
Flatpak Documentation
Release 0.8.0

Flatpak Team

January 27, 2017

Contents

1 Contents 3
1.1 Introduction to Flatpak . 3
1.2 Elements of a Flatpak Application . 5
1.3 Getting Setup . 6
1.4 Building Simple Apps . 7
1.5 Flatpak Builder . 9
1.6 Working with the Sandbox . 11
1.7 Distributing Applications . 13

2 Indices and tables 17

i

ii

Flatpak Documentation, Release 0.8.0

These docs cover everything you need to know to build and/or distribute applications as Flatpaks. They contain a
high-level introduction to Flatpak, tutorials on building applications and essential information on how to develop and
distribute applications as Flatpaks.

The docs are primarily intended for application developers and distributors. However, they might be interesting if you
are interested in Flatpak more generally.

If you are looking for information about how to install and use Flatpak applications, please refer to the Flatpak website.
Otherwise, if you want information about Flatpak internals or how to create runtimes, the Flatpak wiki is the best place
to start.

Contents 1

http://flatpak.org
https://github.com/flatpak/flatpak/wiki

Flatpak Documentation, Release 0.8.0

2 Contents

CHAPTER 1

Contents

1.1 Introduction to Flatpak

Flatpak is a technology for building, distributing, installing and running applications. It is primarily targetted at the
Linux desktop, although it can also be used as the basis for application distribution in other contexts, such as embedded
systems.

Flatpak has been designed and implemented with a number of goals:

• Allow applications to be installed on any Linux distribution.

• Provide consistent environments for applications, to facilitate testing and reduce bugs.

• Decouple applications from operating system, so that applications don’t depend on specific versions of each
distribution.

• Allow applications to bundle their own dependencies, so that they can use libraries that aren’t provided by a
Linux distribution, and so they can depend on specific versions or even patched versions of a library.

• Increase the security of Linux desktops, by isolating applications in sandboxes.

Flatpak makes it easy to take advantage of these features. If you haven’t already, it is recommended that you try the
hello world example, as a way of getting started.

More information about Flatpak can be found on flatpak.org.

1.1.1 How it works

Familiarity with a few key concepts is enough to understand how Flatpak works, as well as how it differs from
traditional software packages.

Runtimes

Runtimes provide the basic dependencies that applications might require. Various runtimes are available, from more
minimal (but more stable) Freedesktop runtimes, to larger runtimes produced by desktops like GNOME or KDE. (The
runtimes page on flatpak.org provides an overview of the runtimes that are currently available.)

Each application must be built against a runtime, and this runtime must be installed on a host system in order for the
application to run. Users can install multiple different runtimes at the same time, including different versions of the
same runtime.

3

http://flatpak.org/hello-world.html
http://flatpak.org/
http://flatpak.org/runtimes.html

Flatpak Documentation, Release 0.8.0

Tip: Each runtime can be thought of as a /usr filesystem. Indeed, when an application is run, its runtime is mounted
at /usr.

Note: Flatpak identifies runtimes (as well as SDKs and applications) by a triple of name/arch/branch. The name is
expected to be in inverse-dns notation, which needs to match the D-Bus name used for the application. For example:
org.gnome.Sdk/x86_64/3.14 or org.gnome.Builder/i386/master.

Bundled libraries

If an application requires any dependencies that aren’t in its runtime, they can be bundled along with the application
itself. This allows applications to use dependencies that aren’t available in a distribution, or to use a different version
of a dependency from the one that’s installed on the host.

Note: Both runtimes and app bundles can be installed per-user and system-wide.

SDKs (Software Developer Kits)

An SDK is a runtime that includes the ‘devel’ parts which are not needed at runtime, such as build and packaging
tools, header files, compilers and debuggers. Each application is built against an SDK, which is typically paired with
a runtime (this is the runtime that will be used by the application at runtime).

Extensions

An extension is an optional add-on for a runtime or application. They are most commonly used to split out transla-
tions and debug info from runtimes. For example, org.freedesktop.Platform.Locale can be added to the
org.freedesktop.Platform runtime in order to enable translations.

Sandboxes

With Flatpak, each app is built and run in an isolated environment. By default, the application can only ‘see’ itself and
its runtime. Access to user files, network, graphics sockets, subsystems on the bus and devices have to be explicitly
granted. (As will be described later, Flatpak provides several ways to do this.) Access to other things, such as other
processes, is (deliberately) not possible.

1.1.2 The flatpak command

flatpak is the command that is used to install, remove and update runtimes and applications. It can also be used
to view what is currently installed, and has commands for building and distributing application bundles. flatpak
--help provides a full list of available commands.

Most flatpak commands are performed system-wide by default. To perform a command for the current user only, use
the --user option.

4 Chapter 1. Contents

Flatpak Documentation, Release 0.8.0

1.1.3 Under the hood

Flatpak uses a number of pre-existing technologies. It generally isn’t necessary to be familiar with these in order to
use Flatpak, although in some cases it might be useful. They include:

• The bubblewrap utility from Project Atomic, which lets unprivileged users set up and run containers, using
kernel features such as:

– Cgroups

– Namespaces

– Bind mounts

– Seccomp rules

• systemd to set up cgroups for sandboxes

• D-Bus, a well-established way to provide high-level APIs to applications

• The OCI format from the Open Container Initiative, as a convenient transport format for single-file bundles

• The OSTree system for versioning and distributing filesystem trees

• Appstream metadata, to allow Flatpak applications to show up nicely in software-center applications

1.2 Elements of a Flatpak Application

Flatpak expects applications to follow standard Linux desktop conventions. These are supplemented with a small
number of Flatpak-specific elements that are used to distribute, install and run applications.

1.2.1 Standard application elements

The following are some of the Linux desktop conventions that are supported and expected by Flatpak. Application
developers are encouraged to use them.

• AppData, for providing information that can be used by app stores, such as an application description and
screenshots

• Application icons, as specified by the Freedesktop icon theme specification

• D-Bus, for interaction with the host

• Desktop files, for providing basic information about the application

• PulseAudio, for sound

• X11 and Wayland, for display

1.2.2 Application structure

When an application is built using flatpak, it is outputted with the following structure:

• metadata - a keyfile which provides information about the application

• /files - the files that make up the application, include source code and application data

• /files/bin - application binaries

• /export - files which the host environment needs access to, such as the application’s AppData, .desktop file,
icon and D-Bus service files

1.2. Elements of a Flatpak Application 5

https://github.com/projectatomic/bubblewrap
http://www.projectatomic.io/
https://www.freedesktop.org/wiki/Software/systemd/
https://www.freedesktop.org/wiki/Software/dbus/
https://www.opencontainers.org/
https://ostree.readthedocs.io/en/latest/
https://www.freedesktop.org/software/appstream/docs/
https://www.freedesktop.org/software/appstream/docs/chap-Quickstart.html#sect-Quickstart-DesktopApps
https://standards.freedesktop.org/icon-theme-spec/icon-theme-spec-latest.html
https://www.freedesktop.org/wiki/Software/dbus/
https://standards.freedesktop.org/desktop-entry-spec/latest/
https://www.freedesktop.org/wiki/Software/PulseAudio/
https://www.x.org/wiki/
https://wayland.freedesktop.org/

Flatpak Documentation, Release 0.8.0

All the files in the export directory must have the application ID as a prefix (for exam-
ple: org.gnome.App.appdata.xml, org.gnome.App.desktop, org.gnome.App.png,
org.gnome.App.service). Naming files in this way guarantees that applications cannot cause conflicts
and that they can’t override any system installed applications.

To name exported files in this way, either rename the relevant source files with the application ID, or use flatpak-builder
to rename the files at build time (this is explained in more detail in the section on flatpak-builder).

1.2.3 Metadata files

An application’s metadata file provides information that allows flatpak to set up the sandbox for running the appli-
cation. A typical metadata file looks like this:

[Application]
name=org.gnome.gedit
runtime=org.gnome.Platform/x86_64/3.22
sdk=org.gnome.Sdk/x86_64/3.22
command=gedit

[Context]
shared=ipc;network;
sockets=x11;wayland;pulseaudio;
devices=dri;
filesystems=host;

[Environment]
GEDIT_FOO=bar

[Session Bus Policy]
org.extra.name=talk
org.other.name=own

This specifies the name of the application, the runtime it requires, the SDK that it is built against and the command
used to run it. It also specifies file and device access, sets certain environment variables (inside the sandbox, of course),
and how to connect to the session bus. Details on how to change these metadata parameters are included in subsequent
sections.

Note: While it is most common to encounter application metadata files, runtimes and extensions also have them.

1.3 Getting Setup

Getting setup to build Flatpaks is quick and easy. First, it is necessary to have the flatpak and flatpak-builder
packages installed on your system. These are available for most distributions, and the Flatpak website provides details
on how to get them.

Once flatpak has been installed, it is necessary to pick a runtime and install the SDK and install it.

1.3.1 Installing an SDK

An SDK is a special type of runtime that is used to build applcations. Typically, an SDK is paired with a runtime that
will be used by the application at runtime. For example the GNOME 3.22 SDK is used to build applications that use
the GNOME 3.22 runtime.

6 Chapter 1. Contents

http://flatpak.org/getting.html
http://flatpak.org/getting.html

Flatpak Documentation, Release 0.8.0

The Flatpak website provides a list of the available runtimes. Once you have decided which one to use, getting setup
is just a matter of installing it and its SDK.

The examples in the rest of the Flatpak documentation uses the GNOME 3.22 runtime and SDK. If you haven’t
installed these already, download the repository GPG key and then add the repository that contains the runtime and
SDK:

$ flatpak remote-add --from gnome https://sdk.gnome.org/gnome.flatpakrepo

You can now download and install the runtime and SDK:

$ flatpak install gnome org.gnome.Platform//3.22 org.gnome.Sdk//3.22

This same procedure can be used to install any other runtime and SDK.

1.3.2 Taking a look around

If this is the first time you’ve used Flatpak, this might be a good time to try installing an application and having a
look ‘under the hood’. To do this, you need to add a repository that contains applications. We can do this using the
gnome-apps repository to install gedit:

$ flatpak remote-add --from gnome-apps https://sdk.gnome.org/gnome-apps.flatpakrepo
$ flatpak install gnome-apps org.gnome.gedit

You can now use the following command to get a shell in the ‘devel sandbox’:

$ flatpak run --devel --command=bash org.gnome.gedit

This gives you an environment which has the application bundle mounted in /app, and the SDK it was built against
mounted in /usr. You can explore these two directories to see what a typical flatpak looks like, as well as what is
included in the SDK.

1.4 Building Simple Apps

The flatpak utility provides a simple set of commands for building and distributing applications. These allow
creating new Flatpaks, into which new or existing applications can be built.

This section describes how to build a simple application which doesn’t require any additional dependencies outside
of the runtime it is built against. In order to complete the examples, you should have completed the steps in Getting
Setup first.

1.4.1 Creating an app

To create an application, the first step is to use the build-init command. This creates a directory into which an
applcation can be built, which contains the correct directory structure and a metadata file which contains information
about the app. The format for build-init is:

$ flatpak build-init DIRECTORY APPNAME SDK RUNTIME [BRANCH]

• DIRECTORY is the name of the directory that will be created to contain the application

• APPNAME is the D-Bus name of the application

• SDK is the name of the SDK that will be used to build the application

• RUNTIME is the name of the runtime that will be required by the application

1.4. Building Simple Apps 7

http://flatpak.org/runtimes.html

Flatpak Documentation, Release 0.8.0

• BRANCH is typically the version of the SDK and runtime that will be used

For example, to build the GNOME Dictionary application using the GNOME 3.22 SDK, the command would look
like:

$ flatpak build-init dictionary org.gnome.Dictionary org.gnome.Sdk org.gnome.Platform 3.22

You can try this command now. In the next step we will build an application inside the resulting dictionary directory.

1.4.2 Building

flatpak build is used to build an application using an SDK. This command is used to provide access to a sandbox.
For example, the following will create a file inside the appdir sandbox (in the files directory):

$ flatpak build dictionary touch /app/some_file

(It is best to remove this file before continuing.)

The build command allows existing applications that have been made using the traditional configure, make, make
install routine to be built inside a flatpak. You can try this using GNOME Dictionary. First, download the source files,
extract them and switch to the resulting directory:

$ wget https://download.gnome.org/sources/gnome-dictionary/3.20/gnome-dictionary-3.20.0.tar.xz
$ tar xvf gnome-dictionary-3.20.0.tar.xz
$ cd gnome-dictionary-3.20.0/

Then you can use the build command to build and install the source inside the dictionary directory that was previously
made:

$ flatpak build ../dictionary ./configure --prefix=/app
$ flatpak build ../dictionary make
$ flatpak build ../dictionary make install
$ cd ..

Since these are run in a sandbox, the compiler and other tools from the SDK are used to build and install, rather than
those on the host system.

1.4.3 Completing the build

Once an application has been built, the build-finish command needs to be used to specify access to different
parts of the host, such as networking and graphics sockets. This command is also used to specify the command that
is used to run the app (done by modifying the metadata file), and to create the application’s exports directory. For
example:

$ flatpak build-finish dictionary --socket=x11 --share=network --command=gnome-dictionary

At this point you have successfully built a flatpak and prepared it to be run. To test the app, you need to export the
Dictionary to a repository, add that repository and then install and run the app:

$ flatpak build-export repo dictionary
$ flatpak --user remote-add --no-gpg-verify --if-not-exists tutorial-repo repo
$ flatpak --user install tutorial-repo org.gnome.Dictionary
$ flatpak run org.gnome.Dictionary

This exports the app, creates a repository called tutorial-repo, installs the Dictionary application in the per-user instal-
lation area and runs it.

8 Chapter 1. Contents

Flatpak Documentation, Release 0.8.0

1.5 Flatpak Builder

Most applications require additional dependencies that aren’t provided by their runtimes. Flatpak allows these depen-
dencies to be bundled as part of the application itself. In order to do this, each dependency must be built inside the
application build directory. The flatpak-builder tool automates this multi-step build process, making it possible
to build all application modules with a single command.

flatpak-builder expects modules to be built in the standard manner by following what is called the Build API. This
requires modifying modules to follow the build API, if they don’t already.

1.5.1 Manifests

The input to flatpak-builder is a JSON file that describes the parameters for building an application, as well as each of
the modules to be bundled. This file is called the manifest. Module sources can be of several types, including .tar
or .zip archives, Git or Bzr repositories, patch files or shell commands that are run.

The GNOME Dictionary manifest is short, because the only module is the application itself:

{
"app-id": "org.gnome.Dictionary",
"runtime": "org.gnome.Platform",
"runtime-version": "3.22",
"sdk": "org.gnome.Sdk",
"command": "gnome-dictionary",
"finish-args": [

"--socket=x11",
"--share=network"

],
"modules": [
{

"name": "gnome-dictionary",
"sources": [

{
"type": "archive",
"url": "https://download.gnome.org/sources/gnome-dictionary/3.20/gnome-dictionary-3.20.0.tar.xz",
"sha256": "efb36377d46eff9291d3b8fec37baab2355f9dc8bc7edb791b6a625574716121"

}
]

}
]

}

As can be seen, this manifest includes basic information about the application before specifying a single .tar file to be
downloaded and built. More complex manifests include a sequence of modules.

1.5.2 Cleanup

After building has taken place, flatpak-builder performs a cleanup phase. This can be used to remove headers and
development documentation, among other things. Two properties in the manifest file are used for this. First, a list of
filename patterns can be included:

"cleanup": ["/include", "/bin/foo-*", "*.a"]

The second cleanup property is a list of commands that are run during the cleanup phase:

1.5. Flatpak Builder 9

https://github.com/cgwalters/build-api/

Flatpak Documentation, Release 0.8.0

"cleanup-commands": ["sed s/foo/bar/ /bin/app.sh"]

Cleanup properties can be set on a per-module basis, in which case only filenames that were created by that particular
module will be matched.

1.5.3 File renaming

Files that are exported by a flatpak must be prefixed using the application ID. If an application’s source files are
not named using this convention, flatpak-builder allows them to be renamed as part of the build process. To re-
name application icons, desktop files and AppData files, use the rename-icon, rename-desktop-file and
rename-appdata properties.

1.5.4 Splitting things up

By default, flatpak-builder splits off translations and dubug information into separate .Locale and .Debug extensions.
These ‘standard’ extension points are then added to the application’s metadata file. You can turn this off with the
separate-locales and no-debuginfo keys, but there shouldn’t be any reason for it.

When flatpak-builder exports the build into a repository, it automatically includes the .Locale and .Debug extensions.
If you do the exporting manually, don’t forget to include them.

1.5.5 Example

You can try flatpak-builder for yourself, using the repository that was created in the previous section. To do this, place
the manifest JSON from above into a file called org.gnome.Dictionary.json and run the following command:

$ flatpak-builder --repo=repo dictionary2 org.gnome.Dictionary.json

This will:

• Create a new directory (called dictionary2)

• Download and verify the Dictionary source code

• Build and install the source code, using the SDK rather than the host system

• Finish the build, by setting permissions (in this case giving access to X and the network)

• Export the resulting build to the tutorial repository, which contains the Dictionary app that was previously
installed

flatpak-builder will also do some other useful things, like creating a separately installable debug run-
time (called org.gnome.Dictionary.Debug in this case) and a separately installable translation runtime (called
org.gnome.Dictionary.Locale).

If you completed the tutorial in Building Simple Apps, you can update the Dictionary application you installed with
the new version that was built and exported by flatpak-builder:

$ flatpak --user update org.gnome.Dictionary

To check that the application has been successfully updated, you can compare the sha256 commit of the installed app
with the commit ID that was printed by flatpak-builder:

$ flatpak info org.gnome.Dictionary
$ flatpak info org.gnome.Dictionary.Locale

And finally, you can run the new version of the Dictionary app:

10 Chapter 1. Contents

Flatpak Documentation, Release 0.8.0

$ flatpak run org.gnome.Dictionary

1.5.6 Example manifests

A complete manifest for GNOME Dictionary built from Git is available, in addition to manifests for a range of other
GNOME applications.

1.6 Working with the Sandbox

One of Flatpak’s main goals is to increase the security of desktop systems by isolating applications from one another.
This is done using sandboxing and it means that, by default, a Flatpak has extremely limited access to the host
environment. This includes:

• No access to any host files except the runtime, the app and ~/.var/app/$APPID. Only the last of these is
writable.

• No access to the network.

• No access to any device nodes (apart from /dev/null, etc).

• No access to processes outside the sandbox.

• Limited syscalls. For instance, apps can’t use nonstandard network socket types or ptrace other processes.

• Limited access to the session D-Bus instance - an app can only own its own name on the bus.

• No access to host services like X, system D-Bus, or PulseAudio.

Most applications will need access to some of these resources in order to be useful, and Flatpak provides a number of
ways to give an application access to them.

While there are no restrictions on which sandbox permissions an application can use, as good practice, it is recom-
mended to use the minimum number of as permissions possible. Certain permissions, such as blanket access to the
system bus (using the --socket=system-bus option) are strongly discouraged.

1.6.1 Configuring sandbox permissions

Using the build-finish command is the simplest way to configure sandbox permissions. As was seen in a previous
example, this can be used to add access to graphics sockets and the network:

$ flatpak build-finish dictionary2 --socket=x11 --share=network --command=gnome-dictionary

These arguments translate into several properties in the application’s metadata file:

[Application]
name=org.gnome.Dictionary
runtime=org.gnome.Platform/x86_64/3.22
sdk=org.gnome.Sdk/x86_64/3.22
command=gnome-dictionary

[Context]
shared=network;
sockets=x11;

1.6. Working with the Sandbox 11

https://git.gnome.org/browse/gnome-apps-nightly/tree/org.gnome.Dictionary.json
https://git.gnome.org/browse/gnome-apps-nightly/tree/
https://git.gnome.org/browse/gnome-apps-nightly/tree/

Flatpak Documentation, Release 0.8.0

build-finish allows a whole range of resources to be added to an application. These options can also be passed to
flatpak-builder as finish-args properties.

The table at the bottom of this page provides an overview of many sandbox permissions. The full list can also be
viewed using flatpak build-finish --help.

Note: Until a sandbox-compatible backend is available, access to dconf needs to be enabled using the following
options:

--filesystem=xdg-run/dconf
--filesystem=~/.config/dconf:ro
--talk-name=ca.desrt.dconf
--env=DCONF_USER_CONFIG_DIR=.config/dconf

1.6.2 Portals

Portals are a mechanism through which applications can interact with the host environment from within a sandbox.
In this way, they give additional abilities to interact with data, files and services without the need to add sandbox
permissions.

Interface toolkits can implement transparent support for portals. If an application uses one of these toolkits, there is
no additional work required to access them.

Examples of capabilities that can be accessed through portals include:

• Inhibit the user session from ending, suspending, idling or getting switched away

• Network status information

• Notifications

• Open a URI

• Open files with a native file chooser dialog

• Printing

• Screenshots

Applications that aren’t using a toolkit with support for portals can refer to the xdg-desktop-portal API documentation
for information on how to access them.

1.6.3 Overriding sandbox permissions

When developing an application, it can sometimes be useful to override a Flatpak’s sandbox configuration. There
are several ways to do this. One is to override them using flatpak run, which accepts the same parameters as
build-finish. For example, this will let the Dictionary application see your home directory:

$ flatpak run --filesystem=home --command=ls org.gnome.Dictionary ~/

flatpak run can also be used to permanently override an application’s permissions:

$ flatpak --user override --filesystem=home org.gnome.Dictionary
$ flatpak run --command=ls org.gnome.Dictionary ~/

It is also possible to remove permissions using the same method. You can use the following command to see what
happens when access to the filesystem is removed, for example:

12 Chapter 1. Contents

http://flatpak.org/xdg-desktop-portal/portal-docs.html

Flatpak Documentation, Release 0.8.0

$ flatpak run --nofilesystem=home --command=ls org.gnome.Dictionary ~/

1.6.4 Useful sandbox permissions

Flatpak provides an array of options for controlling sandbox permissions. The following are some of the most useful:

–filesystem=host Access all files
–filesystem=home Access the home directory
–filesystem=home:ro Access the home directory, read-only
–filesystem=/some/dir –filesystem=~/other/dir Access paths
–filesystem=xdg-download Access the XDG download directory
–nofilesystem=... Undo some of the above
–socket=x11 –share=ipc Show windows using X11 1

–device=dri OpenGL rendering
–socket=wayland Show windows using Wayland
–socket=pulseaudio Play sounds using PulseAudio
–share=network Access the network 2

–talk-name=org.freedesktop.secrets Talk to a named service on the session bus
–system-talk-name=org.freedesktop.GeoClue2 Talk to a named service on the system bus
–socket=system-bus Unlimited access to all of D-Bus

1.7 Distributing Applications

Flatpak provides several ways to distribute applications. The primary method is to host a repository. This is relatively
simple (although there are some important details to be aware of) and allows application updates to be distributed.

It is also possible to distribute Flatpaks as single file bundles, which can be useful in some situations.

1.7.1 Hosting a repository

The previous sections of this guide describe how to generate repositories using build-export or
flatpak-builder. The resulting OSTree repository can be hosted on a web server for consumption by users.

Important details

OSTree repositories use archive-z2, meaning that they contain a single file for each file in the application. This means
that pull operations will do a lot of HTTP requests. Since new requests are slow, it is important to enable HTTP
keep-alive on the web server.

OSTree supports something called static deltas. These are single files in the repo that contains all the data
needed to go between two revisions (or from nothing to a revision). Creating such deltas will take up more
space on the server, but will make downloads much faster. This can be done with the build-update-repo
--generate-static-deltas option.

1-share=ipc means that the sandbox shares IPC namespace with the host. This is not necessarily required, but without it the X shared
memory extension will not work, which is very bad for X performance.

2Giving network access also grants access to all host services listening on abstract Unix sockets (due to how network namespaces work), and
these have no permission checks. This unfortunately affects e.g. the X server and the session bus which listens to abstract sockets by default. A
secure distribution should disable these and just use regular sockets.

1.7. Distributing Applications 13

Flatpak Documentation, Release 0.8.0

GPG signatures

OSTree uses GPG to verify the identity of repositories. A signature is therefore required for every commit and for
repository summary files. These objects are created by the build-update-repo and build-export com-
mands, as well as indirectly by flatpak-builder. A GPG key therefore needs to be passed to each of these
commands, and optionally the GPG home directory to use. For example:

$ flatpak build-export --gpg-sign=KEYID --gpg-homedir=/some/dir appdir repo

It is recommended that OSTree repositories are verified using GPG whenever they are used. However, if you want to
disable GPG verification, the --no-gpg-verify option can be used when a remote is added. GPG verification can
also be disabled on an existing remote using flatpak remote-modify.

Note that it is necessary to become root in order to update a remote that does not have GPG verification enabled.

Referring to repositories

A convenient way to point users to the repository containing your application is to provide a .flatpakrepo file
that they can download and install. To install a .flatpakrepo file manually, use the command:

$ flatpak remote-add --from foo.flatpakrepo

A typical .flatpakrepo file looks like this:

[Flatpak Repo]
Title=GEdit
Url=http://sdk.gnome.org/repo-apps/
GPGKey=mQENBFUUCGcBCAC/K9WeV4xCaKr3...

If your repository contains just a single application, it may be more convenient to use a .flatpakref file instead,
which contains enough information to add the repository and install the application at the same time. To install a
.flatpakref file manually, use the command:

$ flatpak install --from foo.flatpakref

A typical .flatpakref file looks like this:

[Flatpak Ref]
Title=GEdit
Name=org.gnome.gedit
Branch=stable
Url=http://sdk.gnome.org/repo-apps/
IsRuntime=False
GPGKey=mQENBFUUCGcBCAC/K9WeV4xCaKr3...

Note that the GPGKey key in these files contains the base64-encoded GPG key, which you can get with the following
command:

$ base64 --wrap=0 < foo.gpg

1.7.2 Single-file bundles

Hosting a repository is the preferred way to distribute an application, but sometimes a single-file bundle that you can
make available from a website or send as an email attachment is more convenient. Flatpak supports this with the
build-bundle and build-import-bundle commands to convert an application in a repository to a bundle
and back:

14 Chapter 1. Contents

Flatpak Documentation, Release 0.8.0

$ flatpak build-bundle [OPTION...] LOCATION FILENAME NAME [BRANCH]
$ flatpak build-import-bundle [OPTION...] LOCATION FILENAME

For example, to create a bundle named dictionary.flatpak containing the GNOME dictionary app from the repository
at ~/repositories/apps, run:

$ flatpak build-bundle ~/repositories/apps dictionary.flatpak org.gnome.Dictionary

To import the bundle into a repository on another machine, run:

$ flatpak build-import-bundle ~/my-apps dictionary.flatpak

Note that bundles have some drawbacks, compared to repositories. For example, distributing updates is much more
convenient with a hosted repository, since users can just run flatpak update.

1.7. Distributing Applications 15

Flatpak Documentation, Release 0.8.0

16 Chapter 1. Contents

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

17

	Contents
	Introduction to Flatpak
	Elements of a Flatpak Application
	Getting Setup
	Building Simple Apps
	Flatpak Builder
	Working with the Sandbox
	Distributing Applications

	Indices and tables

