’, xlabel=None,
ylabel=None, zlabel=None, xlim=None, ylim=None,
zlim=None, color=None, figsize=None, save-
fig=None, **kwargs)

Plot a 3D scatter plot and 2D projections from FCSData objects.

scatter3d_and_projections creates a 3D scatter plot and three 2D projected scatter plots in four different axes
for each FCSData object in data_list, in the same figure.

Parameters

data_list [FCSData object, or list of FCSData objects] Flow cytometry data to plot.

channels [list of int, list of str] Three channels to use for the plot.

savefig [str, optional] The name of the file to save the figure to. If None, do not save.

Other Parameters

xscale [str, optional] Scale of the x axis, either linear, log, or logicle.

yscale [str, optional] Scale of the y axis, either linear, log, or logicle.

zscale [str, optional] Scale of the z axis, either linear, log, or logicle.

xlabel [str, optional] Label to use on the x axis. If None, attempts to extract channel name from
last data object.

ylabel [str, optional] Label to use on the y axis. If None, attempts to extract channel name from
last data object.

zlabel [str, optional] Label to use on the z axis. If None, attempts to extract channel name from
last data object.

xlim [tuple, optional] Limits for the x axis. If None, attempts to extract limits from the range of
the last data object.

ylim [tuple, optional] Limits for the y axis. If None, attempts to extract limits from the range of
the last data object.

zlim [tuple, optional] Limits for the z axis. If None, attempts to extract limits from the range of
the last data object.

color [matplotlib color or list of matplotlib colors, optional] Color for the scatter plot. It can be
a list with the same length as data_list. If color is not specified, elements from data_list are
plotted with colors taken from the module-level variable cmap_default.

figsize [tuple, optional] Figure size. If None, use matplotlib’s default.

kwargs [dict, optional] Additional parameters passed directly to matploblib’s scatter.

Notes

scatter3d_and_projections uses matplotlib’s scatter, with the 3D scatter plot using a 3D projection. Addi-
tional keyword arguments provided to scatter3d_and_projections are passed directly to scatter.

88 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

FlowCal.plot.violin(data, channel=None, positions=None, violin_width=None,
xscale=None, yscale=None, xlim=None, ylim=None,
vert=True, num_bins=100, bin_edges=None, density=False,
upper_trim_fraction=0.01, lower_trim_fraction=0.01, vi-
olin_width_to_span_fraction=0.1, violin_kwargs=None,
draw_summary_stat=True, draw_summary_stat_fxn=<function mean>,
draw_summary_stat_kwargs=None, log_zero_tick_label=None,
draw_log_zero_divider=True, draw_log_zero_divider_kwargs=None, xla-
bel=None, ylabel=None, title=None, savefig=None)

Plot violin plot.

Illustrate the relative frequency of members of different populations using normalized, symmetrical histograms
(“violins”) centered at corresponding positions. Wider regions of violins indicate regions that occur with greater
frequency.

Parameters

data [1D or ND array or list of 1D or ND arrays] A population or collection of populations for
which to plot violins. If ND arrays are used (e.g., FCSData), channel must be specified.

channel [int or str, optional] Channel from data to plot. If specified, data are assumed to be ND
arrays. String channel specifications are only supported for data types that support string-
based indexing (e.g., FCSData).

positions [scalar or array, optional] Positions at which to center violins.

violin_width [scalar, optional] Width of violin. If the scale of the position axis (xscale if vert is
True, yscale if vert is False) is log, the units are decades. If not specified, violin_width is
calculated from the limits of the position axis (xlim if vert is True, ylim if vert is False) and
violin_width_to_span_fraction. If only one violin is specified in data, violin_width = 0.5.

savefig [str, optional] The name of the file to save the figure to. If None, do not save.

Other Parameters

xscale [{‘linear’, ‘log’, ‘logicle’}, optional] Scale of the x-axis. logicle is only supported
for horizontal violin plots (i.e., when vert is False). Default is linear if vert is True,
logicle if vert is False.

yscale [{‘logicle’, ‘linear’, ‘log’}, optional] Scale of the y-axis. If vert is False, logicle is
not supported. Default is logicle if vert is True, linear if vert is False.

xlim, ylim [tuple, optional] Limits of the x-axis and y-axis views. If not specified, the view of
the position axis (xlim if vert is True, ylim if vert if False) is calculated to pad the extreme
violins with 0.5 * violin_width. If violin_width is also not specified, violin_width is calcu-
lated to satisfy the 0.5 * violin_width padding and violin_width_to_span_fraction. If not
specified, the view of the data axis (ylim if vert is True, xlim if vert is False) is calculated to
span all violins (before they are aesthetically trimmed).

vert [bool, optional] Flag specifying to illustrate a vertical violin plot. If False, a horizontal
violin plot is illustrated.

num_bins [int, optional] Number of bins to bin population members. Ignored if bin_edges is
specified.

bin_edges [array or list of arrays, optional] Bin edges used to bin population members. Bin
edges can be specified for individual violins using a list of arrays of the same length as data.
If not specified, bin_edges is calculated to span the data axis (ylim if vert is True, xlim if
vert is False) logicly, linearly, or logarithmically (based on the scale of the data axis; yscale
if vert is True, xscale if vert is False) using num_bins.

2.5. FlowCal (Python API) Reference 89

FlowCal Documentation, Release 1.3.0

density [bool, optional] density parameter passed to the np.histogram() command that
bins population members for each violin. If True, violin width represents relative frequency
density instead of relative frequency (i.e., bins are normalized by their width).

upper_trim_fraction [float or list of floats, optional] Fraction of members to trim (discard)
from the top of the violin (e.g., for aesthetic purposes). Upper trim fractions can be specified
for individual violins using a list of floats of the same length as data.

lower_trim_fraction [float or list of floats, optional] Fraction of members to trim (discard)
from the bottom of the violin (e.g., for aesthetic purposes). Lower trim fractions can be
specified for individual violins using a list of floats of the same length as data.

violin_width_to_span_fraction [float, optional] Fraction of the position axis span (xlim if vert
is True, ylim if vert is False) that a violin should span. Ignored if violin_width is specified.

violin_kwargs [dict or list of dicts, optional] Keyword arguments passed to the plt.
fill_between() command that illustrates each violin. Keyword arguments can be
specified for individual violins using a list of dicts of the same length as data. Default =
{‘facecolor’:’gray’, ‘edgecolor’:’black’}.

draw_summary_stat [bool, optional] Flag specifying to illustrate a summary statistic for each
violin.

draw_summary_stat_fxn [function, optional] Function used to calculate the summary statistic
for each violin. Summary statistics are calculated prior to aesthetic trimming.

draw_summary_stat_kwargs [dict or list of dicts, optional] Keyword arguments passed to the
plt.plot() command that illustrates each violin’s summary statistic. Keyword argu-
ments can be specified for individual violins using a list of dicts of the same length as data.
Default = {‘color’:’black’}.

log_zero_tick_label [str, optional] Label of position=0 violin tick if the position axis scale
(xscale if vert is True, yscale if vert is False) is log. Default is generated by the default log
tick formatter (matplotlib.ticker.LogFormatterSciNotation) with x=0.

draw_log_zero_divider [bool, optional] Flag specifying to illustrate a line separating the posi-
tion=0 violin from the other violins if the position axis scale (xscale if vert is True, yscale if
vert is False) is log.

draw_log_zero_divider_kwargs [dict, optional] Keyword arguments passed to the plt.
axvline() or plt.axhline() command that illustrates the position=0 violin divider.
Default = {‘color’:’gray’,’linestyle’:’:’}.

xlabel, ylabel [str, optional] Labels to use on the x and y axes. If a label for the data axis is
not specified (ylabel if vert is True, xlabel if vert is False), the channel name will be used if
possible (extracted from the last data object).

title [str, optional] Plot title.

90 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

FlowCal.plot.violin_dose_response(data, channel=None, positions=None, min_data=None,
max_data=None, violin_width=None, model_fxn=None,
xscale=’linear’, yscale=’logicle’, xlim=None,
ylim=None, violin_width_to_span_fraction=0.1,
num_bins=100, bin_edges=None, density=False, up-
per_trim_fraction=0.01, lower_trim_fraction=0.01,
violin_kwargs=None, draw_summary_stat=True,
draw_summary_stat_fxn=<function mean>,
draw_summary_stat_kwargs=None,
log_zero_tick_label=None, min_bin_edges=None,
min_upper_trim_fraction=0.01,
min_lower_trim_fraction=0.01, min_violin_kwargs=None,
min_draw_summary_stat_kwargs=None,
draw_min_line=True, draw_min_line_kwargs=None,
min_tick_label=’Min’, max_bin_edges=None,
max_upper_trim_fraction=0.01,
max_lower_trim_fraction=0.01, max_violin_kwargs=None,
max_draw_summary_stat_kwargs=None,
draw_max_line=True, draw_max_line_kwargs=None,
max_tick_label=’Max’, draw_model_kwargs=None,
draw_log_zero_divider=True,
draw_log_zero_divider_kwargs=None,
draw_minmax_divider=True,
draw_minmax_divider_kwargs=None, xlabel=None,
ylabel=None, title=None, savefig=None)

Plot violin plot with min data, max data, and mathematical model.

Plot a violin plot (see FlowCal.plot.violin() description) with vertical violins and separately illustrate
a min violin, a max violin, and a mathematical model. Useful for illustrating “dose response” or “transfer” func-
tions, which benefit from the added context of minimum and maximum bounds and which are often described
by mathematical models. Min and max violins are illustrated to the left of the plot, and the mathematical model
is correctly illustrated even when a position=0 violin is illustrated separately when xscale is log.

Parameters

data [1D or ND array or list of 1D or ND arrays] A population or collection of populations for
which to plot violins. If ND arrays are used (e.g., FCSData), channel must be specified.

channel [int or str, optional] Channel from data to plot. If specified, data are assumed to be ND
arrays. String channel specifications are only supported for data types that support string-
based indexing (e.g., FCSData).

positions [scalar or array, optional] Positions at which to center violins.

min_data [1D or ND array, optional] A population representing a minimum control. This violin
is separately illustrated at the left of the plot.

max_data [1D or ND array, optional] A population representing a maximum control. This
violin is separately illustrated at the left of the plot.

violin_width [scalar, optional] Width of violin. If xscale is log, the units are decades. If not
specified, violin_width is calculated from xlim and violin_width_to_span_fraction. If only
one violin is specified in data, violin_width = 0.5.

model_fxn [function, optional] Function used to calculate model y-values. 100 x-values are
linearly (if xscale is linear) or logarithmically (if xscale is log) generated spanning
xlim. If xscale is log and a position=0 violin is specified, the result of model_fxn(0.0)
is illustrated as a horizontal line with the position=0 violin.

2.5. FlowCal (Python API) Reference 91

FlowCal Documentation, Release 1.3.0

savefig [str, optional] The name of the file to save the figure to. If None, do not save.

Other Parameters

xscale [{‘linear’, ‘log’}, optional] Scale of the x-axis.

yscale [{‘logicle’, ‘linear’, ‘log’}, optional] Scale of the y-axis.

xlim [tuple, optional] Limits of the x-axis view. If not specified, xlim is calculated to
pad leftmost and rightmost violins with 0.5 * violin_width. If violin_width is also not
specified, violin_width is calculated to satisfy the 0.5 * violin_width padding and vio-
lin_width_to_span_fraction.

ylim [tuple, optional] Limits of the y-axis view. If not specified, ylim is calculated to span all
violins (before they are aesthetically trimmed).

violin_width_to_span_fraction [float, optional] Fraction of the x-axis span that a violin should
span. Ignored if violin_width is specified.

num_bins [int, optional] Number of bins to bin population members. Ignored if bin_edges is
specified.

bin_edges [array or list of arrays, optional] Bin edges used to bin population members for
data violins. Bin edges can be specified for individual violins using a list of arrays of the
same length as data. If not specified, bin_edges is calculated to span ylim logicly (if yscale
is logicle), linearly (if yscale is linear), or logarithmically (if yscale is log) using
num_bins.

density [bool, optional] density parameter passed to the np.histogram() command that
bins population members for each violin. If True, violin width represents relative frequency
density instead of relative frequency (i.e., bins are normalized by their width).

upper_trim_fraction [float or list of floats, optional] Fraction of members to trim (discard)
from the top of the data violins (e.g., for aesthetic purposes). Upper trim fractions can be
specified for individual violins using a list of floats of the same length as data.

lower_trim_fraction [float or list of floats, optional] Fraction of members to trim (discard)
from the bottom of the data violins (e.g., for aesthetic purposes). Lower trim fractions can
be specified for individual violins using a list of floats of the same length as data.

violin_kwargs [dict or list of dicts, optional] Keyword arguments passed to the plt.
fill_betweenx() command that illustrates the data violins. Keyword arguments can
be specified for individual violins using a list of dicts of the same length as data. Default =
{‘facecolor’:’gray’, ‘edgecolor’:’black’}.

draw_summary_stat [bool, optional] Flag specifying to illustrate a summary statistic for each
violin.

draw_summary_stat_fxn [function, optional] Function used to calculate the summary statistic
for each violin. Summary statistics are calculated prior to aesthetic trimming.

draw_summary_stat_kwargs [dict or list of dicts, optional] Keyword arguments passed to
the plt.plot() command that illustrates the data violin summary statistics. Keyword
arguments can be specified for individual violins using a list of dicts of the same length as
data. Default = {‘color’:’black’}.

log_zero_tick_label [str, optional] Label of position=0 violin tick if xscale is log.
Default is generated by the default log tick formatter (matplotlib.ticker.
LogFormatterSciNotation) with x=0.

92 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

min_bin_edges [array, optional] Bin edges used to bin population members for the min violin.
If not specified, min_bin_edges is calculated to span ylim logicaly (if yscale is logicle),
linearly (if yscale is linear), or logarithmically (if yscale is log) using num_bins.

min_upper_trim_fraction [float, optional] Fraction of members to trim (discard) from the top
of the min violin.

min_lower_trim_fraction [float, optional] Fraction of members to trim (discard) from the bot-
tom of the min violin.

min_violin_kwargs [dict, optional] Keyword arguments passed to the plt.
fill_betweenx() command that illustrates the min violin. Default = {‘face-
color’:’black’, ‘edgecolor’:’black’}.

min_draw_summary_stat_kwargs [dict, optional] Keyword arguments passed to the plt.
plot() command that illustrates the min violin summary statistic. Default =
{‘color’:’gray’}.

draw_min_line [bool, optional] Flag specifying to illustrate a line from the min violin summary
statistic across the plot.

draw_min_line_kwargs [dict, optional] Keyword arguments passed to the plt.plot()
command that illustrates the min violin line. Default = {‘color’:’gray’, ‘linestyle’:’–’,
‘zorder’:-2}.

min_tick_label [str, optional] Label of min violin tick. Default=’Min’.

max_bin_edges [array, optional] Bin edges used to bin population members for the max violin.
If not specified, max_bin_edges is calculated to span ylim logicaly (if yscale is logicle),
linearly (if yscale is linear), or logarithmically (if yscale is log) using num_bins.

max_upper_trim_fraction [float, optional] Fraction of members to trim (discard) from the top
of the max violin.

max_lower_trim_fraction [float, optional] Fraction of members to trim (discard) from the bot-
tom of the max violin.

max_violin_kwargs [dict, optional] Keyword arguments passed to the plt.
fill_betweenx() command that illustrates the max violin. Default = {‘face-
color’:’black’, ‘edgecolor’:’black’}.

max_draw_summary_stat_kwargs [dict, optional] Keyword arguments passed to the plt.
plot() command that illustrates the max violin summary statistic. Default =
{‘color’:’gray’}.

draw_max_line [bool, optional] Flag specifying to illustrate a line from the max violin sum-
mary statistic across the plot.

draw_max_line_kwargs [dict, optional] Keyword arguments passed to the plt.plot()
command that illustrates the max violin line. Default = {‘color’:’gray’, ‘linestyle’:’–’,
‘zorder’:-2}.

max_tick_label [str, optional] Label of max violin tick. Default=’Max’.

draw_model_kwargs [dict, optional] Keyword arguments passed to the plt.plot()
command that illustrates the model. Default = {‘color’:’gray’, ‘zorder’:-1,
‘solid_capstyle’:’butt’}.

draw_log_zero_divider [bool, optional] Flag specifying to illustrate a line separating the posi-
tion=0 violin from the data violins if xscale is log.

2.5. FlowCal (Python API) Reference 93

FlowCal Documentation, Release 1.3.0

draw_log_zero_divider_kwargs [dict, optional] Keyword arguments passed to the plt.
axvline() command that illustrates the position=0 violin divider. Default =
{‘color’:’gray’, ‘linestyle’:’:’}.

draw_minmax_divider [bool, optional] Flag specifying to illustrate a vertical line separating
the min and max violins from other violins.

draw_minmax_divider_kwargs [dict, optional] Keyword arguments passed to the plt.
axvline() command that illustrates the min/max divider. Default = {‘color’:’gray’,
‘linestyle’:’-‘}.

xlabel [str, optional] Label to use on the x-axis.

ylabel [str, optional] Label to use on the y-axis. If None, channel name will be used if possible
(extracted from the last data object).

title [str, optional] Plot title.

2.5.6 FlowCal.stats module

Functions to calculate statistics from the events in a FCSData object.

FlowCal.stats.cv(data, channels=None)
Calculate the Coeff. of Variation of the events in an FCSData object.

Parameters

data [FCSData or numpy array] NxD flow cytometry data where N is the number of events and
D is the number of parameters (aka channels).

channels [int or str or list of int or list of str, optional] Channels on which to calculate the
statistic. If None, use all channels.

Returns

float or numpy array The Coefficient of Variation of the events in the specified channels of
data.

Notes

The Coefficient of Variation (CV) of a dataset is defined as the standard deviation divided by the mean of such
dataset.

FlowCal.stats.gcv(data, channels=None)
Calculate the geometric CV of the events in an FCSData object.

Parameters

data [FCSData or numpy array] NxD flow cytometry data where N is the number of events and
D is the number of parameters (aka channels).

channels [int or str or list of int or list of str, optional] Channels on which to calculate the
statistic. If None, use all channels.

Returns

float or numpy array The geometric coefficient of variation of the events in the specified chan-
nels of data.

FlowCal.stats.gmean(data, channels=None)
Calculate the geometric mean of the events in an FCSData object.

94 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

Parameters

data [FCSData or numpy array] NxD flow cytometry data where N is the number of events and
D is the number of parameters (aka channels).

channels [int or str or list of int or list of str, optional] Channels on which to calculate the
statistic. If None, use all channels.

Returns

float or numpy array The geometric mean of the events in the specified channels of data.

FlowCal.stats.gstd(data, channels=None)
Calculate the geometric std. dev. of the events in an FCSData object.

Parameters

data [FCSData or numpy array] NxD flow cytometry data where N is the number of events and
D is the number of parameters (aka channels).

channels [int or str or list of int or list of str, optional] Channels on which to calculate the
statistic. If None, use all channels.

Returns

float or numpy array The geometric standard deviation of the events in the specified channels
of data.

FlowCal.stats.iqr(data, channels=None)
Calculate the Interquartile Range of the events in an FCSData object.

Parameters

data [FCSData or numpy array] NxD flow cytometry data where N is the number of events and
D is the number of parameters (aka channels).

channels [int or str or list of int or list of str, optional] Channels on which to calculate the
statistic. If None, use all channels.

Returns

float or numpy array The Interquartile Range of the events in the specified channels of data.

Notes

The Interquartile Range (IQR) of a dataset is defined as the interval between the 25% and the 75% percentiles
of such dataset.

FlowCal.stats.mean(data, channels=None)
Calculate the mean of the events in an FCSData object.

Parameters

data [FCSData or numpy array] NxD flow cytometry data where N is the number of events and
D is the number of parameters (aka channels).

channels [int or str or list of int or list of str, optional] Channels on which to calculate the
statistic. If None, use all channels.

Returns

float or numpy array The mean of the events in the specified channels of data.

FlowCal.stats.median(data, channels=None)
Calculate the median of the events in an FCSData object.

2.5. FlowCal (Python API) Reference 95

FlowCal Documentation, Release 1.3.0

Parameters

data [FCSData or numpy array] NxD flow cytometry data where N is the number of events and
D is the number of parameters (aka channels).

channels [int or str or list of int or list of str, optional] Channels on which to calculate the
statistic. If None, use all channels.

Returns

float or numpy array The median of the events in the specified channels of data.

FlowCal.stats.mode(data, channels=None)
Calculate the mode of the events in an FCSData object.

Parameters

data [FCSData or numpy array] NxD flow cytometry data where N is the number of events and
D is the number of parameters (aka channels).

channels [int or str or list of int or list of str, optional] Channels on which to calculate the
statistic. If None, use all channels.

Returns

float or numpy array The mode of the events in the specified channels of data.

FlowCal.stats.rcv(data, channels=None)
Calculate the RCV of the events in an FCSData object.

Parameters

data [FCSData or numpy array] NxD flow cytometry data where N is the number of events and
D is the number of parameters (aka channels).

channels [int or str or list of int or list of str, optional] Channels on which to calculate the
statistic. If None, use all channels.

Returns

float or numpy array The Robust Coefficient of Variation of the events in the specified chan-
nels of data.

Notes

The Robust Coefficient of Variation (RCV) of a dataset is defined as the Interquartile Range (IQR) divided by
the median of such dataset.

FlowCal.stats.std(data, channels=None)
Calculate the standard deviation of the events in an FCSData object.

Parameters

data [FCSData or numpy array] NxD flow cytometry data where N is the number of events and
D is the number of parameters (aka channels).

channels [int or str or list of int or list of str, optional] Channels on which to calculate the
statistic. If None, use all channels.

Returns

float or numpy array The standard deviation of the events in the specified channels of data.

96 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

2.5.7 FlowCal.transform module

Functions for transforming flow cytometry data

All transformations are of the following form:

data_t = transform(data, channels, *args, **kwargs):

where data and data_t are NxD FCSData objects or numpy arrays, representing N events with D channels, channels
indicate the channels in which to apply the transformation, and args and kwargs are transformation-specific parameters.
Each transformation function can apply its own restrictions or defaults on channels.

If data is an FCSData object, transform should rescale data.range if necessary.

FlowCal.transform.to_mef(data, channels, sc_list, sc_channels=None)
Transform flow cytometry data using a standard curve function.

This function accepts a list of standard curves (sc_list) and a list of channels to which those standard curves
should be applied (sc_channels). to_mef automatically checks whether a standard curve is available for each
channel specified in channels, and throws an error otherwise.

This function is intended to be reduced to the following signature:

to_mef_reduced(data, channels)

by using functools.partial once a list of standard curves and their respective channels is available.

Parameters

data [FCSData or numpy array] NxD flow cytometry data where N is the number of events and
D is the number of parameters (aka channels).

channels [int, str, list of int, list of str] Channels on which to perform the transformation. If
channels is None, perform transformation in all channels specified on sc_channels.

sc_list [list of functions] Functions implementing the standard curves for each channel in
sc_channels.

sc_channels [list of int or list of str, optional] List of channels corresponding to each function
in sc_list. If None, use all channels in data.

Returns

FCSData or numpy array NxD transformed flow cytometry data.

Raises

ValueError If any channel specified in channels is not in sc_channels.

FlowCal.transform.to_rfi(data, channels=None, amplification_type=None, amplifier_gain=None,
resolution=None)

Transform flow cytometry data to Relative Fluorescence Units (RFI).

If amplification_type[0] is different from zero, data has been taken using a log amplifier. Therefore,
to transform to RFI, the following operation is applied:

y = a[1]*10^(a[0] * (x/r))

Where x and y are the original and transformed data, respectively; a is amplification_type argument, and r is
resolution. This will transform flow cytometry data taken with a log amplifier and an ADC of range r to linear
RFIs, such that it covers a[0] decades of signal with a minimum value of a[1].

If amplification_type[0]==0, however, a linear amplifier has been used and the following operation is
applied instead:

2.5. FlowCal (Python API) Reference 97

FlowCal Documentation, Release 1.3.0

y = x/g

Where g is amplifier_gain. This will transform flow cytometry data taken with a linear amplifier of gain g back
to RFIs.

Parameters

data [FCSData or numpy array] NxD flow cytometry data where N is the number of events and
D is the number of parameters (aka channels).

channels [int, str, list of int, list of str, optional] Channels on which to perform the transforma-
tion. If channels is None, perform transformation in all channels.

amplification_type [tuple or list of tuple] The amplification type of the specified channel(s).
This should be reported as a tuple, in which the first element indicates how many decades
the logarithmic amplifier covers, and the second indicates the linear value that corresponds
to a channel value of zero. If the first element is zero, the amplification type is linear. This is
similar to the $PnE keyword from the FCS standard. If None, take amplification_type from
data.amplification_type(channel).

amplifier_gain [float or list of floats, optional] The linear amplifier gain of the specified chan-
nel(s). Only used if amplification_type[0]==0 (linear amplifier). If None, take
amplifier_gain from data.amplifier_gain(channel). If data does not contain
amplifier_gain(), use 1.0.

resolution [int, float, or list of int or float, optional] Maximum range, for each specified channel.
Only needed if amplification_type[0]!=0 (log amplifier). If None, take resolution
from len(data.domain(channel)).

Returns

FCSData or numpy array NxD transformed flow cytometry data.

FlowCal.transform.transform(data, channels, transform_fxn, def_channels=None)
Apply some transformation function to flow cytometry data.

This function is a template transformation function, intended to be used by other specific transformation func-
tions. It performs basic checks on channels and data. It then applies transform_fxn to the specified channels.
Finally, it rescales data.range and if necessary.

Parameters

data [FCSData or numpy array] NxD flow cytometry data where N is the number of events and
D is the number of parameters (aka channels).

channels [int, str, list of int, list of str, optional] Channels on which to perform the transforma-
tion. If channels is None, use def_channels.

transform_fxn [function] Function that performs the actual transformation.

def_channels [int, str, list of int, list of str, optional] Default set of channels in which to perform
the transformation. If def_channels is None, use all channels.

Returns

data_t [FCSData or numpy array] NxD transformed flow cytometry data.

98 Chapter 2. Table of Contents

FlowCal Documentation, Release 1.3.0

2.6 Contribute

2.6.1 How to Contribute

If you are interested in contributing to this project, either by writing code, correcting a bug, or adding a new feature,
we would love your help! Below we provide some guidelines on how to contribute.

FlowCal Installation for Developers

Regardless of your OS version, we recommend using virtualenv for development. A short primer on
virtualenv can be found at http://docs.python-guide.org/en/latest/dev/virtualenvs/.

The recommended way to install FlowCal for development is to run python setup.py develop. This will
install FlowCal in a special “developer” mode. In this mode, a link pointing to the FlowCal directory is made in
the python installation directory, allowing you to import FlowCal from any python script, while at the same time
being able to modify FlowCal’s code and immediately see the resulting effects.

Version Control

FlowCal uses git for version control. We try to follow the git-flow branching model. Please familiarize yourself
with such model before contributing. A quick summary of relevant branches is given below.

• master is only used for final release versions. Do not directly commit to master, ever.

• develop holds unreleased features, which will eventually be released into master.

• Feature branches are branches derived from develop, in which new features are committed. When the feature
is completed, a merge request towards develop should be made.

Recommended Workflow

A recommended workflow for contributing to FlowCal is as follows:

1. Report your intended change in the issue tracker on github. If reporting a bug, please be as detailed as possible
and try to include the necessary steps to reproduce the problem. If suggesting a feature, indicate if you’re willing
to write the code for it.

2. Assuming that you decided to write code, clone the repo in your computer. You can use the command git
clone https://github.com/taborlab/FlowCal if you are using the command-line version of
git.

3. Switch to the develop branch, using git checkout develop.

4. Create a new feature branch, using git checkout -b <feature_name>.

5. Set up your virtual environment, if desired.

6. Install FlowCal in developer mode, using python setup.py develop.

7. Write/test code, commit. Repeat until feature is fully implemented.

8. Push and submit a merge request towards develop.

2.6. Contribute 99

http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://nvie.com/posts/a-successful-git-branching-model/

FlowCal Documentation, Release 1.3.0

Version Policy

The version number in FlowCal is organized as follows: MAJOR.MINOR.PATCH. The following are guidelines on
how to manage version numbers:

• The patch version number should only be increased after fixing a bug or an incompatibility issue, if the public
API was not modified at all.

• The minor version number should be increased after a relatively minor API modification. For example:

– After fixing a bug, when a minor API modification was required to do so.

– After making a small adjustment to a function signature, such as adding a new argument or changing the
data type of an existing one.

– After adding one or more relatively minor new features (e.g. a new plotting function).

• The major version number should be increased after a fundamental modification to the API and/or the package,
or the introduction of a major feature. For example:

– After completely reorganizing the FCSData object or the functions in the package

– After introducing a new Excel UI with a completely reorganized input file format.

– After introducing a Graphical User Interface.

In general, new patch versions should not break a user’s code, whereas minor versions should not require more than
minor adjustments. Major versions could either require significant changes in the user’s code or a complete change in
the way they think about FlowCal’s API.

2.6.2 Report Bugs

The official way to report a bug is through the issue tracker on github (https://github.com/taborlab/FlowCal/issues).
Try to be as explicit as possible when describing your issue. Ideally, a set of instructions to reproduce the error should
be provided, together with the version of all the relevant packages you are using.

If you are interested in writing the code necessary to solve a bug, please visit How to Contribute first.

2.6.3 Request Features

The official way to request features is through the issue tracker on github (https://github.com/taborlab/FlowCal/issues).
Try to be as descriptive as possible about the desired feature.

If you are interested in writing the code necessary to implement your feature, please visit How to Contribute first.

100 Chapter 2. Table of Contents

https://github.com/taborlab/FlowCal/issues
https://github.com/taborlab/FlowCal/issues

Bibliography

[1] P.N. Dean, C.B. Bagwell, T. Lindmo, R.F. Murphy, G.C. Salzman, “Data file standard for flow cytometry. Data
File Standards Committee of the Society for Analytical Cytology,” Cytometry vol 11, pp 323-332, 1990, PMID
2340769.

[2] L.C. Seamer, C.B. Bagwell, L. Barden, D. Redelman, G.C. Salzman, J.C. Wood, R.F. Murphy, “Proposed new
data file standard for flow cytometry, version FCS 3.0,” Cytometry vol 28, pp 118-122, 1997, PMID 9181300.

[3] J. Spidlen, et al, “Data File Standard for Flow Cytometry, version FCS 3.1,” Cytometry A vol 77A, pp 97-100,
2009, PMID 19937951.

[4] R. Hicks, “BD$WORD file header fields,” https://lists.purdue.edu/pipermail/cytometry/2001-October/020624.
html

[1] D.R. Parks, M. Roederer, W.A. Moore, “A New Logicle Display

[1] P.N. Dean, C.B. Bagwell, T. Lindmo, R.F. Murphy, G.C. Salzman, “Data file standard for flow cytometry. Data
File Standards Committee of the Society for Analytical Cytology,” Cytometry vol 11, pp 323-332, 1990, PMID
2340769.

[2] L.C. Seamer, C.B. Bagwell, L. Barden, D. Redelman, G.C. Salzman, J.C. Wood, R.F. Murphy, “Proposed new
data file standard for flow cytometry, version FCS 3.0,” Cytometry vol 28, pp 118-122, 1997, PMID 9181300.

[3] J. Spidlen, et al, “Data File Standard for Flow Cytometry, version FCS 3.1,” Cytometry A vol 77A, pp 97-100,
2009, PMID 19937951.

[1] P.N. Dean, C.B. Bagwell, T. Lindmo, R.F. Murphy, G.C. Salzman, “Data file standard for flow cytometry. Data
File Standards Committee of the Society for Analytical Cytology,” Cytometry vol 11, pp 323-332, 1990, PMID
2340769.

[2] L.C. Seamer, C.B. Bagwell, L. Barden, D. Redelman, G.C. Salzman, J.C. Wood, R.F. Murphy, “Proposed new
data file standard for flow cytometry, version FCS 3.0,” Cytometry vol 28, pp 118-122, 1997, PMID 9181300.

[3] J. Spidlen, et al, “Data File Standard for Flow Cytometry, version FCS 3.1,” Cytometry A vol 77A, pp 97-100,
2009, PMID 19937951.

[1] P.N. Dean, C.B. Bagwell, T. Lindmo, R.F. Murphy, G.C. Salzman, “Data file standard for flow cytometry. Data
File Standards Committee of the Society for Analytical Cytology,” Cytometry vol 11, pp 323-332, 1990, PMID
2340769.

[2] L.C. Seamer, C.B. Bagwell, L. Barden, D. Redelman, G.C. Salzman, J.C. Wood, R.F. Murphy, “Proposed new
data file standard for flow cytometry, version FCS 3.0,” Cytometry vol 28, pp 118-122, 1997, PMID 9181300.

101

https://lists.purdue.edu/pipermail/cytometry/2001-October/020624.html
https://lists.purdue.edu/pipermail/cytometry/2001-October/020624.html

FlowCal Documentation, Release 1.3.0

[3] J. Spidlen, et al, “Data File Standard for Flow Cytometry, version FCS 3.1,” Cytometry A vol 77A, pp 97-100,
2009, PMID 19937951.

[1] P.N. Dean, C.B. Bagwell, T. Lindmo, R.F. Murphy, G.C. Salzman, “Data file standard for flow cytometry. Data
File Standards Committee of the Society for Analytical Cytology,” Cytometry vol 11, pp 323-332, 1990, PMID
2340769.

[2] L.C. Seamer, C.B. Bagwell, L. Barden, D. Redelman, G.C. Salzman, J.C. Wood, R.F. Murphy, “Proposed new
data file standard for flow cytometry, version FCS 3.0,” Cytometry vol 28, pp 118-122, 1997, PMID 9181300.

[3] J. Spidlen, et al, “Data File Standard for Flow Cytometry, version FCS 3.1,” Cytometry A vol 77A, pp 97-100,
2009, PMID 19937951.

102 Bibliography

Python Module Index

f
FlowCal.excel_ui, 54
FlowCal.gate, 61
FlowCal.io, 66
FlowCal.mef, 74
FlowCal.plot, 82
FlowCal.stats, 94
FlowCal.transform, 97

103

FlowCal Documentation, Release 1.3.0

104 Python Module Index

Index

A
acquisition_end_time (FlowCal.io.FCSData at-

tribute), 68
acquisition_start_time (FlowCal.io.FCSData

attribute), 68
acquisition_time (FlowCal.io.FCSData attribute),

68
add_beads_stats() (in module FlowCal.excel_ui),

55
add_samples_stats() (in module Flow-

Cal.excel_ui), 56
amplification_type() (FlowCal.io.FCSData

method), 68
amplifier_gain() (FlowCal.io.FCSData method),

68
analysis (FlowCal.io.FCSData attribute), 68
analysis (FlowCal.io.FCSFile attribute), 71

B
bin_edges (FlowCal.gate.Density2dGateOutput at-

tribute), 61
bin_mask (FlowCal.gate.Density2dGateOutput at-

tribute), 61

C
channel_labels() (FlowCal.io.FCSData method),

68
channels (FlowCal.io.FCSData attribute), 68
clustering_gmm() (in module FlowCal.mef), 74
contour (FlowCal.gate.Density2dGateOutput at-

tribute), 61
contour (FlowCal.gate.EllipseGateOutput attribute),

62
cv() (in module FlowCal.stats), 94

D
data (FlowCal.io.FCSFile attribute), 72
data_type (FlowCal.io.FCSData attribute), 68
density2d() (in module FlowCal.gate), 63

density2d() (in module FlowCal.plot), 83
Density2dGateOutput (class in FlowCal.gate), 61
density_and_hist() (in module FlowCal.plot), 84
detector_voltage() (FlowCal.io.FCSData

method), 69

E
ellipse() (in module FlowCal.gate), 64
EllipseGateOutput (class in FlowCal.gate), 61
ExcelUIException, 55

F
FCSData (class in FlowCal.io), 66
FCSFile (class in FlowCal.io), 70
fit_beads_autofluorescence() (in module

FlowCal.mef), 75
FlowCal.excel_ui (module), 54
FlowCal.gate (module), 61
FlowCal.io (module), 66
FlowCal.mef (module), 74
FlowCal.plot (module), 82
FlowCal.stats (module), 94
FlowCal.transform (module), 97

G
gated_data (FlowCal.gate.Density2dGateOutput at-

tribute), 61
gated_data (FlowCal.gate.EllipseGateOutput at-

tribute), 62
gated_data (FlowCal.gate.HighLowGateOutput at-

tribute), 62
gated_data (FlowCal.gate.StartEndGateOutput at-

tribute), 63
gcv() (in module FlowCal.stats), 94
generate_about_table() (in module Flow-

Cal.excel_ui), 56
generate_histograms_table() (in module

FlowCal.excel_ui), 57
get_transform_fxn() (in module FlowCal.mef),

76

105

FlowCal Documentation, Release 1.3.0

gmean() (in module FlowCal.stats), 94
gstd() (in module FlowCal.stats), 95

H
header (FlowCal.io.FCSFile attribute), 72
high_low() (in module FlowCal.gate), 65
HighLowGateOutput (class in FlowCal.gate), 62
hist1d() (in module FlowCal.plot), 85
hist_bins() (FlowCal.io.FCSData method), 69

I
infile (FlowCal.io.FCSData attribute), 70
infile (FlowCal.io.FCSFile attribute), 72
iqr() (in module FlowCal.stats), 95

M
mask (FlowCal.gate.Density2dGateOutput attribute), 61
mask (FlowCal.gate.EllipseGateOutput attribute), 62
mask (FlowCal.gate.HighLowGateOutput attribute), 62
mask (FlowCal.gate.StartEndGateOutput attribute), 63
mean() (in module FlowCal.stats), 95
median() (in module FlowCal.stats), 95
mode() (in module FlowCal.stats), 96

P
plot_standard_curve() (in module Flow-

Cal.mef), 81
process_beads_table() (in module Flow-

Cal.excel_ui), 57
process_samples_table() (in module Flow-

Cal.excel_ui), 58

R
range() (FlowCal.io.FCSData method), 70
rcv() (in module FlowCal.stats), 96
read_fcs_data_segment() (in module Flow-

Cal.io), 72
read_fcs_header_segment() (in module Flow-

Cal.io), 73
read_fcs_text_segment() (in module Flow-

Cal.io), 74
read_table() (in module FlowCal.excel_ui), 59
resolution() (FlowCal.io.FCSData method), 70
run() (in module FlowCal.excel_ui), 59
run_command_line() (in module Flow-

Cal.excel_ui), 60

S
scatter2d() (in module FlowCal.plot), 86
scatter3d() (in module FlowCal.plot), 87
scatter3d_and_projections() (in module

FlowCal.plot), 87
selection_std() (in module FlowCal.mef), 81

show_open_file_dialog() (in module Flow-
Cal.excel_ui), 60

start_end() (in module FlowCal.gate), 65
StartEndGateOutput (class in FlowCal.gate), 62
std() (in module FlowCal.stats), 96

T
text (FlowCal.io.FCSData attribute), 70
text (FlowCal.io.FCSFile attribute), 72
time_step (FlowCal.io.FCSData attribute), 70
to_mef() (in module FlowCal.transform), 97
to_rfi() (in module FlowCal.transform), 97
transform() (in module FlowCal.transform), 98

V
violin() (in module FlowCal.plot), 88
violin_dose_response() (in module Flow-

Cal.plot), 90

W
write_workbook() (in module FlowCal.excel_ui),

60

106 Index

	Cite FlowCal
	Table of Contents
	Getting Started
	Fundamentals
	FlowCal’s Excel UI
	FlowCal’s Python API Tutorial
	FlowCal (Python API) Reference
	Contribute

	Bibliography
	Python Module Index
	Index

