
flex Documentation
Release 0.1

Derek Ruths

January 25, 2016

Contents

1 Reference materials 3
1.1 Quick Start . 3
1.2 Pipeline overview . 7
1.3 The global section . 8
1.4 The tasks section . 9
1.5 Variable and function references . 12
1.6 The fx command . 13
1.7 Tips and Tricks . 15

2 Indices and tables 17

i

ii

flex Documentation, Release 0.1

Flex is a command-line tool for building data science pipelines, particularly in the research context. It draws its
inspiration from make and linguini.

Flex seeks to address a fundamental issue that haunts every brand of data science: over the course of a project, data
becomes disconnected from the processes that produced it. Once data loses its context, even the most basic interpretive
tasks become exceedingly difficult. Moreover, attempts to reproduce or rebuild data become fraught as the details
involved are gone or hard to reconstruct.

Flex makes it easy to create and update workflows (called pipelines) while always retaining a connection to the data
that the pipeline produced.

Jump in. To quickly get up and running, check out quick_start.

Contents 1

flex Documentation, Release 0.1

2 Contents

CHAPTER 1

Reference materials

For more detailed information, check out the following reference materials:

1.1 Quick Start

Flex makes it easy to create and update computational workflows (called pipelines) that always retain a connection to
the data that the pipeline produced.

1.1.1 Installation

The easiest way to install flex is using pypi:

pip install flex

Alternatively, install flex by downloading the source and running:

python setup.py install

or:

sudo python setup.py install

depending on permission settings for your python site-packages.

A pipeline is a sequence of steps (called tasks) that manipulates data. On a very practical level, each task takes some
data as input and produces other data as output. In the example below, there are four tasks, each involved in a different
part of the workflow.

Pipeline: cluster_data

DATA_URL=http://foobar:8080/data.tsv
NAME_COLUMN=1
COUNT_COLUMN=2
ALPHA=2

download_data:
code.sh:

curl $DATA_URL > data.tsv

extract_columns: download_data
code.sh:

3

flex Documentation, Release 0.1

cut -f $NAME_COLUMN,$COUNT_COLUMN data.tsv | tail +2 > xdata.tsv
code.py:

from csv import reader
fout = open('xdata2.tsv','w')
for data in reader(open('xdata.tsv','r'),delimiter='\t'):

fout.write('%s\t%s\n' % (data[0],data[1][1:-1])

cluster_rows: extract_columns
code.sh:

./cluster.sh --alpha $ALPHA xdata2.tsv > clusters.tsv

plot_clusters: cluster_rows
code.gnuplot:

plot "clusters.tsv" using 1:2 title 'Cluster quality'

Tasks can depend on other tasks (e.g., extract_columns depends on download_data) - either in the same
pipeline or in other pipelines. By making tasks depend on other pipelines, it’s possible to treat pipelines as modular
parts of much larger workflows.

Once a task completes without error, it is marked - which flags it as not needing to be run again. In order to re-run a
task, one can simply unmark it and run it again.

If you choose to run a task which has unmarked dependencies, these will be run before the task itself is run - in this
way, an entire workflow can be run using a single command.

A task contains blocks which describe the actual computational steps being taken. As is seen in the example above,
blocks can contain code for various different languages - making it possible to stitch together workflows that involve
different languages. A single task can even contain multiple blocks for the same or different languages.

Currently, Flex supports four block types:

• export (export) - this allows environment variables to be set and unset within the context of a
specific task

• python (code.py)

• shell (code.sh)

• gnuplot (code.gnuplot)

These, of course, require that the appropriate executables are present on the system. To customize the executable used,
environment variables can be set (PYTHON_EXEC and GNUPLOT_EXEC, respectively).

Future releases will support additional languages natively and also provide a plugin mechanism for adding new block
types.

Once a pipeline has been written, it can be run using the flex command-line tool:

fx run <pipeline_file>

The command-line tool also allows easy marking (mark), unmarking (unmark), and querying task info (tasks) for
a pipeline.

Pipeline-specific Data

A common activity that creates a lot of data management issues is running effectively the same or similar pipelines
using different parameter settings: files can get overwritten and, more generally, the user typically loses track of
exactly which files came from what setting.

In Flex, files produced by a pipeline can be easily bound to their pipeline, eliminating this confusion:

4 Chapter 1. Reference materials

flex Documentation, Release 0.1

DATA_URL=http://foobar:8080/data.tsv
ALPHA=2
...

download_data:
code.sh:

curl $DATA_URL > $PLN(data.tsv)

...

In the excerpt above, the file data.tsv is being bound to this pipeline using the $PLN(.) function. In effect,
the file is prefixed (either by name or placed in a pipeline-specific directory). Future references to this file via
$PLN(data.tsv) will access only this pipeline’s version of the file - even if many pipelines are downloading
the files at various times.

Extending Pipelines

In some cases, one will want to run exactly the same pipeline over and over with different parameter settings. To
support this, Flex allows extending pipelines. Much like subclassing, extending a pipeline brings all the content of one
pipeline into another one. Assume we are clustering some data using the process here (in pipeline cluster_pln).
The process is parameterized by the alpha value.

Pipeline: cluster_pln

cluster_rows: extract_columns
code.sh:

./cluster.sh --alpha $ALPHA xdata2.tsv > $PLN(clusters.tsv)

plot_clusters: cluster_rows
code.gnuplot:

plot "$PLN(clusters.tsv)" using 1:2 title 'Cluster quality at alpha=$ALPHA'

We can extend this pipeline to retain the same workflow, but use different values:

Pipeline: cluster_a2
extend cluster_pln

ALPHA=2

and again for a different value:

Pipeline: cluster_a3
extend cluster_pln

ALPHA=3

Note that in each case the cluster data will be stored to $PLN(clusters.tsv), so that each pipeline will have its
own separate stored data.

Connecting Pipelines Together

It’s quite reasonable to expect that one pipeline could feed into another pipeline. Flex supports this - pipelines can
depend on the tasks in other pipelines - and in doing so, create even larger workflows that retain their nice modular
organization.

Consider that the earlier pipeline given above, cluster_a2, could actually be assembling the data for a classifier.
Let’s break this classifier portion of the project into its own workflow:

1.1. Quick Start 5

flex Documentation, Release 0.1

Pipeline: lda_classifier

use cluster_a2 as cdata

NEWS_ARTICLES=articles/*.gz

build_lda: cdata.cluster_rows
export:

LDA_CLASSIFIER=lda_runner

code.sh:
${LDA_CLASSIFIER} -input $PLN(cdata,clusters.tsv) -output $PLN(lda_model.json)

label_articles: build_lda
export:

LDA_LABELER=/opt/bin/lda_labeler
code.sh:

${LDA_LABELER} -model $PLN(lda_model.json) -data "$NEWS_ARTICLES" > $PLN(news.labels)

In the example above, notice how the task build_lda both depends on a task from the cluster_a2 pipeline and
also uses data from that pipeline’s namespace, $PLN(cdata,clusters.tsv).

Of course, we might want to try multiple classifiers on the same source data, so we can create other pipelines that use
cluster_a2, shown next:

Pipeline: crf_classifier

use cluster_a2 as cdata

NEWS_ARTICLES=articles/*.gz

build_crf_model: cdata.cluster_rows
code.sh:

/opt/bin/build_crf -data $PLN(cdata,clusters.tsv) -output $PLN(crf_model.json)

label_articles: build_crf_model
code.py:

import crf_model

model = crf_model.load_model('$PLN(crf_model.json)')
model.label_documents(docs='$NEWS_ARTICLES',out_file='$PLN(news.labels)')

Examples

See the examples/ directory in the flex root directory to see some real pipelines that demonstrate the core features
of the tool.

1.1.2 Command-line usage

The fx command provides several core capabilities:

• fx tasks <pipeline> will out info about one or more tasks in the pipeline including whether they are
marked

• fx run <pipeline> will run a pipeline (or a task within a pipeline)

• fx mark <pipeline> will mark specific tasks or an entire pipeline

6 Chapter 1. Reference materials

flex Documentation, Release 0.1

• fx unmark <pipeline> will unmark specific tasks or an entire pipeline

All of these commands have help messages to help their correct use.

1.2 Pipeline overview

The purposes of a pipeline are to:

• make explicit the high-level logic that achieves some goal

• connect the pipeline logic to the intermediate and final data produced

In much the same way as a make file, a flex pipeline consists of two parts:

• tasks - these perform coherent chunks of work. In this regard, tasks are very much the heart of the flex
pipeline. In a departure from make, flex tasks themselves consist of blocks which are small language-
specific units of work. For more details on this, see Declaring an abstract pipeline.

• global definitions - while the tasks are the heart of flex, some additional configurations are needed in order
to make tasks easier to write and make connections between the pipeline and other pipelines. As a result,
a flex pipeline starts with a global section, which allows for the definition of variables as well as for the
specification of pipeline configurations and connections. For more details on this, see Comments.

In order to motivate the design of a pipeline, here we’ll discuss two important attributes that many (most?) pipelines
will have:

• they produce data

• they conceptually depend on pipelines (in a variety of ways)

These are discussed in the following subsections.

1.2.1 Data Namespacing

In order to ensure that data produced by the pipeline is always linkable to it, the pipeline maintains a namespace on
the filesystem which a pipeline can easily add files to. The namespace can be one of two things:

• a prefix that is added to any given filename. By default the prefix would be the name of the pipeline. So
if the pipeline clean_census_info had a task which added the file census.tsv to the pipeline
namespace, the file would actually be named clean_census_info_census.tsv on disk.

• a directory into which all files in the namespace are added. By default the directory name is
<pipeline_name>_data. So, given the situation above with clean_census_info,
census.tsv would be written to clean_census_info_data/census.tsv.

The namespacing behavior can be configured in the global section, see Configuring data prefixing.

1.2.2 Dependencies on other pipelines

A pipeline can depend on other pipelines in two different ways.

The first and most mundane is when the tasks in one pipeline depend on the tasks in another pipeline. One can imagine
that this second pipeline is using the first pipeline in order to build a bigger “mega” pipeline (that consists of both of
them). This crops up a lot in even small-scale projects. One pipeline might deal with data download and curation,
another with pre-processing data, and a third with training models or doing analysis. Each phase could be put in a
separate pipeline, but they would all use one another.

1.2. Pipeline overview 7

flex Documentation, Release 0.1

The second and more subtle kind of dependency is when one pipeline is basically a modification of another pipeline.
For example, suppose we want to run the same analysis using different thresholds: it’s the same analysis running on
the same data - with just one or two parameters set differently. Rather than duplicating all the code for the pipeline,
we can create a second pipeline that extends the first one, just setting some specific variables to different values.

For details on these, see Declaring dependencies.

1.2.3 Comments

Thoroughly commenting pipelines is an important part of making them readable and maintainable. Within a flex
pipeline, a comment is always one line long: beginning with a # symbol and continuing to the end of the line.

1.3 The global section

The global section permits the specification of configurations and variables that will affect and be available to all tasks
in the pipeline.

1.3.1 Declaring variables

Note that here we offer a detailed discussion of variables within the context of the global section. For more information
on variables and functions in general, see Variable and function references.

In keeping with UNIX shell syntax, variables are set using the syntax:

set <var_name>=<var_value>

Throughout a pipeline, the $ character denotes a variable or function reference.

1.3.2 Configuring data prefixing

The flex system provides an easy way to create and access files and directories within the pipelines namespace. The
namespace can be either a file prefix name or a directory (see Data Namespacing for details). The prefix command
is used to configure this option for a given pipeline.

The general syntax for this command is:

prefix file/dir [prefix_path]

if prefix_path is omitted, then the following defaults are used:

• <pipeline name> for file prefixes

• <pipeline name>_data for dir prefixes

Here are some examples:

• to set the prefix to be the default file prefix, use prefix file

• to set the prefix to the file prefix foobar, use prefix file foobar

• to set the prefix to the default directory prefix, use prefix dir

• to set the prefix to the data directory above the pipeline’s containing directory, use prefix dir
../data

8 Chapter 1. Reference materials

flex Documentation, Release 0.1

1.3.3 Connecting other pipelines

The tasks in a single pipeline may comprise only one portion of an entire workflow. Supposing that we have a pipeline
phase1 with task t1, we can connect it into another pipeline using the use keyword in the global section.

use phase1

p2_task: phase1.t1
task stuff goes here

The use keyword also allows easier or more readable aliases to be defined:

use phase1 as p1

p2_task: p1.t1
task stuff goes here

1.3.4 Inheriting another pipeline

In some cases, a pipeline will be a specialization of another pipeline - it will need to use the same tasks, but perhaps
define constants or parameters differently. This can often arise in machine learning contexts - different pipelines might
invoke the same classifier, only with different parameters.

One way to achieve this without duplicating large sections of code is to write the shared code (tasks and variables) into
one pipeline and have all the related pipelines inherit that pipeline using the extend keyword.

For example, suppose that we have a pipeline named ml_master which declares two tasks train and classify
that use the value of the variable GRID_SIZE to build and run the classifier.

We could build a pipeline ml_0.5 that inherits the behavior of ml_master, but with a specific choice of
GRID_SIZE:

extend ml_master

set GRID_SIZE=0.5

1.3.5 Declaring an abstract pipeline

Pipelines that are meant to be extended, might not be meant to be run. This can be explicitly declared by giving the
pipeline the .afx (abstract flex) file suffix. A pipeline declared in this way cannot be run (but any pipelines that
extend it can).

1.4 The tasks section

Tasks form the heart of a pipeline: they contain the logical steps that perform actions. A single task should correspond
to some meaningful and self-contained unit of work.

1.4.1 The structure of a task

Since flex is entirely concerned with capturing computational workflows, tasks contain code in executable units called
blocks. In order to link tasks to one another, a task can depend on one or more other tasks (called its dependencies).

A task has the following structure:

1.4. The tasks section 9

flex Documentation, Release 0.1

<task_name>: [<dep1> <dep2> ...]
<block1>
<block2>
...
<blockN>

As a simple example, here is a task named hworld that simply prints “Hello” followed by “world” on two separate
lines:

hworld: other_task
code.sh:

MSG=Hello
echo \$MSG

code.py:
msg = 'world'
print msg

The task depends on another task named other_task. In order to print the results, it uses two code blocks - one
containing a shell script and one containing a python script. The details of the syntax here will be discussed in the
following section.

1.4.2 Declaring dependencies

A dependency is another task. To declare a dependency, simply put the task name in the task declaration line after the
colon:

first_pipeline

first:
code.sh:

echo 'first'

second: first
code.sh:

echo 'second'

In the example above, the task second has one dependency: first.

In situations where a pipeline has been included with the use keyword, tasks in the included pipeline can be depen-
dencies. To do this, use <pipeline_name>.<task_name> to refer to the task. If an alias was given for the
pipeline, then the alias must be used:

use first_pipeline as fp

third: fp.second
code.sh:

echo 'third'

1.4.3 Declaring blocks

A block corresponds to a unit of executable code in a specific language. A single block might be written in bash,
python, or any other supported language.

A block consists of the block declaration line (indented one tab) followed by the block contents (all of which is
intended two levels).

10 Chapter 1. Reference materials

flex Documentation, Release 0.1

Block declaration. The block declaration line indicates what language is being used. code.sh corresponds to the
shell language, code.py corresponds to python. Currently the following languages are supported:

• Bash - code.sh

• Python - code.py

• Gnuplot - code.gpl

• Awk - code.awk

There is also another special block called export which accepts variable declarations using the same format as the
globals section. export blocks can be used to set variables within the scope of this specific task.

Block content. Block content is further indented under the block declaration line. For example:

task1:
code.sh:

ls -1 > contents.txt
code.py:

x = 1
y = 2
print 'Two numbers: %d %d' % (x,y)

In this example, there are two code blocks. The contents of the code block can contain arbitrary content that adheres
to the language of the block.

Execution order. When a task contains more than one block, the blocks are executed in the order in which they are
declared in the pipeline file. So in the example above, the shell block would be executed, followed by the python
block.

Use of variables. Variables and functions will be discussed in much more detail in Variable and function references.
While discussing blocks, however, several points are worth noting.

Before the block content is passed to the appropriate execution system (e.g., the python interpreter), flex variables and
functions are first evaluated. All variables and functions begin with a $ character:

var_test pipeline
in_dir=/etc
out_fname=output.dat

do_it:
export:

tmp_file=__foobar.txt
code.sh:

export PATH=~/local/bin:\$PATH
ls -l $in_dir > $tmp_file
cut -f1 > $out_fname

In the example above, the shell code block makes use of three flex-defined variables, in_dir, tmp_file, and
out_fname. Notice that it also references the shell variable PATH and that, in order to make this reference, a
backslash is used to escape the $ character.

Configuring the execution environment. All flex variables are exported into the shell environment in which the
execution system will run. For example:

PYTHONPATH=.

do_it:
code.py:

import mylib
mylib.run()

1.4. The tasks section 11

flex Documentation, Release 0.1

sets the PYTHONPATH variable that the python interpreter will use.

1.4.4 Overloading tasks

Situations can arise in which a pipeline is extending another pipeline, but wants a particular task to do something
different. This task overloading is achieved simply by defining the task again in the current pipeline:

extend first_pipeline

first:
code.py:

print 'this is the first task'

In this case, we have overloaded first task from earlier to print out a different message.

1.5 Variable and function references

As alluded to in earlier sections, variables and functions are important to writing modular, readable, and maintainable
pipelines. Here we discuss the guts of how variables, variable references, and function invocations are handled and
resolved.

1.5.1 Syntax

Much like in bash and make, variables and functions are references using $<name> or ${<name>}, where the name
is the name of the variable or function. Functions have the additional requirement of parentheses which contain the
input arguments: $<fxn_name>(<args>) or ${<fxn_name>}(<args>).

Variable and function names can consist of one or more alphanumeric or underscore characters. The sec-
ond reference form using curly braces allows the use of variables in places where there is no whitespace:
foobar_${iternum}.txt.

1.5.2 Available functions

Executing shell commands

The $(x) command executes command x and evaluates to the standard out produced by the execution. To be valid,
the command must produce exactly one line of text.

cmd = gcc
t1:

code.sh:
ls -lh $(which $cmd)

In this example, the which command is run. Notice that flex variables can be used within functions.

Accessing resources in the namespace

The $PLN(x) function will resolve to the absolute path to the resource x within the pipeline namespace. So, if the
pipeline namespace is /tmp/foobar, then $PLN(x) = /tmp/foobar_x.

Accessing resources in ‘other‘ namespaces. At times it may be necessary for one pipeline to access a resource in
another pipeline’s namespace. The $PLN(p,r) function can be used for this purpose. Here the function accepts two

12 Chapter 1. Reference materials

flex Documentation, Release 0.1

arguments. p is the name of the pipeline (which must be mentioned in a use statement) and r is the resource name.
For example, in the following code:

use phase1 as p1

p2_task: p1.t1
code.sh:

head $PLN(p1,foobar.txt)

p2_task will access the file foobar.txt in the namespace of the phase1 pipeline.

1.5.3 Resolution rules

Variable and function references are resolved in two places:

• The right-hand side of variable assignments

• Anywhere inside blocks

Consider the following example pipeline:

my_site_packages=$(which python | basedir)/lib/site-packages

iter_num=10

download:
export:

PYTHONPATH=$my_site_packages
code.py:

import mylib
mylib.run($iter_num)

In it, a number of flex variables and functions are used. Notably, the reference to $iter_num is resolved to 10 before
the python code is called.

1.5.4 Global vs. block scope

Any variables defined in or changed in export blocks do not retain those affects outside of the task in which they
appear.

1.6 The fx command

All of flex’s functionality is accessed through the fx command line tool. You’ll first need a pipeline, of course. For
illustration purposes, throughout this section, we’ll use the pipeline foobar, which has the following contents:

use configurator as config

download_data: config.setup_env
code.sh:

curl www.greatdata.com/dataset1.tsv > $PLN(dataset1.tsv)

extract_col1: download_data
code.sh:

cut -f 1 $PLN(dataset1.tsv) > $PLN(col1.txt)

A bit of vocabulary will help our discussion of the behavior of the fx command:

1.6. The fx command 13

flex Documentation, Release 0.1

• a direct dependency of a task (say, taskX) is another task which appears in the dependency list of taskX.
In foobar, download_data is direct dependency of extract_col1.

• the dependencies of a task (say, taskX) are all the direct dependencies of taskX as well as the direct de-
pendencies of those tasks and so forth. In foobar, the dependencies of extract_col1 includes
download_data as well as config.setup_env and an tasks that setup_env depends on.

• a terminal task is a task that isn’t in the dependency list of any other task in the pipeline. In foobar,
extract_col1 is the only terminal task.

• a task becomes marked when it is successfully run. Typically this is used to ensure that the task isn’t run
again.

1.6.1 Running a pipeline

The most fundamental activity we’ll need to do is running a tasks in a pipeline.

Running a complete pipeline. To run all tasks in your pipeline, use fx run <pipeline_file>. This will run
all unmarked terminal tasks and their dependencies. They are run in dependency order - so the terminal task will be
the last task run. For details on the rules that govern if and when a dependency is run, see When and if dependencies
are run.

Running a specific task. To run a specific task in your pipeline, use fx run <pipeline_file>
<task_name>. This will run the task (if unmarked) as well as its dependencies.

Running marked tasks. If you do want to run a task that has already been marked, you have two options.

1. Unmark the relevant task using the fx unmark command.

2. Use the -f flag to force tasks to be run. This flag takes an argument which determines what tasks are
forced to run.

• run -f=NONE doesn’t override any markings. This is the default

behavior.

• run -f=TOP overrides the marking on only the terminal task/specified

task.

• run -f=ALL overrides the markings on all tasks encountered during the

run. Be careful when using this option as it can cause tasks far down the dependency tree to be
re-run.

• run -f=SOLO ignores any dependencies the named task may have and runs just that
task.

When and if dependencies are run

By default, when flex wants to run a task (we’ll call this the final task), it will first check to see if any of the dependen-
cies of that task need to be run first.

The order of dependency evaluation is set such that a particular task is never evaluated before its direct dependencies.
When this policy is applied to all dependencies of the final task, we end with an ordering that starts with the tasks
which have no dependencies and end with the final task.

When a task is being evaluated, it is run if either of the following conditions are true:

1. the task is unmarked

2. the task’s mark is older than one of its direct dependencies.

14 Chapter 1. Reference materials

flex Documentation, Release 0.1

In either of these cases, the task will be run and, if successful, it will be marked.

1.6.2 Marking and unmarking tasks

To mark a specific task, use fx mark <pipeline_file> <task_name>. If the task specified is not marked,
it will be marked. If the task is already marked, then the timestamp on the task’s mark will be updated.

To unmark a specific task, use fx unmark <pipeline_file> <task_name>. This will remove the mark on
the task (if it exists).

1.6.3 Checking status of pipeline tasks

You can use the fx tasks <pipeline_file> command to print out information about all the tasks in the
pipeline. This will print the tasks in the pipeline as well as any tasks in other pipelines on which it depends. The
timestamp of any marked tasks will be given.

1.7 Tips and Tricks

Flex is a too young to have conventions, per say. But there are some tips and tricks that can be useful.

1.7.1 Pipeline naming

Use nouns. Name pipelines for the literal thing they’re doing. For example, a pipeline that obtains and prepares data
from the US census might be called us_census_grabber.

No suffixes. Like makefiles, pipelines should be named without a suffix. Since the default namespace is based off of
the pipeline’s filename, this avoids ugly file and directory names.

Abstract pipelines. Abstract pipelines should be named in such a way that it is clear that they contain placeholders.
If the pipeline is designed to model a particular country, then the name might be XX_model_builder where XX is
a stand-in for the country code (which will be specified in the derived pipelines.

1.7.2 Extending pipelines

When to extend. When you have a certain kind of analysis that you’d like to run on different datasets or using different
parameter values, write an abstract pipeline.

Don’t make extended pipelines functional. In order to avoid confusing the purpose of an abstract pipeline with those
that actually do work, avoid running a pipeline that will be extended.

1.7. Tips and Tricks 15

flex Documentation, Release 0.1

16 Chapter 1. Reference materials

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

17

	Reference materials
	Quick Start
	Pipeline overview
	The global section
	The tasks section
	Variable and function references
	The fx command
	Tips and Tricks

	Indices and tables

