
Flow Form Framework Documentation
Release 2.0

The Neos Team

May 17, 2019

Contents

1 Forms 3

2 About This Documentation 5
2.1 Quickstart . 5
2.2 Configuring form rendering with YAML . 10
2.3 Adjusting Form Output . 12
2.4 Extending Form API . 18
2.5 Configuring Form Builder . 22
2.6 Extending Form Builder . 24

3 Credits 31

i

ii

Flow Form Framework Documentation, Release 2.0

This documentation covering version 2.0 has been rendered at: May 17, 2019

Contents 1

Flow Form Framework Documentation, Release 2.0

2 Contents

CHAPTER 1

Forms

The Form API is an extensible and flexible framework to build web forms.

It includes the following features:

• Ready-to-use standard form elements based on the Twitter Bootstrap CSS framework

• Creation of Multi-Step Forms

• Server- and Client-Side Validation

• highly flexible rendering of form elements, based on Fluid

• Extensible with new form elements

• robust, object oriented API

• great integration into TYPO3 Flow

Furthermore, we built a Form Builder which is a web application for graphically assembling and modifying
forms, displayed below:

3

http://twitter.github.com/bootstrap/

Flow Form Framework Documentation, Release 2.0

4 Chapter 1. Forms

CHAPTER 2

About This Documentation

This documentation contains a number of tutorial-style guides which will explain various aspects of the Form API
and the Form Framework. It is not intended as in-depth reference, although there will be links to the in-depth API
reference at various points.

2.1 Quickstart

After working through this guide, you will have learned:

• the structure of a form

• creating a form using the API

• rendering a form

• adding validation rules

• invoking actions after the form is finished

2.1.1 API Overview

The image below shows the high-level API overview of the this package.

First, we will dive into the API part defining a form, and then go over to rendering a form. In later chapters, we
will also show how loading / saving a form definition works.

5

Flow Form Framework Documentation, Release 2.0

2.1.2 Anatomy of a Form

A form is described by the so-called FormDefinition, which is a container object for the form that consists of one
or more Pages in which the actual FormElements are located.

As an example, let’s take a basic contact form with the following structure:

• Contact Form (Form)

– Page 01 (Page)

* Name (Single-line Text)

* Email (Single-line Text)

* Message (Multi-line Text)

Our form just has a single page that contains three input fields: Name, Email and Message.

Note: Every form needs to have at least one page.

Further Information

In-depth information about the form structure can be found in the FormDefinition API Documentation.

6 Chapter 2. About This Documentation

http://api.typo3.org/flow3-form/master/class-TYPO3.Form.Core.Model.FormDefinition.html
http://api.typo3.org/flow3-form/master/class-TYPO3.Form.Core.Model.FormDefinition.html

Flow Form Framework Documentation, Release 2.0

2.1.3 Create your first form

Now, let’s try to create the basic contact form from above. For this we need to implement a so-called FormFactory,
which is responsible for creating the form.

Note: The package comes with a ready-to-use factory for building forms based on YAML files
describing the forms. See Configuring form rendering with YAML for details.

If you want to build a form with PHP, the skeleton for building a form looks as follows:

namespace Your\Package;

use TYPO3\Flow\Annotations as Flow;
use TYPO3\Form\Core\Model\FormDefinition;

class QuickstartFactory extends \TYPO3\Form\Factory\AbstractFormFactory {

/**
* @param array $factorySpecificConfiguration

* @param string $presetName

* @return \TYPO3\Form\Core\Model\FormDefinition

*/
public function build(array $factorySpecificConfiguration, $presetName) {

$formConfiguration = $this->getPresetConfiguration($presetName);
$form = new FormDefinition('yourFormIdentifier',

→˓$formConfiguration);
// Now, build your form here
return $form;

}
}

As you can see there is the build() method that you have to implement; and this method needs to return the
FormDefinition.

Lets add the one page and input fields for name, email and message of our contact form:

public function build(array $factorySpecificConfiguration, $presetName) {
$formConfiguration = $this->getPresetConfiguration($presetName);
$form = new FormDefinition('contactForm', $formConfiguration);

$page1 = $form->createPage('page1');

$name = $page1->createElement('name', 'TYPO3.Form:SingleLineText');
$name->setLabel('Name');

$email = $page1->createElement('email', 'TYPO3.Form:SingleLineText');
$email->setLabel('Email');

$comments = $page1->createElement('message', 'TYPO3.Form:MultiLineText');
$comments->setLabel('Message');

return $form;
}

You see that we used the API method createPage($identifier), which creates a new page inside the form
object and returns it for further use. Then, we used createElement($identifier, $type) to create the
form elements and set some options on them.

The $identifier is used to identify a form element, thus it needs to be unique across the whole form. $type
references an Element Type.

2.1. Quickstart 7

http://api.typo3.org/flow3-form/master/class-TYPO3.Form.Factory.AbstractFormFactory.html
http://api.typo3.org/flow3-form/master/class-TYPO3.Form.Core.Model.FormDefinition.html

Flow Form Framework Documentation, Release 2.0

Note: By default the $identifier is part of the id attribute of the rendered Form Element so it should be
lowerCamelCased and must not contain special characters.

Tip: As you will learn in the next guide, you can define your own Element Types easily. The element types
referenced above (TYPO3.Form:SingleLineText and TYPO3.Form:MultiLineText) are just element
types which are delivered by default by the framework.

2.1.4 Render a form

Now that we have created the first FormDefinition how can we display the actual form? That is really easy with
the provided form:render ViewHelper:

{namespace form=TYPO3\Form\ViewHelpers}
<form:render factoryClass="Your\Package\YourFactory" />

If you put that snippet in your Fluid template and replace YourPackage with your package namespace and Your-
Factory with the class name of the previously generated form factory, you should see a form consisting of the
three text fields and a submit button.

But as you can see, none of the fields are required and the email address is not verified. So let’s add some basic
validation rules:

2.1.5 Validation

Every FormElement implements the FormElementInterface which provides a convenient way to work with TYPO3
Flow validators:

$name->addValidator(new \TYPO3\Flow\Validation\Validator\NotEmptyValidator());

$email->addValidator(new \TYPO3\Flow\Validation\Validator\NotEmptyValidator());
$email->addValidator(new \TYPO3\Flow\Validation\Validator\EmailAddressValidator());

$comments->addValidator(new \TYPO3\Flow\Validation\Validator\NotEmptyValidator());
$comments->addValidator(new
→˓\TYPO3\Flow\Validation\Validator\StringLengthValidator(array('minimum' => 3)));

With the addValidator($validator) method you can attach one or more validators to a form element.
If you save the changes and reload the page where you embedded the form, you can see that all text fields are
required now, that the email address is syntactically verified and that you need to write a message of at least 3
characters. If you try to submit the form with invalid data, validation errors are displayed next to each erroneous
field.

If you do enter name, a valid email address and a message you can submit the form - and see a blank page. That’s
where so called Finishers come into play.

2.1.6 Finishers

A Finisher is a piece of PHP code that is executed as soon as a form has been successfully submitted (if the last
page has been sent and no validation errors occurred).

You can attach multiple finishers to a form.

For this example we might want to send the data to an email address, and we can use the EmailFinisher for that:

8 Chapter 2. About This Documentation

http://api.typo3.org/flow3-form/master/class-TYPO3.Form.ViewHelpers.RenderViewHelper.html
http://api.typo3.org/flow3-form/master/class-TYPO3.Form.Core.Model.AbstractFormElement.html
http://api.typo3.org/flow3-form/master/class-TYPO3.Form.Core.Model.FormElementInterface.html
http://api.typo3.org/flow3-form/master/class-TYPO3.Form.Core.Model.FinisherInterface.html
http://api.typo3.org/flow3-form/master/class-TYPO3.Form.Finishers.EmailFinisher.html

Flow Form Framework Documentation, Release 2.0

$emailFinisher = new \TYPO3\Form\Finishers\EmailFinisher();
$emailFinisher->setOptions(array(

'templatePathAndFilename' => 'resource://Your.Package/Private/Templates/
→˓ContactForm/NotificationEmail.txt',

'recipientAddress' => 'your@example.com',
'senderAddress' => 'mailer@example.com',
'replyToAddress' => '{email}',
'carbonCopyAddress' => 'copy@example.com',
'blindCarbonCopyAddress' => 'blindcopy@example.com',
'subject' => 'Contact Request',
'format' => \TYPO3\Form\Finishers\EmailFinisher::FORMAT_PLAINTEXT

));
$form->addFinisher($emailFinisher);

And afterwards we want to redirect the user to some confirmation action, thus we add the RedirectFinisher:

$redirectFinisher = new \TYPO3\Form\Finishers\RedirectFinisher();
$redirectFinisher->setOptions(

array('action' => 'confirmation')
);
$form->addFinisher($redirectFinisher);

2.1.7 Summary

That’s it for the quickstart. The complete code of your form factory should look something like this now:

namespace Your\Package;

use TYPO3\Flow\Annotations as Flow;
use TYPO3\Form\Core\Model\FormDefinition;

/**
* Flow\Scope("singleton")

*/
class QuickstartFactory extends \TYPO3\Form\Factory\AbstractFormFactory {

/**
* @param array $factorySpecificConfiguration

* @param string $presetName

* @return \TYPO3\Form\Core\Model\FormDefinition

*/
public function build(array $factorySpecificConfiguration, $presetName) {

$formConfiguration = $this->getPresetConfiguration($presetName);
$form = new FormDefinition('contactForm', $formConfiguration);

$page1 = $form->createPage('page1');

$name = $page1->createElement('name', 'TYPO3.Form:SingleLineText');
$name->setLabel('Name');
$name->addValidator(new

→˓\TYPO3\Flow\Validation\Validator\NotEmptyValidator());

$email = $page1->createElement('email', 'TYPO3.Form:SingleLineText
→˓');

$email->setLabel('Email');
$email->addValidator(new

→˓\TYPO3\Flow\Validation\Validator\NotEmptyValidator());
$email->addValidator(new

→˓\TYPO3\Flow\Validation\Validator\EmailAddressValidator());

(continues on next page)

2.1. Quickstart 9

http://api.typo3.org/flow3-form/master/class-TYPO3.Form.Finishers.RedirectFinisher.html

Flow Form Framework Documentation, Release 2.0

(continued from previous page)

$comments = $page1->createElement('message', 'TYPO3.
→˓Form:MultiLineText');

$comments->setLabel('Message');
$comments->addValidator(new

→˓\TYPO3\Flow\Validation\Validator\NotEmptyValidator());
$comments->addValidator(new

→˓\TYPO3\Flow\Validation\Validator\StringLengthValidator(array('minimum' => 3)));

$emailFinisher = new \TYPO3\Form\Finishers\EmailFinisher();
$emailFinisher->setOptions(array(

'templatePathAndFilename' => 'resource://Your.Package/
→˓Private/Templates/ContactForm/NotificationEmail.txt',

'recipientAddress' => 'your@example.com',
'senderAddress' => 'mailer@example.com',
'replyToAddress' => '{email}',
'carbonCopyAddress' => 'copy@example.com',
'blindCarbonCopyAddress' => 'blindcopy@example.com',
'subject' => 'Contact Request',
'format' => \TYPO3\Form\Finishers\EmailFinisher::FORMAT_

→˓PLAINTEXT
));
$form->addFinisher($emailFinisher);

$redirectFinisher = new \TYPO3\Form\Finishers\RedirectFinisher();
$redirectFinisher->setOptions(

array('action' => 'confirmation')
);
$form->addFinisher($redirectFinisher);

return $form;
}

}

2.1.8 Next Steps

Now, you know how to build forms using the API. In the next tutorial, you will learn how to adjust the form output
and create new form elements – all without programming!

Continue with: Adjusting Form Output

2.2 Configuring form rendering with YAML

2.2.1 Setup

To render a form based on a YAML configuration file, simply use the TYPO3.Form render ViewHelper. It
uses the TYPO3\Form\Factory\ArrayFormFactory by default, which needs to know where the form
configuration is stored. This is done in Settings.yaml:

TYPO3:
Form:
yamlPersistenceManager:

savePath: 'resource://AcmeCom.SomePackage/Private/Form/'

From now on, every YAML file stored there can be loaded by using the filename as the persistence identifier given
to the render ViewHelper. So if you have a file named contact.yaml, it can be rendered with:

10 Chapter 2. About This Documentation

Flow Form Framework Documentation, Release 2.0

<form:render persistenceIdentifier="contact"/>

2.2.2 Form configuration

Generally speaking, the configuration is a nested structure that contains the keys type, identifier and
renderables and further options (e.g. label) depending on the type of the current level.

The element types referenced below (TYPO3.Form:SingleLineText and TYPO3.
Form:MultiLineText) are just element types which are delivered by default by the framework. All
available types can be found in the settings of the TYPO3.Form package under TYPO3.Form.presets.
default.formElementTypes.

On the top level, the finishers can be configured as an array of identifier and options keys. The
available options depend on the finisher being used.

Let us examine the configuration for a basic contact form with the following structure:

• Contact Form (Form)

– Page 01 (Page)

* Name (Single-line Text)

* Email (Single-line Text)

* Message (Multi-line Text)

The following YAML is stored as contact.yaml:

type: 'TYPO3.Form:Form'
identifier: 'contact'
label: 'Contact form'
renderables:

-
type: 'TYPO3.Form:Page'
identifier: 'page-one'
renderables:

-
type: 'TYPO3.Form:SingleLineText'
identifier: name
label: 'Name'
validators:
- identifier: 'TYPO3.Flow:NotEmpty'

-
type: 'TYPO3.Form:SingleLineText'
identifier: email
label: 'Email'
validators:
- identifier: 'TYPO3.Flow:NotEmpty'
- identifier: 'TYPO3.Flow:EmailAddress'

-
type: 'TYPO3.Form:MultiLineText'
identifier: message
label: 'Message'
validators:
- identifier: 'TYPO3.Flow:NotEmpty'

finishers:
-
identifier: 'TYPO3.Form:Email'
options:
templatePathAndFilename: resource://AcmeCom.SomePackage/Private/Templates/

→˓Form/Contact.txt
subject: '{subject}'

(continues on next page)

2.2. Configuring form rendering with YAML 11

Flow Form Framework Documentation, Release 2.0

(continued from previous page)

recipientAddress: 'info@acme.com'
recipientName: 'Acme Customer Care'
senderAddress: '{email}'
senderName: '{name}'
format: plaintext

2.3 Adjusting Form Output

After working through this guide, you will have learned:

• how to adjust the form output

• how to create custom Form Presets

• how to create custom form elements

Generally, this guide answers the question: How can form output be modified without programming?

2.3.1 Presets Explained

In the Quickstart guide, you have seen how a basic form can be built. We will now dissect the form element
creation a little more, and explain the lines which you might not have understood yet.

Let’s have a look at the boilerplate code inside the form factory again:

public function build(array $factorySpecificConfiguration, $presetName) {
$formConfiguration = $this->getPresetConfiguration($presetName);
$form = new FormDefinition('contactForm', $formConfiguration);
// ...

}

You see that the second parameter is a $presetName which is passed to getPresetConfiguration().
So, let’s introduce the concept of presets now.

A Preset is a container for pre-defined form configuration, and is the basic way to adjust the form’s output. Presets
are defined inside the Settings.yaml file, like in the following example:

TYPO3:
Form:
presets:
preset1:
title: 'My First Preset'
formElementTypes:
'TYPO3.Form:SingleLineTextfield':

configuration for the single line textfield
preset2:

title: 'My Second Preset'
parentPreset: 'preset1'
because preset2 *inherits* from preset1, only the changes between
preset1 and preset2 need to be defined here.

The above example defines two presets (preset1 and preset2). Because preset2 defines a
parentPreset, it inherits all options from preset1 if not specified otherwise.

Tip: The TYPO3.Form package already defines a preset with the name default which contains all standard
form elements. Look into TYPO3.Form/Configuration/Settings.yaml for the details on the defined
form elements.

12 Chapter 2. About This Documentation

Flow Form Framework Documentation, Release 2.0

In most cases, you will create a sub-preset of the default preset, modifying only the parts you need.

The method getPresetConfiguration($presetName) in AbstractFormFactory evaluates the preset in-
heritance hierarchy and returns a merged array of the preset configuration.

2.3.2 Form Element Types Explained

Now that we have seen that presets can inherit from each other, let’s look inside the preset configuration. One
particularily important part of each preset configuration is the form element type definition, which configures each
form element correctly.

As an example, let’s create a text field with the following snippet:

$name = $page1->createElement('name', 'TYPO3.Form:SingleLineText');
$name->setLabel('Name');

In the above example, the form element type is TYPO3.Form:SingleLineText, and when creating the form
element, it applies all default values being set inside the form element type. As an example, take the following
type definition:

'TYPO3.Form:SingleLineText':
defaultValue: 'My Default Text'
properties:
placeholder: 'My Placeholder Text'

That’s exactly the same as if one wrote the following PHP code:

$name->setDefaultValue('My Default Text');
$name->setProperty('placeholder', 'My Placeholder Text');

So $page->createElement($identifier, $formElementType) is essentially a very specialized
factory method, which automatically applies the default values from the form element definition on the newly
created form object before returning it.

Tip: The defaults are not only applied on single form elements, but also on the FormDefinition and Page objects.
The FormDefinition object has, by convention, the form element type TYPO3.Form:Form, but you can also
override it by passing the to-be-used type as third parameter to the constructor of FormDefinition.

A page has, by default, the form element type TYPO3.Form:Page, and you can override it by supplying a
second parameter to the createPage() method of FormDefinition.

2.3.3 Supertypes

Now, there’s one more secret ingredient which makes the form framework powerful: Every form element type
can have one or multiple supertypes; and this allows to only specify the differences between the “parent” form
element and the newly created one, effectively creating an inheritance hierarchy of form elements.

The following example demonstrates this:

'TYPO3.Form:SingleLineText':
defaultValue: 'My Default Text'
properties:
placeholder: 'My Placeholder Text'

'TYPO3.Form:SpecialText':
superTypes:
'TYPO3.Form:SingleLineText' : TRUE

defaultValue: 'My special text'

2.3. Adjusting Form Output 13

http://api.typo3.org/flow3-form/master/class-TYPO3.Form.Factory.AbstractFormFactory.html
http://api.typo3.org/flow3-form/master/class-TYPO3.Form.Core.Model.FormDefinition.html
http://api.typo3.org/flow3-form/master/class-TYPO3.Form.Core.Model.FormDefinition.html

Flow Form Framework Documentation, Release 2.0

Here, the SpecialText inherits the placeholder property from the SingleLineText and only overrides
the default value.

Together, presets (with parent presets) and form element types (with supertypes) form a very flexible foundation
to customize the rendering in any imaginable way, as we will explore in the remainder of this guide.

Note: If multiple super types are specified, they are evaluated from left to right, i.e. later super types override
previous definitions.

Previously the superTypes configuration was just a simple list of strings:

'TYPO3.Form:SpecialText':
superTypes:
'TYPO3.Form:SingleLineText': TRUE

defaultValue: 'My special text'

But this made it impossible to unset a super type from a 3rd party package. The old syntax is still supported but is
deprecated and might be removed in future versions.

2.3.4 Creating a Custom Preset

First, we create a sub-preset inheriting from the default preset. For that, open up Your.Package/
Configuration/Settings.yaml and insert the following contents:

TYPO3:
Form:
presets:
myCustom:
title: 'Custom Elements'
parentPreset: 'default'

You now created a sub preset named myCustom which behaves exactly the same as the default preset. If you now
specify the preset name inside the <form:render> ViewHelper you will not see any differences yet:

<form:render factoryClass="..." presetName="myCustom" />

Now we are set up to modify the custom preset, and can adjust the form output.

2.3.5 Adjusting a Form Element Template

The templates of the default Form Elements are located in TYPO3.Form/Resources/Private/Form/.
They are standard Fluid templates and most of them are really simple. Open up the Single-Line Text
template for example:

<f:layout name="TYPO3.Form:Field" />
<f:section name="field">

<f:form.textfield property="{element.identifier}" id="{element.uniqueIdentifier}
→˓"

placeholder="{element.properties.placeholder}" errorClass=
→˓"error" />
</f:section>

As you can see, the Form Element templates use layouts in order to reduce duplicated markup.

Tip: The Fluid Form Renderer expects layout and partial names in the format <PackageKey>:<Name>. That
makes it possible to reference layouts and partials from other packages!

14 Chapter 2. About This Documentation

Flow Form Framework Documentation, Release 2.0

We’ll see how to change the layout in the next section. For now let’s try to simply change the class attribute of
the SingleLineText element.

For that, copy the default template to Your.Package/Private/Resources/CustomElements/
SingleLineText.html and adjust it as follows:

<f:layout name="TYPO3.Form:Field" />
<f:section name="field">

<f:form.textfield property="{element.identifier}" id="{element.uniqueIdentifier}
→˓"

placeholder="{element.properties.placeholder}" errorClass=
→˓"error"

class="customClass" />
</f:section>

Now, you only need to tell the framework to use your newly created template instead of the default one. This can
be archieved by overriding the rendering option templatePathPattern in the form element type definition.

Adjust Your.Package/Configuration/Settings.yaml accordingly:

TYPO3:
Form:
presets:
myCustom:
title: 'Custom Elements'
parentPreset: 'default'
formElementTypes:
'TYPO3.Form:SingleLineText':

renderingOptions:
templatePathPattern: 'resource://Your.Package/Private/CustomElements/

→˓SingleLineText.html'

Now, all Single-Line Text elements will have a class attribute of customClass when using the
myCustom preset.

A more realistic use-case would be to change the arrangement of form elements. Read on to see how you can
easily change the layout of a form.

2.3.6 Changing The Form Layout

By default, validation errors are rendered next to each form element. Imagine you want to render validation errors
of the current page above the form instead. For this you need to adjust the previously mentioned field layout.

The provided default field layout located in TYPO3.Form/Resources/Private/Form/Layouts/
Field.html is a bit more verbose as it renders the label, validation errors and an asterisk if the element is
required (we slightly reformatted the template here to improve readability):

{namespace form=TYPO3\Form\ViewHelpers}
<f:form.validationResults for="{element.identifier}">

<!-- wrapping div for the form element; contains an identifier for the form
→˓element if we are

in preview mode -->
<div class="clearfix{f:if(condition: validationResults.flattenedErrors, then: '

→˓error')}"
<f:if condition="{element.rootForm.renderingOptions.previewMode}">

data-element="{form:form.formElementRootlinePath(renderable:element)}"
</f:if>

>
<!-- Label for the form element, and required indicator -->
<label for="{element.uniqueIdentifier}">{element.label -> f:format.nl2br()}

<f:if condition="{element.required}">
<f:render partial="TYPO3.Form:Field/Required" />

(continues on next page)

2.3. Adjusting Form Output 15

Flow Form Framework Documentation, Release 2.0

(continued from previous page)

</f:if>
</label>

<!-- the actual form element -->
<div class="input">

<f:render section="field" />

<!-- validation errors -->
<f:if condition="{validationResults.flattenedErrors}">

<f:for each="{validationResults.errors}" as="error">

{error -> f:translate(id: error.code, arguments: error.arguments,
package: 'TYPO3.Form', source:

→˓'ValidationErrors')}

</f:for>

</f:if>
</div>

</div>
</f:form.validationResults>

Copy the layout file to Your.Package/Private/Resources/CustomElements/Layouts/Field.
html and remove the validation related lines:

{namespace form=TYPO3\Form\ViewHelpers}
<f:form.validationResults for="{element.identifier}">

<!-- wrapping div for the form element; contains an identifier for the form
→˓element if we are

in preview mode -->
<div class="clearfix{f:if(condition: validationResults.flattenedErrors, then: '

→˓error')}"
<f:if condition="{element.rootForm.renderingOptions.previewMode}">

data-element="{form:form.formElementRootlinePath(renderable:element)}"
</f:if>

>
<!-- Label for the form element, and required indicator -->
<label for="{element.uniqueIdentifier}">{element.label -> f:format.nl2br()}

<f:if condition="{element.required}">
<f:render partial="TYPO3.Form:Field/Required" />

</f:if>
</label>

<!-- the actual form element -->
<div class="input">

<f:render section="field" />
</div>

</div>
</f:form.validationResults>

Additionally you need to adjust the default form template located in TYPO3.Form/Resources/Private/
Form/Form.html (remember that a FormDefinition also has a form element type, by default of TYPO3.
Form:Form), which looks as follows by default:

{namespace form=TYPO3\Form\ViewHelpers}
<form:form object="{form}" action="index" method="post" id="{form.identifier}"

enctype="multipart/form-data">
<form:renderRenderable renderable="{form.currentPage}" />
<div class="actions">

<f:render partial="TYPO3.Form:Form/Navigation" arguments="{form: form}" />
</div>

(continues on next page)

16 Chapter 2. About This Documentation

http://api.typo3.org/flow3-form/master/class-TYPO3.Form.Core.Model.FormDefinition.html

Flow Form Framework Documentation, Release 2.0

(continued from previous page)

</form:form>

Copy this template file to Your.Package/Private/Resources/CustomElements/Form.html and
add the validation result rendering:

{namespace form=TYPO3\Form\ViewHelpers}
<form:form object="{form}" action="index" method="post" id="{form.identifier}"

enctype="multipart/form-data">
<f:form.validationResults>

<f:if condition="{validationResults.flattenedErrors}">
<ul class="error">

<f:for each="{validationResults.flattenedErrors}" as="elementErrors"
key="elementIdentifier" reverse="true">

{elementIdentifier}:

<f:for each="{elementErrors}" as="error">
{error}

</f:for>

</f:for>

</f:if>

</f:form.validationResults>
<form:renderRenderable renderable="{form.currentPage}" />
<div class="actions">

<f:render partial="TYPO3.Form:Form/Navigation" arguments="{form: form}" />
</div>

</form:form>

Now, you only need to adjust the form definition in order to use the new templates:

TYPO3:
Form:
presets:
########### CUSTOM PRESETS ###########

myCustom:
title: 'Custom Elements'
parentPreset: 'default'
formElementTypes:

...

override template path of TYPO3.Form:Form
'TYPO3.Form:Form':
renderingOptions:

templatePathPattern: 'resource://TYPO3.FormExample/Private/
→˓CustomElements/Form.html'

override default layout path
'TYPO3.Form:Base':
renderingOptions:
layoutPathPattern: 'resource://TYPO3.FormExample/Private/

→˓CustomElements/Layouts/{@type}.html'

Tip: You can use placeholders in templatePathPattern, partialPathPattern and
layoutPathPattern: {@package} will be replaced by the package key and {@type} by the current
form element type without namespace. A small example shall illustrate this:

2.3. Adjusting Form Output 17

Flow Form Framework Documentation, Release 2.0

If the form element type is Your.Package:FooBar, then {@package} is replaced by Your.Package,
and {@type} is replaced by FooBar. As partials and layouts inside form elements are also specified using the
Package:Type notation, this replacement also works for partials and layouts.

2.3.7 Creating a New Form Element

With the Form Framework it is really easy to create additional Form Element types. Lets say you want to create
a specialized version of the TYPO3.Form:SingleSelectRadiobuttons that already provides two radio
buttons for Female and Male. That’s just a matter of a few lines of yaml:

TYPO3:
Form:
presets:

########### CUSTOM PRESETS ###########

myCustom:
title: 'Custom Elements'
parentPreset: 'default'
formElementTypes:

...

'Your.Package:GenderSelect':
superTypes:
'TYPO3.Form:SingleSelectRadiobuttons': TRUE

renderingOptions:
templatePathPattern: 'resource://TYPO3.Form/Private/Form/

→˓SingleSelectRadiobuttons.html'
properties:
options:
f: 'Female'
m: 'Male'

As you can see, you can easily extend existing Form Element Definitions by specifying the superTypes.

Tip: We have to specify the templatePathPattern because according to the default path pattern the tem-
plate would be expected at Your.Package/Private/Resources/Form/GenderSelect.html other-
wise.

Note: Form Elements will only be available in the preset they’re defined (and in it’s sub-presets). Therefore you
should consider adding Form Elements in the default preset to make them available for all Form Definitions
extending the default preset.

2.4 Extending Form API

After working through this guide, you will have learned:

• how to create custom PHP based Form Element implementations

• how to create a custom Form Element renderer

Generally, this guide answers the question: How can the form output be modified with programming?

18 Chapter 2. About This Documentation

Flow Form Framework Documentation, Release 2.0

2.4.1 Custom PHP-based Form Elements

In the previous guides you have learned how to create custom Form Elements without writing a single line of
PHP. While this is sufficient for most cases where you mainly want to change the visual representation or create
a specialized version of an already existing element, there are situations where you want to adjust the Server-
side behavior of an element. This is where you want to get your hands dirty and create custom Form Element
implementations. Examples for such custom Form Elements are:

• A DatePicker that converts the input to a DateTime object

• A File upload that validates and converts an uploaded file to a Resource

• A Captcha image

A Form Element must implement the FormElementInterface interface located in TYPO3.Form/
Classes/Core/Model/FormElementInterface.php.

Tip: Usually you want to extend the provided AbstractFormElement which already implements most of
the methods of the interface.

Most commonly you create custom Form elements in order to preconfigure the so called Processing Rule
which defines validation and property mapping instructions for an element. Lets have a look at the DatePicker
Form Element located in TYPO3.Form/Classes/FormElements/DatePicker.php:

class DatePicker extends \TYPO3\Form\Core\Model\AbstractFormElement {
public function initializeFormElement() {

$this->setDataType('DateTime');
}

}

The method initializeFormElement() is called whenever a Form Element is added to a form. In this
example, we only set the target data type to a DateTime object. This way, property mapping and type conversion
using the registered TypeConverters is automatically triggered.

Besides being able to modify the Form Element configuration during initialization you can also implement the
callbacks beforeRendering() or/and onSubmit() in order to adjust the behavior or representation of the
element at runtime. Lets create a new Form Element that is required only if another form field has been specified
(for example a “subscribe to newsletter” checkbox that requires you to provide an email address if checked). For
this create a new PHP class at Your.Package/Classes/FormElements/ConditionalRequired.
php:

namespace Your\Package\FormElements;

class ConditionalRequired extends \TYPO3\Form\Core\Model\AbstractFormElement {

/**
* Executed before the current element is outputted to the client

*
* @param \TYPO3\Form\Core\Runtime\FormRuntime $formRuntime

* @return void

*/
public function beforeRendering(\TYPO3\Form\Core\Runtime\FormRuntime

→˓$formRuntime) {
$this->requireIfTriggerIsSet($formRuntime->getFormState());

}

/**
* Executed after the page containing the current element has been submitted

*
* @param \TYPO3\Form\Core\Runtime\FormRuntime $formRuntime

* @param mixed $elementValue raw value of the submitted element

(continues on next page)

2.4. Extending Form API 19

Flow Form Framework Documentation, Release 2.0

(continued from previous page)

* @return void

*/
public function onSubmit(\TYPO3\Form\Core\Runtime\FormRuntime $formRuntime, &

→˓$elementValue) {
$this->requireIfTriggerIsSet($formRuntime->getFormState());

}

/**
* Adds a NotEmptyValidator to the current element if the "trigger" value is

→˓not empty.

* The trigger can be configured with $this->properties['triggerPropertyPath']

*
* @param \TYPO3\Form\Core\Runtime\FormState $formState

* @return void

*/
protected function requireIfTriggerIsSet(\TYPO3\Form\Core\Runtime\FormState

→˓$formState) {
if (!isset($this->properties['triggerPropertyPath'])) {

return;
}
$triggerValue = $formState->getFormValue($this->properties[

→˓'triggerPropertyPath']);
if ($triggerValue === NULL || $triggerValue === '') {

return;
}
$this->addValidator(new

→˓\TYPO3\Flow\Validation\Validator\NotEmptyValidator());
}

}

beforeRendering() is invoked just before a Form Element is actually outputted to the client. It receives a
reference to the current FormRuntime making it possible to access previously submitted values.

onSubmit() is called whenever the page containing the current Form Element is submitted. to the server. In
addition to the FormRuntime this callback also gets passed a reference to the raw value of the submitted element
value before property mapping and validation rules were applied.

In order to use the new Form Element type you first have to extend the Form Definition and specify the
implementationClassName option:

TYPO3:
Form:
presets:
somePreset:

...
formElementTypes:
'TYPO3.FormExample:ConditionalRequired':

superTypes:
'TYPO3.Form:FormElement': TRUE

implementationClassName:
→˓'TYPO3\FormExample\FormElements\ConditionalRequired'

renderingOptions:
templatePathPattern: 'resource://TYPO3.Form/Private/Form/

→˓SingleLineText.html'

This makes the new Form Element TYPO3.FormExample:ConditionalRequired available in the preset
somePreset and you can use it as follows:

$form = new FormDefinition('myForm', $formDefaults);

$page1 = $form->createPage('page1');

(continues on next page)

20 Chapter 2. About This Documentation

Flow Form Framework Documentation, Release 2.0

(continued from previous page)

$newsletter = $page1->createElement('newsletter', 'TYPO3.Form:Checkbox');
$newsletter->setLabel('Subscribe for Newsletter');

$email = $page1->createElement('email', 'TYPO3.FormExample:ConditionalRequired');
$email->setLabel('E-Mail');
$email->setProperty('triggerPropertyPath', 'newsletter');

The line $email->setProperty('triggerPropertyPath', 'newsletter'); makes the email
Form Element required depending on the value of the newsletter element.

This example is really simple but it demonstrates how you can profoundly interact with the Form handling at every
level.

2.4.2 Custom Form Element Renderers

By default a form and all its elements are rendered with the FluidFormRenderer which is a specialized
version of the Fluid TemplateView. For each renderable Form Element there exists an corresponding Fluid
template. The template path can be changed for all or specific Form Elements as well as layout and partial paths,
so the default renderer is flexible enough to cover most scenarios. However if you want to use your own templating
engine or don’t want to render HTML forms at all (think of Flash or CLI based forms) you can implement your
own Renderer and use it either for the complete form or for certain Form Elements.

As a basic example we want to implement a ListRenderer that simply outputs specified items as unordered
list. A Form Element Renderer must implement the RendererInterface interface located in TYPO3.
Form/Classes/Core/Renderer/RendererInterface.php and usually you want to extend the pro-
vided AbstractRenderer which already implements most of the methods of the interface:

namespace Your\Package\Renderers;

class ListRenderer extends \TYPO3\Form\Core\Renderer\AbstractElementRenderer {

/**
* @param \TYPO3\Form\Core\Model\Renderable\RootRenderableInterface $renderable

* @return string

*/
public function

→˓renderRenderable(\TYPO3\Form\Core\Model\Renderable\RootRenderableInterface
→˓$renderable) {

$items = array();
if ($renderable instanceof \TYPO3\Form\Core\Model\FormElementInterface) {

$elementProperties = $renderable->getProperties();
if (isset($elementProperties['items'])) {

$items = $elementProperties['items'];
}

}
$content = sprintf('<h3>%s</h3>', htmlspecialchars($renderable->getLabel()));
$content .= '';
foreach ($items as $item) {

$content .= sprintf('%s', htmlspecialchars($item));
}
$content .= '';
return $content;

}
}

Tip: If you write your own Renderer make sure to sanitize values with htmlspecialchars() before out-
putting them to prevent invalid HTML and XSS vulnerabilities.

2.4. Extending Form API 21

Flow Form Framework Documentation, Release 2.0

2.5 Configuring Form Builder

After this guide, you will have learned how to Configure the Form Builder through settings

2.5.1 Adding a New Form Element Inside “Create Elements”

Let’s say you have created your form element, and want to make it available inside the Form Builder. For that,
you need some YAML configuration which looks as follows:

we are now inside TYPO3:Form:presets:[presetName]
formElementTypes:
'Your.Package:YourFormElement':
the definitions for your form element
formBuilder:
label: 'Your New Form Element'
group: custom
sorting: 200

To determine whether a form element is visible in the Form Builder, you must set formBuilder:group to a
valid group. A form element group is used to visually group the available form elements together. In the default
profile, the following groups are configured:

• input

• select

• custom

• container

The label is – as you might expect – the human-readable label, while the sorting determines the ordering of
form elements inside their form element group.

2.5.2 Creating a New Form Element Group

All form element groups are defined inside formElementGroups inside the preset, so that’s how you can add
a new group:

we are now inside TYPO3:Form:presets:[presetName]
formElementGroups:

specialCustom:
sorting: 500
label: 'My special custom group'

For each group, you need to specify a human-readable label, and the sorting (which determines the ordering
of the groups).

2.5.3 Setting Default Values for Form Elements

When a form element is created, you can define some default values which are directly set on the form element.
As an example, let’s imagine you want to build a ProgrammingLanguageSelect where the user can choose
his favorite programming language.

In this case, we want to define some default programming languages, but the integrator who builds the form
should be able to add custom options as well. These default options can be set in Settings.yaml using the
formBuilder:predefinedDefaults key.

Here follows the full configuration for the ProgrammingLanguageSelect (which is an example taken from
the TYPO3.FormExample package):

22 Chapter 2. About This Documentation

Flow Form Framework Documentation, Release 2.0

we are now inside TYPO3:Form:presets:[presetName]
formElementTypes:
'TYPO3.FormExample:ProgrammingLanguageSelect':
superTypes:

'TYPO3.Form:SingleSelectRadiobuttons': TRUE
renderingOptions:

templatePathPattern: 'resource://TYPO3.Form/Private/Form/
→˓SingleSelectRadiobuttons.html'

here follow the form builder specific options
formBuilder:

group: custom
label: 'Programming Language Select'

we now set some defaults which are applied once the form element is
→˓inserted to the form

predefinedDefaults:
properties:

options:
0:

_key: 'php'
_value: 'PHP'

1:
_key: 'java'
_value: 'Java etc'

2:
_key: 'js'
_value: 'JavaScript'

Contrasting Use Case: Gender Selection

Inside Creating a new form element, we have implemented a special Gender Select. Let’s think a second about the
differences between the Gender Select and the Programming Language Select examples:

For a Gender select field, the integrator using the form builder does not need to set any options for this form
element, as the available choices (Female and Male) are predefined inside the form element template.

In the case of the programming language select, we only want to set some sensible defaults for the integrator, but
want him to be able to adjust the values.

Choosing which strategy to use depends mostly on the expected usage patterns:

• In the gender select example, if a new option is added to the list afterwards, this will directly be reflected
in all forms which use this input field.

• If you use predefinedDefaults, changing these will be only applied to new elements, but not to
already existing elements.

Note: In order to make the gender selection work nicely with the Form Builder, we should disable the options
editor as follows (as the options should not be editable by the implementor):

we are now inside TYPO3:Form:presets:[presetName]
formElementTypes:
'TYPO3.FormExample:GenderSelect':

formBuilder:
editors:
Disable "options" editor
options: null

2.5. Configuring Form Builder 23

Flow Form Framework Documentation, Release 2.0

Tip: The same distinction between using formBuilder:predefinedDefaults and the form element type
definition directly can also be used to add other elements like Validators or Finishers.

2.5.4 Marking Validators and Finishers As Required

Sometimes, you want to simplify the Form Builder User Interface and make certain options easier for your users.
A frequent use-case is that you want that a certain validator, like the StringLength validator, is always shown
in the user interface as it is very often used.

This can be configured as follows:

we are now inside TYPO3:Form:presets:[presetName]
formElementTypes:
'TYPO3.Form:TextMixin': # or any other type here
formBuilder:
editors:
validation:
availableValidators:
'TYPO3.Flow:StringLength': # or any other validator
mark this validator required such that it is always shown.
required: true

Finishers

The same works for Finishers, for example the following configuration makes the EmailFinisher mandatory:

we are now inside TYPO3:Form:presets:[presetName]
formElementTypes:
'TYPO3.Form:Form':
formBuilder:
editors:
finishers:
availableFinishers:
'TYPO3.Form:Email': # or any other finisher
mark this finisher required such that it is always shown.
required: true

2.5.5 Finishing Up

You should now have some receipes at hand on how to modify the Form Builder. Read the next chapter for some
more advanced help.

2.6 Extending Form Builder

After working through this guide, you will have learned:

• How to include custom CSS into the form builder

• How to write a custom finisher editor

• How can the form builder be adjusted

An in-depth reference on how to extend the form builder using custom JavaScript can be found in the start page
of the Form Builder API documentation.

24 Chapter 2. About This Documentation

Flow Form Framework Documentation, Release 2.0

2.6.1 Adjusting the Form Builder with Custom CSS

Let’s say you want to adjust the form builder with a custom CSS file inside Your.Package/Resources/
Public/FormBuilderAdjustments.css. Then, you need to tell the form builder to load this additional
stylesheet as well. You can do that using an entry inside Settings.yaml of your package which looks as
follows:

TYPO3:
FormBuilder:
stylesheets:

customAdjustments:
files: ['resource://Your.Package/Public/FormBuilderAdjustments.css']
sorting: 200

Most important is the sorting property, as it defines the order in which the CSS files are included. Every sorting
up to 100 is reserved for internal use by the form builder, so you should use sorting numbers above 100 unless you
have a good reason to do otherwise.

Tip: Loading additional JavaScript files into the form builder works in the same manner.

2.6.2 Overriding Form Builder Handlebars Template

Let’s say we want to adjust the header of the form builder, such that it displays your company up there as well.
For that, we need to modify the default handlebars template for the header area.

Warning: If you modify handlebars templates, you might need to adjust them after a new version of the form
builder has been released! Modification of handlebars templates is useful for unplanned extensibility, but
you should only do it as last resort!

The default template is located inside TYPO3.FormBuilder/Resources/Private/
FormBuilderTemplates/Header.html and looks as follows:

<h1>Form Builder - {{TYPO3.FormBuilder.Model.Form.formDefinition.label}}</h1>
{{#if TYPO3.FormBuilder.Model.Form.currentlyLoadingPreview}}

Loading..
{{/if}}

<ul id="typo3-formbuilder-toolbar">
<li class="typo3-formbuilder-preset">

{{view TYPO3.FormBuilder.View.Header.PresetSelector}}

<li class="typo3-formbuilder-preview">

{{#view TYPO3.FormBuilder.View.Header.PreviewButton class="typo3-formbuilder-
→˓button icon"}}Preview{{/view}}

<li class="typo3-formbuilder-save">

{{#view TYPO3.FormBuilder.View.Header.SaveButton class="typo3-formbuilder-
→˓button icon"}}Save{{/view}}

We can just copy it to Your.Package/Resources/Private/FormBuilderTemplates/Header.
html and adjust it as needed, modifying the part inside the <h1>...</h1> to:

<h1>Your Company Form Builder - {{TYPO3.FormBuilder.Model.Form.formDefinition.
→˓label}}</h1>

2.6. Extending Form Builder 25

Flow Form Framework Documentation, Release 2.0

Then, we need to tell the form builder that we want to use a different handlebars template for the header. For that,
we need the following Settings.yaml:

TYPO3:
FormBuilder:
handlebarsTemplates:

Header: resource://Your.Package/Private/FormBuilderTemplates/Header.html

Warning: Make sure that your package is loaded after the FormBuilder package if you want to override
such settings.

2.6.3 Creating a Custom Editor

Every form element is edited on the right side of the Form Builder in the element options panel. In order to
be flexible and extensible, the element options panel is a container for editors which, as a whole, edit the form
element. There are a multitude of predefined editors, ranging from a simple text input field up to a grid widget for
editing properties.

All editors for a given form element are defined inside the formElementTypes definition, looking as follows:

we are now inside TYPO3:Form:presets:[presetName]:formElementTypes
'TYPO3.Form:TextMixin':

formBuilder:
editors:

placeholder: # an arbitrary key for identifying the editor instance
sorting: 200 # the sorting determines the ordering of the different

→˓editors inside the element options panel
viewName: 'JavaScript.View.Class.Name' # the JavaScript view class name

→˓which should be used here
additionally, you can define view-specific options here

here, you can define some more editors.

We will now create a custom editor for rendering a select box, and will add it to the File Upload form
element such that a user can choose the file types he allows. The finished editor is part of the stan-
dard FormBuilder distribution inside TYPO3.FormBuilder/Resources/Private/CoffeeScript/
elementOptionsPanelEditors/basic.coffee.

Note: If you want to create your completely own editor, you need to include the additional JavaScript file. How
this is done is explained in detail inside Adjusting the Form Builder with Custom CSS

The Basic Setup

Note: We’ll develop the editor in CoffeeScript, but you are of course free to also use JavaScript.

We will extend our editor from TYPO3.FormBuilder.View.ElementOptionsPanel.Editor.
AbstractPropertyEditor:

TYPO3.FormBuilder.View.ElementOptionsPanel.Editor.SelectEditor =
→˓AbstractPropertyEditor.extend {

templateName: 'ElementOptionsPanel-SelectEditor'
}

Then, we will create a basic handlebars template and register it underneath
ElementOptionsPanel-SelectEditor (as described in Overriding Form Builder Handlebars Template).
We’ll just copy over an existing editor template and slightly adjust it:

26 Chapter 2. About This Documentation

http://coffeescript.org

Flow Form Framework Documentation, Release 2.0

<div class="typo3-formbuilder-controlGroup">
<label>{{label}}:</label>
<div class="typo3-formbuilder-controls">

[select should come here]
</div>

</div>

Note: Don’t forget to register the handlebars template ElementOptionsPanel-SelectEditor inside
your Settings.yaml.

Now that we have all the pieces ready, let’s actually use the editor inside the TYPO3.Form:FileUpload form
element:

we are now inside TYPO3:Form:presets:[presetName]:formElementTypes
'TYPO3.Form:FileUpload':
formBuilder:
editors:

allowedExtensions:
sorting: 200
viewName: 'TYPO3.FormBuilder.View.ElementOptionsPanel.Editor.SelectEditor'

After reloading the form builder, you will see that the file upload field has a field: [select should come
here] displayed inside the element options panel.

Now that we have the basics set up, let’s fill the editor with life by actually implementing it.

Implementing the Editor

Everything inside here is just JavaScript development with EmberJS, using bindings and computed properties. If
that sound like chinese to you, head over to the EmberJS website and read it up.

We somehow need to configure the available options inside the editor, and come up with the following YAML on
how we want to configure the file types:

allowedExtensions:
sorting: 200
label: 'Allowed File Types'
propertyPath: 'properties.allowedExtensions'
viewName: 'TYPO3.FormBuilder.View.ElementOptionsPanel.Editor.SelectEditor'
availableElements:
0:
value: ['doc', 'docx', 'odt', 'pdf']
label: 'Documents (doc, docx, odt, pdf)'

1:
value: ['xls']
label: 'Spreadsheet documents (xls)'

Furthermore, the above example sets the label and propertyPath options of the element editor. The label
is shown in front of the element, and the propertyPath points to the form element option which shall be
modified using this editor.

All properties of such an editor definition are made available inside the editor object itself, i.e. the
SelectEditor now magically has an availableElements property which we can use inside the Han-
dlebars template to bind the select box options to. Thus, we remove the [select should come here] and
replace it with Ember.Select:

{{view Ember.Select contentBinding="availableElements" optionLabelPath="content.
→˓label"}}

Now, if we reload, we already see the list of choices being available as a dropdown.

2.6. Extending Form Builder 27

http://emberjs.com

Flow Form Framework Documentation, Release 2.0

Saving the Selection

Now, we only need to save the selection inside the model again. For that, we bind the current selection to a
property in our view using the selectionBinding of the Ember.Select view:

{{view Ember.Select contentBinding="availableElements" optionLabelPath="content.
→˓label" selectionBinding="selectedValue"}}

Then, let’s create a computed property selectedValue inside the editor implementation, which updates the
value property and triggers the change notification callback @valueChanged():

SelectEditor = AbstractPropertyEditor.extend {
templateName: 'ElementOptionsPanel-SelectEditor'
API: list of available elements to be shown in the select box; each element

→˓should have a "label" and a "value".
availableElements: null

selectedValue: ((k, v) ->
if arguments.length >= 2

we need to set the value
@set('value', v.value)
@valueChanged()

get the current value
for element in @get('availableElements')

return element if element.value == @get('value')

fallback if value not found
return null

).property('availableElements', 'value').cacheable()
}

That’s it :)

2.6.4 Creating a Finisher Editor

Let’s say we have implemented an DatabaseFinisher which has some configuration options like the table name,
and you want to make these configuration options editable inside the Form Builder. This can be done using a
custom handlebars template, and some configuration. In many cases, you do not need to write any JavaScript for
that.

You need to do three things:

1. Register the finisher as a Finisher Preset

2. Configure the finisher editor for the form to include the newly created finisher as available finisher

3. create and include the handlebars template

TYPO3:
Form:
presets:
yourPresetName: # fill in your preset name here, or "default"
1. Register your finisher as finisher preset
finisherPresets:
'Your.Package:DatabaseFinisher':

implementationClassName: 'Your\Package\Finishers\DatabaseFinisher'
formElementTypes:
'TYPO3.Form:Form':

formBuilder:
editors:
finishers:

(continues on next page)

28 Chapter 2. About This Documentation

Flow Form Framework Documentation, Release 2.0

(continued from previous page)

availableFinishers:
Configure the finisher editor for the form to include
the newly created finisher as available finisher
'Your.Package:DatabaseFinisher':
label: 'Database Persistence Finisher'
templateName: 'Finisher-YourPackage-DatabaseFinisher'

FormBuilder:
handlebarsTemplates:

include the handlebars template
Finisher-YourPackage-DatabaseFinisher: resource://Your.Package/Private/

→˓FormBuilderTemplates/DatabaseFinisher.html

Now, you only need to include the appropriate Handlebars template, which could look as follows:

<h4>
{{label}}
{{#view Ember.Button target="parentView" action="remove"

isVisibleBinding="notRequired"
class="typo3-formbuilder-removeButton"}}Remove{{/view}}

</h4>

<div class="typo3-formbuilder-controlGroup">
<label>Database Table</label>
<div class="typo3-formbuilder-controls">

{{view Ember.TextField valueBinding="currentCollectionElement.options.
→˓databaseTable"}}

</div>
</div>

Tip: Creating a custom validator editor works in the same way, just that they have to be registered underneath
validatorPresets and the editor is called validators instead of finishers.

2.6. Extending Form Builder 29

Flow Form Framework Documentation, Release 2.0

30 Chapter 2. About This Documentation

CHAPTER 3

Credits

The initial implementation has been generously sponsored by AKOM360 - Multi Channel Marketing.

It has been implemented by:

• Sebastian Kurfürst, sandstorm|media

• Bastian Waidelich, wwwision

31

http://akom360.de
http://sandstorm-media.de
http://wwwision.de

	Forms
	About This Documentation
	Quickstart
	Configuring form rendering with YAML
	Adjusting Form Output
	Extending Form API
	Configuring Form Builder
	Extending Form Builder

	Credits

