

    
      
          
            
  
Flicket Documentation

Flicket is a simple web based ticketing system written in Python using
the flask web framework which supports English and French locales.


Why Flicket?

I could not find a simple open source ticketing system that I really liked.
So, decided to have a crack at creating something written in Python.
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Requirements


Operating System

This will run on either Linux or Windows. Mac is untested.




Python

Python =>3.5 - I have not tested earlier versions of Python 3.




SQL Database Server

Out of the box Flicket is configured to work with MySQL [https://www.mysql.com/downloads/]. But there
should be no reason other SQLAlchemy supported databases won’t work
just as well.


Note

When I last tried SQLite I had problems configuring the email settings
within the administration settings. You may have to change them manually
within SQLite.






Web Server

For a production environment a webserver such as Apache [https://httpd.apache.org/]
or nginx [https://www.nginx.com/] should be used to serve the application.







          

      

      

    

  

    
      
          
            
  
Installation

First read Requirements.

It is good practise to create a virtual environment before installing
the python package requirements. Virtual environments can be
considered a sand boxed python installation for a specific application.
They are used since one application may require a different version of
a python module than another.


Getting Flicket

The source code for Flicket is hosted at GitHub. You can either get
the latest frozen zip file or use the latest master branch.


Zip Package

Download Flicket Dist.zip [https://github.com/evereux/flicket/tree/master/dist]
and unzip.




Master Branch

Get the latest master branch from github using git:

git clone https://github.com/evereux/flicket.git





Alternatively, download and unzip the master branch zip file [https://github.com/evereux/flicket/archive/master.zip].






Installing Python Requirements

Install the requirements using pip::

(env) C:\<folder_path>\flicket> pip install -r requirements.txt








Set Up


	Create your database and a database user that will access the flicket
database.





	If you are using a database server other than MySQL you should change the
db_type value within config.py. See SQLAlchemy_documentation [http://docs.sqlalchemy.org/en/latest/core/engines.html] for options.


	Create the configuration json file:

python -m scripts.create_json







	Initialise the database using manage.py from the command line:

python manage.py db init
python manage.py db migrate
python manage.py db upgrade










	Run the set-up script:. This is required to create the Admin user and site url defaults.
These can be changed again via the admin panel once you log in:

python manage.py run_set_up







	Running development server for testing:

python manage.py runserver









Log into the server using the username admin and the password defined during
the setup process.







          

      

      

    

  

    
      
          
            
  
Administration


Command Line Options

From the command line the following options are available.

python manage.py

usage: manage.py [-?]
                 {db,run_set_up,export_users,import_users,update_user_posts,update_user_assigned,email_outstanding_tickets,runserver,shell}
                 ...

positional arguments:
  {db,run_set_up,export_users,import_users,update_user_posts,update_user_assigned,email_outstanding_tickets,runserver,shell}
    db                  Perform database migrations
    run_set_up
    export_users        Command used by manage.py to export all the users from
                        the database to a json file. Useful if we need a list
                        of users to import into other applications.
    import_users        Command used by manage.py to import users from a json
                        file formatted such: [ { username, name, email,
                        password. ]
    update_user_posts   Command used by manage.py to update the users total
                        post count. Use when upgrading from 0.1.4.
    update_user_assigned
                        Command used by manage.py to update the users total
                        post count. Use if upgrading to 0.1.7.
    email_outstanding_tickets
                        Script to be run independently of the webserver.
                        Script emails users a list of outstanding tickets that
                        they have created or been assigned. To be run on a
                        regular basis using a cron job or similar. Email
                        functionality has to be enabled.
    runserver           Runs the Flask development server i.e. app.run()
    shell               Runs a Python shell inside Flask application context.

optional arguments:
  -?, --help            show this help message and exit








Administration Config Panel


Options

For email configuration the following options are available. At a minimum you should configure mail_server,
mail_port, mail_username and mail_password.

For more information regarding these settings see the documentation for Flask-Mail.


	
class flicket_admin.models.flicket_config.FlicketConfig(**kwargs)

	Server configuration settings editable by administrators only via the adminstration page /flicket_admin/config/.

For email configuration settings see https://flask-mail.readthedocs.io/en/latest/ for more information.


	Parameters

	
	mail_server (str) – example: smtp.yourcompany.com.


	mail_port (int) – example: 567


	mail_use_tls (bool) – example: true


	mail_use_ssl (bool) – example: false


	mail_debug (bool) – example: false


	mail_username (str) – example: flicket.admin


	mail_password (str) – 


	mail_default_sender (str) – example: flicket.admin@yourcompany.com


	mail_max_emails (int) – 


	mail_suppress_send (bool) – 


	mail_ascii_attachments (bool) – 


	application_title (str) – Changes the default banner text from Flicket. Can typically be your company name.


	posts_per_page (str) – Maximum number of posts / topics displayed per page.


	allowed_extensions (str) – A comma delimited list of file extensions users are allowed to upload. DO NOT include
the . before the extension letter.


	ticket_upload_folder (str) – The folder used for file uploads.


	base_url (str) – The sites base url. This is used to resolve urls for emails and links. Broken links are
probably a result of not setting this value.


	csv_dump_limit (str) – The maximum number of rows exported to csv.




















          

      

      

    

  

    
      
          
            
  
Exporting / Importing Flicket Users


Exporting

If you need to export the users from the Flicket database you can run the
following command:


python manage.py export_users




This will output a json file formatted thus:

[
    {
        'username': 'jblogs',
        'name': 'Joe Blogs',
        'email':'jblogs@email.com',
        'password': 'bcrypt_encoded_string'
    }
]








Importing

If you need to import users run the following command:


python manage.py import_users




The file has to formatted as shown in the Exporting example.







          

      

      

    

  

    
      
          
            
  
Installing A Webserver

Currently the documentation will only describe how to install and configure
the Apache webserver on Windows since this can be a bit trickier than on Linux.
However, some of the steps here can also be used in Linux.

The instructions provided are for use with Python and Apache. You must ensure
both Python and Apache have been compiled with the same version of Visual
Studio. Also, Python and Apache must both be compiled for the same CPU
architecture (x86 x64).

Also, the paths defined in this guide can be changed. You can by all means use
different paths but you should try and and get the webserver running with the
settings defined herein first.


Apache - Windows

Prior to installing a webserver you should confirm that flicket is working
correctly by running the developement webserver as described in the
Installation instructions.


Install mod_wsgi

Download the applicable mod_wsgi whl for your flavour of Apache and Python
from  the Unofficial Windows Binaries for Python Extension Packages [https://www.lfd.uci.edu/~gohlke/pythonlibs/#mod_wsgi]
page. For example, if you have Python 3.6 x64 and Apache 2.4 x64 you
would get the whl mod_wsgi-4.6.5+ap24vc14-cp36-cp36m-win_amd64.whl.

Whilst active in your flicket virtual environment install mod_wsgi:

pip install <path_to_download>mod_wsgi-4.6.5+ap24vc14-cp36-cp36m-win_amd64.whl








Installing Apache

Download Apache compiled with VC14 from the
apache lounge [https://www.apachelounge.com/download/VC14/].

Unzip the apache folder to your `c:` directory. You should end up with a
folder structure like thus:

C:\Apache24
    C:\Apache24\bin
    C:\Apache24\cgi-bin
    ...





Open the file C:Apache24confhttpd.conf in a text editor like
notepad++ [https://notepad-plus-plus.org/].

Modify the following line to read the following:

SRVROOT "C:\Apache24"





Add the following lines (put these after the other LoadModule declarations):

LoadModule wsgi_module "<path_to_your_virtualenv>/lib/site-packages/mod_wsgi/server/mod_wsgi.cp36-win_amd64.pyd"
WSGIPythonHome "<path_to_your_virtualenv>"





Uncomment the vhosts line:

Include conf/extra/httpd-vhosts.conf





Uncomment mod_version line


LoadModule version_module modules/mod_version.so




Edit the file C:Apache24confextrahttpd-vhosts.conf.

Comment out the existing configurations lines by prefixing with a # (good
reference for future troubleshooting).

Add the following:

<VirtualHost *:8000>

    ServerName <ip_address or hostname>
    ServerAlias <ip_address or hostname>
    ServerAdmin <your_email@there.com>

    DocumentRoot C:\Apache24\htdocs

    <Directory C:\Apache24\htdocs>
    <IfVersion < 2.4>
        Order allow,deny
        Allow from all
    </IfVersion>
    <IfVersion >= 2.4>
        Require all granted
    </IfVersion>
    </Directory>

    WSGIScriptAlias / <path_to_flicket>run.wsgi

    <Directory <path_to_flicket>>
    <IfVersion < 2.4>
        Order allow,deny
        Allow from all
    </IfVersion>
    <IfVersion >= 2.4>
        Require all granted
    </IfVersion>
    </Directory>

</VirtualHost>





Edit the file run.wsgi so that the path points to your Flicket virtual environment.




Register Apache As A Service

Navigate to the Apache folder and register the service with name Apache HTTP Server:

cd "C:\Apache24\bin"
httpd.exe -k install -n "Apache HTTP Server"








Start Apache

To start the service use either Windows Serivce Manage and start the service
Apache HTTP Server or from the command prompt whilst in the folder c:Apache24bin:

httpd -k start -n "Apache HTTP Server"





Flicket should now be available in your browser by accessing http:\<ip_address or hostname>:8000




Troubleshooting

To troubleshoot problems starting the apache service or accessing the webpage
you should start by reading your Apache installations log files normally located in c:Apache24logs.









          

      

      

    

  

    
      
          
            
  
Adding Additional Languages

Flicket now supports additional languages through the use of Flask Babel.
To add an additional local:


	Edit SUPPORTED_LANGUAGES in config.py and add an additional entry to
the dictionary. For example: {‘en’: ‘English’, ‘fr’: ‘Francais’,
‘de’: ‘German’}


	Whilst in the project root directory you now need to initialise
the new language to generate a template file for it.




pybabel init -i messages.pot -d application/translations -l de






	In the folder application/translations there should now be a new folder
de.


	Edit the file messages.po in that folder. For example:




msgid "403 Error - Forbidden"
msgstr "403 Error - Verboten"






	Compile the translations for use:




pybabel compile -d application/translations






	If any python or html text strings have been newly tagged for translation
run:




pybabel extract -F babel.cfg -o messages.pot .






	To get the new translations added to the .po files:




pybabel update -i messages.pot -d application/translations









          

      

      

    

  

    
      
          
            
  
Flicket - FAQ


What is Flicket?

Flicket is a simple open source ticketing system driven by the python
flask web micro framework.

Flicket also uses the following python packages:


alembic, bcrypt, flask-admin, flask-babel, flask-login, flask-migrate,
flask-principal, flask-sqlalchemy, flask-script, flask-wtf, jinja2,
Markdown, WTForms




See README.rst for full requirements.

## Licensing

For licensing see LICENSE.md




Tickets


General


	How do I create a ticket?

Select ‘create ticket’ from the Flicket pull down menu.



	How do I assign a ticket?

Scenario: You have raised a ticket and you know to whom the ticket
should be assigned.

Navigate to [flicket home page](/flicket/) and select the ticket you
wish to assign. Within the ticket page is a button to assign ticket.



	How do I release a ticket?

Scenario: You have been assigned a ticket but the ticket isn’t your
repsonsibility to complete or you are unable to for another reason.

Navgiate to [flicket home page](/flicket/) and select the ticket to
which you have been assigned. Within the ticket page is a button
to release the ticket from your ticket list.



	How do I close a ticket?

Scenario: The ticket has been resolved to your satisfaction and you
want to close the ticket.

Navgiate to [flicket home page](/flicket/) and select the ticket
which you would like to close. Within the ticket page is a button
to replay and close the ticket.

Only the following persons can close a ticket:
* Administrators.
* The user which has been assigned the ticket.
* The original creator of the ticket.


You may claim the ticket so that you may close it.






	What is markdown?


Markdown is a lightweight markup language with plain text formatting syntax.

The text contents of a ticket can be made easier to read by employing
markdown syntax.











Searching

The ticket main page can be filtered to show only results of a specific
interest to you. Tickets can be filtered by department, category, user
and a text string.




Departments


Note

Only administrators or super users can add / edit or delete departments.




	How do I add new departments?

Navigate to Departments via the menu bar and use the add departments form.



	How do I edit departments?

Navigate to [departments](/flicket/departments/) and select the edit
link against the department name.



	How do I delete departments?

Navigate to [departments](/flicket/departments/) and select the remove
link against the department name. This is represented with a cross.








Categories


Note

Only administrators or super users can add / edit or delete categories.




	How do I add categories?

Navigate to [departments](/flicket/departments/) and select the link
to add categories against the appropriate department name.






	How do I edit categories?

Navigate to [departments](/flicket/departments/) and select the link
to add categories against the appropriate department name.













          

      

      

    

  

    
      
          
            
  
Screenshots


Home Page

[image: _images/01_home_page_2019-05-12_16-23-44.png]



Tickets

All tickets.

–image:: images/02_tickets_2019-05-12_16-23-34.png




View Ticket

[image: _images/03_ticket_2019-05-12_16-27-49.png]



Create Ticket

[image: _images/04_create_ticket_markdown_preview_2019-05-12_16-27-24.png]



Users

[image: _images/05_users_2019-05-12_16-28-00.png]



Admin Panel

[image: _images/2019-01-22_18_40_21-Admin.png]



Admin Panel - Add User

[image: _images/2019-01-22_18_40_46-Add_User.png]



Admin Panel - Configuration

[image: _images/2019-01-22_18_43_25-Flicket_Configuration.png]






          

      

      

    

  

    
      
          
            
  
API


Authentication / Tokens


Get Token

The user will need to provide their username and password to retrieve an authentictaion token. The authentication
token is required to access all other parts of the API.

# example using httpie
http --auth <username>:<password> POST http://localhost:5000/flicket-api/tokens





Response

HTTP/1.0 200 OK
Content-Length: 50
Content-Type: application/json
Date: Sat, 29 Sep 2018 14:01:00 GMT
Server: Werkzeug/0.14.1 Python/3.6.5

{
    "token": "<token>"
}








Delete Token

# example using httpie
http DELETE http://localhost:5000/flicket-api/tokens "Authorization: Bearer <token>"





Responds

HTTP/1.0 204 NO CONTENT
Content-Length: 0
Content-Type: text/html; charset=utf-8
Date: Sat, 29 Sep 2018 14:13:19 GMT
Server: Werkzeug/0.14.1 Python/3.6.5










Users


Get User By ID


	
GET /flicket-api/user/(int: user_id)

	Request

GET /flicket-api/user/1 HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>





Response

HTTP/1.0 200 OK
Content-Length: 355
Content-Type: application/json
Date: Sun, 30 Jun 2019 14:15:37 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
    "avatar": "http://127.0.0.1:5000/flicket/static/flicket_avatars/5bxk0qxt.jpg",
    "email": "evereux@gmail.com",
    "id": 1,
    "job_title": "admin",
    "links": {
        "self": "http://127.0.0.1:5000/flicket-api/user/1",
        "users": "http://127.0.0.1:5000/flicket-api/users/"
    },
    "name": "admin",
    "total_posts": 12505,
    "username": "admin"
}












Get Users


	
GET /flicket-api/users/

	Request

GET /flicket-api/users/ HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>





Response

HTTP/1.0 200 OK
Content-Length: 355
Content-Type: application/json
Date: Sun, 30 Jun 2019 14:15:37 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
    "_links": {
        "next": null,
        "prev": null,
        "self": "http://localhost:5000/flicket-api/users/?page=1&per_page=50"
    },
    "_meta": {
        "page": 1,
        "per_page": 50,
        "total_items": 48,
        "total_pages": 1
    },
    "items": [
        {
            "avatar": "http://localhost:5000/flicket/static/flicket_avatars/__default_profile.png",
            "email": "evereux@gmail.com",
            "id": 1,
            "job_title": "admin",
            "links": {
                "self": "http://localhost:5000/flicket-api/user/1",
                "users": "http://localhost:5000/flicket-api/users/"
            },
            "name": "admin",
            "total_posts": 6381,
            "username": "admin"
        },
        {
            "avatar": "http://localhost:5000/flicket/static/flicket_avatars/__default_profile.png",
            "email": "admin@localhost",
            "id": 2,
            "job_title": "unknown",
            "links": {
                "self": "http://localhost:5000/flicket-api/user/2",
                "users": "http://localhost:5000/flicket-api/users/"
            },
            "name": "notification",
            "total_posts": 6445,
            "username": "notification"
        },
    ]
}














Tickets


Get Ticket By ID


	
GET /flicket-api/ticket/(int: ticket_id)

	Request

GET /flicket-api/ticket/1 HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>





Response

HTTP/1.0 200 OK
Content-Length: 1835
Content-Type: application/json
Date: Sun, 30 Jun 2019 14:15:37 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
    "assigned_id": 7,
    "category_id": 1,
    "content": "She spent her earliest years reading classic literature, and writing poetry. Haskell features a
    type system with type inference and lazy evaluation. They are written as strings of consecutive alphanumeric
    characters, the first character being lowercase. Tuples are containers for a fixed number of Erlang data
    types. Erlang is a general-purpose, concurrent, functional programming language. Where are my pants? He
    looked inquisitively at his keyboard and wrote another sentence. The arguments can be primitive data types
    or compound data types. It is also a garbage-collected runtime system. He looked inquisitively at his
    keyboard and wrote another sentence. Do you come here often? Ports are created with the built-in function
    open_port. He looked inquisitively at his keyboard and wrote another sentence. Haskell features a type
    system with type inference and lazy evaluation.",
    "date_added": "Sun, 23 Jun 2019 18:25:36 GMT",
    "date_modified": null,
    "id": 1,
    "links": {
        "assigned": "http://localhost:5000/flicket-api/user/7",
        "category": "http://localhost:5000/flicket-api/category/1",
        "histories": "http://localhost:5000/flicket-api/histories/?topic_id=1",
        "modified_by": null,
        "priority": "http://localhost:5000/flicket-api/priority/3",
        "self": "http://localhost:5000/flicket-api/ticket/1",
        "started_ny": "http://localhost:5000/flicket-api/user/12",
        "status": "http://localhost:5000/flicket-api/status/2",
        "subscribers": "http://localhost:5000/flicket-api/subscriptions/1/",
        "tickets": "http://localhost:5000/flicket-api/tickets/"
    },
    "modified_id": null,
    "started_id": 12,
    "status_id": 2,
    "ticket_priority_id": 3,
    "title": "He looked inquisitively at his keyboard and wrote another sentence."
}












Get Tickets



	
GET /flicket-api/tickets/

	



Request

GET /flicket-api/tickets/ HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>





Response

HTTP/1.0 200 OK
Content-Length: 2244
Content-Type: application/json
Date: Sun, 30 Jun 2019 14:15:37 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
    "_links": {
        "next": "http://localhost:5000/flicket-api/tickets/2/?per_page=1",
        "prev": null,
        "self": "http://localhost:5000/flicket-api/tickets/1/?per_page=1"
    },
    "_meta": {
        "page": 1,
        "per_page": 1,
        "total_items": 10000,
        "total_pages": 10000
    },
    "items": [
        {
            "assigned_id": 7,
            "category_id": 1,
            "content": "She spent her earliest years reading classic literature, and writing poetry. Haskell
            features a type system with type inference and lazy evaluation. They are written as strings of
            consecutive alphanumeric characters, the first character being lowercase. Tuples are containers
            for a fixed number of Erlang data types. Erlang is a general-purpose, concurrent, functional
            programming language. Where are my pants? He looked inquisitively at his keyboard and wrote another
            sentence. The arguments can be primitive data types or compound data types. It is also a
            garbage-collected runtime system. He looked inquisitively at his keyboard and wrote another
            sentence. Do you come here often? Ports are created with the built-in function open_port. He looked
            inquisitively at his keyboard and wrote another sentence. Haskell features a type system with type
            inference and lazy evaluation.",
            "date_added": "Sun, 23 Jun 2019 18:25:36 GMT",
            "date_modified": null,
            "id": 1,
            "links": {
                "assigned": "http://localhost:5000/flicket-api/user/7",
                "category": "http://localhost:5000/flicket-api/category/1",
                "histories": "http://localhost:5000/flicket-api/histories/?topic_id=1",
                "modified_by": null,
                "priority": "http://localhost:5000/flicket-api/priority/3",
                "self": "http://localhost:5000/flicket-api/ticket/1",
                "started_ny": "http://localhost:5000/flicket-api/user/12",
                "status": "http://localhost:5000/flicket-api/status/2",
                "subscribers": "http://localhost:5000/flicket-api/subscriptions/1/",
                "tickets": "http://localhost:5000/flicket-api/tickets/"
            },
            "modified_id": null,
            "started_id": 12,
            "status_id": 2,
            "ticket_priority_id": 3,
            "title": "He looked inquisitively at his keyboard and wrote another sentence."
        }
    ]
}











Create Ticket


	
POST /flicket-api/tickets(str:title,str:content,int:category_id,int:ticket_priority_id)

	Request

POST /flicket-api/tickets HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>

{
    "title": "this is my ticket",
    "content": "this is my content",
    "category_id": 1,
    "ticket_priority_id": 1
}





Response

HTTP/1.0 201 CREATED
Content-Length: 903
Content-Type: application/json
Date: Fri, 28 Jun 2019 12:04:59 GMT
Location: http://localhost:5000/flicket-api/ticket/10001
Server: Werkzeug/0.14.1 Python/3.7.3

{
    "assigned_id": null,
    "category_id": 1,
    "content": "this is my content",
    "date_added": "Fri, 28 Jun 2019 13:04:59 GMT",
    "date_modified": null,
    "id": 10001,
    "links": {
        "assigned": null,
        "category": "http://localhost:5000/flicket-api/category/1",
        "histories": "http://localhost:5000/flicket-api/histories/?topic_id=10001",
        "modified_by": null,
        "priority": "http://localhost:5000/flicket-api/priority/1",
        "self": "http://localhost:5000/flicket-api/ticket/10001",
        "started_ny": "http://localhost:5000/flicket-api/user/1",
        "status": "http://localhost:5000/flicket-api/status/1",
        "subscribers": "http://localhost:5000/flicket-api/subscriptions/10001/",
        "tickets": "http://localhost:5000/flicket-api/tickets/"
    },
    "modified_id": null,
    "started_id": 1,
    "status_id": 1,
    "ticket_priority_id": 1,
    "title": "this is my ticket"
}














Posts


Get Post By ID


	
GET /flicket-api/post/(int: post_id)

	Request

GET /flicket-api/priority/1 HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>





Response

HTTP/1.0 200 OK
Content-Length: 1231
Content-Type: application/json
Date: Sun, 30 Jun 2019 13:00:13 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
    "content": "The Galactic Empire is nearing completion of the Death Star, a space station with the power to
    destroy entire planets. Initially ...",
    "data_added": "Sun, 05 May 2019 14:19:42 GMT",
    "date_modified": null,
    "id": 1,
    "links": {
        "created_by": "http://127.0.0.1:5000/flicket-api/user/15",
        "posts": "http://127.0.0.1:5000/flicket-api/posts/1/",
        "self": "http://127.0.0.1:5000/flicket-api/post/1"
    },
    "ticket_id": 1,
    "user_id": 15
}












Get Posts

Retrieve all posts associated to a ticket by ticket_id.


	
GET /flicket-api/posts/(int: ticket_id)/(int: page)/

	Request

GET /flicket-api/posts/1/ HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>





Response

HTTP/1.0 200 OK
Content-Length: 27640
Content-Type: application/json
Date: Sun, 30 Jun 2019 15:41:09 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
    "_links": {
        "next": null,
        "prev": null,
        "self": "http://127.0.0.1:5000/flicket-api/posts/1/1/?per_page=50"
    },
    "_meta": {
        "page": 1,
        "per_page": 50,
        "total_items": 25,
        "total_pages": 1
    },
    "items": [
        {
            "content": "The Galactic Empire is nearing completion of the Death Star, a space station with
            the power to destroy entire planets. Initially composing light-hearted and irreverent works,
            he also wrote serious, sombre and religious pieces beginning in the 1930s. Erlang is known for
            its designs that are well suited for systems. It is also a garbage-collected runtime system.
            They are written as strings of consecutive alphanumeric characters, the first character being
            lowercase. The sequential subset of Erlang supports eager evaluation, single assignment, and
            dynamic typing. Tuples are containers for a fixed number of Erlang data types. Tuples are
            containers for a fixed number of Erlang data types. The arguments can be primitive data types
            or compound data types. Type classes first appeared in the Haskell programming language. The
            arguments can be primitive data types or compound data types.",
            "data_added": "Sun, 05 May 2019 14:19:42 GMT",
            "date_modified": null,
            "id": 1,
            "links": {
                "created_by": "http://127.0.0.1:5000/flicket-api/user/15",
                "posts": "http://127.0.0.1:5000/flicket-api/posts/1/",
                "self": "http://127.0.0.1:5000/flicket-api/post/1"
            },
            "ticket_id": 1,
            "user_id": 15
        }
    ]
}














Departments


Get Department by ID


	
GET /flicket-api/department/(int: department_id)

	Request

GET /flicket-api/department/1 HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>





Response

HTTP/1.0 200 OK
Content-Length: 191
Content-Type: application/json
Date: Sun, 30 Jun 2019 12:37:21 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
    "department": "Design",
    "id": 1,
    "links": {
        "departments": "http://127.0.0.1:5000/flicket-api/departments/",
        "self": "http://127.0.0.1:5000/flicket-api/department/1"
    }
}












Get Departments


	
GET /flicket-api/departments/

	Request

GET /flicket-api/departments/ HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>





Response

HTTP/1.0 200 OK
Content-Length: 2307
Content-Type: application/json
Date: Sun, 30 Jun 2019 12:40:21 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
    "_links": {
        "next": null,
        "prev": null,
        "self": "http://127.0.0.1:5000/flicket-api/departments/?page=1&per_page=50"
    },
    "_meta": {
        "page": 1,
        "per_page": 50,
        "total_items": 9,
        "total_pages": 1
    },
    "items": [
        {
            "department": "Commercial",
            "id": 6,
            "links": {
                "departments": "http://127.0.0.1:5000/flicket-api/departments/",
                "self": "http://127.0.0.1:5000/flicket-api/department/6"
            }
        },
        {
            "department": "Design",
            "id": 1,
            "links": {
                "departments": "http://127.0.0.1:5000/flicket-api/departments/",
                "self": "http://127.0.0.1:5000/flicket-api/department/1"
            }
        },
        {
            "department": "Human Resources",
            "id": 5,
            "links": {
                "departments": "http://127.0.0.1:5000/flicket-api/departments/",
                "self": "http://127.0.0.1:5000/flicket-api/department/5"
            }
        },
        {
            "department": "IT",
            "id": 3,
            "links": {
                "departments": "http://127.0.0.1:5000/flicket-api/departments/",
                "self": "http://127.0.0.1:5000/flicket-api/department/3"
            }
        }
    ]
}












Create Department


	
POST http://localhost:5000/flicket-api/departments(str: department)

	Request

POST /flicket-api/departments HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>

{
    "department": "new department"
}





Response










Priorities


Get Priority By ID



	
GET /flicket-api/priority/(int: priority_id)

	



Request

GET /flicket-api/priority/1 HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>





Response

HTTP/1.0 200 OK
Content-Length: 182
Content-Type: application/json
Date: Sun, 30 Jun 2019 14:15:37 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
    "id": 1,
    "links": {
        "priorities": "http://127.0.0.1:5000/flicket-api/priorities/",
        "self": "http://127.0.0.1:5000/flicket-api/priority/1"
    },
    "priority": "low"
}











Get Priorities


	
GET /flicket-api/priorities/

	Request

GET /flicket-api/priorities/ HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>





Response

HTTP/1.0 200 OK
Content-Length: 903
Content-Type: application/json
Date: Sun, 30 Jun 2019 12:34:06 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
    "_links": {
        "next": null,
        "prev": null,
        "self": "http://127.0.0.1:5000/flicket-api/priorities/1/?per_page=50"
    },
    "_meta": {
        "page": 1,
        "per_page": 50,
        "total_items": 3,
        "total_pages": 1
    },
    "items": [
        {
            "id": 1,
            "links": {
                "priorities": "http://127.0.0.1:5000/flicket-api/priorities/",
                "self": "http://127.0.0.1:5000/flicket-api/priority/1"
            },
            "priority": "low"
        },
        {
            "id": 2,
            "links": {
                "priorities": "http://127.0.0.1:5000/flicket-api/priorities/",
                "self": "http://127.0.0.1:5000/flicket-api/priority/2"
            },
            "priority": "medium"
        },
        {
            "id": 3,
            "links": {
                "priorities": "http://127.0.0.1:5000/flicket-api/priorities/",
                "self": "http://127.0.0.1:5000/flicket-api/priority/3"
            },
            "priority": "high"
        }
    ]
}














Status


Get Status By ID


	
GET /flicket-api/status/(int: status_id)

	Request

GET /flicket-api/status/1 HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>





Response

HTTP/1.0 200 OK
Content-Length: 175
Content-Type: application/json
Date: Mon, 01 Jul 2019 11:17:00 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
    "id": 1,
    "links": {
        "self": "http://127.0.0.1:5000/flicket-api/status/1",
        "statuses": "http://127.0.0.1:5000/flicket-api/statuses/"
    },
    "status": "Open"
}












Get Statuses


	
GET /flicket-api/statuses/

	Request

GET /flicket-api/statuses/ HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>





Response

HTTP/1.0 200 OK
Content-Length: 1114
Content-Type: application/json
Date: Mon, 01 Jul 2019 11:18:23 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
    "_links": {
        "next": null,
        "prev": null,
        "self": "http://127.0.0.1:5000/flicket-api/departments/?page=1&per_page=50"
    },
    "_meta": {
        "page": 1,
        "per_page": 50,
        "total_items": 4,
        "total_pages": 1
    },
    "items": [
        {
            "id": 1,
            "links": {
                "self": "http://127.0.0.1:5000/flicket-api/status/1",
                "statuses": "http://127.0.0.1:5000/flicket-api/statuses/"
            },
            "status": "Open"
        },
        {
            "id": 2,
            "links": {
                "self": "http://127.0.0.1:5000/flicket-api/status/2",
                "statuses": "http://127.0.0.1:5000/flicket-api/statuses/"
            },
            "status": "Closed"
        },
        {
            "id": 3,
            "links": {
                "self": "http://127.0.0.1:5000/flicket-api/status/3",
                "statuses": "http://127.0.0.1:5000/flicket-api/statuses/"
            },
            "status": "In Work"
        },
        {
            "id": 4,
            "links": {
                "self": "http://127.0.0.1:5000/flicket-api/status/4",
                "statuses": "http://127.0.0.1:5000/flicket-api/statuses/"
            },
            "status": "Awaiting Information"
        }
    ]
}














Subscriptions


Get Subscription By ID


	
GET /flicket-api/subscription/(int: subscription_id)

	Request

GET /flicket-api/subscription/1 HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>





Response

HTTP/1.0 200 OK
Content-Length: 356
Content-Type: application/json
Date: Mon, 01 Jul 2019 11:21:57 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
    "id": 1,
    "links": {
        "self": "http://127.0.0.1:5000/flicket-api/subscription/1",
        "subscriptions": "http://127.0.0.1:5000/flicket-api/subscriptions/",
        "ticket": "http://127.0.0.1:5000/flicket-api/ticket/10001",
        "user": "http://127.0.0.1:5000/flicket-api/user/1"
    },
    "ticket_id": 10001,
    "user_def": "admin",
    "user_id": 1
}












Get Subscriptions

Get all subscribers to ticket.


	
GET /flicket-api/subscriptions/(int: ticket_id)/

	Request

GET /flicket-api/users/ HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>





Response

HTTP/1.0 200 OK
Content-Length: 666
Content-Type: application/json
Date: Mon, 01 Jul 2019 11:27:12 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
    "_links": {
        "next": null,
        "prev": null,
        "self": "http://127.0.0.1:5000/flicket-api/subscriptions/10001/1/?per_page=50"
    },
    "_meta": {
        "page": 1,
        "per_page": 50,
        "total_items": 1,
        "total_pages": 1
    },
    "items": [
        {
            "id": 1,
            "links": {
                "self": "http://127.0.0.1:5000/flicket-api/subscription/1",
                "subscriptions": "http://127.0.0.1:5000/flicket-api/subscriptions/",
                "ticket": "http://127.0.0.1:5000/flicket-api/ticket/10001",
                "user": "http://127.0.0.1:5000/flicket-api/user/1"
            },
            "ticket_id": 10001,
            "user_def": "admin",
            "user_id": 1
        }
    ]
}














Uploads


Get Upload By ID


	
GET /flicket-api/upload/(int: upload_id)

	Request

GET /flicket-api/upload/1 HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>





Response

HTTP/1.0 200 OK
Content-Length: 415
Content-Type: application/json
Date: Mon, 01 Jul 2019 11:46:54 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
    "filename": "ccv4ufb6.jpg",
    "id": 1,
    "image": "http://127.0.0.1:5000/flicket_uploads/ccv4ufb6.jpg",
    "links": {
        "post": "http://127.0.0.1:5000/flicket-api/post/276646",
        "self": "http://127.0.0.1:5000/flicket-api/upload/1",
        "ticket": null,
        "uploads": "http://127.0.0.1:5000/flicket-api/uploads/"
    },
    "original_filename": "photos-1.jpg",
    "post_id": 276646,
    "topic_id": null
}












Get Uploads


	
GET /flicket-api/uploads/

	Request

GET /flicket-api/uploads/ HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>





Response

HTTP/1.0 200 OK
Content-Length: 1231
Content-Type: application/json
Date: Mon, 01 Jul 2019 11:49:33 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
    "_links": {
        "next": null,
        "prev": null,
        "self": "http://127.0.0.1:5000/flicket-api/uploads/1/?per_page=50"
    },
    "_meta": {
        "page": 1,
        "per_page": 50,
        "total_items": 2,
        "total_pages": 1
    },
    "items": [
        {
            "filename": "ccv4ufb6.jpg",
            "id": 1,
            "image": "http://127.0.0.1:5000/flicket_uploads/ccv4ufb6.jpg",
            "links": {
                "post": "http://127.0.0.1:5000/flicket-api/post/276646",
                "self": "http://127.0.0.1:5000/flicket-api/upload/1",
                "ticket": null,
                "uploads": "http://127.0.0.1:5000/flicket-api/uploads/"
            },
            "original_filename": "photos-1.jpg",
            "post_id": 276646,
            "topic_id": null
        },
        {
            "filename": "5w0hdo10.jpg",
            "id": 2,
            "image": "http://127.0.0.1:5000/flicket_uploads/5w0hdo10.jpg",
            "links": {
                "post": "http://127.0.0.1:5000/flicket-api/post/276677",
                "self": "http://127.0.0.1:5000/flicket-api/upload/2",
                "ticket": null,
                "uploads": "http://127.0.0.1:5000/flicket-api/uploads/"
            },
            "original_filename": "the_basta_rock_sunrise_4k-wallpaper-3554x1999.jpg",
            "post_id": 276677,
            "topic_id": null
        }
    ]
}
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