

Flicket Documentation

Flicket is a simple web based ticketing system written in Python using
the flask web framework which supports English and French locales.

Why Flicket?

I could not find a simple open source ticketing system that I really liked.
So, decided to have a crack at creating something written in Python.

Contents:

	Requirements
	Operating System

	Python

	SQL Database Server

	Web Server

	Installation
	Getting Flicket

	Installing Python Requirements

	Set Up

	Administration
	Command Line Options

	Administration Config Panel

	Exporting / Importing Flicket Users
	Exporting

	Importing

	Installing A Webserver
	Apache - Windows

	Adding Additional Languages

	Flicket - FAQ
	What is Flicket?

	Tickets

	Screenshots
	Home Page

	Tickets

	View Ticket

	Create Ticket

	Users

	Admin Panel

	Admin Panel - Add User

	Admin Panel - Configuration

Programmer Reference:

	API
	Authentication / Tokens
	Get Token

	Delete Token

	Users
	Get User By ID

	Get Users

	Tickets
	Get Ticket By ID

	Get Tickets

	Create Ticket

	Posts
	Get Post By ID

	Get Posts

	Departments
	Get Department by ID

	Get Departments

	Create Department

	Priorities
	Get Priority By ID

	Get Priorities

	Status
	Get Status By ID

	Get Statuses

	Subscriptions
	Get Subscription By ID

	Get Subscriptions

	Uploads
	Get Upload By ID

	Get Uploads

Requirements

Operating System

This will run on either Linux or Windows. Mac is untested.

Python

Python =>3.5 - I have not tested earlier versions of Python 3.

SQL Database Server

Out of the box Flicket is configured to work with MySQL [https://www.mysql.com/downloads/]. But there
should be no reason other SQLAlchemy supported databases won’t work
just as well.

Note

When I last tried SQLite I had problems configuring the email settings
within the administration settings. You may have to change them manually
within SQLite.

Web Server

For a production environment a webserver such as Apache [https://httpd.apache.org/]
or nginx [https://www.nginx.com/] should be used to serve the application.

Installation

First read Requirements.

It is good practise to create a virtual environment before installing
the python package requirements. Virtual environments can be
considered a sand boxed python installation for a specific application.
They are used since one application may require a different version of
a python module than another.

Getting Flicket

The source code for Flicket is hosted at GitHub. You can either get
the latest frozen zip file or use the latest master branch.

Zip Package

Download Flicket Dist.zip [https://github.com/evereux/flicket/tree/master/dist]
and unzip.

Master Branch

Get the latest master branch from github using git:

git clone https://github.com/evereux/flicket.git

Alternatively, download and unzip the master branch zip file [https://github.com/evereux/flicket/archive/master.zip].

Installing Python Requirements

Install the requirements using pip::

(env) C:\<folder_path>\flicket> pip install -r requirements.txt

Set Up

	Create your database and a database user that will access the flicket
database.

	If you are using a database server other than MySQL you should change the
db_type value within config.py. See SQLAlchemy_documentation [http://docs.sqlalchemy.org/en/latest/core/engines.html] for options.

	Create the configuration json file:

python -m scripts.create_json

	Initialise the database using manage.py from the command line:

python manage.py db init
python manage.py db migrate
python manage.py db upgrade

	Run the set-up script:. This is required to create the Admin user and site url defaults.
These can be changed again via the admin panel once you log in:

python manage.py run_set_up

	Running development server for testing:

python manage.py runserver

Log into the server using the username admin and the password defined during
the setup process.

Administration

Command Line Options

From the command line the following options are available.

python manage.py

usage: manage.py [-?]
 {db,run_set_up,export_users,import_users,update_user_posts,update_user_assigned,email_outstanding_tickets,runserver,shell}
 ...

positional arguments:
 {db,run_set_up,export_users,import_users,update_user_posts,update_user_assigned,email_outstanding_tickets,runserver,shell}
 db Perform database migrations
 run_set_up
 export_users Command used by manage.py to export all the users from
 the database to a json file. Useful if we need a list
 of users to import into other applications.
 import_users Command used by manage.py to import users from a json
 file formatted such: [{ username, name, email,
 password.]
 update_user_posts Command used by manage.py to update the users total
 post count. Use when upgrading from 0.1.4.
 update_user_assigned
 Command used by manage.py to update the users total
 post count. Use if upgrading to 0.1.7.
 email_outstanding_tickets
 Script to be run independently of the webserver.
 Script emails users a list of outstanding tickets that
 they have created or been assigned. To be run on a
 regular basis using a cron job or similar. Email
 functionality has to be enabled.
 runserver Runs the Flask development server i.e. app.run()
 shell Runs a Python shell inside Flask application context.

optional arguments:
 -?, --help show this help message and exit

Administration Config Panel

Options

For email configuration the following options are available. At a minimum you should configure mail_server,
mail_port, mail_username and mail_password.

For more information regarding these settings see the documentation for Flask-Mail.

	
class flicket_admin.models.flicket_config.FlicketConfig(**kwargs)

	Server configuration settings editable by administrators only via the adminstration page /flicket_admin/config/.

For email configuration settings see https://flask-mail.readthedocs.io/en/latest/ for more information.

	Parameters

	
	mail_server (str) – example: smtp.yourcompany.com.

	mail_port (int) – example: 567

	mail_use_tls (bool) – example: true

	mail_use_ssl (bool) – example: false

	mail_debug (bool) – example: false

	mail_username (str) – example: flicket.admin

	mail_password (str) –

	mail_default_sender (str) – example: flicket.admin@yourcompany.com

	mail_max_emails (int) –

	mail_suppress_send (bool) –

	mail_ascii_attachments (bool) –

	application_title (str) – Changes the default banner text from Flicket. Can typically be your company name.

	posts_per_page (str) – Maximum number of posts / topics displayed per page.

	allowed_extensions (str) – A comma delimited list of file extensions users are allowed to upload. DO NOT include
the . before the extension letter.

	ticket_upload_folder (str) – The folder used for file uploads.

	base_url (str) – The sites base url. This is used to resolve urls for emails and links. Broken links are
probably a result of not setting this value.

	csv_dump_limit (str) – The maximum number of rows exported to csv.

Exporting / Importing Flicket Users

Exporting

If you need to export the users from the Flicket database you can run the
following command:

python manage.py export_users

This will output a json file formatted thus:

[
 {
 'username': 'jblogs',
 'name': 'Joe Blogs',
 'email':'jblogs@email.com',
 'password': 'bcrypt_encoded_string'
 }
]

Importing

If you need to import users run the following command:

python manage.py import_users

The file has to formatted as shown in the Exporting example.

Installing A Webserver

Currently the documentation will only describe how to install and configure
the Apache webserver on Windows since this can be a bit trickier than on Linux.
However, some of the steps here can also be used in Linux.

The instructions provided are for use with Python and Apache. You must ensure
both Python and Apache have been compiled with the same version of Visual
Studio. Also, Python and Apache must both be compiled for the same CPU
architecture (x86 x64).

Also, the paths defined in this guide can be changed. You can by all means use
different paths but you should try and and get the webserver running with the
settings defined herein first.

Apache - Windows

Prior to installing a webserver you should confirm that flicket is working
correctly by running the developement webserver as described in the
Installation instructions.

Install mod_wsgi

Download the applicable mod_wsgi whl for your flavour of Apache and Python
from the Unofficial Windows Binaries for Python Extension Packages [https://www.lfd.uci.edu/~gohlke/pythonlibs/#mod_wsgi]
page. For example, if you have Python 3.6 x64 and Apache 2.4 x64 you
would get the whl mod_wsgi-4.6.5+ap24vc14-cp36-cp36m-win_amd64.whl.

Whilst active in your flicket virtual environment install mod_wsgi:

pip install <path_to_download>mod_wsgi-4.6.5+ap24vc14-cp36-cp36m-win_amd64.whl

Installing Apache

Download Apache compiled with VC14 from the
apache lounge [https://www.apachelounge.com/download/VC14/].

Unzip the apache folder to your `c:` directory. You should end up with a
folder structure like thus:

C:\Apache24
 C:\Apache24\bin
 C:\Apache24\cgi-bin
 ...

Open the file C:Apache24confhttpd.conf in a text editor like
notepad++ [https://notepad-plus-plus.org/].

Modify the following line to read the following:

SRVROOT "C:\Apache24"

Add the following lines (put these after the other LoadModule declarations):

LoadModule wsgi_module "<path_to_your_virtualenv>/lib/site-packages/mod_wsgi/server/mod_wsgi.cp36-win_amd64.pyd"
WSGIPythonHome "<path_to_your_virtualenv>"

Uncomment the vhosts line:

Include conf/extra/httpd-vhosts.conf

Uncomment mod_version line

LoadModule version_module modules/mod_version.so

Edit the file C:Apache24confextrahttpd-vhosts.conf.

Comment out the existing configurations lines by prefixing with a # (good
reference for future troubleshooting).

Add the following:

<VirtualHost *:8000>

 ServerName <ip_address or hostname>
 ServerAlias <ip_address or hostname>
 ServerAdmin <your_email@there.com>

 DocumentRoot C:\Apache24\htdocs

 <Directory C:\Apache24\htdocs>
 <IfVersion < 2.4>
 Order allow,deny
 Allow from all
 </IfVersion>
 <IfVersion >= 2.4>
 Require all granted
 </IfVersion>
 </Directory>

 WSGIScriptAlias / <path_to_flicket>run.wsgi

 <Directory <path_to_flicket>>
 <IfVersion < 2.4>
 Order allow,deny
 Allow from all
 </IfVersion>
 <IfVersion >= 2.4>
 Require all granted
 </IfVersion>
 </Directory>

</VirtualHost>

Edit the file run.wsgi so that the path points to your Flicket virtual environment.

Register Apache As A Service

Navigate to the Apache folder and register the service with name Apache HTTP Server:

cd "C:\Apache24\bin"
httpd.exe -k install -n "Apache HTTP Server"

Start Apache

To start the service use either Windows Serivce Manage and start the service
Apache HTTP Server or from the command prompt whilst in the folder c:Apache24bin:

httpd -k start -n "Apache HTTP Server"

Flicket should now be available in your browser by accessing http:\<ip_address or hostname>:8000

Troubleshooting

To troubleshoot problems starting the apache service or accessing the webpage
you should start by reading your Apache installations log files normally located in c:Apache24logs.

Adding Additional Languages

Flicket now supports additional languages through the use of Flask Babel.
To add an additional local:

	Edit SUPPORTED_LANGUAGES in config.py and add an additional entry to
the dictionary. For example: {‘en’: ‘English’, ‘fr’: ‘Francais’,
‘de’: ‘German’}

	Whilst in the project root directory you now need to initialise
the new language to generate a template file for it.

pybabel init -i messages.pot -d application/translations -l de

	In the folder application/translations there should now be a new folder
de.

	Edit the file messages.po in that folder. For example:

msgid "403 Error - Forbidden"
msgstr "403 Error - Verboten"

	Compile the translations for use:

pybabel compile -d application/translations

	If any python or html text strings have been newly tagged for translation
run:

pybabel extract -F babel.cfg -o messages.pot .

	To get the new translations added to the .po files:

pybabel update -i messages.pot -d application/translations

Flicket - FAQ

What is Flicket?

Flicket is a simple open source ticketing system driven by the python
flask web micro framework.

Flicket also uses the following python packages:

alembic, bcrypt, flask-admin, flask-babel, flask-login, flask-migrate,
flask-principal, flask-sqlalchemy, flask-script, flask-wtf, jinja2,
Markdown, WTForms

See README.rst for full requirements.

Licensing

For licensing see LICENSE.md

Tickets

General

	How do I create a ticket?

Select ‘create ticket’ from the Flicket pull down menu.

	How do I assign a ticket?

Scenario: You have raised a ticket and you know to whom the ticket
should be assigned.

Navigate to [flicket home page](/flicket/) and select the ticket you
wish to assign. Within the ticket page is a button to assign ticket.

	How do I release a ticket?

Scenario: You have been assigned a ticket but the ticket isn’t your
repsonsibility to complete or you are unable to for another reason.

Navgiate to [flicket home page](/flicket/) and select the ticket to
which you have been assigned. Within the ticket page is a button
to release the ticket from your ticket list.

	How do I close a ticket?

Scenario: The ticket has been resolved to your satisfaction and you
want to close the ticket.

Navgiate to [flicket home page](/flicket/) and select the ticket
which you would like to close. Within the ticket page is a button
to replay and close the ticket.

Only the following persons can close a ticket:
* Administrators.
* The user which has been assigned the ticket.
* The original creator of the ticket.

You may claim the ticket so that you may close it.

	What is markdown?

Markdown is a lightweight markup language with plain text formatting syntax.

The text contents of a ticket can be made easier to read by employing
markdown syntax.

Searching

The ticket main page can be filtered to show only results of a specific
interest to you. Tickets can be filtered by department, category, user
and a text string.

Departments

Note

Only administrators or super users can add / edit or delete departments.

	How do I add new departments?

Navigate to Departments via the menu bar and use the add departments form.

	How do I edit departments?

Navigate to [departments](/flicket/departments/) and select the edit
link against the department name.

	How do I delete departments?

Navigate to [departments](/flicket/departments/) and select the remove
link against the department name. This is represented with a cross.

Categories

Note

Only administrators or super users can add / edit or delete categories.

	How do I add categories?

Navigate to [departments](/flicket/departments/) and select the link
to add categories against the appropriate department name.

	How do I edit categories?

Navigate to [departments](/flicket/departments/) and select the link
to add categories against the appropriate department name.

Screenshots

Home Page

[image: _images/01_home_page_2019-05-12_16-23-44.png]

Tickets

All tickets.

–image:: images/02_tickets_2019-05-12_16-23-34.png

View Ticket

[image: _images/03_ticket_2019-05-12_16-27-49.png]

Create Ticket

[image: _images/04_create_ticket_markdown_preview_2019-05-12_16-27-24.png]

Users

[image: _images/05_users_2019-05-12_16-28-00.png]

Admin Panel

[image: _images/2019-01-22_18_40_21-Admin.png]

Admin Panel - Add User

[image: _images/2019-01-22_18_40_46-Add_User.png]

Admin Panel - Configuration

[image: _images/2019-01-22_18_43_25-Flicket_Configuration.png]

API

Authentication / Tokens

Get Token

The user will need to provide their username and password to retrieve an authentictaion token. The authentication
token is required to access all other parts of the API.

example using httpie
http --auth <username>:<password> POST http://localhost:5000/flicket-api/tokens

Response

HTTP/1.0 200 OK
Content-Length: 50
Content-Type: application/json
Date: Sat, 29 Sep 2018 14:01:00 GMT
Server: Werkzeug/0.14.1 Python/3.6.5

{
 "token": "<token>"
}

Delete Token

example using httpie
http DELETE http://localhost:5000/flicket-api/tokens "Authorization: Bearer <token>"

Responds

HTTP/1.0 204 NO CONTENT
Content-Length: 0
Content-Type: text/html; charset=utf-8
Date: Sat, 29 Sep 2018 14:13:19 GMT
Server: Werkzeug/0.14.1 Python/3.6.5

Users

Get User By ID

	
GET /flicket-api/user/(int: user_id)

	Request

GET /flicket-api/user/1 HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>

Response

HTTP/1.0 200 OK
Content-Length: 355
Content-Type: application/json
Date: Sun, 30 Jun 2019 14:15:37 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
 "avatar": "http://127.0.0.1:5000/flicket/static/flicket_avatars/5bxk0qxt.jpg",
 "email": "evereux@gmail.com",
 "id": 1,
 "job_title": "admin",
 "links": {
 "self": "http://127.0.0.1:5000/flicket-api/user/1",
 "users": "http://127.0.0.1:5000/flicket-api/users/"
 },
 "name": "admin",
 "total_posts": 12505,
 "username": "admin"
}

Get Users

	
GET /flicket-api/users/

	Request

GET /flicket-api/users/ HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>

Response

HTTP/1.0 200 OK
Content-Length: 355
Content-Type: application/json
Date: Sun, 30 Jun 2019 14:15:37 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
 "_links": {
 "next": null,
 "prev": null,
 "self": "http://localhost:5000/flicket-api/users/?page=1&per_page=50"
 },
 "_meta": {
 "page": 1,
 "per_page": 50,
 "total_items": 48,
 "total_pages": 1
 },
 "items": [
 {
 "avatar": "http://localhost:5000/flicket/static/flicket_avatars/__default_profile.png",
 "email": "evereux@gmail.com",
 "id": 1,
 "job_title": "admin",
 "links": {
 "self": "http://localhost:5000/flicket-api/user/1",
 "users": "http://localhost:5000/flicket-api/users/"
 },
 "name": "admin",
 "total_posts": 6381,
 "username": "admin"
 },
 {
 "avatar": "http://localhost:5000/flicket/static/flicket_avatars/__default_profile.png",
 "email": "admin@localhost",
 "id": 2,
 "job_title": "unknown",
 "links": {
 "self": "http://localhost:5000/flicket-api/user/2",
 "users": "http://localhost:5000/flicket-api/users/"
 },
 "name": "notification",
 "total_posts": 6445,
 "username": "notification"
 },
]
}

Tickets

Get Ticket By ID

	
GET /flicket-api/ticket/(int: ticket_id)

	Request

GET /flicket-api/ticket/1 HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>

Response

HTTP/1.0 200 OK
Content-Length: 1835
Content-Type: application/json
Date: Sun, 30 Jun 2019 14:15:37 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
 "assigned_id": 7,
 "category_id": 1,
 "content": "She spent her earliest years reading classic literature, and writing poetry. Haskell features a
 type system with type inference and lazy evaluation. They are written as strings of consecutive alphanumeric
 characters, the first character being lowercase. Tuples are containers for a fixed number of Erlang data
 types. Erlang is a general-purpose, concurrent, functional programming language. Where are my pants? He
 looked inquisitively at his keyboard and wrote another sentence. The arguments can be primitive data types
 or compound data types. It is also a garbage-collected runtime system. He looked inquisitively at his
 keyboard and wrote another sentence. Do you come here often? Ports are created with the built-in function
 open_port. He looked inquisitively at his keyboard and wrote another sentence. Haskell features a type
 system with type inference and lazy evaluation.",
 "date_added": "Sun, 23 Jun 2019 18:25:36 GMT",
 "date_modified": null,
 "id": 1,
 "links": {
 "assigned": "http://localhost:5000/flicket-api/user/7",
 "category": "http://localhost:5000/flicket-api/category/1",
 "histories": "http://localhost:5000/flicket-api/histories/?topic_id=1",
 "modified_by": null,
 "priority": "http://localhost:5000/flicket-api/priority/3",
 "self": "http://localhost:5000/flicket-api/ticket/1",
 "started_ny": "http://localhost:5000/flicket-api/user/12",
 "status": "http://localhost:5000/flicket-api/status/2",
 "subscribers": "http://localhost:5000/flicket-api/subscriptions/1/",
 "tickets": "http://localhost:5000/flicket-api/tickets/"
 },
 "modified_id": null,
 "started_id": 12,
 "status_id": 2,
 "ticket_priority_id": 3,
 "title": "He looked inquisitively at his keyboard and wrote another sentence."
}

Get Tickets

	
GET /flicket-api/tickets/

	

Request

GET /flicket-api/tickets/ HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>

Response

HTTP/1.0 200 OK
Content-Length: 2244
Content-Type: application/json
Date: Sun, 30 Jun 2019 14:15:37 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
 "_links": {
 "next": "http://localhost:5000/flicket-api/tickets/2/?per_page=1",
 "prev": null,
 "self": "http://localhost:5000/flicket-api/tickets/1/?per_page=1"
 },
 "_meta": {
 "page": 1,
 "per_page": 1,
 "total_items": 10000,
 "total_pages": 10000
 },
 "items": [
 {
 "assigned_id": 7,
 "category_id": 1,
 "content": "She spent her earliest years reading classic literature, and writing poetry. Haskell
 features a type system with type inference and lazy evaluation. They are written as strings of
 consecutive alphanumeric characters, the first character being lowercase. Tuples are containers
 for a fixed number of Erlang data types. Erlang is a general-purpose, concurrent, functional
 programming language. Where are my pants? He looked inquisitively at his keyboard and wrote another
 sentence. The arguments can be primitive data types or compound data types. It is also a
 garbage-collected runtime system. He looked inquisitively at his keyboard and wrote another
 sentence. Do you come here often? Ports are created with the built-in function open_port. He looked
 inquisitively at his keyboard and wrote another sentence. Haskell features a type system with type
 inference and lazy evaluation.",
 "date_added": "Sun, 23 Jun 2019 18:25:36 GMT",
 "date_modified": null,
 "id": 1,
 "links": {
 "assigned": "http://localhost:5000/flicket-api/user/7",
 "category": "http://localhost:5000/flicket-api/category/1",
 "histories": "http://localhost:5000/flicket-api/histories/?topic_id=1",
 "modified_by": null,
 "priority": "http://localhost:5000/flicket-api/priority/3",
 "self": "http://localhost:5000/flicket-api/ticket/1",
 "started_ny": "http://localhost:5000/flicket-api/user/12",
 "status": "http://localhost:5000/flicket-api/status/2",
 "subscribers": "http://localhost:5000/flicket-api/subscriptions/1/",
 "tickets": "http://localhost:5000/flicket-api/tickets/"
 },
 "modified_id": null,
 "started_id": 12,
 "status_id": 2,
 "ticket_priority_id": 3,
 "title": "He looked inquisitively at his keyboard and wrote another sentence."
 }
]
}

Create Ticket

	
POST /flicket-api/tickets(str:title,str:content,int:category_id,int:ticket_priority_id)

	Request

POST /flicket-api/tickets HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>

{
 "title": "this is my ticket",
 "content": "this is my content",
 "category_id": 1,
 "ticket_priority_id": 1
}

Response

HTTP/1.0 201 CREATED
Content-Length: 903
Content-Type: application/json
Date: Fri, 28 Jun 2019 12:04:59 GMT
Location: http://localhost:5000/flicket-api/ticket/10001
Server: Werkzeug/0.14.1 Python/3.7.3

{
 "assigned_id": null,
 "category_id": 1,
 "content": "this is my content",
 "date_added": "Fri, 28 Jun 2019 13:04:59 GMT",
 "date_modified": null,
 "id": 10001,
 "links": {
 "assigned": null,
 "category": "http://localhost:5000/flicket-api/category/1",
 "histories": "http://localhost:5000/flicket-api/histories/?topic_id=10001",
 "modified_by": null,
 "priority": "http://localhost:5000/flicket-api/priority/1",
 "self": "http://localhost:5000/flicket-api/ticket/10001",
 "started_ny": "http://localhost:5000/flicket-api/user/1",
 "status": "http://localhost:5000/flicket-api/status/1",
 "subscribers": "http://localhost:5000/flicket-api/subscriptions/10001/",
 "tickets": "http://localhost:5000/flicket-api/tickets/"
 },
 "modified_id": null,
 "started_id": 1,
 "status_id": 1,
 "ticket_priority_id": 1,
 "title": "this is my ticket"
}

Posts

Get Post By ID

	
GET /flicket-api/post/(int: post_id)

	Request

GET /flicket-api/priority/1 HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>

Response

HTTP/1.0 200 OK
Content-Length: 1231
Content-Type: application/json
Date: Sun, 30 Jun 2019 13:00:13 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
 "content": "The Galactic Empire is nearing completion of the Death Star, a space station with the power to
 destroy entire planets. Initially ...",
 "data_added": "Sun, 05 May 2019 14:19:42 GMT",
 "date_modified": null,
 "id": 1,
 "links": {
 "created_by": "http://127.0.0.1:5000/flicket-api/user/15",
 "posts": "http://127.0.0.1:5000/flicket-api/posts/1/",
 "self": "http://127.0.0.1:5000/flicket-api/post/1"
 },
 "ticket_id": 1,
 "user_id": 15
}

Get Posts

Retrieve all posts associated to a ticket by ticket_id.

	
GET /flicket-api/posts/(int: ticket_id)/(int: page)/

	Request

GET /flicket-api/posts/1/ HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>

Response

HTTP/1.0 200 OK
Content-Length: 27640
Content-Type: application/json
Date: Sun, 30 Jun 2019 15:41:09 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
 "_links": {
 "next": null,
 "prev": null,
 "self": "http://127.0.0.1:5000/flicket-api/posts/1/1/?per_page=50"
 },
 "_meta": {
 "page": 1,
 "per_page": 50,
 "total_items": 25,
 "total_pages": 1
 },
 "items": [
 {
 "content": "The Galactic Empire is nearing completion of the Death Star, a space station with
 the power to destroy entire planets. Initially composing light-hearted and irreverent works,
 he also wrote serious, sombre and religious pieces beginning in the 1930s. Erlang is known for
 its designs that are well suited for systems. It is also a garbage-collected runtime system.
 They are written as strings of consecutive alphanumeric characters, the first character being
 lowercase. The sequential subset of Erlang supports eager evaluation, single assignment, and
 dynamic typing. Tuples are containers for a fixed number of Erlang data types. Tuples are
 containers for a fixed number of Erlang data types. The arguments can be primitive data types
 or compound data types. Type classes first appeared in the Haskell programming language. The
 arguments can be primitive data types or compound data types.",
 "data_added": "Sun, 05 May 2019 14:19:42 GMT",
 "date_modified": null,
 "id": 1,
 "links": {
 "created_by": "http://127.0.0.1:5000/flicket-api/user/15",
 "posts": "http://127.0.0.1:5000/flicket-api/posts/1/",
 "self": "http://127.0.0.1:5000/flicket-api/post/1"
 },
 "ticket_id": 1,
 "user_id": 15
 }
]
}

Departments

Get Department by ID

	
GET /flicket-api/department/(int: department_id)

	Request

GET /flicket-api/department/1 HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>

Response

HTTP/1.0 200 OK
Content-Length: 191
Content-Type: application/json
Date: Sun, 30 Jun 2019 12:37:21 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
 "department": "Design",
 "id": 1,
 "links": {
 "departments": "http://127.0.0.1:5000/flicket-api/departments/",
 "self": "http://127.0.0.1:5000/flicket-api/department/1"
 }
}

Get Departments

	
GET /flicket-api/departments/

	Request

GET /flicket-api/departments/ HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>

Response

HTTP/1.0 200 OK
Content-Length: 2307
Content-Type: application/json
Date: Sun, 30 Jun 2019 12:40:21 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
 "_links": {
 "next": null,
 "prev": null,
 "self": "http://127.0.0.1:5000/flicket-api/departments/?page=1&per_page=50"
 },
 "_meta": {
 "page": 1,
 "per_page": 50,
 "total_items": 9,
 "total_pages": 1
 },
 "items": [
 {
 "department": "Commercial",
 "id": 6,
 "links": {
 "departments": "http://127.0.0.1:5000/flicket-api/departments/",
 "self": "http://127.0.0.1:5000/flicket-api/department/6"
 }
 },
 {
 "department": "Design",
 "id": 1,
 "links": {
 "departments": "http://127.0.0.1:5000/flicket-api/departments/",
 "self": "http://127.0.0.1:5000/flicket-api/department/1"
 }
 },
 {
 "department": "Human Resources",
 "id": 5,
 "links": {
 "departments": "http://127.0.0.1:5000/flicket-api/departments/",
 "self": "http://127.0.0.1:5000/flicket-api/department/5"
 }
 },
 {
 "department": "IT",
 "id": 3,
 "links": {
 "departments": "http://127.0.0.1:5000/flicket-api/departments/",
 "self": "http://127.0.0.1:5000/flicket-api/department/3"
 }
 }
]
}

Create Department

	
POST http://localhost:5000/flicket-api/departments(str: department)

	Request

POST /flicket-api/departments HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>

{
 "department": "new department"
}

Response

Priorities

Get Priority By ID

	
GET /flicket-api/priority/(int: priority_id)

	

Request

GET /flicket-api/priority/1 HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>

Response

HTTP/1.0 200 OK
Content-Length: 182
Content-Type: application/json
Date: Sun, 30 Jun 2019 14:15:37 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
 "id": 1,
 "links": {
 "priorities": "http://127.0.0.1:5000/flicket-api/priorities/",
 "self": "http://127.0.0.1:5000/flicket-api/priority/1"
 },
 "priority": "low"
}

Get Priorities

	
GET /flicket-api/priorities/

	Request

GET /flicket-api/priorities/ HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>

Response

HTTP/1.0 200 OK
Content-Length: 903
Content-Type: application/json
Date: Sun, 30 Jun 2019 12:34:06 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
 "_links": {
 "next": null,
 "prev": null,
 "self": "http://127.0.0.1:5000/flicket-api/priorities/1/?per_page=50"
 },
 "_meta": {
 "page": 1,
 "per_page": 50,
 "total_items": 3,
 "total_pages": 1
 },
 "items": [
 {
 "id": 1,
 "links": {
 "priorities": "http://127.0.0.1:5000/flicket-api/priorities/",
 "self": "http://127.0.0.1:5000/flicket-api/priority/1"
 },
 "priority": "low"
 },
 {
 "id": 2,
 "links": {
 "priorities": "http://127.0.0.1:5000/flicket-api/priorities/",
 "self": "http://127.0.0.1:5000/flicket-api/priority/2"
 },
 "priority": "medium"
 },
 {
 "id": 3,
 "links": {
 "priorities": "http://127.0.0.1:5000/flicket-api/priorities/",
 "self": "http://127.0.0.1:5000/flicket-api/priority/3"
 },
 "priority": "high"
 }
]
}

Status

Get Status By ID

	
GET /flicket-api/status/(int: status_id)

	Request

GET /flicket-api/status/1 HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>

Response

HTTP/1.0 200 OK
Content-Length: 175
Content-Type: application/json
Date: Mon, 01 Jul 2019 11:17:00 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
 "id": 1,
 "links": {
 "self": "http://127.0.0.1:5000/flicket-api/status/1",
 "statuses": "http://127.0.0.1:5000/flicket-api/statuses/"
 },
 "status": "Open"
}

Get Statuses

	
GET /flicket-api/statuses/

	Request

GET /flicket-api/statuses/ HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>

Response

HTTP/1.0 200 OK
Content-Length: 1114
Content-Type: application/json
Date: Mon, 01 Jul 2019 11:18:23 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
 "_links": {
 "next": null,
 "prev": null,
 "self": "http://127.0.0.1:5000/flicket-api/departments/?page=1&per_page=50"
 },
 "_meta": {
 "page": 1,
 "per_page": 50,
 "total_items": 4,
 "total_pages": 1
 },
 "items": [
 {
 "id": 1,
 "links": {
 "self": "http://127.0.0.1:5000/flicket-api/status/1",
 "statuses": "http://127.0.0.1:5000/flicket-api/statuses/"
 },
 "status": "Open"
 },
 {
 "id": 2,
 "links": {
 "self": "http://127.0.0.1:5000/flicket-api/status/2",
 "statuses": "http://127.0.0.1:5000/flicket-api/statuses/"
 },
 "status": "Closed"
 },
 {
 "id": 3,
 "links": {
 "self": "http://127.0.0.1:5000/flicket-api/status/3",
 "statuses": "http://127.0.0.1:5000/flicket-api/statuses/"
 },
 "status": "In Work"
 },
 {
 "id": 4,
 "links": {
 "self": "http://127.0.0.1:5000/flicket-api/status/4",
 "statuses": "http://127.0.0.1:5000/flicket-api/statuses/"
 },
 "status": "Awaiting Information"
 }
]
}

Subscriptions

Get Subscription By ID

	
GET /flicket-api/subscription/(int: subscription_id)

	Request

GET /flicket-api/subscription/1 HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>

Response

HTTP/1.0 200 OK
Content-Length: 356
Content-Type: application/json
Date: Mon, 01 Jul 2019 11:21:57 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
 "id": 1,
 "links": {
 "self": "http://127.0.0.1:5000/flicket-api/subscription/1",
 "subscriptions": "http://127.0.0.1:5000/flicket-api/subscriptions/",
 "ticket": "http://127.0.0.1:5000/flicket-api/ticket/10001",
 "user": "http://127.0.0.1:5000/flicket-api/user/1"
 },
 "ticket_id": 10001,
 "user_def": "admin",
 "user_id": 1
}

Get Subscriptions

Get all subscribers to ticket.

	
GET /flicket-api/subscriptions/(int: ticket_id)/

	Request

GET /flicket-api/users/ HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>

Response

HTTP/1.0 200 OK
Content-Length: 666
Content-Type: application/json
Date: Mon, 01 Jul 2019 11:27:12 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
 "_links": {
 "next": null,
 "prev": null,
 "self": "http://127.0.0.1:5000/flicket-api/subscriptions/10001/1/?per_page=50"
 },
 "_meta": {
 "page": 1,
 "per_page": 50,
 "total_items": 1,
 "total_pages": 1
 },
 "items": [
 {
 "id": 1,
 "links": {
 "self": "http://127.0.0.1:5000/flicket-api/subscription/1",
 "subscriptions": "http://127.0.0.1:5000/flicket-api/subscriptions/",
 "ticket": "http://127.0.0.1:5000/flicket-api/ticket/10001",
 "user": "http://127.0.0.1:5000/flicket-api/user/1"
 },
 "ticket_id": 10001,
 "user_def": "admin",
 "user_id": 1
 }
]
}

Uploads

Get Upload By ID

	
GET /flicket-api/upload/(int: upload_id)

	Request

GET /flicket-api/upload/1 HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>

Response

HTTP/1.0 200 OK
Content-Length: 415
Content-Type: application/json
Date: Mon, 01 Jul 2019 11:46:54 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
 "filename": "ccv4ufb6.jpg",
 "id": 1,
 "image": "http://127.0.0.1:5000/flicket_uploads/ccv4ufb6.jpg",
 "links": {
 "post": "http://127.0.0.1:5000/flicket-api/post/276646",
 "self": "http://127.0.0.1:5000/flicket-api/upload/1",
 "ticket": null,
 "uploads": "http://127.0.0.1:5000/flicket-api/uploads/"
 },
 "original_filename": "photos-1.jpg",
 "post_id": 276646,
 "topic_id": null
}

Get Uploads

	
GET /flicket-api/uploads/

	Request

GET /flicket-api/uploads/ HTTP/1.1
HOST: localhost:5000
Accept: application/json
Authorization: Bearer <token>

Response

HTTP/1.0 200 OK
Content-Length: 1231
Content-Type: application/json
Date: Mon, 01 Jul 2019 11:49:33 GMT
Server: Werkzeug/0.14.1 Python/3.7.3

{
 "_links": {
 "next": null,
 "prev": null,
 "self": "http://127.0.0.1:5000/flicket-api/uploads/1/?per_page=50"
 },
 "_meta": {
 "page": 1,
 "per_page": 50,
 "total_items": 2,
 "total_pages": 1
 },
 "items": [
 {
 "filename": "ccv4ufb6.jpg",
 "id": 1,
 "image": "http://127.0.0.1:5000/flicket_uploads/ccv4ufb6.jpg",
 "links": {
 "post": "http://127.0.0.1:5000/flicket-api/post/276646",
 "self": "http://127.0.0.1:5000/flicket-api/upload/1",
 "ticket": null,
 "uploads": "http://127.0.0.1:5000/flicket-api/uploads/"
 },
 "original_filename": "photos-1.jpg",
 "post_id": 276646,
 "topic_id": null
 },
 {
 "filename": "5w0hdo10.jpg",
 "id": 2,
 "image": "http://127.0.0.1:5000/flicket_uploads/5w0hdo10.jpg",
 "links": {
 "post": "http://127.0.0.1:5000/flicket-api/post/276677",
 "self": "http://127.0.0.1:5000/flicket-api/upload/2",
 "ticket": null,
 "uploads": "http://127.0.0.1:5000/flicket-api/uploads/"
 },
 "original_filename": "the_basta_rock_sunrise_4k-wallpaper-3554x1999.jpg",
 "post_id": 276677,
 "topic_id": null
 }
]
}

 HTTP Routing Table

 /flicket-api |
 /http:

 		 	

 		
 /flicket-api	

 	
 	
 GET /flicket-api/department/(int:department_id)	

 	
 	
 GET /flicket-api/departments/	

 	
 	
 GET /flicket-api/post/(int:post_id)	

 	
 	
 GET /flicket-api/posts/(int:ticket_id)/(int:page)/	

 	
 	
 GET /flicket-api/priorities/	

 	
 	
 GET /flicket-api/priority/(int:priority_id)	

 	
 	
 GET /flicket-api/status/(int:status_id)	

 	
 	
 GET /flicket-api/statuses/	

 	
 	
 GET /flicket-api/subscription/(int:subscription_id)	

 	
 	
 GET /flicket-api/subscriptions/(int:ticket_id)/	

 	
 	
 GET /flicket-api/ticket/(int:ticket_id)	

 	
 	
 GET /flicket-api/tickets/	

 	
 	
 GET /flicket-api/upload/(int:upload_id)	

 	
 	
 GET /flicket-api/uploads/	

 	
 	
 GET /flicket-api/user/(int:user_id)	

 	
 	
 GET /flicket-api/users/	

 	
 	
 POST /flicket-api/tickets(str:title,str:content,int:category_id,int:ticket_priority_id)	

 		 	

 		
 /http:	

 	
 	
 POST http://localhost:5000/flicket-api/departments(str:department)	

 Python Module Index

 f

 		 	

 		
 f	

 	
 	
 flicket_admin	

 	[image: -]
 	
 flicket_api	

 	
 	
 flicket_api.views.departments	

 	
 	
 flicket_api.views.posts	

 	
 	
 flicket_api.views.priorities	

 	
 	
 flicket_api.views.status	

 	
 	
 flicket_api.views.subscriptions	

 	
 	
 flicket_api.views.tickets	

 	
 	
 flicket_api.views.tokens	

 	
 	
 flicket_api.views.uploads	

 	
 	
 flicket_api.views.users	

Index

 F

F

 	
 	flicket_admin (module)

 	flicket_api.views.departments (module)

 	flicket_api.views.posts (module)

 	flicket_api.views.priorities (module)

 	flicket_api.views.status (module)

 	
 	flicket_api.views.subscriptions (module)

 	flicket_api.views.tickets (module)

 	flicket_api.views.tokens (module)

 	flicket_api.views.uploads (module)

 	flicket_api.views.users (module)

 	FlicketConfig (class in flicket_admin.models.flicket_config)

 _images/01_home_page_2019-05-12_16-23-44.png
flicket.evereuxuk/

#x |+

<) c @

A MyTickets Tickets

Flicket «.mpes

Stats

Overall

2000 tickets have been raised.

Departments

Commercial

36 tickets Awaiting Information
43 tickets Closed

45 tickets In Work

43 tickets Open

Manufacturing

98 tickets Awaiting Information
112 tickets Closed

102 tickets In Work

93 tickets Open

Create Ticket

@ & httpsy//flicket.evereuxuk

2000 ticketss have been raised over the last 7 days.
There are currently 481 tickets Awaiting Information .
There are currently 500 tickets Closed .

There are currently 517 tickets In Work .

There are currently 502 tickets Open .

Desig

132 tickets Awaiting Information
138 tickets Closed

148 tickets In Work

128 tickets Open

Quality
81 tickets Awaiting Information
73 tickets Closed

74 tickets In Work

80 tickets Open

Departments ~ Users

FAQ Admin View

Human Resource:

77 tickets Awaiting Information
66 tickets Closed

72 tickets In Work

76 tickets Open

P9 @D =

admin~

57 tickets Awaiting Information
68 tickets Closed

76 tickets In Work

82 tickets Open

Flicket 0.1.8 © 2018 Paul Bourne | Source code available at: Github | This site uses: Glyphicons.

_images/05_users_2019-05-12_16-28-00.png
Users "X samanage Botsays... #1X | +

<) CcC @ & httpsy//flicket evereux.uk/users/ P9 & IND =

A MyTickets Tickets Create Ticket ~ Departments ~ Users FAQ Admin View admin~ -

Name reset
2

Usemname Name Email Job Title Posts Assigned
2 admin admin evereux@gmail.com admin 244 0
Afton_Solomon Afton Solomon evereux+Afton_Solomon@gmail.com None 249 0
Almeta_Pierce Almeta Pierce evereux+Almeta_Pierce@gmail.com None 231 0
Alonzo_Reid Alonzo Reid evereux+Alonzo_Reid@gmail.com None 235 0
Ambrose_Gilmore Ambrose Gilmore evereux+Ambrose_Gilmore@gmail.com None 205 0
Amina_Hansen Amina Hansen evereux+Amina_Hansen@gmail.com None. 207 0
Amira_Cain Amira Cain evereux+Amira_Cain@gmail.com None 228 0
Angle_Hess Angle Hess evereux+Angle_Hess@gmail.com None 210 0
Arletha_Spencer Arletha Spencer evereux+Arletha_Spencer@gmail.com None 202 0
Brian_Boyer Brian Boyer evereux+Brian_Boyer@gmail.com None 242 0
Carli_Hunt Carli Hunt evereux+Carli_Hunt@gmail.com None. 204 0
Cedrick_Contreras Cedrick Contreras. evereux+Cedrick_Contreras@gmail.com None. 191 0
Chance_Austin Chance Austin evereux+Chance_Austin@gmail.com None 221 0
Chuck_Blair Chuck Blair evereux+Chuck_Blair@gmail.com None 228 0

_images/2019-01-22_18_40_21-Admin.png
A MyTckels Tikets Create Ticket Deparfments Users FAQ Admin View admin~

Flicket . simple ticket

Administration

Admin

Administration home page.

Flicket 0.1.8 © 2018 Paul Bourne | Source code available at: Github | This site uses: Glyphicons.

_images/03_ticket_2019-05-12_16-27-49.png
View Ticket
<) c @

A My Tickets

Quality

Subscribers

Rozella Stanton

Department

Samanage Botsays... #X | +

® @ https//flicket.evereux.uk/ticket_view/1999/ B|-9% @ In D

Tickets Create Ticket ~ Departments ~ Users FAQ Admin View admin~

#01999 - Type classes first appeared in the delete
Haskell programming language.
Category Status Priority Assigned
Manuals Open medium Jeff Briggs
subscribe:
cam| [retease | | assign

12-05-2019 15:21

Ports are created with the built-in function open_port.Its main implementation is the Glasgow Haskell Compiler. Ports
are used to communicate with the external world. Do you come here often? Erlang is known for its designs that are
well suited for systems. Erlang is a general-purpose, concurrent, functional programming language. | don't even care.
1 don't even care. They are written as strings of consecutive alphanumeric characters, the first character being
lowercase. Do you come here often? Erlang is known for its designs that are well suited for systems. He looked
inquisiively at his keyboard and wrote another sentence. Its main implementation is the Glasgow Haskell Compiler. Do
you have any idea why this is not working?

reply

Reply #1 | 12-05-2019 15:21

The sequential subset of Erlang supports eager evaluation, single assignment, and dynamic typing. Tuples are

_images/04_create_ticket_markdown_preview_2019-05-12_16-27-24.png
Flicket - Create Ticket ¢ X

Samanage Botsays... #X | +

c @ @ @ https//flicket.evereux.uk/ticket_create/ P9 & IND =

A MyTickets Tickets Create Ticket ~ Departments ~ Users FAQ Admin View admin~

Flicket «.mpes

Flicket - Create Ticket

Ticket contents supports markdown syntax. Please refer to md help.

Ticket Title ICan'tLogin

Content # Please help.
I can'tlog in. Computer says

invalid username or password

Please help.
I can't log in. Computer says

invalid username or password

MarkDown reference

Priority Level igh J Ccategory IT - Intranet J

Upload Documents | Browse... | No files selected.

Flicket 0.1.8 © 2018 Paul Bourne | Source code available at: Github | This site uses: Glyphicons.

_images/2019-01-22_18_40_46-Add_User.png
A MyTckels Tikets Create Ticket Deparfments Users FAQ Admin View admin~

Flicket a simple ticket s

Administration

Add User

Username
Name | name
Email | emal
JobTite | admin
Locale | English >
Password
Confim | repeat password

Flicket 0.1.8 © 2018 Paul Bourne | Source code available at: Github | This site uses: Glyphicons.

_images/2019-01-22_18_43_25-Flicket_Configuration.png
A MyTckels Tikets Create Ticket Deparfments Users FAQ Admin View admin~

Flicket < e

Administration - Configuration

Field Value
mail_server

mail_port

mail_use_tls [m)
mail_use_ss| [m)
mail_debug
mail_username Jadmin

mail_password

mail_default_sender

mail_max_emails

mail_suppress_send

N ‘mail_ascii_attachments a
posts_per_page 50
allowed_extensions txt, pdf, png. jpg. jpeg. | This must be a comma delimited list.

—_—

nav.xhtml

 Table of Contents

 		
 Flicket Documentation

 		
 Requirements

 		
 Operating System

 		
 Python

 		
 SQL Database Server

 		
 Web Server

 		
 Installation

 		
 Getting Flicket

 		
 Zip Package

 		
 Master Branch

 		
 Installing Python Requirements

 		
 Set Up

 		
 Administration

 		
 Command Line Options

 		
 Administration Config Panel

 		
 Options

 		
 Exporting / Importing Flicket Users

 		
 Exporting

 		
 Importing

 		
 Installing A Webserver

 		
 Apache - Windows

 		
 Install mod_wsgi

 		
 Installing Apache

 		
 Register Apache As A Service

 		
 Start Apache

 		
 Troubleshooting

 		
 Adding Additional Languages

 		
 Flicket - FAQ

 		
 What is Flicket?

 		
 Tickets

 		
 General

 		
 Searching

 		
 Departments

 		
 Categories

 		
 Screenshots

 		
 Home Page

 		
 Tickets

 		
 View Ticket

 		
 Create Ticket

 		
 Users

 		
 Admin Panel

 		
 Admin Panel - Add User

 		
 Admin Panel - Configuration

 		
 API

 		
 Authentication / Tokens

 		
 Get Token

 		
 Delete Token

 		
 Users

 		
 Get User By ID

 		
 Get Users

 		
 Tickets

 		
 Get Ticket By ID

 		
 Get Tickets

 		
 Create Ticket

 		
 Posts

 		
 Get Post By ID

 		
 Get Posts

 		
 Departments

 		
 Get Department by ID

 		
 Get Departments

 		
 Create Department

 		
 Priorities

 		
 Get Priority By ID

 		
 Get Priorities

 		
 Status

 		
 Get Status By ID

 		
 Get Statuses

 		
 Subscriptions

 		
 Get Subscription By ID

 		
 Get Subscriptions

 		
 Uploads

 		
 Get Upload By ID

 		
 Get Uploads

_static/minus.png

_static/plus.png

_static/file.png

